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Abstract: For a comfortable thermal environment, the main parameters are indoor air humidity and
temperature. These parameters are strongly coupled, causing the need to search for multivariable
control alternatives that allow efficient results. Therefore, in order to control both the indoor air
humidity and temperature for direct expansion (DX) air conditioning (A/C) systems, different
controllers have been designed. In this paper, a discrete-time neural inverse optimal control scheme
for trajectories tracking and reduced energy consumption of a DX A/C system is presented. The
dynamic model of the plant is approximated by a recurrent high-order neural network (RHONN)
identifier. Using this model, a discrete-time neural inverse optimal controller is designed. Unscented
Kalman filter (UKF) is used online for the neural network learning. Via simulation the scheme is
tested. The proposed approach effectiveness is illustrated with the obtained results and the control
proposal performance against disturbances is validated.

Keywords: direct expansion; air conditioning system; neural network; unscented Kalman filter;
variable speed

MSC: 93-10

1. Introduction

Not just a comfortable level of indoor air temperature is the only objective of air
conditioning (A/C) systems [1,2]. Additionally, maintaining an adequate level of indoor
air humidity is essential for an A/C system, since the efficient operation of building A/C
systems, indoor air quality (IAQ) and building thermal comfort for occupants is directly
affected by indoor humidity [3,4].

Recently, the use of direct expansion (DX) air conditioning (A/C) systems has had
an exponential increase in different types of buildings small to medium scale [5,6]. More
flexibility for installation, reduced operating cost and more energy savings, are advantages
of the DX A/C, compared to chilled water based central A/C systems. Single speed
compressors and fans, which rely on an on–off cycle to control indoor temperature only, are
typical characteristics of conventional A/C systems [7]. The result is an indoor humidity
imbalance, causing a thermal comfort unwanted level for the occupants [8]. However, by
varying the fan speed and the compressor speed it is possible to control the humidity and
air temperature simultaneously, achieving this with the development of variable speed
(VS) driver technology [9]. For humidity and temperature control in air VS DX A/C,
different control strategies have been designed and used, from the traditional proportional
integral derivative (PID) control to advanced and robust controllers [10]. These include
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direct digital control [11], multi-input multi-output control method [12], neural network
based [13–15], fuzzy logic controller (FLC) [16], Genetic and Swarm Algorithms [17] and
Adaptive Control [18]. The development of those type of controllers requires a strong
knowledge of mathematical modeling and advanced control techniques. In [19–21], control
schemes that could be applied to the A/C system using fractional modeling are presented.

On the other hand, a control scheme based on plant dynamic model is necessary
for realistic situations. This is a motivation to develop models based on an Artificial
Neural Network (ANN) to model the plant dynamics to be controlled. Specifically, both for
nonlinear process control and identification, ANN have been widely used. Feedforward
ANN is one of the most popular for dynamical systems modeling, but the difficulties in
the training step have limited its application [22]. When there is management of a state
space structure, recurrent neural networks (RNN) have a better performance than classical
feedback networks. However, when classical gradient optimization algorithms are used in
its learning, its evolution is slow and very poorly approaches satisfactory results in longer
input sequences, leading to a complicated numerical problem [23].

In contrast, the extended Kalman filter (EKF) algorithm has been introduced to train
neural networks [24,25], with improved learning convergence [26]. Unfortunately, the
EKF’s main drawback is the derivation of the Jacobian matrices, which can be complex,
causing implementation difficulties [23,27]. Therefore, an unscented Kalman Filter (UKF) is
proposed to solve the EKF’s problems. UKF is a filtering algorithm which uses Unscented
Transformation (UT) [28]. The essential difference between EKF and UKF systems is the
representation of Gaussian Random Variables (GRV) for propagation through system
dynamics [29].

Therefore, a RHONN is proposed to identify the dynamic model for VS DX A/C
system, assuming all the states available to be measured. The algorithm implemented for
the RHONN learning uses UKF.

Determining control signals which will allow a process to comply with physical
constraints and minimize a cost functional simultaneously is the optimal control theory
objective [30]. Unfortunately, the difficult and complex process of solving the Hamilton
Jacobi Bellman (HJB) equation is required, an alternative to avoid solving the HJB equation
is to use the inverse optimal control [31].

Before establishing that the control optimizes a cost functional, a stabilizing feedback
control must be developed, according to the inverse approach. The determination a
posteriori of the cost functional for the stabilizing feedback control law is an essential
feature of the inverse approach [24,32].

Applications of this complete control scheme are illustrated in: [33], where an optimal
inverse neural control for discrete-time impulsive systems is determined. Reference [34]
presents a discrete-time inverse optimal control scheme for a doubly-fed induction gener-
ator using a neural network. One more example in [35] where a neural controller for an
induction motor is synthesized.

All the characteristics and strengths mentioned motivate the realization of this research
work, since it allows establishing a multivariable and robust control technique, capable
of tracking thermal profiles established by a user and rejecting both external and internal
disturbances. This creates conditions for adequate energy consumption and thermal
comfort. Furthermore, this optimal operation is reflected in the control signals generated
by the proposed scheme.

Section 2 presents the methodology to obtain a VS DX A/C system mathematical
model. Then, a brief review of the discrete-time neural identification for nonlinear systems
is described, followed by a section where the inverse optimal controller is established.
Section 3 shows the results and discussions that illustrate the application of the proposed
inverse optimal control and neural identifier employing simulations. The last section
presents the conclusions of this work.
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2. Methodology
2.1. The Experimental VS DX A/C System and Its Dynamic Modeling

An air distribution sub-system (air side) and a DX refrigeration plant (refrigerant side)
are the main components of the experimental VS DX A/C system, as shown simplified
schematic diagram in Figure 1. An electronic expansion valve (EEV), a variable-speed
rotor compressor, an air-cooled tube-plate-finned condenser and a high-efficiency tube-
louver-finned DX evaporator are major elements that make up the DX refrigeration plant.
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Figure 1. Schematic diagram of the experimental VS DX A/C system.

The energy and mass conservation principles are used mainly to obtain the mathemat-
ical model of the VS DX A/C system. Further, for the development of the mathematical
model, it should be considered: (a) the thermal losses in air ducts are negligible; (b) two
regions; dry-cooling region and wet-cooling region on the airside of the DX evaporator; and
(c) no fresh air intake to the system and the perfect air mixing inside all heat exchangers
and the thermal space [12,36].

The mathematical model complete analysis is presented in [36], obtaining the
following equations.

CpρV
dT2

dt
= Cpρ(T1 − T2) f + Qsp f + Qload, (1)

ρV
dW2

dt
= ρ(W1 −W2) f + M, (2)

CpρVh1

dT3

dt
= Cpρ(T2 − T3) f + α1 A1

(
TW −

T2 + T3

2

)
, (3)

CpρVh2

dT1

dt
+ ρVh2 h f g

dW1

dt
= Cpρ(T3 − T1) f + ρh f g(W2 −W1) f + α2 A2

(
TW −

T3 + T1

2

)
, (4)

(
CpρV

)
W

dTW
dt

= α1 A1

(
T2 + T3

2
− TW

)
+ α2 A2

(
T3 + T1

2
− TW

)
−Mre f

−1(hr2 − hr1), (5)

dW1
dt − (aT1 + b) dT1

dt
c

= 0. (6)
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All model parameters are defined in the nomenclature, before references section. The
dynamic model for the experimental VS DX A/C system is formed by Equations (1)–(6)
and its state space representation in a compact format is given by:

.
x = g(x, u) (7)

where the state variables x = [x1 x2 x3 x4 x5 x6]T = [T1 T2 T3 Tw W1 W2]T, the output variables
y = [T2 W2]T, input variables u = [u1 u2]T = [f s]T, and the function g(x,u), define the dynamic
system, respectively.

g(x,u) is defined as follows:

g(x, u) =



u1(h f g(x6−x5)+(x3−x1)Cp)ρ+g2(x)A2α2

ρVh2(g1(x)h f g+Cp)

u1(kspl+Cp(x1−x2)ρ)+Qload
ρCpV

g3(x)α1 A1+u1Cp(x2−x3)ρ
CpρVh1

α1 A1g4(x)+α2 A2g5(x)− Vcom
vsλ (hr2−hr1)u2

(ρCpV)W

(Cp(x3−x1)+u1h f g(x6−x5))ρ+α2 A2g2(x)
ρVh2(Cp+h f gg1(x))

g1(x)

ρ(x5−x6)u1+M
ρV



, (8)

with

g1(x) = ax1+b
c , g2(x) = x4 − x3+x1

2 ,

g3(x) = x4 − x2+x3
2 , g4(x) = x2+x3

2 − x4, g5(x) = x3+x1
2 − x4

where
a = 0.0396, b = 0.085, c = 1000.

The relationship between input variables and state variables is nonlinear, therefore
Equation (7) is nonlinear.

In [36], the detailed validation of the above mathematical model for the VS DX A/C
experimental system is reported.

2.2. Discrete-Time High-Order Neural Network

For pattern recognition and static systems modeling, multilayer neural networks are
commonly used, since input and output mapping is learned through neural network (NN)
training. A neural network, even with a single hidden layer, has the ability to uniformly
approximate any continuous function over a compact domain, considering that there
are enough synaptic connections in the NN, this fact has been demonstrated in different
theoretical works.

Recurrent High-Order Neural Networks (RHONN) are considered extensions of the
first order Hopfield model. They are used in control tasks due to their high number of
interactions between neurons, as proposed in [37,38]. In addition, the RHONN model is
flexible and allows incorporating a priori information about the structure of the system in
the neural model.

2.2.1. Nonlinear System Neural Identification

The MIMO nonlinear in Equation (7) is identified using a RHONN defined as

χk+1 = wT
i ϕi(xk, uk), (9)

where χ is state vector of neurons that identifies the i-th component of state vector x in (7),
xk = [x1,k x2,k . . . xn,k]T, wi is the respective online adapted weight vector, I = 1, . . . n; and
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uk = [u1,k u2,k . . . um,k]T is the input vector to the neural network; ϕ is an Lp dimensional
vector defined as

ϕi(xk, uk) =


ϕi1
ϕi2
...

ϕiLp

 =



∏j∈I1
Z

dij
(1)

ij

∏j∈I2
Z

dij
(2)

ij
...

∏j∈ILp
Z

dij
(Lp)

ij


, (10)

where Lp is the number p of high order connections, dij are nonnegative integers, and
{I1, I2, . . . ILp} is a collection of unordered subsets of {1, 2, . . . , n + m}. Here Zi is a vector
defined as

Zi =



Zi1
...

Zin
Zin+1

...
Zin+m


=



S(x1,k)
...

S(xn,k)
u1,k

...
um,k


. (11)

From Equation (11), the input vector to the neural network is uk = [u1,k, u2,k, . . . , um,k]>.
S(•) is defined by

S(ς) =
eς − e−ς

eς + e−ς
, (12)

where ς is any real value.
The unscented Kalman filter (UKF) algorithm [28] is used to train the RHONN identifier.

2.2.2. The UKF Training Algorithm

For recurrent neural networks (RNN), the best well-known training approach is the
backpropagation through time learning [39]. Unfortunately, a first order gradient descent
method such as backpropagation can have a very slow learning speed [26]. However, the
Kalman filter (KF) as an algorithm for state / parameter estimation has become popular in
the last four decades. This filter is especially useful for real-time applications, due to its
easy implementation and computationally efficient calculation [23,27]. Nevertheless, for
state estimation, especially of nonlinear systems, the original KF is often not good enough,
according to the research community. The extended Kalman filter (EKF) is an extension of
the KF to deal the non-linear system through a linearization procedure [27].

The unscented Kalman filter (UKF) is the nonlinear generalization of KF, which has sev-
eral successful applications, such as recurrent neural network training [40]. Both the UKF
and the EKF are conceptually similar, having the same basic principle, but the implementa-
tion is significantly different; only function evaluations instead of Taylor approximation,
and no derivatives are needed (i.e., Jacobian or Hessian calculation).

A relatively new method for calculating the random variable statistics, which under-
gone a nonlinear transformation is called the unscented transformation (UT) and is used
by the UKF [23]. The UT is UKF central technique used to handle the nonlinearity in a
nonlinear transformation y = f(x), where f is an L × 1 vector-valued function, x and y are
L × 1 vectors. Here, x is a random variable assumed to be normally distributed (Gaussian)
with covariance Px, and mean x. An approach that replaces analytical linearization is
provided by the UT which offers a statistical alternative, where the EKF Jacobian matri-
ces are used. In [41] a detailed analytical comparison about linearization techniques is
presented. The sigma-points used by UT are small set of points selected based on the a
priori conditions, i.e., from the assumed prior distribution, the points are selected. Based
on the selected scaling parameters for the UT, the confidence level from prior distribution
or the sigma-points spread is determined. For the scaling parameters, there are different
representations and notations. These representations are equivalent and affect both the
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sigma-points spread and the weight vectors used to reconstruct the a posteriori statistics
(after the transformation).

Using three scaling parameters, the UT scaling can be represented fully [28,42]. α is
the primary scaling parameter and determines the sigma-points spread. The α parameter
has a variation range from 10-4 to 1. A wider sigma-points spread is caused by larger α,
while a tighter (closer) sigma-points spread is the result of smaller α. The β parameter
is used to include information about the prior distribution and is the secondary scaling
parameter (β = 2 is optimal, for Gaussian distributions). The κ parameter is usually set to
0 and is the third scaling parameter [28]. In addition to the three parameters mentioned, a
scaling parameter, λ, and two weight vectors, ηc (covariance) and ηm (mean) are defined

λ = α2(L + κ)− L ,

ηm
0 = λ

L+λ ,

ηc
0 = λ

L+λ + 1− α2 + β ,

ηm
i = ηc

i =
1

2(L+λ)
, i = 1, . . . , 2L ,

(13)

where L is the state vector length. Then to generate 2L + 1 sigma-points, the prior mean x,
the covariance Px and the parameter λ of the random variable x are used, as in

χ =
[

x x +
√

L + λ
√

Px x−
√

L + λ
√

Px
]
. (14)

Here χ is an L× (2L +1) matrix of sigma-points, where each sigma-point is represented
by a column of this matrix, note that in Equation (14), the sum of a vector to each of the
matrix columns defines the sum of a vector and matrix. Alternatively, an L × L matrix
can be used for standard matrix addition, as long as the L × 1 column vector x can be
multiplied with a 1 × L row vector of ones. It is also possible to notice that (14) contains the
square root of a matrix. While there are different methods of calculating a matrix square
root, the Cholesky ones is the recommended both in terms of computational efficiency and
performance [43]. Here, the Cholesky decomposition is used to calculate a lower triangular
matrix, and can then be used as a matrix square root representation, i.e.,

Px =
(√

Px
)(√

Px
)T

, (15)

where
√

Px is a lower triangular matrix. Note that a principal matrix square root is
different from this representation, which takes the form of Equation (15) that generally is
non-triangular and without the transpose. Other method, called the “square-root UKF (SR-
UKF)”, of handling the matrix square root was proposed [44], which can obtain different
performance results, but has improved computational complexity.

Each point is passed through the nonlinear function, once the sigma-points have
been generated, i.e., each column of the sigma-point matrix, χ, is propagated through the
nonlinearity, as in

ψ(i) = f (χ(i)), i = 0, 1, . . . , 2L, (16)

where the superscript (i) corresponds to the ith column of the matrix, whereas ψ is a matrix
of transformed sigma-points. Then, the mean and covariance, using weighted averages, are
estimated of these transformed sigma-points using the weight vectors that were defined in
Equation (13), as in

y ≈
2L
∑

i=0
ηm

i ψ
(i) ,

Py ≈
2L
∑

i=0
ηc

i

(
ψ(i) − y

)(
ψ(i) − y

)T
,

(17)
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where Py is the estimated covariance matrix of y, and y their estimated mean. These values
correspond to the estimated statistical properties after the nonlinear transformation, or a
posteriori statistics.

2.3. Inverse Optimal Control Introduction

Consider the following an affine discrete nonlinear system

θk+1 = f (θk) + g(θk)uk θ0 = θ(0), (18)

where θk ∈ Rn is the state of system at time k ∈ N, u ∈ Rm, f : Rn → Rn , g : Rn → Rn×m ,
are smooth and bounded mapping. f (0) = 0 is assumed, and N denotes the nonnegative
integers set. The trajectory tracking for the system is associated to the following meaningful
cost functional in Equation (18)

`(ϑk) =
∞

∑
n=k

(l(ϑn) + uT
n Run), (19)

where ϑk = θk − θδ,k with θδ,k as the desired trajectory for θk; ϑk ∈ Rn; `(ϑk) : Rn → R+;
l(ϑk) : Rn → R+ is a positive semidefinite function and R : Rn → Rm×m is a real symmet-
ric positive definite weighting matrix. The cost functional of Equation (19) is a performance
measure [30]. To vary the weighting on control efforts according to the state value, the R
entries can be functions of the system state, although they can also be fixed [30]. We assume
that the full state θk is available, considering the state feedback control design problem.

Utilizing the optimal value function `∗(θk) for (18) as Lyapunov function V(θk),
Equation (19) can be rewritten as

V(ϑk) = l(ϑk) + uT
k Ruk +

∞

∑
n=k

(l(ϑn) + uT
n Run) = l(ϑk) + uT

k Ruk + V(ϑk+1), (20)

that requires the boundary condition V(0) = 0, to V(ϑk) becomes a Lyapunov function. From
Bellman optimality principle [45,46], it is known that, for the infinite horizon optimization
case, the value function V(ϑk) satisfies the discrete-time Bellman equation and becomes
time-invariant [45,47,48]

V ∗ (ϑk) = min
uk

{
l(ϑk) + uT

k Ruk + V ∗ (ϑk+1)
}

, (21)

where V ∗ (ϑk+1) depends on both ϑk and uk through of ϑk+1 in (18). Note that the Bellman
equation is solved backward in time [47]. It is defined the discrete-time Hamiltonian
H(ϑk, uk ), in order to establish the conditions that the optimal control law must satisfy, as

H(ϑk, uk) = l(ϑk) + uT
k Ruk + V(ϑk+1)−V(ϑk). (22)

The optimal control law should satisfy ∂H(ϑk ,uk)
∂uk

= 0, that it is a necessary condition, then

0 = 2Ruk +
∂V(ϑk+1)

∂uk
= 2Ruk +

∂ϑk+1
∂uk

∂V(ϑk+1)

∂ϑk+1
= 2R(ϑk)uk + gT(θk)

∂V(ϑk+1)

∂ϑk+1
. (23)

Therefore, to achieve trajectory tracking, the optimal control law is formulated as

u∗k = −1
2

R−1gT(θk)
∂V(ϑk+1)

∂ϑk+1
, (24)
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with the boundary condition V(0) = 0. It is necessary to solve the following HJB equation,
for solving the trajectory tracking inverse optimal control problem

0 = l(ϑk) + V(ϑk+1)−V(ϑk) +
1
4

∂VT(ϑk+1)
∂ϑk+1

g(θk)R−1gT(θk)
∂V(ϑk+1)

∂ϑk+1
, (25)

which is a challenging task. It is proposed to solve the inverse optimal control problem.

Definition 1. Consider the tracking error [30] as ϑk = θk − θδ,k, θδ,k being the desired trajectory
for θk. Let’s define the control law

u∗k = −1
2

R−1gT(θk)
∂V(ϑk+1)

∂ϑk+1
.

It will be inverse optimal (globally) stabilizing along the desired trajectory θδ,k if :

i. It achieves (global) asymptotic stability of θk = 0 for system (18) along reference θδ,k;
ii. V(ϑk) is (radially unbounded) positive definite function such that inequality

V := V(ϑk+1)−V(ϑk) + u∗Tk R(ϑk)u∗k ≤ 0, (26)

is satisfied.
If chosen l(ϑk) := −V, then V(ϑk) is a solution for Equation (25), and cost functional

Equation (19) is minimized.
Definition 1 establishes that, the knowledge of V(ϑk) is basis to formulate the inverse

optimal control law for trajectory tracking. Then, a control Lyapunov function (CLF)
V(ϑk) can be proposed, such that (i) and (ii) are guaranteed. Hence, instead of solving
Equation (25) for V(ϑk) a quadratic candidate CLF V(ϑk) for Equation (24) is proposed
with the form

V(ϑk) =
1
2

ϑT
k Pϑk, P = PT > 0, (27)

to ensure stability of the tracking error ϑk, where

ϑk = θk − θδ.k =

 θ1,k − θ1δ.k
...

θn,k − θnδ.k

. (28)

It is referred to as the inverse optimal control law, to the control law in Equation (24)
with Equation (27) and it optimizes the meaningful cost functional of Equation (19). Conse-
quently, by considering V(ϑk) as in Equation (27), control law in Equation (24) takes the
following form

u∗k = − 1
4 R−1gT(θk)

∂ϑT
k+1

Pϑk+1

∂ϑk+1
= − 1

2 R−1gT(θk)Pϑk+1

= − 1
2

(
R + 1

2 gT(θk)Pg(θk)
)−1

gT(θk)P( f (θk)− θδ,k+1).
(29)

The existence of the inverse in Equation (29) is ensured, since P and R are symmetric
matrices and positive definite.

3. Results and Discussion
3.1. Identification and Control Scheme Application

The complete identification and control scheme is shown in Figure 2. This scheme
main components are the VS DX A/C system model, the inverse optimal controller, and
the neural identifier.

Via simulation, the identification and control scheme are applied to the dynamic model
for the VS DX A / C system. The mentioned model is formed by Equations (1)–(6).
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Applying the neural identifier developed in Section 2.2.1, it is possible to obtain for
the VS DX A/C system a discrete-time neural reduced model which uses UKF for training,
as follows

χ
1,k+1

= w11,kS(x2,k) + w12kx6,k + w1u2,k ,
χ

2,k+1
= w21,kS(x2,k) + w22kS(x6,k) + w2u1,k ,

(30)

where χ1 and χ2 identify the air temperature in the conditioned space x2 and moisture
content of air-conditioned space x6, respectively. The NN training is performed online
and all its states are initialized in random way. The parameter selection of the RHONN
identifier is heuristic as

L = 2 α = 1× 10−3 β = 0.5 κ = 1
R1 = 0.1 R2 = 0.1 Q1 = 0.1I Q2 = 0.1I
w1 = 0.1 w2 = 0.1

where I is the 2× 2 identity matrix. The neural network structure in Equation (30) is chosen
as in [25] in order to minimize the state estimation error.

Using the control laws described in Section 2.3, the desired reference trajectories x1δ,k
and x2δ,k are tracked by the states χ1,k and χ2,k, respectively. Applying Equation (29), it is
possible to do this as follows

uk = −
1
2

(
R +

1
2

gT(χk)Pg(χk)

)−1
× gT(χk)P( f (χk)− xδ,k+1), (31)

where the P and R selection is completed heuristically as

P =

[
1275 750
750 1275

]
R = 2× 10−2 I.
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Figure 2. Proposed identification and control scheme.

3.2. Controllability Simulation Test

A test to examine the control scheme performance is conducted. The reference tra-
jectories are stepped waves for temperature and moisture, using the experimental VS DX
A/C system model, proposed neural identifier and developed controller. The result of
the trajectory tracking performance for the moisture content of air-conditioned space and
the air temperature in the conditioned space, in presence of a disturbance simulated by a
uniform random signal, is presented in Figure 3. The disturbance is a random variation of
a model parameter, thus simulating an internal variation in the system. By applying the
inverse optimal control, the obtained control signals are portrayed in Figure 4. Addition-
ally, Figure 4 shows fan and compressor efficient operation, which contributes to reduced
energy consumption.

Trajectory tracking with disturbances test has operation conditions close to reality.
As seen in Figure 3, humidity and indoor air temperature settings were initially set at
10.5 g kg−1 for W2 and 24 ◦C for T2. First, at 760 s, humidity and indoor air temperature
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settings were changed to 11 g kg−1 for W2 and 23 ◦C for T2. Next, at 1660 s, humidity and
indoor air temperature settings were changed to 10.25 g kg−1 for W2 and 22 ◦C for T2. At
2300 s, humidity and indoor air temperature settings were changed to 10 g kg−1 for W2 and
21.5 ◦C for T2. At 3110 s, humidity and indoor air temperature settings were changed to
9.75 g kg−1 for W2 and 19 ◦C for T2. Finally, at 4000 s, humidity and indoor air temperature
settings were changed to 10 g kg−1 for W2 and 20 ◦C for T2.
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Figure 4. Control signals for tracking performance of VS DX A/C system with internal disturbances.
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Finally, a variation of the sensible heat load is added as an external disturbance in a
new test, as shown in Figure 5.
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Figure 6 shows the trajectory tracking considering internal and external disturbances.
The control signals are displayed in Figure 7.
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Figure 6. Tracking performance of VS DX A/C system with internal and external disturbances.
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Again, Figure 7 shows an efficient operation due to the performance of the control
signals, achieving reduced energy consumption.

There is a continuous search for alternatives that reduce the energy consumption of air
conditioning systems since they are equipment commonly used from home, to schools, to
offices, to department stores and to large companies. In most countries, the existence of air
conditioning systems that do not have a variable speed compressor is extensive, increasing
electrical energy consumption. However, the updating of this equipment is taking place
gradually. Hence the importance of developing this type of work. The results obtained are
comparable with [12], where a multivariable controller was designed, getting a small range
of operation for the A/C system. Reference [14] proposes an ANN/fuzzy logic controller
to control both temperature and humidity of an A/C system.

4. Conclusions

In this paper, the A/C system model utilized was taken from a VS DX A/C system,
commonly used in homes, offices, classrooms and even small to medium-sized businesses.
The conditions under which the model was obtained have been mentioned in the method-
ology. However, when using NN any condition not considered in the analysis is absorbed
by the neural model. On the other hand, the paper presents trajectory tracking using neural
inverse optimal control for nonlinear systems and is inverse optimal in the sense that, a
posteriori, minimizes a meaningful cost functional achieving reduced energy consumption.
Using an unscented Kalman filter, the neural network training is performed online. The
proposed identification and control scheme by means of the simulation results shows its
effectiveness and robustness. Therefore, this research shows a novel scheme exposed to a
wider temperature and humidity range and a more significant number of their variations
in the desired references, presenting a more efficient performance. In addition, the control
signals that result from the proposed control scheme show reduced energy consumption.
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This work may have future research that will further reduce this energy consumption by
implementing other novel control algorithms, which establish new solution alternatives.
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Nomenclature

a,b,c Adaptation constants (dimensionless)
A1 Heat transfer area of the DX evaporator in dry-cooling region (m2)
A2 Heat transfer area of the DX evaporator in wet-cooling region (m2)
Cp Specific heat of air (kJ kg−1 K−1)
f Air volumetric flow rate (m3 s−1)
hfg Latent heat of vaporization of water (kJ/kg)
M Moisture load in the conditioned space (kg s−1)
Mref Mass flow rate of refrigerant (kg s−1)
Qload Sensible heat load in the conditioned space (kW)
Qspf Heat gain of supply fan (kW)
s Compressor speed (rpm)
T1 Temperature of air leaving the DX evaporator (◦C)
T2 Air temperature in the conditioned space (◦C)
T3 Air temperature leaving the dry-cooling region of the DX evaporator (◦C)
Tw Temperature of the DX evaporator wall (◦C)
V Volume of the conditioned space (m3)
Vh1 Air side volume of the DX evaporator in dry-coolingregion on air side (m3)
Vh2 Air side volume of the DX evaporator in wet-coolingregion on air side (m3)
W1 Moisture content of air leaving the DX evaporator (kg kg−1 dry air)
W2 Moisture content of air-conditioned space (kg kg−1 dry air)
α1 Heat transfer coefficient between air and the DXevaporator wall in dry-cooling region

(kWm−2 ◦C−1)
α2 Heat transfer coefficient between air and the DXevaporator wall in wet-cooling region

(kWm−2 ◦C−1)
ρ Density of moist air (kg m−3)
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Abbreviations
The following abbreviations are used in this manuscript:

A/C Air Conditioning
ANN Artificial Neural Network
CLF Control Lyapunov Function
DX Direct eXpansion
EEV Electronic Expansion Valve
EKF Extended Kalman Filter
GRV Gaussian Random Variables
HJB Hamilton Jacobi Bellman
IAQ Indoor Air Quality
MIMO Multi-Input Multi-Output
PID Proportional Integral Derivative
RH Relative Humidity
RHONN Recurrent High-Order Neural Network
UKF Unscented Kalman Filter
UT Unscented Transformation
VSD Variable-Speed Drive
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