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Abstract: Among the inherent problems in recommendation systems are data sparseness and cold
starts; the solutions to which lie in the introduction of knowledge graphs to improve the performance
of the recommendation systems. The results in previous research, however, suffer from problems
such as data compression, information damage, and insufficient learning. Therefore, a DeepFM
Graph Convolutional Network (DFM-GCN) model was proposed to alleviate the above issues. The
prediction of the click-through rate (CTR) is critical in recommendation systems where the task is
to estimate the probability that a user will click on a recommended item. In many recommendation
systems, the goal is to maximize the number of clicks so the items returned to a user can be ranked by
an estimated CTR. The DFM-GCN model consists of three parts: the left part DeepFM is used to cap-
ture the interactive information between the users and items; the deep neural network is used in the
middle to model the left and right parts; and the right one obtains a better item representation vector
by the GCN. In an effort to verify the validity and precision of the model built in this research, and
based on the public datasets ml1m-kg20m and ml1m-kg1m, a performance comparison experiment
was designed. It used multiple comparison models and the MKR and FM_MKR algorithms as well as
the DFM-GCN algorithm constructed in this paper. Having achieved a state-of-the-art performance,
the experimental results of the AUC and f1 values verified by the CTR as well as the accuracy, recall,
and f1 values of the top-k showed that the proposed approach was excellent and more effective when
compared with different recommendation algorithms.

Keywords: DeepFM; GCN; knowledge graph; DNN; representation learning; recommendation systems

MSC: 68T07

1. Introduction

Recommendation systems are important research directions in the field of artificial
intelligence. Many experts and scholars have worked extensively with recommendation
systems, among which the collaborative filtering algorithm is the basic algorithm of most
advanced models. However, collaborative filtering suffers from the cold start of the user
and the problem of sparse data. Therefore, researchers have proposed many algorithms to
improve collaborative filtering.

Additional auxiliary information can be used to solve the problems of data sparseness
and cold starts in the collaborative filtering algorithm. For example, Jamali et al. [1] intro-
duced social network information to provide compensation recommendations. Wang et al. [2]
introduced item attribute information to solve the cold start problem. Wang et al. [3] and
Zhang et al. [4] used pictures and multimedia for presentation learning to supplement the
item information. The research of the above experts and scholars all achieved a state-of-
the-art performance at that time. The MKR algorithm proposed by Wang et al. [5] had
excellent results.
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The network structure of the MKR algorithm is mainly composed of three parts. On
the left is the collaborative filtering recommendation module. The middle part is the
cross-compression unit, mainly used to combine the results of the left and right parts; the
knowledge graph is then used to learn the entity representation to supplement the item
semantics in collaborative filtering. On the right is the TransE knowledge graph repre-
sentation module. However, the MKR method has the problem of semantic compression
caused by data compression and dimension transformation in the collaborative filtering,
especially in the knowledge graph representation learning part, which cannot fully learn
the semantic expression of an item. To improve the MKR algorithm, we proposed the
DFM-GCN. The FM (factorization machine) was replaced by a DeepFM (deep factoriza-
tion machine) to extract the higher level information. The DeepFM algorithm effectively
combined the advantages of factorization and deep learning whilst extracting low order
and high order combination features that could effectively avoid dimension transforma-
tion and data compression problems. Instead of TransE, a GCN (graph convolutional
network)—a type of graph representation learning method that has powerful performance
in many applications—was applied to encode the item embedded in the knowledge graph.
We deepened the cross-compression unit to unleash the semantic information from the
compressed data.

The main contributions of this paper are summarized as follows:

(1) The DeepFM algorithm was used as the backbone because it can compensate for the di-
mension transformation and data compression problems brought by the collaborative
filtering algorithm.

(2) The GCN was employed to learn the representation of each node and relationship
in the knowledge graph, which could inject more reliable item knowledge into the
recommendation algorithm.

(3) Using deep neural networks to model the connection between DeepFM and the GCN,
we adopted a deep cross-compression unit to capture the high dimension features in
the interaction.

1.1. Existing Related Works

Previous scholars have undertaken a great deal of research on recommendation sys-
tems. These can be summarized into three major categories: traditional recommendation
algorithms, recommendation algorithms based on deep learning, and fusion recommen-
dation algorithms that rely on external knowledge. Traditional recommendation systems
include recommendation algorithms based on collaborative filtering [6,7] (user-based col-
laborative filtering, content-based collaborative filtering) and hybrid recommendation
algorithms. Recommendation algorithms based on deep learning include deep neural net-
works (DNNs [8]), convolutional neural networks (CNNs [9]), recurrent neural networks
(RNNs [10]), long short-term memory neural networks (LSTMs [11]), and graph neural
networks (GNNs [12]). Fusion recommendation algorithms, with the help of external
knowledge, include fusion knowledge graphs, images, and label information.

1.1.1. Traditional Recommendation Algorithms

Traditional recommendation system algorithms include three categories: collaborative
filtering-based recommendation algorithms (user-based collaborative filtering) (Figure 1a);
content-based collaborative filtering (Figure 1b); and hybrid recommendation algorithms.

Content-based collaborative filtering was the first recommendation algorithm pro-
posed. The idea was to recommend items that were similar to the past interests of the users;
the user had to analyze the item information that they were interested in first. Content-
based recommendations need to build recommendations based on items that users are
interested in based on their history. The advantage of this method was that it could generate
effective recommendations for users with niche tastes and there was no problem of a project
cold start. However, this method was very dependent on the attribute characteristics of the
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item and had extremely high requirements for the marking characteristics. Additionally, it
was difficult to measure the pros and cons of the items being recommended.

Figure 1. The ideas of the collaborative filtering algorithm. (a) User-based collaborative filtering
algorithm; (b) content-based collaborative filtering algorithm.

The user-based collaborative filtering calculated the highest similarities between the
users according to their first preferences and interests. It then calculated the highest scored
item to be recommended to the target user. The collaborative filtering recommendation
method was convenient and simple to use; only the similarity between users needed
to be calculated, based on the historical rating data of the user. However, this method
often encounters the problem of insufficient scoring data. Therefore, in the actual use
process, a sparse matrix and cold start problems of new users without item scoring data
were generated.

Hybrid recommendation algorithms refer to systems that combine two or more actual
situations, thus achieving better results for the user. There are many mixed recommendation
methods such as weighted, switched, crossed, feature combination, waterfall, feature
incremental, and meta-level. To an extent, these methods can achieve the purpose of
complementing each other but not every combination of methods has practical effects for
specific problems.

1.1.2. Recommendation Algorithms Based on Deep Learning

Recommendation algorithms based on deep learning include recommendation meth-
ods based on deep neural networks (DNNs), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), long and short-term memory neural networks (LSTMs),
and graph neural networks (GNNs). In recommendation systems, the deep learning
extracts the potential features of the user and the potential features of the item, then rec-
ommends generated items for the users. The neural network can not only learn the latent
feature representations of users or items but also the complex nonlinear interaction charac-
teristics between the users and items; it can deeply analyze user preferences, which can
solve several problems in traditional recommendation methods to better implement the
recommendations.

Deep neural networks (DNNs) have been widely used in computer vision, image
classification, natural language processing, and other fields. The first use of a DNN
in a recommendation field was in YouTube video recommendations. Chen et al. [13]
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considered the large data size, high data freshness, and large noise characteristics of the
YouTube website and then proposed the use of a DNN to achieve efficient recommendations.
The system architecture is shown in Figure 2. The biggest advantage of the DNN-based
recommendation algorithm is that the input of the DNN can easily handle discrete and
continuous variables. However, when calculating the distance between the user vector
and the item vector, it may not fully reflect the similarities. In addition, the learned user
vector and the item vector may have a distribution deviation. In this way, Zhang et al. [14]
proposed a model that combined a collaborative filtering recommendation algorithm with
a DNN. This model improved the traditional matrix factorization algorithm and used a
quadratic polynomial regression model to capture the potential feature representations,
making the potential feature representations obtained by the model more precise. However,
this method suffered from a user cold start.

Figure 2. Youtube video recommendation model based on a DNN.

A CNN can achieve operations such as sharing weights and local connections. In
addition, a CNN has a strong fault tolerance and robustness [15] and is easy to train and
optimize. Tang et al. [16] proposed a convolution-based sequence embedding the Caser
model. The Caser model solved the problem where the nearest item within the top-N
sequence recommendation had a greater impact on the next item. Kim et al. [17] proposed
a novel context-aware recommendation model that integrated a CNN into a probabilistic
matrix factorization (PMF) and a convolutional matrix factorization (ConvMF). Experiments
have proven that a ConvMF can capture the context information of a document, thereby
improving the prediction accuracy of the scores.

An RNN is inherently capable of processing time series data. Santos et al. [18] pro-
posed a context-aware recurrent neural network (CA-RNN) based on an RNN that could
model rich context and sequence information, thus improving the text semantic capture to
improve the recommendation effect. Manotumruksa et al. [19] proposed a novel contextual
attention loop architecture (CARA) to solve the problem that different types of contexts
have different effects on user preferences. Yang et al. [20] proposed a context-aware citation
recommendation model based on long short-term memory to recommend relevant and
appropriate scientific paper citations for users.

Several NLP models based on transformers have become very popular recently such as
BERT and GPT-2. It has become a recent trend to introduce transformer models into recom-
mendation algorithms. Transformers can better model user behavior sequences than tradi-
tional LSTMs, GRUs, and other models. Kang et al. [21] introduced a two-layer transformer
decoder (i.e., transformer language model) called SASRec to capture the sequential behav-
iors of users and achieved state-of-the-art results on several public datasets. Sun et al. [22]
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proposed BERT4Rec, which modeled the user behavior sequence based on bidirectional
self-attention and achieved a state-of-the-art sequential recommendation performance.

1.1.3. Recommendation Algorithms Based on a Graph Neural Network

A graph neural network can capture the dependency of graphs through a message
passing between nodes. The recommendation systems based on a GNN regard items
and users as nodes and the relationships between items and items, users and users, users
and items, and content information as node status information. Most prominent among
these recent advancements is the success of deep learning architectures known as graph
convolutional networks (GCNs). The main idea behind GCNs is to learn how to iteratively
aggregate the feature information from local graph neighborhoods using neural networks.
Ying et al. [23] proposed a scalable GCN algorithm, PinSage. The PinSage model used a local
convolution, which reduced the complexity of the model during the training calculations
and could improve the recommendation effect. Wang et al. [24] proposed an end-to-end
framework of KGNN-LS, which could effectively capture the correlation between items by
mining the related attributes between the items in the knowledge graph.

1.1.4. Recommendation Algorithms Incorporating External Knowledge

Recommendation algorithms that integrate external knowledge include recommen-
dation algorithms that integrate knowledge graphs, images, and label information. The
introduction of external knowledge is mainly to solve the problems of a sparse matrix and
cold starts in the recommendation systems.

In several of the above methods, only the historical interaction information (explicit
or implicit feedback) between the user and the item are used as an input. This causes
two problems: (1) the interaction information between the user and the item is often very
sparse and, therefore, it is easy for a sparse matrix to appear; and (2) for new users or
items, because the system has no historical interaction information, it cannot be accurately
modeled and recommended. This is also known as the cold start problem. Therefore, the
recommendation algorithm that integrates external knowledge can solve the above two
problems to a certain extent.

Jamali et al. [1] embedded social network information into a graph in order to com-
pensate for a lack of expressed user interest. Zhang et al. [4] constructed recommendation
algorithms by learning the representation of multimedia, pictures, and other information
to better express items through the introduction of picture information. Wang et al. [5] pro-
posed network structures such as MKR and Ripplenet by introducing additional auxiliary
information such as knowledge graphs to compensate for the representation of the items to
achieve a better recommendation effectiveness.

A large number of studies by predecessors and scholars have shown that the cold
start and data sparsity of recommendation systems are urgent problems to be solved
and that the recommendation algorithm that integrates external knowledge also plays an
important role, especially the recommendation algorithm integrating the knowledge graph.
Currently, a recommendation algorithm fused with knowledge graphs has the problem
of semantic compression caused by data compression and dimension transformation in
the collaborative filtering, especially in the knowledge graph representation learning part;
the semantic expression of items cannot be fully learned and needs to be strengthened in
terms of item representation and the interaction between graphs and recommendations.
In this paper, we focused on the cold start and data sparsity problems appearing in the
recommendation systems. Based on an MKR [5], we proposed the DFM-GCN algorithm to
inject the knowledge into the recommendation systems for mitigating the cold start and
data sparsity problems.
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2. Method
2.1. Problem Definition

In the recommendation systems, we set up a group of users U = {u1, u2 . . . uM} and
a set of items I = {i1, i2 . . . iN}, where M and N were the number of users and items
respectively. The items could refer to commodities, movies, or televisions. We then defined
the interaction matrix of user-item Y ∈ RM×N , where Y represented the implicit feedback of
the user on the item. If yui = 1, this indicated that the user liked, viewed, or clicked on the
item. If yui = 0, this indicated that the user did not interact with the corresponding item.

In this paper, we introduced the knowledge graph for improving the recommenda-
tions. The knowledge graph G = (head, relation, tail) contained a large number of triples,
which refers to the connection between two entities. For example, (Christopher Nolan,
film.film.director, Tenet) indicated that the director of the film “Tenet” was Christopher
Nolan. In the actual recommendations, if the users liked Tenet, they may also like other
movies made by Christopher Nolan. That is, the knowledge graph could obtain a better
representation for each item, playing a cohesive role in the entire recommendation. There-
fore, given a set of users U and items I fused with knowledge graph G, this paper focused
on recommending an item i ∈ I for u ∈ U with the help of item knowledge.

2.2. Model

The model structure mainly consisted of three parts. One was the DeepFM recommen-
dation on the left half where FM was used to capture the low order features and a deep
network was added to capture the high order features between the user and item. The other
was GCN knowledge graph embedding to encode the knowledge graph on the right half.
This part used a GCN to establish the connection between the items in order to obtain a
more comprehensive item feature expression in the recommendation. The middle part used
DNN cross and compressed units to connect the DeepFM and GCN. Among them, the DNN
was mainly used to capture the high dimension features. This unit could automatically
learn the high level feature interactions between the items in the recommendation systems
and entities in the knowledge graph. The overall network structure is shown in Figure 3.

Figure 3. The DFM-GCN network structure model of recommendation systems.

The input of the entire model was user, item, and knowledge graph triples; the output
was the probability ranking of the preferences of the users for a series of items.

The embedding layer included three parts, which were user feature embedding, user
behavior sequences, and item feature embedding. The user embedding was obtained by
inputting into the DeepFM model. The item embedding came from two parts; one was the
DeepFM and the other was obtained by the GCN using relational data. The two modules
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were fused through the DNN module to obtain the embedding of final item. The schematic
diagram is shown in Figure 4.

2.2.1. DeepFM Recommendation

The DeepFM algorithm effectively combined the advantages of factorization and deep
learning whilst extracting low order and high order combination features. In the DeepFM
framework, the FM was mainly responsible for the extraction of first-order features and
second-order features (the pairwise combination of first-order features) and the DNN was
responsible for extracting the high order features.

Figure 4. The diagram of user embedding and item embedding.

The mathematical expression of the commodity feature iFM extracted by the FM
factorization model is as follows:

iFM = ω0 +
n

∑
i=1

ωivi +
n−1

∑
i=1

n

∑
j=i+1

ωijvivj (1)

where ω is the parameter that the model needs to learn, vi is the value of the product
feature representing the i-th dimension, and v is the initial feature vector representation of
the product.

The DNN was responsible for constructing the high dimensional feature representation
of the product. Its input shared the product feature vector representation v with the FM; the
high dimensional feature representation i(l)DNN of the l-th level product was then as follows:

i(l)DNN = σ
(

W(l)i(l−1)
DNN + b(l)

)
(2)

where l is the layer depth and σ is the nonlinear activation function such as ReLU. W(l), b(l)

are the model weight and bias of the l-th layer, respectively, which it needs to learn. After
that, a dense real value feature vector was generated. Thus, the final representation of the
product iN = iFM + iDNN , after having the latent feature vector uN of the user u and the
latent feature iN of the item v, the expression of the recommended score y was as follows:

y= sigmoid
(

uT
N ·iN

)
(3)

where we could obtain the latent feature vector UN of u through the DNN module, which
was used for the high order feature combinations. The value of the second-order item was
equal to the embedding vector product of the two features so the user embedding matrix
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and the transpose of the item embedding matrix could be multiplied to obtain the user-item
“rating” matrix and then recommend products.

2.2.2. Embedding of the GCN Knowledge Graph

The knowledge graph embedding representation aims to transform entities and rela-
tionships into a continuous vector space whilst maintaining the structure between them. In
recent years, researchers have proposed many knowledge graph embedding technologies,
including Trans series models and semantic depth matching models. In this paper, we used
a GCN to embed the knowledge graph. A GCN can be regarded as a message transmission
framework and its calculation expression is as follows:

hl+1
i = σ

(
∑

j∈Mi

gm

(
hl

i , hl
j

))
(4)

where hl
i is the feature representation of node vi in the l-th layer, gm(·, ·) represents the

message aggregation function, and σ is the activation function. Specifically, the standard
GCN model gm

(
hl

i , hl
j

)
= Whj for knowledge graph embedding not only has node (entity)

features but also edge (relation) features. Therefore, the node feature encoding expression
of the GCN could be converted into the following form:

hl+1
i = σ

∑
r∈R

∑
j∈Nr

i

1
ci,r

W l
r hl

j + W l
0hl

i

 (5)

where Nr
i represents the set of neighbor nodes of node i under relation r and ci,r is the

trainable parameter. From the above formula, it could be seen that the features of each
layer of nodes were obtained from the features and relationships (edges) of the previous
layer. The neighbors of the nodes and their own features were weighted to obtain new
features. The feature encoding of the edge (relation) was as follows:

rl+1 = Wrl (6)

where W is the learnable parameter and rl is the feature vector representation of the
relationship on the edge of the l layer. After splicing the relationship features of the nodes
and edges, the fully connected layer was then used to predict the tail entity representation:

t̂ = N
[

h
r

]
(7)

where N is the learnable parameter and t̂ is the vector representation of the tail entity t
predicted for the head entity h and the relationship r.

2.2.3. DNN Cross and Compress Units

This module is mainly used to model the interaction features between commodities
and their corresponding entities in the knowledge graph. For each commodity v and its
corresponding entity e, the interaction feature matrix C between them is as follows:

C = v·eT =

 v0e0 · · · v0en−1
· · · · · · · · ·

vn−1e0 · · · vn−1en−1

 (8)

where v ∈ Rn×1, e ∈ Rn×1, and C ∈ Rn×n. This process is called a cross-operation because
each feature interaction viej between the product and its corresponding entity is displayed
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and modeled in the interaction feature matrix C. We could then obtain the commodity and
entity feature representations v and e after the interaction:

v = DNN
(

CW1 + CTW2 + bv

)
(9)

e = DNN
(

CW3 + CTW4 + be

)
(10)

where W1, W2, W3, W4, bv, and be are trainable parameters and the function of DNN
represents the deep neural network such as a multi-layer fully connected network. The
forward process was:

DNN(i(l)) = σ
(

W(l)il−1 + b(l)
)

(11)

where l is the layer depth and σ is the nonlinear activation function. DNN(i(l)), W(l),
and b(l) are the output, model weight, and the bias of the l-th layer, respectively. This
process is called a compress operation and compresses a two-dimensional matrix into a
one-dimensional vector representation, which then extracts high order features through a
deep neural network.

2.2.4. Optimized Objective Function

The complete loss function contained two parts: the depth recommendation loss Lrec
and the knowledge graph embedding loss Lgraph. The function expression of Lrec was
as follows:

Lrec = MSE
(

y, ygold

)
. (12)

The expression of knowledge graph embedding loss Lgraph was as follows:

Lgraph = sigmoid
(

tT t̂
)

(13)

where t is the real tail entity and t̂ is the prediction of the entity t in which we aimed to
increase the score for all true triples whilst reducing the score for all false triples.

The final optimization objective (loss) function was then as follows:

L = Lrec + Lgraph. (14)

Training Complexity. The time cost of our proposed DFM-GCN mainly arose from
three parts: the DeepFM, the DNN cross and compress units, and the GCN. The time
complexity of the DeepFM was O(n*latent_factor), where n is the number of features. For
the GCN, the time complexity was O(K|E|), where K is the number of parameters and
E is the number of edges in network G. For the DNN cross and compress units, the time
complexity was O(l), where l is the layer depth. Therefore, the total complexity of the
DFM-GCN was O(K|E|+n*latent_factor+l).

3. Experiment and Analysis

In order to verify the effectiveness of our proposed model, two public datasets were
used for ablation experiments. The baseline was the MKR algorithm, using the AUC and f1
score estimated by the CTR; the AUC represented the area under the curve and the AUC
was equivalent to the probability of the positive samples being ranked higher than the
negative samples. We also used the precision, recall, and f1 score of the top-k to verify the
experimental results, in which the precision was for the prediction results as it indicated
how many of the predicted positive samples were true positive samples. The recall rate
was for the original sample and it indicated how many positive examples in the sample
were correctly predicted.
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3.1. Datasets

The dataset used in this article was the public dataset MovieLens, which contains two
versions, ml1m_kg20m and ml1m_kg1m. The details of the data are shown in Table 1. The
format of the dataset was as follows. The dataset included three files: ratings.dat, the rating
file of the user for items that consisted of approximately 1 million explicit ratings (rating
from 1 to 5) on the MovieLens website; kg.txt, the triple file of the knowledge graph; and
item_id2entity_id.txt, which mapped the item ID to the entity ID.

Table 1. Basic statistics of the datasets.

Ml1m_kg1m ml1m_kg20m

UserID MovieID Score UserID MovieID Score

Count 1,000,209 1,000,209 1,000,209 20,000,263 20,000,263 20,000,263

Mean 3024.51 1865.54 3.58 69,045.87 9041.57 3.53

Std 1728.41 1096.04 1.12 40,038.62 19,789.48 1.05

Min 1 1 1 1 1 0.5

25% 1506 1030 3 34,395 902 3

50% 3070 1835 4 69,141 2167 3.5

75% 4476 2770 4 103,637 4770 4

Max 6040 3952 5 138,493 131,262 5

In the dataset of ml1m_kg1m, there were 6036 users, 2347 items, 753,772 interactions,
20,195 KG triples, and 6729 entities. It contained seven types of relationship data such as
actor, director, genre, and country in the dataset. This dataset (ml1m_kg20m) described a
five-star rating and free-text tagging activity from MovieLens, a movie recommendation
service. It contained 20,000,263 ratings and 465,564 tag applications across 27,278 movies.
The ratio of the training, development, and test set was 6:2:2.

3.2. Baselines

In this paper, we set up three sets of comparative experiments with different network
structures. The baseline used the MKR algorithm, the second set of experiments used
the FM_MKR algorithm, and the third set of experiments was our algorithm based on
the DFM-GCN.

3.3. Experiment Settings

The hyper-parameter settings mainly included the following: rs_lr (the learning rate
of the recommended module); kge_lr (the learning rate of the knowledge graph encoding
learning); batchsize; and epoch. In the experiment, the hyper-parameters we set were:
rs_lr = 0.02, kge_lr = 0.01, batchsize = 4096, epoch = 20.

The evaluation metrics used the AUC and f1 values estimated by the CTR as well as
the accuracy, recall, and f1 values of the top-k.

3.4. Experiment Results

The experimental results of all methods on the two datasets are shown in Tables 2 and 3.

Table 2. The results of the AUC and f1 on CTR prediction based on the datasets of ml1m-kg20m.

AUC F1 Top 100
(Precision)

Top 100
(Recall)

Top 100
(F1)

MKR 0.82777 0.66641 8.080 20.076 11.523
FM_MKR 0.89637 0.82169 10.760 43.793 17.275

DFM + GCN 0.91435 0.8441 20.693 49.364 29.162
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Table 3. The results of the AUC and f1 on CTR prediction based on the datasets of ml1m-kg1m.

AUC F1 Top 100
(Precision)

Top 100
(Recall)

Top 100
(F1)

MKR 0.83786 0.65432 8.981 22.163 12.782
FM_MKR 0.91123 0.84011 12.364 43.865 19.291

DFM + GCN 0.91781 0.84773 21.003 49.847 29.554

It can be seen from the tables that our proposed method, DFM-GCN, achieved the
best performance on the two datasets. Due to the data compression of the collaborative
filtering part and the semantic compression caused by the dimension transformation in
the MKR algorithm, parts of the original information of the item could be lost. Therefore,
the vector representation among the items was confused during the recommendation
process. The recommendation accuracy on the item was the worst in the comparison model.
FM_MKR improved the modeling process of the MKR recommendation model and could
better capture the low dimensional features so the performance significantly improved,
about 7% on the AUC score compared with the MKR. However, the DFM-GCN used the
GCN to learn the representation of the knowledge graph, which solved the problem of
insufficient node representation in the TransE framework, and DeepFM could better model
the product features so the DFM-GCN achieved a state-of-the-art performance with an
improvement of about 8% on the AUC score and 18% on the f1 score compared with the
baseline model MKR.

In order to further explore the performance changes of the DFM-GCN during training,
we drew the learning curves on a test set of the two datasets, as shown in Figures 5–7.

Figure 5. A reflection of the change in the AUC and f1 score of the CTR on the test set.

Figure 5 shows the learning curves of the AUC and f1 score on the test set. We observed
that the performance of our model gradually increased on the two datasets as the training
continued. Until the max epoch, the AUC and f1 score tended to be stable, which justified
the rationality of the epoch hyper-parameter selection and avoided the over-fitting problem.
In addition, the AUC and f1 score on the ml20m dataset achieved a fast convergence in
the early iterations whereas they did not converge until about the 7th epoch on the ml1m
dataset. The reason may be that ml20m possessed less data than ml1m. Therefore, our
model could also achieve a stable performance on few numbers of the datasets.
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Figure 6. A reflection of the changes in precision, recall, and f1 of the Top 10 on the test set.

Figure 7. A reflection of the changes in precision, recall, and f1 of the Top 100 on the test set.

As shown in Figures 6 and 7, we reported the precision, recall, and f1 score learning
curves of the Top 10 and Top 100 on the test set. We observed that precision was higher
than recall consistently on the Top 10 whereas recall was higher than precision on the Top
100, indicating that the golden item most existed in the Top 100 candidate set. The learning
curves for the Top 10 were more gentle than the Top 100 in the early steps, which showed
that the model mainly focused on recalling more reliable candidate items.

4. Conclusions

This paper mainly focused on improving the MKR algorithm and proposed the DFM-
GCN framework for its recommendation. The DFM-GCN comprised the DeepFM recom-
mendation, GCN knowledge graph embedding, and DNN cross and compress units. We
adopted the DeepFM to extract the higher level information and the GCN was applied
to encode the item embedded in the knowledge graph. In addition, we made the cross-
compression unit deeper for unleashing the semantic information from the compressed
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data. Therefore, knowledge information could be injected into the recommendation sys-
tems to alleviate the problem of data sparseness and a cold start. The experimental results
demonstrated that our proposed method achieved a state-of-the-art performance. For
future work, the alignment between the item embedding in the recommendation and
the entity representation in the knowledge graph is worth exploring for unleashing the
knowledge graph.
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