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Abstract: Automatic speech recognition is essential for establishing natural communication with
a human–computer interface. Speech recognition accuracy strongly depends on the complexity of
language. Highly inflected word forms are a type of unit present in some languages. The acoustic
background presents an additional important degradation factor influencing speech recognition
accuracy. While the acoustic background has been studied extensively, the highly inflected word
forms and their combined influence still present a major research challenge. Thus, a novel type of
analysis is proposed, where a dedicated speech database comprised solely of highly inflected word
forms is constructed and used for tests. Dedicated test sets with various acoustic backgrounds were
generated and evaluated with the Slovenian UMB BN speech recognition system. The baseline word
accuracy of 93.88% and 98.53% was reduced to as low as 23.58% and 15.14% for the various acoustic
backgrounds. The analysis shows that the word accuracy degradation depends on and changes
with the acoustic background type and level. The highly inflected word forms’ test sets without
background decreased word accuracy from 93.3% to only 63.3% in the worst case. The impact of
highly inflected word forms on speech recognition accuracy was reduced with the increased levels of
acoustic background and was, in these cases, similar to the non-highly inflected test sets. The results
indicate that alternative methods in constructing speech databases, particularly for low-resourced
Slovenian language, could be beneficial.

Keywords: human–computer interaction; automatic speech recognition; acoustic modeling; highly
inflected word forms; acoustic background

MSC: 68T10

1. Introduction

The convergence of Internet of Things (IoT) systems, services, and telecommunication
networks has resulted in the omnipresence of human–computer interaction. Users can
access services 24/7 by applying different devices. To support the human–computer inter-
action in a most natural way for users, procedures such as Automatic Speech Recognition
(ASR) are needed [1]. A large vocabulary continuous speech recognition task can, on
one side, be applied for standard human–computer interaction [2], or it can be used for
producing text from various media material and user’s content [3]. The text can be used
for navigating and controlling [4,5], subtitling, indexing [6], translating, topic detection [7]
. . . Other examples of ASR applications besides human–computer interface input are the
broadcast news speech recognition systems, massive open online courses, YouTube videos,
and other various user content types, generated in intelligent ambient [8,9]. While an
ASR can produce reasonable results in the case of typical conditions, the ASR’s accuracy
degrades significantly for adverse acoustic conditions [10,11] or when more complex lan-
guages are adopted [12,13]. Various acoustic backgrounds increased significantly in the
last decade, where users interact with devices in different situations and record content in
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diverse environments. The omnipresent availability of smartphones in society has changed
the role of who is recording and publishing the content.

The Slovenian University of Maribor (UMB) Broadcast News (BN) speech recognition
system [14] is one such system for recognizing speech in a complex language with different
acoustic backgrounds. It achieves approximately 15% worse overall speech recognition
performance than similar systems for Western European languages. Possible causes are
the linguistic characteristics of the Slovenian language, which is highly inflected and has a
relatively free word order. An additional cause is the smaller amount of available Slovenian
spoken language resources compared to other major languages like English, Mandarin, or
German. While the research topic of under-resourced languages is covered broadly [12],
there is far less attention given to the topic of highly inflected languages in automatic speech
recognition. The preliminary analysis of achieved speech recognition results showed [15]
that the worse performance belongs to the test set with the speech in the presence of an
acoustical background, where the decrease can be even more than 40%. When similar
English Broadcast News speech recognition systems were confronted with such degraded
speech, the overall decrease of performance was in the region of 20% [16].

The decrease in the Slovenian speech recognition performance was the motivation to
carry out a detailed analysis of how highly inflected word forms and acoustic background
influence the speech recognition accuracy for human–computer interaction. We propose a
novel analysis approach, where instead of using the general speech database, a separate,
new type of speech database is constructed for tests. The new speech database is focused
solely on highly inflected word forms originating from the same stem. This is needed to
be able to perform a narrow analysis of specific language characteristics. The experiments
are carried out with the Slovenian UMB Broadcast News speech recognition system. A
particular emphasis is given to highly inflected word forms, where first, their effect on
acoustic modeling is analyzed, and second, the combined influence of highly inflected
word forms and acoustic background is studied. To the best of the author’s knowledge, no
similar research on the combined influence of acoustic background and highly inflected
word forms on the level of acoustic modeling, as proposed in this paper, has been carried
out. Moreover, this presents a first attempt to construct a focused, highly inflected speech
database to assess this phenomenon of human–computer interaction.

Our view is that such analysis can produce a detailed insight into how strongly these
conditions lower speech recognition accuracy. The research hypothesis is that combined
influence of acoustic background and highly inflected word forms intensify the speech
recognition accuracy decrease and that it is possible to identify approximate thresholds,
where new digital signal processing techniques and dedicated algorithms for training acous-
tic models for highly inflected languages could be beneficial to reduce this degradation. The
proposed novel analysis is carried out for the Slovenian language, but the same approach
with a dedicated speech database could also be used for other morphologically complex
languages. Additional anticipation is that the analysis results could point toward efficient
construction of speech databases for complex low-resourced Slovenian language, where it
is challenging to collect several 1000 h of transcribed speech, as it is today’s standard for
major languages.

The paper is organized as follows. First, the related work about the acoustic background
and highly inflected languages for automatic speech recognition as part of human–computer
interaction is presented. Different modules and functional aspects of an automatic speech
recognition system, important for our research, are described in Section 3. The results and
discussion are given in Section 4. The paper ends with the conclusions in Section 5.

2. Related Work

The robustness of speech recognition systems against the acoustic background is a
mature research question, where the first research was coexistent with the fundamental
automatic speech recognition research [17,18]. Despite the advancement of the automatic
speech recognition research field, the question of robustness against the acoustic back-



Mathematics 2022, 10, 711 3 of 16

ground, most frequently against noise, still presents a challenge, mainly in the area of
developing new and improved methods of increasing the automatic speech recognition
accuracy [19,20]. The question of robust automatic speech recognition can be addressed
from two main viewpoints. The first one is focused on the reduction of acoustic background
and improved feature extraction algorithms [21,22]. In the area of automatic speech recog-
nition, Mel-frequency cepstral coefficients (MFCC) [23] preset a general feature extraction
algorithm, which is used frequently. Different authors [24–26] proposed several other more
complex feature extraction algorithms to improve the robustness. One of the frameworks,
which includes a large number of various feature extraction algorithms is openSMILE [27],
popular in the case of emotion recognition. More details about advanced feature extraction
for speech recognition can be found in [28] The second robustness viewpoint concentrates
on robust acoustic modeling approaches, where neural networks have mainly been used in
recent years [29]. One of the frequently used solutions how to improve the robustness of
neural networks regarding the acoustic background is data augmentation [30]. In this case,
the original acoustic training data is extended with artificially generated copies, where
the various acoustic backgrounds are added [31,32]. Moreover, other original audio data
characteristics, like speed or pitch [33] can be altered to augment the training set and make
it more robust to different conditions. The area of highly inflected languages for automatic
speech recognition is a much less addressed topic. This is mainly due to the fact that the
majority of currently commercially interesting languages do not belong to this category or
are compensating for the limitations of a highly inflected language with a large amount
of available spoken language resources. In the case of highly inflected languages, the
language modeling question was given more importance [34], but the question of how
highly inflected word forms influence acoustic modeling is a much less researched area.
One of the first research works focused on the effects of highly inflected word forms for
language modeling for automatic speech recognition was carried out for the Czech [35,36]
and Slovenian languages [37]. The most frequently proposed solution for addressing the
question of high inflection on the level of language modeling is to apply a non-word basic
unit for modeling [38]. The idea behind this approach is to split the highly inflected word
forms into shorter forms, which have a higher frequency in spoken language resources. In
general, as a result of this approach, the out-of-vocabulary rate is usually reduced signifi-
cantly, which might lead to improved speech recognition accuracy. The first disadvantage
of this modeling approach is the reduced length of basic units, which increases acoustic
confusability. The second disadvantage is the reduced modeling power of the language
model, as the sequence of n-grams now estimates shorter linguistic parts of a sentence.
Different types of basic units for language modeling and their combinations were proposed:
Morphological [39,40], grammatical [41,42], stem-ending [43]. The proposed approaches
improve the speech recognition accuracy to some extent, but the lag to major language
performance can still be observed. In recent years, similar approaches used for highly in-
flected language modeling for automatic speech recognition were also adapted successfully
to machine translation [38].

On the level of acoustic modeling for highly inflected automatic speech recognition,
less research work was presented in the literature [44–46]. The shorter basic units from
language modeling were incorporated directly into acoustic modeling, with necessary
modifications to the decoding algorithms [47], which was used partly to compensate the
reduced estimation power of the shorter n-gram units.

3. Materials and Methods

The performance of a speech recognition system depends largely on the acoustic
characteristics of the input signal and on the properties of the supported language. Both
conditions, as well as the experimental setup will be described below.
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3.1. Acoustic Background and Speech Recognition

If the input signal x(t) contains only speech signal s(t) and acoustic background con-
ditions are clean, high word accuracy can be expected, even for complex tasks such as
continuous or spontaneous speech recognition [1]. In the case when the acoustic back-
ground signal b(t) is present, the speech signal gets corrupted, and the word accuracy
decreases. The corrupted input signal x’(t) can be defined as in Equation (1):

x‘(t) = s(t) + b(t) (1)

The word accuracy decrease depends on the type and characteristics of the background
signal b(t) (e.g., noise, music, speech . . . ) and its overall energy and spectral characteristics
in comparison with the main speech signal s(t). The energy ratio between both signals
can be estimated with the signal-to-noise ratio (SNR, Equation (2)), where the background
signal is treated as noise:

SNR(dB) = 10 · log
Pspeech

Pbackground
(2)

where Pspeech denotes the overall energy of the speech signal and Pbackground denotes the over-
all energy of the background signal. The most important characteristic of background signal
that influences the level of corruption is the spectrum, which varies, and is non-stationary.

In the detailed analysis presented in this paper, the acoustic models were trained on a
speech database with various acoustic backgrounds. The baseline test set used only clean
speech, while the dedicated test sets applied music as background, which corrupted the
original clean speech signal. Music as a background source presents a realistic scenario, as
such type of degradation occurs in the case of user content and input signals captured in
human–computer interaction in intelligent ambient.

3.2. Acoustic Modeling and Highly Inflected Language

There are approximately 7000 live languages in the world, with 90% of them having
less than 100,000 speakers. The human language technology support for various languages
is important for their existence in the digital era, as it provides the core technology for
natural human–computer interaction. Different languages can present a challenging task
for a speech recognition system, due to their properties. Examples of such languages
are tonal, highly inflected, or agglutinative languages. In the case of a highly inflected
language, a single word stem is modified with many different suffixes or prefixes, which
results in a large number of word forms. For some cases, the resulting number of word
forms, modified from common stem, can exceed 100. As a consequence, an automatic
speech recognizer’s lexicon has to include a much larger number of words to achieve
the same out of vocabulary rate as those speech recognition systems for a non-inflected
language. It is crucial to achieving low out of vocabulary rate, as all the missing words from
the vocabulary are being reflected directly in speech recognition errors as substitutions,
with additional errors (approx. factor 1.5×might apply) coming from language modeling.
Highly inflected language modeling approaches, such as stem-ending ones, can, to some
extent, limit this effect of high out of vocabulary rate, but they lose a part of the n-gram
prediction power, as shorter basic units span over shorter linguistic structures of a sentence.

Some of the languages belonging to the highly inflected group are Arabic, Slavic (e.g.,
Russian, Czech, Slovak, Polish, Slovenian, ...), Baltic (e.g., Lithuanian, and Latvian), and
Indic languages. Examples of the Slovenian highly inflected word “hiša” (ENG: “house”)
in different cases for singular, dual, and plural, are given in Table 1.

Highly inflected word forms can be very similar acoustically, as can be seen from
the example in Table 1, where only the last (or last few) phoneme of a relatively short
word is modified. This acoustic confusability can to some degree be compensated with the
n-grams of a statistical language model but can still present a severe problem for the speech
decoder, especially in the case of the presence of acoustic background or accented speech.
The Slovenian language has more than 50 dialects, which are spoken by approximately
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2 million speakers. This results in a vast acoustic diversity, making the Slovenian language
very suitable for our experiments of developing a dedicated speech database with highly
inflected word forms. An additional challenge is given by the speaking style type, where
two main categories are read/planned and spontaneous speech. In the case of spontaneous
speech, an end vowel reduction often occurs in many Slovenian dialects, which additionally
increases the acoustic confusability of highly inflected word forms. These characteristics
clearly present the complexity of the automatic speech recognition task in the case of
such languages.

Table 1. Example of Slovenian highly inflected word “hiša”.

Singular Dual Plural

Word Suffix Word Suffix Word Suffix

hiša -a hiši -i hiše -e

hiše -e hiš / hiš /

hiši -i hišama -ama hišam -am

hišo -o hiši -i hiše -e

hiši -i hišah -ah hišah -ah

hišo -o hišama -ama hišami -ami

3.3. Speech Databases

The Slovenian BNSI Broadcast News speech database [48] belongs to the group of
similar speech databases for Central and Eastern European languages [3,49], which were
developed in the last two decades with the objective to provide suitable speech recognition
resources for complex under-resourced languages. The BNSI speech database was used
for research in the area of spoken language technologies and the design of the UMB
BN speech recognition system. The Slovenian BNSI Broadcast News speech database is
available via European Language Resources Association (ELRA/ELDA). Due to the specific
requirements of the proposed analysis procedure, where only the acoustic characteristics
should be considered, two additional speech databases were needed for the evaluation.
The first one was the Slovenian SNABI SSQ Studio speech database, which was used for
evaluating the general influence of acoustic background on continuous speech recognition
accuracy. The Slovenian SNABI SSQ Studio speech database is available via Clarin SI. The
second one was a dedicated test speech database, HI_SI, built for evaluating the influence of
highly inflected word forms on acoustic modeling. The test scenarios, with isolated words,
were selected for the evaluation, to avoid the influence of the language model, which could
mask the acoustic differences which needed to be analyzed.

The Slovenian BNSI Broadcast News speech database consists of a total of 36 h of
spoken material, where 30 h are used for acoustic training, 3 h for development, and the
additional 3 h for evaluation. There are 1565 different speakers, 1069 of them are male and
477 are female. The gender of the remaining 19 speakers was unknown.

An important factor influencing speech recognition accuracy is acoustic background.
There are several possible background types present [50] in a real-life environment: noise [10],
speech, music. In a broadcast news speech database, the acoustic background is reflected
in the parameter called acoustic conditions suitably simulating different conditions in
which human–computer interaction needs to operate. The acoustic conditions and acoustic
background in the BNSI speech database are presented in Table 2.

A large amount of the various acoustic conditions in the BNSI database is suitable for
acoustic training, as it helps to increase the robustness of acoustic models against different
acoustic conditions present in the evaluation set. However, it must also be taken into
account that it could be difficult to train acoustic models for those acoustic conditions
reliably with a relatively small proportion of the training set (e.g., F2, F5, FX).
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Table 2. Acoustic conditions in the Slovenian BNSI Broadcast News speech database.

Acoustic Condition Speech Type Acoustic Background Ratio (%)

F0 read clean 36.56

F1 spontaneous clean 16.23

F2 read/spontaneous telephone channel 1.65

F3 read/spontaneous music 6.02

F4 read/spontaneous other 37.63

F5 nonnative various 0.05

FX other other 1.86

The SNABI SSQ Studio test set used for the first part of the analysis consists of
recordings of 37 speakers, where each speaker uttered different words in a silent studio
environment. Thus, the baseline acoustic conditions of the test set were comparable to the
ones present in the F0 and F1 acoustic condition parts of the training set. The first test set
was based on isolated digits (12 words in the vocabulary, 441 recordings). The isolated
digits‘ scenario is a non-complex one, but it is used frequently in different languages and
applications, and thus enables a wide overall comparison of results. The second one, on city
names (37 words in the vocabulary, 1360 recordings), is a more acoustically diverse test set,
where the city names guarantee the absence of highly inflected word forms. This setup was
used for baseline evaluation in the first part of the analysis. Dedicated test sets, where the
baseline test set was combined with various acoustic backgrounds, were prepared for our
experiment. The first type of acoustic background was instrumental music, similar to those
frequently present in different media. The second type of acoustic background was based
on songs, where instrumental music was combined with singing. This acoustic background
type will be denoted in the remaining part of this paper as vocal music. Different types and
SNR ratios of acoustic background generated for the dedicated SNABI test scenarios are
presented in Table 3.

Table 3. Acoustic background in the dedicated SNABI test sets.

Acoustic Background Level Instrumental Music SNR(dB) Vocal Music SNR(dB)

Low 30.74 30.14

mid-low 22.30 22.06

mid 15.15 15.03

mid-high 10.77 10.69

high 5.10 5.03

The first part of the evaluation in Section 4 was carried out with the baseline clean and
five acoustically degraded dedicated test sets. In the case of broadcast news recordings, the
majority of the acoustic background has lower energy levels (i.e., higher SNR), and its type
is usually instrumental.

The proposed HI_SI speech database was built for providing the dedicated test set
with highly inflected word forms in a silent environment and in the presence of an acoustic
background. During the preparation of experiments, several existing Slovenian speech
databases were taken into account, but none of them comprised a test set suitable for
evaluating acoustic confusability between highly inflected word forms. The HI_SI speech
database contains recordings of 10 speakers, uttering various test sets/scenarios with six
different highly inflected words generated from a single stem. In addition, one reference
test scenario was recorded, which contains only words with a different stem in the basic
word form. Three highly inflected test scenarios and the reference basic word form scenario
were then selected as a baseline for the second evaluation part:
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• H test set: Slovenian word “hiša” (Eng.: house), 6 inflected word forms,
• T test set: Slovenian word “telefon” (Eng.: telephone), 6 inflected word forms,
• M test set: Slovenian word “monitor” (Eng.: monitor), 6 inflected word forms,
• Reference test set: 6 acoustically diverse Slovenian words.

Instrumental music at three different levels was applied as an acoustic background for
the second part of the evaluation. Different SNR ratios of acoustic background generated
for the selected HI_SI test scenarios are presented in Table 4.

Table 4. Acoustic background in the dedicated HI_SI test sets.

Acoustic
Background Level

H Test Set
SNR (dB)

T Test Set
SNR (dB)

M Test Set
SNR (dB)

Reference Test
Set SNR (dB)

low 31.18 30.64 30.96 31.02

mid 14.86 15.17 14.92 15.21

high 5.47 5.29 5.18 5.20

The acoustic properties of the HI_SI test sets, combined with the instrumental music as
background, were comparable with the SNABI SSQ test sets, which is a favorable starting
point for analyzing the influence of highly inflected word forms on acoustic modeling in
the presence of an acoustic background.

The highly inflected test scenario was prepared in such a way that the city names
isolated words’ grammar was taken as a baseline and augmented with the highly inflected
word forms from the particular HI_SI test set. Four additional isolated grammars were
produced as an end result.

3.4. Experimental Setup

A general automatic speech recognition system is comprised of five basic building
blocks (Figure 1; from left to right): Feature extraction front-end, acoustic models, language
model, lexicon, and decoder. Front-end first pre-processes the input speech signal including
the pre-emphasis and windowing and then extracts features. The extracted feature vectors
are used as the input data for the speech decoder, which is applied to estimate the most
probable hypothesis according to the models and feature vectors. There are three different
types of models needed by a general speech decoder. The first are acoustic models, which
represent the acoustic-phonetic parameters of acoustic material involved in the training
process [50]. The language model is used to estimate the language characteristics in the
form of a statistical model or grammar. It is built on a large text corpus in form of n-grams
or using a grammatical description language in case of isolated words grammar. The last
model is the phonetic vocabulary, which is used to transform the orthographic representa-
tion of words into phoneme form, which is generally needed for acoustic modeling and
recognition. The output of a speech decoder is text result, which represents the word
sequence uttered by the speaker in the input signal. A scheme of an automatic speech
recognition system, with all the test sets included in the proposed evaluation, is given in
Figure 1. The evaluation is divided into first and second part. The first one is focusing
on various acoustic background, while the second one analyses the influence of highly
inflected word forms with the proposed approach.

The experimental setup was designed in such a way that acoustic-phonetic properties
played the most important role in the design and analysis process. The focus was given to
the acoustic models, whose training procedure is described below. The automatic speech
recognition system used for the analysis was built on three state left-right hidden Markov
models (HMM), which were applied for acoustic modeling (Figure 2).

The limited amount of available Slovenian speech training data dictated the deci-
sion to use the HMM acoustic models instead of deep neural network (DNN) mod-
els. The first acoustic models’ type usually performs more stable, particularly under
challenging conditions.
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3.4.1. Preprocessing the Speech Signal

The captured speech signal s must be first prepared for acoustic training using the
preprocessing methods. The pre-emphasis, as defined in Equation (3):

s′[n] = s[n]− 0.97·s[n− 1] (3)

was applied to amplify the higher frequency band of the speech signal s with a high pass
filter. Then, the signal s was split to produce frames, which were 25 ms long and were
shifted with 10 ms step. A Hamming window function, defined in Equation (4):

s′[n] =
{

0.54− 0.46cos
(

2π(n− 1)
N − 1

)}
·s[n] (4)

was used to transform samples in each frame. N represented the length of Hamming
window and n the particular sample.

3.4.2. Feature Extraction

After preprocessing, the feature extraction was done. Twelve Mel-scale frequency cep-
strum coefficients (MFCC) were used as basic feature vectors. The MFCC were built around
Mel-scale filter bank, which represented the nature of non-linear human speech perception
and was linking the Mel (m) and frequency (f ) dimension, as defined in Equation (5):

m = 2595·log10

(
1 +

f
700

)
. (5)

The particular MFCC coefficient ci was calculated using the Equation (6):

ci =
√

2
N ∑N

j=1 mj cos
(

πi
N (j− 0.5)

)
. (6)
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As the 13th feature, the signal energy E was added to the vector, as defined in
Equation (7):

E = log ∑N
n=1 s2[n] . (7)

The basic set of 13 features was needed to calculate the first and second-order deriva-
tives, which proved to model the short-term variations present in the speech signal. The
final feature vector involved in the acoustic modeling contained 39 different coefficients
extracted from the input speech signal.

3.4.3. The Acoustic Model and Training

The speech recognizer’s acoustic HMM models applied a three-state topology with a
weighted sum of continuous Gaussian probability density functions (PDF). The acoustic
model λ was set as (Equation (8)):

λ = (A , B , π), (8)

where A presented the state transition probabilities (aij), B the observation probability
distribution (bj) per each state j and π the initial values. For each observation ot the
probability bj that it was generated, was defined as (Equation (9)):

bj(ot) = ∑M
m=1 cjmN

(
ot ; µjm , Σjm

)
, (9)

where cjm was the weight of each mixture, M the total number of mixtures and N the
Gaussian PDF with mean vector µ and diagonal covariance matrix Σ (Equation (10)):

N (o ; µ , Σ ) =
1√

(2π)n|Σ|
e−

1
2 (o−µ)′ Σ−1(o−µ) (10)

The acoustic models were speaker and gender independent, with graphemes as basic
acoustic units. Graphemes were used instead of phonemes as basic units as they reduce
the influence of phonetic vocabulary errors which result from the complex grapheme-
to-phoneme task for the Slovenian language. The HMM acoustic models were trained
using the Baum-Welch re-estimation, which is defined in the form of forward probability αj
(Equation (11)) using the forward recursion:

αj(t) =
[
∑N−1

i=2 αi(t− 1)aij

]
bj(ot), (11)

where α1(1) = 1 and αj(1) = a1jbj(o1) are set as initial conditions and j is 1 < j < N. The
final step is defined as (Equation (12)):

αN(T) =
[
∑N−1

i=2 αi(T)aiN

]
(12)

The backward probability βj(t) is defined by Equation (13) using the backward recursion:

βi(t) = ∑N−1
j=2 aijbj(ot+1)β j(t + 1), (13)

where i and t are 1 < i < N and T > t > 1. The initial value is set as βi(T) = aiN with the final
step defined as (Equation (14)):

β1(1) =
N−1

∑
j=2

a1jbj(o1)β j(1). (14)

3.4.4. Training of Context-Independent Acoustic Models

The above-defined algorithms were used for training the acoustic models in three
steps. The first two used context-independent modeling. The last one also modeled the
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context of a single acoustic unit, which can improve the acoustic modeling performance
significantly [51]. This approach was applied to improve the quality of speech database
transcriptions stepwise. The original transcriptions were produced manually during the
speech database development but contained some errors.

First, the context-independent acoustic models’ initial parameters were set as global
values, equal for all different models. The initial values were estimated using the Baum-
Welch re-estimation. For acoustic training, a small subset was randomly selected from the
full training set. Three iterations of the training procedure were carried out. The results
were acoustic models with 1 Gaussian PDF per state. Next, the forced realigning of the
speech database’s transcriptions was used to detect the outliers in the training set.

In the second step, the context-independent acoustic models were initialized from the
scratch. The initial acoustic models with 1 Gaussian PDF were trained in a stepwise manner
until reaching the mixture of 32 Gaussian PDF per state. Such a type of acoustic model has
a better generalization effect. They are more suitable for the evaluation of an unseen test
set comprising different acoustic conditions. These acoustic models were again applied
for the forced-realigning procedure. The result was an improved version of training set
speech transcriptions.

3.4.5. Training of Context-Dependent Acoustic Models

The third step started again with the initialization of acoustic models. This time
local initial values for each acoustic unit were used. The cross-word context-dependent
(trigrapheme) acoustic models were created after seven training iterations. The context-
dependent acoustic models improve the performance in presence of the coarticulation
effect [52]. The context-dependent acoustic models have a large number of free parameters.
These were reduced with the use of a decision tree-based clustering algorithm. Its objective
was to tie together all similar acoustic models’ states. A data-driven approach [53] based
on the acoustic models’ confusion matrix was used to produce broad classes. In the end,
the number of Gaussian PDF per state was increased to 16. These were the final acoustic
models, which were applied to the speech recognition task. For more details on the UMB
BN speech recognition system see [14,15].

4. Results and Discussion

The first part of the analysis was focused on the influence of acoustic background on
speech recognition accuracy. The experiments were carried out in several steps using the
UMB BN speech recognition system and dedicated test sets generated from the SNABI
SSQ Studio database. The speech recognition results for isolated words recognition are
presented in the form of Word Accuracy (WA), which is defined as in Equation (15):

Word accuracy(%) =
H − I

N
· 100 (15)

where H denotes the number of correctly recognized words in the test set, I is the number
of insertions and N denotes the number of all words in the test set.

For comparison reasons, a short overview of previous general speech recognition
results with the UMB BN large vocabulary continuous speech recognition system will be
given. The comparable setup of the UMB BN system, with the BNSI Broadcast News speech
database [4], achieves a 73.26% word accuracy on the reference BNSI evaluation set, which
includes all acoustic conditions. In the case of clean read studio speech [14], the word accu-
racy was 84.81%, but it dropped to just 63.88% when various acoustic backgrounds (F3, F4,
and Fx conditions) were also present. These results can be directly compared with the Slove-
nian ASR system developed by Golik et al. [54], who has used the identical BNSI Broadcast
News speech database, but different system architecture achieved 72.2% word accuracy
on the evaluation set. Additional comparisons can be made with broadcast news speech
recognition systems for other languages or with cross-lingual setups [55,56]. The broadcast
news ASR system for Slovak, a similar Slavic language, presented by Viszlay et al. [57],
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performed with 78.04% word accuracy on a more extensive training speech database. The
Slovenian ASR system [58] built with cross-lingual bootstrapped acoustic models and re-
trained on lightly supervised public data achieved 78.51% word accuracy. The comparison
with published results shows that the UMB BN large vocabulary continuous speech recog-
nition system has similar performance and can be used to carry out the proposed analysis.

First, the analysis was devoted to evaluating both baseline SNABI test sets without
acoustic background with the UMB Broadcast News speech recognition system baseline.
Word accuracy for isolated digits was 93.88% and for the city names 98.53%. Although
the city names test set includes more words in the grammar than the isolated digits‘ test
set, it achieved better performance, due mainly to the longer words. In the case of isolated
digits, the average word length was 3.7 graphemes, and for the city names the average
word length was 5.2 graphemes. Longer words are acoustically diverse and thus give the
speech recognition decoder more data to estimate the most probable grapheme sequence.

In the second step of the first part of the analysis, the SNABI isolated digits and city
names‘ test sets with mixed acoustic backgrounds were tested with the UMB Broadcast
News speech recognition system. The first test set applied instrumental music for the
acoustic background and the second one used vocal music. The speech recognition results
for five different acoustic background levels per test set are given in Tables 5 and 6.

Table 5. The isolated digits’ speech recognition results in the presence of various acoustic backgrounds.

Test Set Acoustic
Background Level Instrumental Music WA (%) Vocal Music WA (%)

isolated digits clean 93.88 93.88

isolated digits low 88.21 84.35

isolated digits mid-low 69.16 65.08

isolated digits mid 42.86 42.86

isolated digits mid-high 29.25 33.56

isolated digits high 23.58 28.12

isolated digits average
background level 50.61 50.80

Table 6. The city names speech recognition results in the presence of various acoustic backgrounds.

Test Set Acoustic
Background Level Instrumental Music WA (%) Vocal Music WA (%)

city names clean 98.53 98.53

city names low 94.12 89.93

city names mid-low 65.39 62.89

city names mid 32.70 36.44

city names mid-high 20.21 24.98

city names high 15.14 19.03

city names average
background level 45.51 46.65

When isolated digits mixed with acoustic background were recognized, the instru-
mental music decreased word accuracy from 93.88% to 23.58%. In the case of low and
mid-low acoustic background levels, word accuracy was 88.21% and 69.16%, respectively.
In the case when the vocal music was used for the acoustic background, the word accuracy
reduced from 93.88% to 28.12%. Word accuracy of 84.35% and 65.08% was achieved with
the low and mid-low acoustic background levels. The average word accuracy with instru-
mental music as a background was 50.61%, and 50.80% with vocal music as a background.
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These results show that the type of acoustic background does have an influence on speech
recognition accuracy. In the case of lower background level, the vocal music produced
higher degradation than the instrumental music. This can be explained by the effect where
the vocal part of music decreases the robustness of acoustic models, due to its similarity
with ordinary speech found in uttered sentences.

An instrumental music background decreased the word accuracy of the city names test
set from 98.53% to 15.14%, respectively. At low and mid-low background levels, the word
accuracy was 94.12% and 65.39%, respectively. The vocal music as acoustic background
degraded the word accuracy from 98.53% to 19.03%, respectively. The city names‘ average
word accuracy was 45.51% for instrumental music background and 46.65% for the vocal
music background. In the case of the city names test scenario, the difference in average
word accuracy between both types of the acoustic background was slightly higher than for
the previous experiment with isolated digits.

A detailed comparison of all four various test scenarios included in the first part of
the analysis is given in Figure 3. The comparison between test scenarios confirms that the
influence of acoustic background level also depends on the type and complexity of the test
scenario. In the case of the city names test scenario, which has more words in the speech
recognizer’s vocabulary than the isolated digits scenario, the word accuracy decrease is
smaller for low-level acoustic background (low condition), but the word accuracy degrada-
tion increased for higher levels of acoustic background (mid-high and high conditions). A
plausible explanation is that the acoustic background increased the acoustic confusability
between words in the speech recognizer’s search space significantly.
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Figure 3. Comparison of different acoustic background levels on the speech recognizer’s word accuracy.

The influence of acoustic background type on speech recognition accuracy swaps with
the level of acoustic background. While for lower acoustic background levels vocal music
degraded speech recognition performance in a more severe way, the situation changed
after introduction of the medium level of acoustic background. In the case of higher
acoustic background level, the instrumental music showed higher degrading factors on
speech recognition accuracy. A possible reason is that vocals in music at the low level of
acoustic background present a sort of background speech, which is known to decrease the
word accuracy significantly. With the increased level of acoustic background, this effect of
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background speech diminished, and the degradation of musical acoustic background as a
whole began to be the most important influence factor.

The second part of the analysis was focused on speech recognition accuracy for highly
inflected words. Utterances without acoustic background were tested first, with the goal to
define the baseline. In the next step, recordings of highly inflected words were evaluated,
with various levels of acoustic background (Table 7).

Table 7. Speech recognition results for the highly inflected HI_SI test sets.

Acoustic
Background Level

H Test Set
WA (%)

T Test Set
WA (%)

M Test Set
WA (%)

Non-Highly Inflected
Test Set WA (%)

clean 71.7 63.3 80.0 93.3

low 76.7 60.0 76.7 93.3

mid 40.0 28.3 43.3 41.7

high 15.0 11.7 13.3 13.3

average 43.9 33.3 44.4 49.4

The reference test set (Table 7) comprised only non-highly inflected words and city
names and was used as a control case, showing how the acoustic background influenced
speech recognition accuracy for this specific scenario. The achieved results (WA between
93.3% and 13.3%) with this set were comparable to the ones in the first part of the analysis.
This confirms that the newly proposed highly inflected HI_SI speech database provides
comparable data for evaluation. The highly inflected test sets produced significantly worse
results when tested in clean acoustic conditions. The word accuracy dropped to 71.7%,
63.3%, and 80.0% for the H, T, and M test sets, respectively. The detailed analysis of speech
recognition results revealed that, in the case of a clean acoustic background, all speech
recognition errors occurred only between the highly inflected word forms (e.g., uttered
word form “monitorja” was, for example, substituted with the form “monitorju”). The most
frequent highly inflected word form substitution occurred in the H test set where, in 47.1%
of error cases, the uttered word form “hiša” was misrecognized as word form “hišah”. In
the case of both highly inflected words, the difference in suffix is only minimal—the first
suffix “-a” is acoustically very similar to the second suffix “-ah”. This ending phoneme
/h/ can frequently be reduced in various Slovenian accents. Moreover, the phoneme /h/
acoustic characteristics (spectral energy, time variance) can present a difficult task for a
speech recognition system. This type of substitution errors and a significant decrease in
word accuracy point-out clearly the complexity of speech recognition for highly inflected
languages. When a low-level acoustic background was added to the highly inflected
HI_SI test sets T and M, additional word accuracy degradation was observed—60.0% and
76.7%, respectively. The first substitutions to the city names were observed in this case.
This shows that the acoustic background increased the acoustic confusability additionally,
beyond the point of modified word endings. For the Reference (93.3%) and H test set
(76.7%), the accuracy was preserved or even improved. The possible cause for this is the
statistical approach used for acoustic modeling. The decrease of word accuracy between the
Reference test set and highly inflected H, T, and M, test sets was still comparable with the
clean acoustic background configuration. With the increased level of acoustic background
(mid and high levels), the word accuracy decreased statistically significantly for all four test
sets similarly. The effect of acoustic confusability of highly inflected word forms was now
minimized, as the higher level of the acoustic background masked the speech signal and its
characteristics important for speech recognition algorithms. This was also confirmed with
the detailed analysis of speech recognition results, where the substitutions were almost
evenly distributed between errors in highly inflected word forms and city names.

The overall results show that, in the most frequent speech recognizers’ operating con-
ditions, the additional absolute word accuracy degradation between 15% and 25% caused
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by acoustic modeling can be expected for highly inflected languages. The experimental
results confirmed the research hypothesis. A specific area above 15 dB SNR was identified
from results where it would be of particular benefit to apply advanced acoustic modeling
methods for highly inflected languages to improve the speech recognition results. Below
the 15 dB SNR level, the influence of highly inflected word forms on speech recognition
accuracy diminishes, and the general influence of acoustic background comes in front.

5. Conclusions

The proposed analysis approach showed the severe impact of acoustic background on
speech recognition accuracy. While acoustic background at low energy decreased the word
accuracy in a limited way, the high energy of acoustic background presented a limitation
for using an ASR. One of the possible solutions would be to treat both cases separately,
using different background reduction/decomposition methods.

The speech recognition analysis on highly inflected test scenarios showed a statistically
significant additional impact of this language characteristic on word accuracy, particularly
for none or a low level of acoustic backgrounds. This confirms that some languages are
more challenging for automatic speech recognition tasks.

It would be interesting to extend the proposed analysis to other languages to check
if similar estimations can also be observed for them. The prerequisite for such a task
would be the availability of a dedicated highly inflected acoustic test set in the analyzed
language. Currently, the well-established approach in acoustic modeling for automatic
speech recognition is to collect as many hours of transcribed speech material as possible.
This can result in several 10,000-h speech databases for major languages. However, this
approach is unrealistic for many low-resource languages with a limited number of speakers
and limited economic interest. The results of this analysis could in the future pave the
way for an alternative acoustic modeling approach where the speech database would be
designed in a way to better cover such language properties as are highly inflected word
forms. This could reduce the need for collecting large amounts of transcribed speech
material and ease the development.
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9. Beňo, L.; Pribiš, R.; Drahoš, P. Edge Container for Speech Recognition. Electronics 2021, 10, 2420. [CrossRef]
10. Pervaiz, A.; Hussain, F.; Israr, H.; Tahir, M.A.; Raja, F.R.; Baloch, N.K.; Ishmanov, F.; Bin Zikria, Y. Incorporating Noise Robustness

in Speech Command Recognition by Noise Augmentation of Training Data. Sensors 2020, 20, 2326. [CrossRef]
11. Gnanamanickam, J.; Natarajan, Y.; Sri, S.P.K. A Hybrid Speech Enhancement Algorithm for Voice Assistance Application. Sensors

2021, 21, 7025. [CrossRef]
12. Besacier, L.; Barnard, E.; Karpov, A.; Schultz, T. Automatic speech recognition for under-resourced languages: A survey. Speech

Commun. 2014, 56, 85–100. [CrossRef]
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