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Abstract: Ever since the appearance of quantum computers, prime factoring and discrete logarithm-
based cryptography have been questioned, giving birth to the so-called post-quantum cryptography.
The most prominent field in post-quantum cryptography is lattice-based cryptography, protocols that
are proved to be as difficult to break as certain hard lattice problems like Learning with Errors (LWE)
or Ring Learning with Errors (R-LWE). Furthermore, the application of cryptographic techniques to
different areas, like electronic voting, has also nourished a great interest in distributed cryptography.
In this work, we will give two original threshold protocols based in the lattice problem R-LWE:
one for key generation and one for decryption. We will prove them both correct and secure under
the assumption of hardness of some well-known lattice problems. Finally, we will give a rough
implementation of the protocols in C to give some tentative results about their viability, in particular
our model generates keys in the order of 103 ms and decrypts and encrypts in the order of 102 ms.

Keywords: post-quantum cryptography; threshold cryptography; lattices; Ring Learning with Errors
(R-LWE); R-LWE encryption

MSC: 94A60; 68P25

1. Introduction

The appearance of the computer in the XXth century caused the explosion of cryp-
tography, the safety of which enabled the huge development of the connected society (for
example, recent cryptographic endeavours into facilitating the implementation of the Smart
City model [1]). Similarly, the development of quantum computing and specifically Shor’s
algorithm [2], which renders cryptography based on the discrete logarithm and prime
factoring problems effectively useless against a quantum adversary, spawned new types
of cryptography.

There are two main types of cryptography that have been developed to overcome
the attacks of quantum computers: quantum and post-quantum cryptography. Quantum
cryptography relies on quantum algorithms that cannot be broken by quantum adversaries,
while post-quantum deals with classical (non-quantum) algorithms that cannot be broken
by quantum adversaries. We focus on post-quantum cryptography given that widespread
use of moderately powerful quantum computers seems unachievable in the short run.
In this realm, the area that has had more recent advancements is lattice-based cryptogra-
phy, as shown by the fact that in the Status Report on the Second Round of the National
Institute of Standards and Technology (NIST) Post-Quantum Cryptography Standardiza-
tion Process [3] most third-round finalists are lattice-based schemes. Within lattice based
schemes, cryptography based in the Learning with Errors (LWE) problem and its variants
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is especially relevant. We will build our proposals around the Ring Learning with Errors
(R-LWE) problem.

There are many applications of post-quantum cryptography, but the one we we focus
on is electronic voting. Electronic voting is characterized by a significant lack of trust.
The lack of trust in other entities is what initially spawned the concept of cryptography,
thus going further in this direction is the next logical step to follow. Therefore, the aim is
to “spread” that trust, so that one single corrupt player can no longer break the protocol.
Distributed cryptography is this idea of spreading the tasks between several players so
that only certain subsets of them can perform the cryptographic protocol. The interest in
distributed cryptography, and in particular post-quantic distributed cryptography, can be
seen in interesting recent advancements in the area like [4,5].

Adding post-quantum and distributed cryptography finally brings us to our main
subject: R-LWE-based distributed key generation and threshold decryption.

1.1. State-of-the-Art

Despite the shown interest and potential usefulness of lattice-based threshold public
key encryption cryptography, the amount of existing proposals is scarce, especially of
proposals focusing on the R-LWE problem. Most of the existing proposals revolve around
the LWE problem (see, for example, [5–8]), which has the potential problem of keys and
ciphertexts growing with O(n2) instead of with O(n) like the R-LWE variant (with n the
dimension of the lattice), thus having a higher possibility to need a greater amount of
operations and therefore computation time. In the world of threshold encryption based
on R-LWE, as far as we know there is only one proposal given in [9], which is based on
the homomorphic properties of the presented Fully Homomorphic Encryption scheme.
However, this proposal does not come with a distributed key generation protocol (as it
relies on a Trusted Third-Party (TTP) for that). Additionally, to the best of our knowledge,
none of the mentioned proposals give an implementation to truly analyze computation
times, even if implementations of post-quantic protocols is a hot topic, as shown by the
Open Quantum Safe project [10]. Furthermore, the Open Quantum Safe project also shows
us that despite recent developments, most applications are still on the prototype phase. A
summary of the current state of the art can be found in Table 1.

Table 1. State-of-the-art.

Proposal Lattice Problem Key Generation Implementation

[6] LWE 3 7

[7] LWE 7 7

[8] LWE 3 7

[5] LWE 7 7

[9] R-LWE 7 7

Our proposal R-LWE 3 3

1.2. Contributions

In this work, we present original protocols of both distributed key generation and
threshold decryption that, as far as we know, are the first R-LWE-based threshold protocols
including both decryption and key generation. The protocols are based on the LWE
proposal given by Bendlin and Damgård in [6], whose ideas are transported into the R-
LWE setting. Furthermore, we prove these protocols both correct and secure, we give a set
of parameters for which our protocols have more than 100 bits of security and we give a
rough implementation in C of the protocols to analyze their performance.

1.3. Structure

In Section 2 we will give the preliminaries necessary to follow the work in the fields
of cryptographic primitives, distributed cryptography, and Ring Learning with Errors.
In Section 3, we present the protocols that act as the main contribution of this work, while
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in Section 4 we will prove their correctness, and in Section 5 we will prove them secure.
Section 6 will be dedicated to analyzing the implementation in C of the protocols, and finally
in Section 7 we will give our final concluding thoughts and possible future work. For the
appendices, in Appendix A we give correctness and security proofs against an adversary
acting actively in both protocols, in Appendix B we give the proofs for auxiliary results,
and in Appendix C we give the link to a repository containing the relevant code of our
implementation.

Most of the introduction has been taken from the introduction in the Master’s The-
sis [11] by Ferran Alborch.

2. Preliminaries
2.1. Notation

Elements in R, Z, or Zq will be indicated as lower case letters (a, b, . . . ), while elements
in Rn, Zn, or Zn

q will be indicated as bold lower case letters (a, b, . . .). We will consider
Zq with the representatives in

[
− q

2 , q
2
)
. Let X be a random variable, X ∼ χ means X

follows the probability distribution χ, x ←− χ means x is sampled from a random variable
following the distribution χ, Y ←− χn means Y is a vector such that every coordinate is

independently sampled from the distribution χ and for any set J , j $←− J is the action of
choosing j uniformly at random from J . We will also identify any polynomial of degree
n− 1, f (x) = a0 + a1x + . . .+ an−1xn−1 ∈ Zq[x] with the vector f = (a0, a1, . . . , an−1) ∈ Zn

q .
A function g is said to be negligible over n (g := neg(n)) if ∀k ∈ Z>0, ∃n0 ∈ Z>0 such that
∀n ≥ n0, |g(n)| < 1

nk . Finally, a function f is said to be O(g(n)) if there exists M > 0 and
n0 such that | f (n)| ≤ M · g(n) for all n > n0, while a function f is said to be ω(g(n)) if for
all M > 0 exists n0 such that | f (n)| > M · g(n) for all n > n0.

2.2. Cryptographic Primitives

We will start by giving some cryptographic primitives, well-known definitions, proto-
cols, or techniques used in cryptography upon which we will build our encryption scheme
and protocols. First, we will formally define what an encryption scheme is.

Definition 1. An encryption scheme is a tuple S = (M, C,K, E ,D) such that:

• M is a set called plaintext space.
• C is a set called ciphertext space.
• K is a set called key space. Generally a key generation procedure is also specified to generate

k ∈ K.
• E = {Ek : k ∈ K} is a set of functions Ek :M×R → C called encryption functions. R is a

randomness space to account for probabilistic encryption schemes.
• D = {Dk : k ∈ K} is a set of functions Dk : C →M called decryption functions.

Note that if D and E use the same key, then we call it symmetric encryption; otherwise, we
call it asymmetric or public key encryption. In public key encryption, K can be divided into two
different sets, Ks, the secret key space, and Kp, the public key space. The public key (known by all
entities) is used to encrypt messages and the secret key (known only to the decrypting entity) is used
to decrypt them.

Once we have defined a cryptosystem, we need to prove some properties about it to
ensure it is useful. The most important of these properties are correctness and security, and
from now on we will focus solely on public key encryption.

Definition 2. Let (M, C,K, E ,D) be an encryption scheme. The encryption scheme is said to be
correct if for all e ∈ Kp exists some computable d ∈ Ks such that, given λ the security parameter,
the probability

Pr[Dd(Ee(m)) 6= m] = neg(λ)



Mathematics 2022, 10, 728 4 of 31

for all m ∈ M.

In contrast to the correctness of an encryption scheme, security can be defined in
various ways. This is due to the fact that a decryption should always be correct (or always,
except with negligible probability) but security depends on the properties of the adversary
we want to protect us against (information available, computational power) and what we
want to ensure (that the adversary cannot know what message was encrypted or that he
cannot distinguish which message has been encrypted from a pool of plaintexts). In our
case, we are interested in CPA security.

Attack Game 1 (Attack Games 5.2 and 11.2, [12]). Let S = (M, C,K, E ,D) be an encryption
scheme. Given an adversaryA, the Chosen Plaintext Attack (CPA) attack game, has two experiments:
Experiment 0 and Experiment 1. For b ∈ {0, 1} we define Experiment b as

• The challenger chooses e $←− Kp and sends it to the adversary.
• The adversary submits polynomially many queries to the challenger. For i = 1, 2, . . ., A

submits two same-length messages m0i , m1i ∈ M. The challenger computes ci = Ee(mbi
)

and sends it to the adversary.
• The adversary outputs a bit b̂ ∈ {0, 1}.

Let Wb be the event in whichA outputs 1 in the event b, then we defineA’s CPA advantage as

CPAAdv[A,S ] := |Pr[W0]− Pr[W1]|.

Definition 3 (Definitions 5.2 and 11.4, [12]). An encryption scheme S is said to be CPA secure
if for all efficient adversaries A, the value CPAAdv[A,S ] is negligible.

Furthermore, security can be achieved against different types of adversaries depending
on what capacities they have. We will focus basically on passive adversaries (also known as
honest but curious), who can see all the information the corrupted players have but cannot
make them deviate from the protocol, and active adversaries (also known as malicious), who
can make the corrupted players deviate arbitrarily from the protocol. Another important
distinction to make is whether it is a static adversary, who picks the subset of players it
will corrupt prior to the start of the protocol; or a dynamic adversary, who can change the
subset of corrupted players during the execution of the protocol. Our security model will
be against static adversaries.

2.3. Distributed Cryptography

The specific branch of cryptography we are interested in this work is distributed cryptography.

Definition 4 ([13]). A threshold secret sharing scheme of threshold t and u players is a scheme
such that given some data D it divides it into u pieces D1 . . . , Du such that:

• Knowledge of t + 1 or more pieces Di makes D easily computable.
• Knowledge of t or less pieces Di leaves D completely undetermined (i.e., all its possible values

are equally likely).

Definition 5. We will call a threshold encryption scheme a secret sharing scheme where what we
try to recover is a plaintext from a ciphertext.

One of the first secret sharing schemes and one of the most used up to this day due to
its simplicity to compute and understand, is Shamir Secret Sharing. We will use it profusely
throughout our work.

Technique 1 ([13]). Shamir Secret Sharing over a field F of a secret s ∈ F of threshold t works
as follows:
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• Choose t elements bi ∈ F and define the polynomial f (x) := s + ∑t
i=1 bixi (i.e., choose a

random polynomial f (x) ∈ F[x] such that f (0) = s).
• For every player Pj, their share of the secret is f (ij), with ij ∈ F \ {0} being different for every

player and agreed before-hand.
• When t + 1 players want to recover the secret, they use Lagrange interpolation to find f (x)

and then compute f (0).

The convenience of this secret sharing scheme lays in two main properties: the recovery
of the secret is done through Lagrange interpolation (which is easy to compute) and the
shares are linear, which means that a linear combination of the shares is a share of the linear
combination of secrets. Both of these properties will be used in our work.

Other distributed cryptographic tools we will use are the Pseudo-Random Secret
Sharing (PRSS) and the Non-Interactive Verifiable Secret Sharing (NIVSS) techniques.
These tools will be crucial in our proposal, as the security of our protocols is based on being
able to mask the relevant information with noise in such a way that the adversary cannot
retrieve it. To generate this noise we will use these two protocols.

Definition 6. A Pseudo-Random Function (PRF), Φ·(·), is a deterministic function that maps
two sets (domain and range) on the basis of a key, which when run multiple times with the same
input gives the same output but given an arbitrary input the output seems random, i.e., one cannot
distinguish the output of a given input from a random oracle. A random oracle is an oracle (a
theoretical black box) that responds to every query with a (truly) random response chosen uniformly
from its output domain. If a query is repeated, it responds the same way every time that query
is submitted.

Technique 2 ([14]). Pseudo-Random Secret Sharing in Zq (PRSS) allows u players to non-
interactively share a common random value x with a threshold of t players (t < u) given a
pseudo-random function Φ·(·) that with input a key and a value µ outputs values in the interval
I = [a, b], a < 0, b > 0 and whatever group of players of size less or equal than t cannot obtain
relevant information on x. The algorithm works as follows:

• For each subset H of t players a TTP defines a key KH ∈ Zq uniformly at random.
• Each player Pj is given KH , ∀H such that Pj /∈ H.
• The pseudo-random number they are sharing is

x := ∑
H

ΦKH (µ)

for a value µ. Since there are (u
t) such subsets H, we know x ∈ [(u

t)a, (u
t)b].

• To compute xj a Shamir share of x every player computes

xj = ∑
H 63Pj

ΦKH (µ) · fH(j)

where fH(x) is the unique degree-t polynomial (in our case fH(x) ∈ Zq[x] with q prime) such
that fH(0) = 1 and fH(i) = 0 for all Pi ∈ H.

Technique 3 ([14]). Non-Interactive Verifiable Secret Sharing in Zq (NIVSS), allows a dealer D
to share a secret s with u players with threshold t given a value µ and a pseudo-random function
φ·(·) that with input a key and µ outputs values in the interval I = [a, b], a < 0, b > 0. It works
very similarly to PRSS. The algorithm works as follows:

1. For each subset H of t players the dealer D chooses a key KH ∈ Zq uniformly at random.
2. The dealer D gives to player Pj all the KH such that Pj /∈ H.
3. The dealer D reconstructs the pseudo-random value the players share x = ∑H φKH (µ), since

he has all the keys.
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4. D broadcasts the value s− x, and now all the players have a share of s by adding their shares
of x to s− x.

Finally, as we will be using distributed methods, one must ensure that the order in
which the different players send information does not compromise the security of the
scheme. Broadly speaking, the last player to send information would have an advantage
with respect to the first one due to knowing more information when making its decision.
To solve this problem, it is standard to use commitment schemes.

Definition 7 (Definition 8.8, [12]). Given a message spaceM, a commitment scheme is a pair of
efficient algorithms C = (C, V) where C (the commiter) is an algorithm that given m ∈ M outputs
a commitment c and an opening string o and V (the verifier) is a deterministic protocol that given
(m, c, o) outputs accept or reject, and such that it satisfies the following properties:

• Correctness: For all m ∈ M, if C(m) = (c, o) then

Pr[V(m, c, o) = ‘accept’] = 1.

• Binding: This property is the notion that once a commitment c is generated, it should only
commit for one message inM. In particular, for every efficient adversary A that outputs
(c, m1, o1, m2, o2) we must have that

Pr
[

m1 6= m2 and
V(m1, c, o1) = V(m2, c, o2) = ‘accept’

]
= neg(λ).

• Hiding: This property is the notion that the commitment c alone should not reveal any
information about the message m. To properly define this, we use a semantic security attack
game (see Attack Game 2.1, [12]) where instead of encrypting the messages we compute
its commitment. What we ask is, if Wb denotes the event that the adversary outputs 1 in
experiment b, then

|Pr[W0]− Pr[W1]| = neg(λ).

2.4. Ring Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev in 2005 in a
previous version of [15] as a generalization of the parity learning problem, and gave both a
cryptographic protocol based on it and a reduction of its security to a hard lattice problem
(the GAP Shortest Vector Problem (GAPSVP)).

However, cryptosystems based on the LWE problem have several issues. For example,
many of them need to encrypt bit by bit and, more importantly, the public keys required
are very costly to store as they are usually (big) matrices of elements in Zq. Coupling these
two together we get that a lot of storage space is usually needed to encrypt small amounts
of information.

To solve these problems, the Ring Learning with Errors variant was introduced by
Lyubasevsky, Peikert and Regev in [16]. It is essentially a particular case of LWE but in
polynomial rings over finite rings. The problem is over the polynomial ring Rq = Zq[x]/〈 f 〉,
where f is a monic polynomial in Zq[x].

Given an element a(x) ∈ Rq, one can see the principal ideal generated by a(x)

〈a(x)〉 = {c(x) ∈ Rq|c(x) = a(x) · b(x), b(x) ∈ Rq}

as an ideal lattice in Zn
q , which we will note as L(a). This correspondence is easy to see

in the case f (x) = xn + 1 (the particular Rq we will use given its specific properties) due
to the fact that the vector of coefficients of the product of polynomials in Rq can be found
through the anticyclic matrix as follows:
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a(x) · b(x) (mod xn + 1) ≡


a1 −an −an−1 . . . −a2
a2 a1 −an . . . −a3
a3 a2 a1 . . . −a4
...

...
...

. . .
...

an an−1 an−2 . . . a1

 ·


b1
...
...

bn


where a = (a1, . . . , an) and b = (b1, . . . , bn) are the coefficients of a(x) and b(x), respectively.

With this out of the way we can finally define the Ring Learning with Errors problem,
on which a lot of lattice-based cryptography is based.

Definition 8. Let χ be a probability distribution over Rq and s ∈ Rq. Then, the R-LWE distri-
bution As,χ is the distribution in Rq × Rq given by (a, b = a · s + e), where a ∈ Rq is chosen
uniformly at random, e←− χ and all the operations to compute b are made in Rq.

Definition 9. The decisional R-LWE problem is to distinguish samples from As,χ from the uniform
distribution in Rq × Rq with a probability that is non-negligibly bigger than 1

2 .

Definition 10. The search R-LWE problem is to find s given a polynomial amount of samples from
As,χ with non-negligible probability.

Therefore, a sample of the R-LWE distribution is a point of an ideal lattice that has
been offset by a margin set by the distribution χ (which is normally taken such that the
error is small). Therefore, the search R-LWE problem could be seen as finding a point in
the ideal lattice L(a) (remember that a vector a uniquely defines an ideal lattice through
its anticyclic matrix) “close” to the sample, and the decision R-LWE could be seen as
given an ideal lattice L(a), decide whether the points given are all “close” to L(a) or are
uniformly distributed.

When implementing LWE or R-LWE we will use a certain type of probability distri-
bution over Zq called discrete Gaussians, given their nice properties and ease in sampling
values from them. There are several different definitions of discrete Gaussians but in our
implementation we will use the following, given it is much easier to sample.

Definition 11 ([15]). Ψσ, σ ∈ R+ is the distribution in the torus T = R/Z obtained by sampling
a Gaussian random variable X, X ∼ N(0, σ) centered in 0 and with standard deviation σ and then
reducing modulo 1. Therefore,

Ψσ(r) =
∞

∑
k=−∞

1√
2πσ

e−
(

r−k√
2σ

)2

, ∀r ∈ [0, 1)

Note that if Y ∼ Ψσ, then Y = X (mod 1), with X ∼ N(0, σ) where reducing modulo
1 is taking only the decimal part of any real number.

Definition 12 ([15]). The discretization to Zq, q ∈ Z>0 of any distribution in T (Ψ : T→ R+),
noted as Ψ : Zq → R+ is sampling from Ψ, multiplying by q, and then rounding to the closest
integer. Therefore,

Ψ(i) :=
∫ i+ 1

2
q

i− 1
2

q

Ψ(x) dx

Note that if Z ∼ Ψσ then Z = bqYe (mod q), with Y ∼ Ψσ.

Definition 13. We define the truncated Discrete Gaussian of parameters σ and κ as the distribution
which samples from Ψσ and rejects any sample bigger than κ, when seeing them with representatives
in
[
− q

2 , q
2
)
.
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In particular, we will use κ ∈ Z>0 such that

Pr
[∣∣Ψσ

∣∣ > κ
]
≤ 2−λ

being λ the security parameter.

3. Encryption Scheme and Protocols

Having given all the necessary preliminaries, we can finally present our encryption
scheme, threshold decryption protocol and distributed key generation protocol, which we
will prove correct in Section 4, secure in Section 5, analyze its implementation in Section 6
and give some last thoughts and possible future work in Section 7.

We will use a version of the LPR encryption scheme presented in [16].

Encryption Scheme 1. Let q, n, u ∈ Z>0, where u is the number of players, and χ be a distribution
over Rq. The encryption scheme S = (M, C,K, E ,D) and key generation we will be using is
the following:

• M = {0, 1}n ⊆ Zn
q
∼= Rq. We will see every m ∈ M as an element in Rq with m being its

vector of coefficients.
• C ⊆ Rq × Rq.
• This is a public encryption scheme, we have Ks ⊆ Rq and Kp ⊆ Rq × Rq.

– For any pair of keys (pk, s) ∈ Kp ×Ks we will have s ←− ∑u
i=1 χ (meaning it is the

sum of u samples of χ) and pk = (aE, bE) = (aE, aE · s + e) where aE
$←− Rq and

e←− ∑u
i=1 χ.

• E = {Epk : pk = (aE, bE) ∈ Kp} such that given a message m ∈ M:

Epk :M→ C
m 7→ (u, v)

where (u, v) = (aE · rE + eu, bE · rE + ev + m · b q
2c) with rE, eu, ev ←− χ.

• D = {Ds : s ∈ Ks} such that given a ciphertext (u, v) ∈ C:

Ds : C → P
(u, v) 7→ m

where we will recover every bit of m by rounding every coefficient of

v− s · u = e · rE + ev − s · eu + m ·
⌊ q

2

⌋
to 0 or b q

2c (mod q) and then mapping 0 to 0 and b q
2c to 1.

Now, we will define the Threshold Decryption Protocol based on this encryption
scheme and a Distributed Key Generation protocol to work together with it. For clarity, we
use a TTP to generate the keys in the encryption protocol, however, what we are looking
for is a totally distributed scheme, so we also define a Distributed Key Generation Protocol
to take the place of the TTP in the threshold decryption protocol.

Protocol 1. Let χ be a distribution over Rq and Φ·(·) a pseudo-random function with image in
In

D, that is a vector of n coordinates with each coordinate being in ID an integer interval. Then the
Threshold Decryption Protocol works as follows:

1. A TTP generates the keys KH ∈ Zq for every subset H of players of size t and distributes them
according to the PRSS technique (Technique 2). It also generates the secret key s ∼ ∑u

i=1 χ
and the public key (aE, bE) as stated in the Encryption Scheme 1. Then, the TTP sends to
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the players (aE, bE) and Shamir shares of s. We call sj the Shamir share of s of player Pj,
understood as a vector of Shamir shares on the coefficients of s.

2. Client receives ciphertext c = (u, v), and sends all players c.
3. Each player Pj computes ẽj = v− sj · u that is a Shamir share of ẽ = e · rE + ev − s · eu +

m · b q
2c with e, rE, ev, s, eu ← χ.

4. Each player Pj computes xj, as in the PRSS protocol but using µ = u + v (since it changes
for every message and it is hard to distinguish from uniformly at random), its Shamir share of
x := ∑H ΦKH (u + v) and gets xj + ẽj Shamir share of x + ẽ.

5. Client reconstructs x + ẽ for every allowed subset of t + 1 players, picks whichever value is
repeated more times, then for every coefficient returns 0 if x + ẽ is closer to 0 than to b q

2c and
returns 1 otherwise, and this is made public.

See Table 2.

Table 2. Decryption protocol.

Decryption Protocol
Inputs: sj, KH s.t. j /∈ H, Φ·(·), fH

Player Pj
(u,v)←−−

xj = ∑H/∈j ΦKH (u + v) · fH(j)
ẽj = v− sj · u

xj+ẽj
−−−→

For the key generation protocol, we will assume a commitment scheme is used in the
initial steps of interaction, when all the sampling is done and sent.

Protocol 2. Let χ be a distribution over Rq, µ = x + 2x2 + . . . + (n− 1)xn−1 ∈ Rq, and ΦKG
· (·)

a pseudo-random function with image in In
KG, where IKG is an integer interval. The Distributed

Key Generation Protocol works as follows:

1. For the secret key s ∈ Rq, each player Pj chooses its contribution sj = (s1j , . . . , snj) with
sj ∼ χ. Then, they act as the dealer in a NIVSS (Technique 3) to share every sij to all
players. All players verify the value broadcast when doing the NIVSS (sij −∑H φKG

Ks
NHj

(µ)) is

in the interval (u
t)IKG. Now all players have shares of every sij and by their linearity also of

si = ∑j sij . Then, s is the polynomial in Rq with coefficients (s1, . . . , sn).
2. For the keys KH ∈ Zq that will be used for the PRSS in the threshold decryption, for every

subset H of t players each player Pj chooses uniformly at random KHj ∈ Zq their contribution
on these keys and shares it with all the players using Shamir secret sharing. Then, the players
will have, by adding all the shares received by other players, Shamir shares of KH = ∑j KHj .
Finally, all players send privately their shares on KH to all the players in A the complement of
H, so they can recover KH .

3. For the contributions to e ∈ Rq proceed identically to when generating s.
4. For aE ∈ Rq every player Pj chooses its share (aE,1j , . . . , aE,nj) randomly in Rn

q and does a
Shamir share of it. Then, all players send to all players their share on all the (aE,1j , . . . , aE,nj)

so every player can recover (by adding the shares)
(

∑j aE,1j , . . . , ∑j aE,nj

)
. The polynomial

in Rq with these coefficients will be aE.
5. Every player computes locally their Shamir shares on bE = aE · s + e by performing these

same operations with the shares they have on s and e.
6. Finally, the public key (aE, bE) is made public.

See Table 3 for a more detailed look into the steps of interaction needed. Note that we will
denote with subindexes the additive contributions and with superindexes the Shamir shares.
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Table 3. Key Generation protocol.

Key Generation Protocol
Inputs: χ, ΦKG

· (·), µ

Player Pj
sj, ej ← χ

KHj , Ks
NHj

, Ke
NHj

$←− Zq ∀|H| = n− t

s̊j = sj −∑H ΦKG
Ks

NHj

(µ)

e̊j = ej −∑H ΦKG
Ke

NHj

(µ)

aE j
$←− Rq

K′Hj
, aE
′
j = Shamir.Shares(KHj , aE j)

Cj = Commit(s̊j, e̊j, Ks
NHj

, Ke
NHj

, K′Hj
, aE
′
j)

Cj−→
{Ck}u

k=1←−−−−
s̊j ,e̊j ,Ks

NHj
,Ke

NHj
,K′Hj

,aE
′
j

−−−−−−−−−−−−−→{
s̊k ,e̊k ,Ks

NHk
,Ke

NHk
,K′Hk

,aE
′
k

}u

k=1←−−−−−−−−−−−−−−−−−−{
Verify(Ck)j = {’accept’ or ’reject’}

}u
k=1

{Verify(Ck)j}u
k=1−−−−−−−−−→

{Verify(Ci)k}u
i,k=1←−−−−−−−−−

if Verify(Ci)k = ’reject’ for some i, k abort{
Verify.interval(s̊k)j = {’accept’ or ’reject’}

}u
k=1{

Verify.interval(e̊k)j = {’accept’ or ’reject’}
}u

k=1
sj = ∑u

k=1 s̊k + ∑H 63Pj
ΦKG

Ks
NHj

(µ) · fH(j)

ej = ∑u
k=1 e̊k + ∑H 63Pj

ΦKG
Ke

NHj

(µ) · fH(j)

K j
H = ∑u

k=1 K′Hk

aj
E = ∑u

k=1 aE
′
k

{Verify.interval(s̊k)j ,Verify.interval(e̊k)j}u
k=1−−−−−−−−−−−−−−−−−−−−−−−−→

{Verify.interval(s̊i)k ,Verify.interval(e̊i)k}u
i,k=1←−−−−−−−−−−−−−−−−−−−−−−−−

if Verify.interval(s̊i)k = ’reject’ for some i, k abort
if Verify.interval(e̊i)k = ’reject’ for some i, k abort

aj
E ,K j

H to k s.t. H 63Pk−−−−−−−−−−−→
{ak

E ,Kk
H s.t. H 63Pj}u

k=1←−−−−−−−−−−−−
KH = Reconstruct.Shamir(Kk

H) s.t. H 63 Pj
aE = Reconstruct.Shamir(ak

E)

bj
E = aE · sj + ej

aE ,bj
E−−−→

{bk
E}

u
k=1←−−−−−

bE = Reconstruct.Shamir(bk
E)

bE−→
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4. Correctness

With all the preliminaries on hand and having defined both protocols we can now
proceed to prove their correctness. We will give the proof for the case of a passive adversary
in the Key Generation phase and an active (or passive) adversary in the Decryption phase,
as this will be the case our implementation will use, the reasons for this decision will be
explained in Section 6.1. The proof for the case where there is an active adversary during
the Key Generation Protocol will be in Appendix A.1.

Theorem 1. Let n, q, u ∈ Z>0, n = 2β and u being the number of players. Let Rq = Zq[x]/〈xn +
1〉, ΦD

· (·) be a pseudo-random function with image interval In
D where

ID =
[
−(2nuκ2 + κ) · 2λ+β, (2nuκ2 + κ) · 2λ+β

]
,

χ be a n-dimensional distribution obtained by n independent truncated Discrete Gaussian with
parameters σ and κ and ⌊ q

4

⌋
≥ (2nuκ2 + κ)

((
u
t

)
2λ+β + 1

)
.

Then Protocol 1 will have correct output against an active static adversary corrupting up to
t < u

3 players.

Proof. What we want to see first is that |x + ê|i ≤
q
4 ∀i, where ·i notes the coefficient i on

the polynomial, given the way the decryption works in Encryption Scheme 1.
Let ê = e · rE + ev − s · eu. Since the product in Rq is done through the anticyclic

matrix, we know that

|ê|i ≤ |ei · rE1 |+ |ei−1 · rE2 |+ . . . + |ei+2 · rEn−1 |+ |ei+1 · rEn |+ |evi |+ |si · eu1 |+ . . . + |si+1 · eun |

and, therefore, as rE, ev, eu ← χ and s, e← ∑u χ, where every coefficient of χ is truncated
by κ, we get that

|ê|i ≤ 2nuκ2 + κ

Furthermore, given that there are (u
t) keys KH , we know that

xi ∈
(

u
t

)
ID.

Adding both results, we then get that

|x + ê|i ≤
(

u
t

)
(2nuκ2 + κ) · 2λ+β + (2nuκ2 + κ)

= (2nuκ2 + κ)

((
u
t

)
2λ+β + 1

)
≤
⌊ q

4

⌋
as we wanted to see.

Finally, we just need to see that when the client reconstructs, there is indeed a majority
of correct results, and this derives directly from having at most t corrupt players, therefore
there will be a majority of subsets of t + 1 players where they are all honest, and thus
output the correct decryption.

For the case where we combine both protocols, which means that we replace the TTP
in Protocol 1 with Protocol 2, the outputs of this protocol and the TTP are equally generated
for the case of a passive adversary in the Key Generation phase, as it cannot make any
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player deviate from the protocol. Therefore, we can directly apply Theorem 1. Furthermore,
the same theorem and proof is valid against a passive adversary corrupting up to t = u− 1
players, only noting that we will have all of the decryptions correct as a passive adversary
cannot make any player deviate from the protocol.

5. Security

We will divide the proofs of security for the protocols into several theorems to ease
the proofs. First, we will prove the CPA security of Encryption Scheme 1 as a one-player
scheme, and then we will prove that no information is leaked when distributing the
protocols. Finally, we will add everything to prove the CPA security of both protocols
used together.

5.1. Security of Encryption Scheme

We will split the proof of security of Encryption Scheme 1 in three distinct parts:
reducing the security of the encryption scheme to the decisional R-LWE problem, reducing
the R-LWE problem with the Ψn distribution to the R-LWE problem with truncated discrete
Gaussian, and finally reducing the decisional R-LWE problem to the Discrete Gaussian
Sampling over K (K-DGS) with K the field such that R is its ring of integers, a well-known
lattice problem assumed to be hard to solve. We will make this splitting because the first
reduction will be for any distribution χ, while the second reduction will be specifically for
the distribution Ψn. The first reduction follows the ideas from the reduction of Regev’s
encryption scheme to LWE given in [15]. For the detailed proof see Appendix B.

Theorem 2. Given χ a distribution over Rq, there exists a reduction to the semantic security of the
Encryption Scheme 1 from the decisional R-LWE problem with distribution χ.

Note that the reduction is to the semantic security of the scheme and not the CPA se-
curity. However, it is well-known that in public key encryption both notions are equivalent
(see, for example, Theorem 11.1 in [12]).

Second, we want to be able to ensure that if we know how to solve an instance of the
decision R-LWE problem with a truncated discrete Gaussian we can solve an instance of the
decision R-LWE problem with the Ψn distribution. This is clearly so given an instance of
the decision R-LWE problem with the Ψn distribution one can see it as an instance with the
truncated discrete Gaussian distribution except for a negligible amount of times. Therefore,
the advantage of the adversary solving both instances will differ at most a negligible
amount, as we needed.

Finally, we need to see that our R-LWE instance is as hard to solve as a lattice problem,
in our case as hard to solve as K-DGS, where K is the field such that R is its ring of integers,
in other words, R = OK (for more detail in the definition of K-DGS refer to Definition 2.10
and Section 2.3.3 in [17]). This job has already been done in [17], though to do so properly
we need to give some clarifications about different ways to define the R-LWE distribution.

Let K be a number field with R its ring of integers. Let R∨ be the fractional co-
differential ideal of K (R∨ = {x ∈ K | Tr(xR) ⊂ Z}), and let TR = KR/R∨. Let q ≥ 2 be
an integer modulus. Let us unpack this. First, in our specific case of K being a cyclotomic
field with n = 2k for some k, we have R = Z[x]/〈xn + 1〉, so in turn it can be seen that
R∨ is isomorphic to R. Second, KR = K ⊗Q R which is isomorphic to Rn, so looking it
component by component TR could be seen as isomorphic to Tn with T = R/Z. With this
out of the way we can see their definition.

Definition 14 (Definition 2.14, [17]). For s ∈ R∨q and an error distribution ψ over KR, the R-

LWE distribution As,ψ over Rq ×TR is sampled by independently choosing a $←− Rq and an error
term e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).
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Now our postulate is that this definition taking as Ψ an n-dimensional spherical
continuous Gaussian with parameter ξ (which is a distribution used in [17]) and then
raising it to Rq again, is a more general definition to our Definition 8 using Ψ ξ

q
, in the

sense that if we can solve an instance of the R-LWE problem defined with the distribution
in Definition 8 we can solve an instance of the R-LWE problem with the distribution in
Definition 14. It can be seen as one, as a spherical Gaussian in Rn can be seen as the
product of n independent Gaussians over R with the same standard deviation. Then, in
essence what we are doing in Definition 14 is multiply a times s, then divide the result
by q (which we can as we are seeing the elements in KR which is a field) and adding
the error distribution. Then, we reduce it modulo R∨ thus landing in TR. Now, if we
look it component by component we have in essence computed a · s/q and then added
to each component a sample of Ψ ξ

q
, so when raising it again to R∨q (by multiplying by q

and rounding) we get that q(a · s/q) = a · s ∈ R∨q and to every component we have added
an independent sample taken from Ψ ξ

q
. Therefore, if ρn

ξ is the spherical Gaussian with

parameter ξ, given an adversary who solves R-LWEΨ ξ
q

it is easy to give an adversary who

solves R-LWEρn
ξ
.

Therefore, we can apply the result from [17], for which we need to give two quick
lattice definitions.

Definition 15 ([17]). The minimum distance of a lattice L is the length of the shortest non-zero
lattice vector

λ1(L) := min
0 6=v∈L

‖v‖

The dual lattice of a given lattice L is defined as

L∗ := {x ∈ Zn|〈L, x〉 ∈ Z}

Definition 16 (Definition 3.1, [18]). For a lattice L, and a positive real ε > 0, we define
its smoothing parameter ηε(L) to be the smallest s such that ρ 1

s
(L∗ \ {0}) ≤ ε, where

ρr(L) := ∑x∈L ρr(x) for a lattice L, and ρr(x) := exp(−π‖x/r‖2) for some element x ∈ Rn.

Finally, we can give the following result.

Lemma 1 (Corollary 7.3, [17]). There is a polynomial-time quantum reduction from K-DGS
with function γ to the (average-case, decision) problem of solving R-LWEρn

ξ
using l samples with

ξ = α
(

nl
log(nl)

) 1
4 , α > 0 and

γ(I) = max

{
η(I) ·

√
2

α
·ω
(√

log(n)
)

,

√
2n

λ1(I∗)

}

as long as αq ≥ ω
(√

log(n)
)

, where I is an ideal lattice.

In conclusion, we have seen that breaking the security of Encryption Scheme 1 is at
least as hard as solving the decision R-LWE problem with a truncated discrete Gaussian,
which is at least as hard as solving the decision R-LWE problem with the Ψn distribution,
which in turn is at least as hard as solving the K-DGS problem.

5.2. Non-Leakage of Information

In this section, we need to see that the adversary does not gain any extra information
by interacting with the distributed protocol. We will start first with the Protocol 1, seeing
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that an adversary A cannot distinguish between interacting with the protocol or with
random inputs. Furthermore, we will also give the adversary the ability to choose its shares
of the secret key and the PRSS keys, as it makes the game easier and it only serves to see
that the protocol’s security is even stronger than what is usually required.

To appropriately do so we will need the following auxiliary lemmas about statistical
distance, the proofs of which will be in Appendix B.

Lemma 2. Let Y be a probability distribution over Z such that |Y| is bounded by κ and X be a
discrete uniform distribution in the integer interval [−a, a] with a ≥ κ · 2λ. Then, ∆(X, X̃) ≤ 2−λ,
where X̃ = X + Y.

Lemma 3. Let X, Y be two probability distributions over a countable support N such that
∆(X, Y) ≤ 2−λ, and n ∈ Z>0 with n = 2β for some β ∈ R>0. Then ∆(Xn, Yn) ≤ 2−λ+β.

With these auxiliary lemmas we can go ahead and prove the adversary cannot distin-
guish between interacting with the protocol and random values.

Theorem 3. Assume that Φ·(·) is a secure pseudo-random function modeled as a random oracle,
that the keys KH have been securely generated and distributed, that the secret key s has been
securely generated and shared and that the parameters follow the conditions of Theorem 1. Then, the
Decryption Protocol (Protocol 1) is secure against a passive and static adversary, corrupting up to
t = u− 1 players.

Proof. We want to construct an Attack Game in which the adversary cannot distinguish
between the protocol executed correctly or with random values to show that the distribution
does not leak anything about the secret key s nor the error e.

Let C denote the set of corrupted players and B the set of honest players. The Attack
Game works as follows. Assume that the challenger knows the secret key s and the KH
such that C ⊇ H (the keys that the adversary does not know) which have been securely
generated. Assume that the challenger sends to the adversary A the ciphertext (u, v) and
then A submits (s′C, KHC , d′C) as the challenge, where s′C are the shares on the secret key of
the corrupted players, KHC are the keys KH such that C + H (the keys A knows) chosen by
A, and d′C are the shares on the decryption of the corrupted players. Then, the challenger
generates consistent shares on s for the players not in C.

Once all these preliminaries are done, the challenger chooses b $←− {0, 1} and proceeds
as following:

• If b = 0: The challenger uses the decryption protocol to compute the shares of the
decryption d′B for the honest players. It computes the decrypted message m and
outputs (d′B, m).

• If b = 1: The challenger computes for every H such that C ⊇ H some element
rH ∈ In

D uniformly at random and we denote as y the polynomial in Rq with vector of
coefficients ∑C+H ΦKH (u+ v)+∑C⊇H rH . Then the challenger generates d′B consistent
shares of y + mb q

2c (the challenger knows m as it can be computed using the protocol,
given that everything needed is known) and outputs (d′B, m).

Finally A outputs b̃ ∈ {0, 1}, meaning whether it thinks it has interacted with the
protocol or with a simulation, and the Game concludes.

It is clear that m will be correct in both cases given the proof of Theorem 1, and further-
more, y + mb q

2c will be an effective “decryption” of m in the sense that every coefficient
will be closer to 0 if mi = 0 and closer to b q

2c if mi = 1, because

|y|i ≤
(

u
t

)∣∣∣∣ ID
2

∣∣∣∣ ≤ q
4

.
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Therefore we only need to see that d′B are indistinguishable whether they are com-
puted with b = 0 or with b = 1. Let us see it. First of all, y and x are computationally
indistinguishable to the adversary given the properties of pseudo-randomness of Φ·(·). We
now want to see that the way y and y + e · rE + ev − s · eu = y + ê are distributed are at a
negligible statistical distance. It is clear that y is distributed in the interval (u

t)I
n
D (with (u

t)
values distributed uniformly in ID) and as we have seen in the proof of Theorem 1 ê is in
the interval [−2nuκ2 + κ, 2nuκ2 + κ]n. Therefore, as the distribution of every coefficient is
identical and independent we have that by Lemma 2

∆(yi, {y + ê}i) ≤ 2−λ−β

and by Lemma 3

∆(y, y + ê) ≤ 2−λ

so the distribution of y and y + ê are at a negligible statistical distance. Therefore, we get
that y + mb q

2c and x + ê + mb q
2c are computationally indistinguishable.

Finally, adding it all together we get that the output (d′B, m) is computationally indis-
tinguishable whether it has been computed with b = 0 or with b = 1, so∣∣∣∣Pr

[
b̃ = b

]
− 1

2

∣∣∣∣ = neg(λ)

as we wanted to see.

After Theorem 3, we have only seen that Protocol 1 is secure when the keys are securely
generated and against a passive adversary corrupting t ≤ u− 1 players, but it is standard
to see that the same protocol is secure against an active adversary corrupting t < u

3 players
if instead of the client reconstructs m using the shares of all subsets of t + 1 players, as that
will give a majority of correct outputs.

The reason behind this is that we have already seen that no information is leaked,
so we only need to see that the adversary cannot abort the protocol or cause an incorrect
output. In case of an active adversary (who can cause players to deviate arbitrarily from
the protocol), what is needed is that if all combinations of t + 1 players are decrypting the
message, there needs to be a majority of combinations of t + 1 players with no corrupt
players. This gives us that t < u

3 is enough.
Now, we need to see that Protocol 2 leaks no information against an adversary cor-

rupting up to t = u− 1 players. To do so we will once again see that the adversary cannot
distinguish between interacting with the protocol or a simulation where the challenger sets
before-hand the values of the keys.

Theorem 4. Assuming that the image interval of the pseudo-random function ΦKG
· (·) is In

KG where

IKG =
[
−κ · 2λ+β, κ · 2λ+β

]
,

that C is a commitment scheme such that it has a trapdoor and the parameters follow the conditions
on Theorem of correctness, then the Key Generation Protocol (Protocol 2) is secure against a passive
and static adversary, corrupting up to t = u− 1 players.

Proof. We want to construct an Attack Game in which the adversary cannot distinguish
between the protocol executed correctly and a simulation where the challenger sets the
values of s, e, aE and KH for all H before-hand.

Let C denote the set of corrupt players and B the set of honest players. The Attack
Game works as follows. Assume that whenever a corrupt player needs to sample a uniform
distribution it sends a query to the challenger for a random value from a random oracle. Let
CC = Commit(s̊C, e̊C, Ks

NHC
, Ke

NHC
, K′HC

, aE
′
C) the challenge output byA, the first step of the
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interaction in Protocol 2 as we can see in Table 3. Then, the challenger chooses b $←− {0, 1}
and proceeds as follows:

• If b = 0: The challenger and the adversary follow Protocol 2 to generate aE, bE and
the shares s′B, e′B, KB

H , aE
B and outputs (aE, bE, s′B, e′B, KB

H , aE
B).

• If b = 1: The challenger samples s, e ∼ ∑u χ, aE
$←− Rq and every KH

$←− Zq and
computes bE = aE · s + e. Then he uses the trapdoor in the commitment scheme to
recover (s̊C, e̊C, Ks

NHC
, Ke

NHC
, K′HC

, aE
′
C), and proceeds as follows. We will divide the ex-

planation depending on what he is simulating to ease comprehension, but everything
will be done simultaneously, following the flow of information seen in Table 3.

– For the “generation” of s, the challenger will use the keys Ks
NHC

(of which he

knows all of them given that they were generated through queries to the random
oracle through the challenger) to recover sC, the contribution of the corrupt play-
ers to s. With this information, the challenger can compute sB the contribution of
the honest players to s such that s = sC + sB. With these values computed the
challenger follows with the protocol.

– For the “generation” of e the challenger proceeds identically as with generating s.
– For the “generation” of KH , the challenger samples random values in Zq for K′HB

(the first step) and commits them. It then will receive KC
H from the adversary

(the shares of KH pertaining to the corrupt players) and will compute consis-
tent Shamir shares KB

H so that the players share KH . Then, as in the protocol,
the challenger sends the shares KB

H to all players not in H.
– For the “generation” of aE, the challenger samples random values in Rq for

aEB (the first step) and commits them. It then will receive aC
E (the shares of aE

pertaining to the corrupt players) and will compute consistent Shamir shares aB
E

so that the players share aE. Then, as in the protocol, the challenger sends the
shares aB

E to all players.
– For the “generation” of bE the challenger outputs bE at the end of the protocol.

Then, the challenger outputs (aE, bE, s′B, e′B, KB
H , aE

B).

Finally, A outputs b̃ ∈ {0, 1}, meaning whether it thinks it has interacted with the
protocol or with the simulation, and the Game concludes.

It is clear that the flow of information is the same in both cases and that the values will
be both correct and what the challenger sampled beforehand, so we just need to see that
the adversary cannot distinguish between the values received when b = 0 from the ones
received when b = 1. For s (and e) it is clear that they are indistinguishable, as we used
the trapdoor in the commitment scheme to set the values necessary before any messages
were sent from the adversary to the challenger. Furthermore, we know that no information
was leaked in the NIVSS as because of Lemmas 2 and 3 we know that no information was
leaked as in the proof of Theorem 3.

For KH (and in turn aE as they are analogous), we need to see that the adversary
cannot distinguish from K′HB

generated by the protocol or them being random in Zq. To see
this we will use the security of Shamir secret sharing, as the adversary can only control up
to t players. Therefore, the value shared is completely undetermined by the shares of the
corrupt players, so both cases (b = 0 and b = 1) are indistinguishable to the adversary.

Finally, by adding everything up, we get that (aE, bE, s′B, e′B, KB
H , aE

B) are indistin-
guishable whether we have b = 0 or b = 1, so∣∣∣∣Pr

[
b̃ = b

]
− 1

2

∣∣∣∣ = neg(λ)

as we wanted to see.
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As in Section 4, we have also proven the equivalent to this last theorem for an active
adversary, however we will not use the result for the implementation, for reasons we will
state in Section 6.1. The proof can be found in Appendix A.2.

Having proved the security of each protocol individually, we only need to see that using
both protocols together still gives us an encryption scheme which is semantically secure.

Theorem 5. Assume the conditions in Theorems 1 and 4 are fulfilled. Then, if K-DGSγ is hard, then
encryption under keys generated by Protocol 2 and decryption following Protocol 1 is semantically
secure against a static and passive adversary corrupting up to t = u− 1 players acting through the
Key Generation phase and the same adversary being active corrupting up to t < u

3 players in the
Decryption phase.

Proof. First, using the result in Theorem 4, we can see that the adversary cannot distinguish
between executing both protocols, or replacing the key generation with keys generated by
the challenger. Then, using Theorem 1, we can see that the adversary cannot distinguish be-
tween taking part in the decryption or having the challenger decrypt all by itself. Therefore,
we get that the adversary cannot distinguish between the semantic security game when
both distributed protocols are used from the basic semantic security game of Encryption
Scheme 1. This means, using what we have seen in Section 5.1 that breaking semantic
security when both protocols are being used is as hard as breaking semantic security of the
encryption scheme, so using the reduction to K-DGSγ and that we assume this problem to
be hard, we have that our protocols are semantically secure, as we wanted to see.

6. Implementation

The first step for the implementation is finding good parameters that guarantee the
security of the particular instance of the R-LWE problem. To verify it we will use the
bounds on ξ in Lemma 1 and the LWE hardness estimator given by Albrecht et al. in [19].
We use the LWE estimator because, as far as we know, no major attacks are known to
exploit the particular properties of R-LWE, so the estimated hardness for LWE translates as
estimated hardness for R-LWE.

6.1. Choosing Parameters

We set the security parameter λ = 100. We need to find the following parameters:
n, q, κ and ξ which will then allow us to compute ID and IKG. We will first leave everything
in function of n and q, and we will then use the concrete hardness of an instance of the
R-LWE problem to fix n and q.

Let n = 2β and q ∈ Z>0. Using the conditions on ID on Theorem 1 we get that

κ =

−1 +
√

1 + 2nuq
(u

t)2
λ+β+1

4nu


To find ξ, we will use the following lemma, the proof of which is in Appendix B.

Lemma 4. Let Ψ σ
q

be a discrete Gaussian. Then, ∀c > 0:

Pr
[∣∣∣Ψ σ

q

∣∣∣ > c
]
≤
√

2
π

e
−
(
dce− 1

2√
2σ

)2

dce − 1
2

.
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Using the bound on Definition 13 and Lemma 4 we can get the following bound:

Pr
[∣∣∣∣Ψ ξ

q

∣∣∣∣ > κ

]
= Pr

[∣∣∣∣Ψ ξ
q

∣∣∣∣ > κ +
1
2

]

≤
√

2
π

e
−
(

κ+ 1
2√

2ξ

)2

κ + 1
2

≤ 2−λ

which when isolating the ξ gives us the following bound:

ξ ≤

√√√√√√
(

κ + 1
2

)2

−2 log
(√

π
2 2−λ

(
κ + 1

2

)) .

From here we will take the equality, as with a fixed q the larger the standard deviation
the greater the hardness of that specific instance of the decision R-LWE problem.

Now, we can find n and q using the LWE hardness estimator, which given n, q, α
outputs the concrete hardness of that specific instance. We will set n as a power of 2, as it
allows us to use more efficient multiplication algorithms and q as a prime near a power
of 2. Using this, we implemented a Python algorithm to find these parameters. The code
can be found in the repository in Appendix C. This has yielded the following results as
parameters for u = 7 and t = 2 and more than 100 bits of security, as can be seen in Table 4.

Table 4. Parameters for secure implementation.

n = 4096
q = 713,623,846,352,979,940,529,142,984,724,747,568,191,373,381
κ = 168
ξ = 14.897861091181875
ID = 8,403,614,205,785,368,527,542,540,898,258,331,059,093,504
IKG = 872,305,872,233,851,041,593,123,383,308,976,128

Bits of Security = 121

In this code, there is also the computing of parameters for the case of an active
adversary in Key Generation phase using the conditions on Theorem A1, meaning that to
have 100 bits of security against this type of adversary we need to bump up to n = 8192.
This, as we will see with the results in Section 6.3, hurts the viability of the protocols, that is
why we take our main proposal as secure against an adversary who acts passively in the
Key Generation phase and actively in the Decryption phase.

6.2. Implementation Particulars

There are several implementation decisions we have taken and need to be discussed.
First, we have not coded a truly interactive protocol between u different players, but rather
a simulation where one processor computes all the steps simulating the interaction, in the
sense that the protocols are divided by steps between communication phases where all
computing can be done without the need to interact with other entities. Then, the program
computes how much time every step costs for every player and picks the maximum as the
“official” time for that step. As we only want to analyze roughly how viable our protocols
are, this approximate works for us. This approximation also means that the execution of the
simulation lasts considerably longer than the “real time” for the execution, thus limiting us
with the amount of players we can reasonably use.
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Second, to have the most compact possible form of Shamir Secret Sharing we have
used Shamir over the field of Zq instead of embed it in Q. This is the main reason why we
have taken q prime, as none of the reductions require it.

Third, regarding the implementation of the PRF, we have used the main result in [20],
which says that Hash-based Message Authentication Code (HMAC) is a PRF under the
condition that the underlying compression function is a PRF. To ensure this condition is
satisfied we have used the HMAC based around SHA-3.

Finally, regarding the Commitment Scheme we have used for the Key Generation pro-
tocol, we have used the hash of the message we want to send concatenated with a random
string. We have used SHA-2 because, as far as we know, it is secure enough. However,
should the need arise, it could be swapped for a more secure alternative. Furthermore, we
only needed to use a commitment scheme after the first round where every player sets
their values. This is so because once all the values have been set and all the shares sent,
the contributions of the adversary are no longer needed, as the honest players can already
generate a majority of correct values. And given that no other value needs to be set in a
way the adversary cannot exploit (as the adversary becomes irrelevant), a commitment
scheme in any further communication step seems unnecessary. However, this commitment
phases could be added with no major change to the protocol nor the proof of security or
correctness, only a slightly slower execution.

6.3. Results of the Simulation

In this final section, we will discuss the results we have obtained from the execution of
the code for the simulation of both protocols. You can find the code in the repository linked
in Appendix C. The specifications of the system where we have executed the programs
are found in Table 5. Furthermore, we have used the following C libraries: FLINT (Fast
Library for Number Theory) to ease computations in Rq, which in turn uses the GMP
and MPFR libraries to deal with multiple precision numbers, and OpenSSL library for
cryptography-related functions like Hashes or HMACs. It is also worth mentioning that
any result we obtain from the execution of the simulation has been found by averaging
the times of 10,000 executions of the code, so as to better portray the results, getting rid
of outliers.

Table 5. Specifications of the system.

Operating System Ubuntu 18.04.5 LTS
CPU Intel® Core™ i5-8500

Memory 15.4 GiB
Word Size 64 bits

CPU Clock Speed 3.00 GHz

From what we have seen to this point there are two main dependencies: growth of
time in respect to the threshold t and growth of time in respect to the dimension of the
lattice. This is so because the threshold defines the minimum number of players needed
(and vice versa, given a number of players we can get the maximum threshold it allows)
depending if we are protecting ourselves against an active or a passive adversary. As we
have seen in Section 6.1 given the adversary model, given an n we can find the rest of
parameters that make the protocol secure (taking into account that there is a minimum n
for which this analysis works).

In regards to the dependency on t, analyzing the protocols theoretically lets us see that
when performing either the PRSS or the NIVSS there are (u

t) different keys KH , meaning
that the number of additions grows asymptotically with the value (u

t). This means that the
dependency should be approximately exponential in the active case where u = 3t + 1 and
approximately linear in the passive case where u = t + 1. When obtaining results from the
simulation, we have gathered results for the values of t most frequently used in real-life
applications like electronic voting, which means t < 3 against active adversaries and t < 7
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for passive adversaries. This decision is mainly due to how we have implemented the
simulation, as instead of having the several players’ protocols being executed at the same
time, we have them executed consecutively and then take the maximum time spent as the
overall time. In the case of the Key Generation, as there are various steps of interaction,
this process is applied to every one of the steps. Therefore, due to time constraints, we
were limited in how many players we could simulate in the protocols while running
10,000 executions of the codes. Having said all that, the results we obtained for the
dependency on t followed our predictions. In the active case they behaved greater than
linearly in the three points we had, and in the passive case it behaved approximately
linearly. A more in-depth analysis cannot be made unless more extensive data is gathered.

In regards to the dependency on n, given that there is multiplication of polynomials
in both protocols, which is implemented using the Karatsuba algorithm that scales by the
order of nlog2(3) > n1.5, the time grows asymptotically with this value. The results obtained
for the dependency on n, which can be seen in Figure 1, show the expected results only
in the decryption phase against a passive adversary. For the other cases, we see linear,
or practically linear, behavior for the range of values of n we are interested in for real life
applications. This is due to the fact that the protocols need to perform a much higher
number of additions than products, and this difference ends up being high enough for the
linear growth of the addition to offset the growth of the product at these values of n.

Active adversary t = 2, u = 7
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Passive adversary t = 6, u = 7
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Figure 1. Times of the simulation for n = 256, 512, 1024, 2048, 4096, 8192.

Finally, we want to discuss the viability of the protocols. As we can see in Table 6, the
Key Generation times are significantly slower than the Decryption time, between 4 and
7 times slower. This, however, does not pose a big problem, as by design in most imple-
mentations one round of Key Generation will be used to decrypt many messages; therefore,
we can focus our main analysis in the decryption times. In that front, the 530.36 ms per
decryption in the active case translates to approximately 7000 messages per hour, while
the 131.73 ms per message in the passive case translates to approximately 27,000 messages
per hour. As we can see it will be half these votes per hour with n = 8192, which will be
needed against an active adversary as we have said in Section 6.1.

Table 6. Time comparison between active and passive adversary.

n
Key Generation Decryption

Encryption
Active Passive Active Passive

4096 7031.34 ms 1005.63 ms 530.36 ms 131.73 ms 191.79 ms
8192 14320.01 ms 2160.05 ms 1167.24 ms 372.75 ms 539.71 ms

7. Conclusions and Future Work

For our concluding considerations, we would like to summarize the limitations that
this work has and how it could be improved in future works, as well as to give some insight
to some possible other uses outside the ones outlined above.

Construction-wise, our proposal has two main limiting factors: First, the fact that
we compute the drowning noises through both the PRSS technique and NIVSS technique
means that computation time will increase asymptotically exponentially with the number
of players in an active adversary setting, which is not desirable. Should other techniques be
used for non-interactively sharing the noise value, this could be avoided. Second, and more
inherent to the structure of our protocols, is the fact that using noise drowning by itself
causes our implementation to use very high dimensions for the lattices. This is due to the
fact that to guarantee statistical indistinguishability we need the noise to be exponentially
bigger than the secret while the LPR encryption scheme requires the noise to be smaller than
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q
4 , meaning that the parameter ξ is proportionately very small compared to the modulus q.
This then has an influence in the dimension of the lattice needed to ensure that the concrete
instance of the R-LWE problem has the desired amount of bits of security. This limitation
could only be avoided by using a different way to ensure security than noise drowning,
which is a pivotal element in our proposal.

Implementation-wise, we would like to reiterate that our proposed codes are a proof
of concept of approximate viability, and in no case an attempt to give a computationally
secure and efficient program. As so, the codes should be carefully analyzed to ensure
computational security (for example, some of the random samplings are not truly indistin-
guishable from uniformly at random) and that no other implementation based attacks (like
side-channel attacks) can be performed. Furthermore, for any type of important practical
application, the codes should be optimized in efficiency.

Finally, we would also want to state the fact that even if the protocols presented were
thought of with the idea of using them together, their security proofs are independent, and
therefore they can be used separately. This means that in a case where a TTP can be trusted
with the key generation, only the decryption protocol may be used, and then make the
process completely interactiveless. Additionally, while the key generation protocol is more
particularly tailored to the needs of the encryption scheme, it would not be too hard to
extract the main principles for generating the different types of elements, therefore being
easily generalizable with a similar security proof. This opens the gateway to a whole new
set of possibilities for applications.
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Appendix A. Correctness and Security against Active Adversaries

Appendix A.1. Correctness

We will prove correctness of the Decryption protocol against an active (or passive) adver-
sary when the keys are generated by the Key Generation protocol against an active adversary.

Theorem A1. Let n ∈ Z>0 be the number of coefficients in Rq, u ∈ Z>0 be the number of players,
ΦD
· (·) be a pseudo-random function with image interval In

D, χ be a distribution in Rq where every
coefficient is a truncated Discrete Gaussian with parameters σ and κ,

ID =
[
−
(

4n
u
3

κ2
(

2λ+β + 1
)
+ κ
)
· 2λ+β,

(
4n

u
3

κ2
(

2λ+β + 1
)
+ κ
)
· 2λ+β

]
,

IKG =
[
−κ · 2λ+β, κ · 2λ+β

]
.

and ⌊ q
4

⌋
≥
(

4n
u
3

κ2
(

2λ+β + 1
)
+ κ
)((u

t

)
2λ+β + 1

)
Then, Protocol 1 will have correct output except with probability 2−λ−β against an active

adversary corrupting up to t < u
3 players.

Proof. What we want to see first, as before, is that |x + ê|i ≤
q
4 ∀i, where ·i notes the coeffi-

cient i on the polynomial, given the way the decryption works in Encryption Scheme 1.
Let ê = e · rE + ev − s · eu. As the product in Rq is done through the anticyclic matrix,

we know that

|ê|i ≤ |ei · rE1 |+ |ei−1 · rE2 |+ . . . + |ei+2 · rEn−1 |+ |ei+1 · rEn |+ |evi |+ |si · eu1 |+ . . . + |si+1 · eun |.

Now, we still have rE, ev, eu ∼ χ but for t of the contributions we can only assure that
they are in 2 · IKG, so we get that

|ê|i ≤ 2n
(u

3
2κ · 2λ+β + 2

u
3

κ
)

κ + κ

= 4n
u
3

κ2(2λ+β + 1) + κ

Furthermore, given that there are (u
t) keys KH , we know that

xi ∈
(

u
t

)
ID.

Adding both results we then get that

|x + ê|i ≤
(

u
t

)(
4n
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3
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(
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+ κ
)
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)

=
(
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κ2
(
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)
+ κ
)((u
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)
2λ+β + 1

)
≤
⌊ q

4

⌋
as we wanted to see.

Finally, we just need to see that when the client reconstructs, there is indeed a majority
of correct results, and this derives directly from having at most t corrupt players; therefore,
there will be a majority of subsets of t + 1 players where they are all honest, and thus
output the correct decryption.
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As in Section 4, the same proof works against a passive adversary corrupting up to
t = u− 1 players.

However, in the case of dealing with an active adversary in the key generation phase,
to have a truly correct scheme we need to see that the protocol cannot be halted by any
actions performed by a malicious adversary. However, in the protocol, whenever a veri-
fication fails the protocol halts. To deal with these we implement the following dispute
resolution policy, where a dispute is raised whenever a player receives a value that fails
verification stating there which other player sent the values.

The policy works as follows, once the protocol is halted the players look at the disputes
that have risen, and then “eliminate” all players involved in them, in the sense that a new
execution of the key generation protocol will start without both players involved in every
dispute, and in case a player is involved in more than one dispute only the first one will be
analyzed. This policy ensures that the protocol will produce a correct output with at most
t halts since no dispute can be risen between honest players, and given that the security
of the scheme is based only on assuming that there is at least one contribution on s and
e following the distribution, the output generates no problems. Finally, note that since in
every dispute there is at most one honest player, the ratio of corrupt players will never go
above u

3 .

Appendix A.2. Security

To be able to prove security when the Key Generation is against an active adversary,
we will only need to reword the Theorem as follows.

Theorem A2. Assuming that Φ·(·) is a secure pseudo-random function modeled as a random
oracle, that the keys KH have been securely generated and distributed, that the secret key s has
been securely generated and shared, and that the parameters follow the conditions of Theorem A1,
the Decryption Protocol (Protocol 1) is secure against an active and static adversary, corrupting up
to t < u

3 players.

The proof is analogous to the proof of Theorem 1.
We will now prove that the Key Generation leaks no information when acting against

an active adversary corrupting up to t < u
3 players. As before, we will prove that the

adversary cannot distinguish between interacting with the protocol or a simulation where
the challenger sets before-hand the values of the keys.

Theorem A3. Assuming that the image interval of the pseudo-random function ΦKG
· (·) is In

KG where

IKG =
[
−κ · 2λ+β, κ · 2λ+β

]
,

that C is a commitment scheme such that it has a trapdoor and the parameters follow the conditions
on Theorem of correctness, then the Key Generation Protocol (Protocol 2) is secure against an active
and static adversary, corrupting up to t < u

3 players.

Proof. We want to construct an Attack Game in which the adversary cannot distinguish
between the protocol executed correctly and a simulation where the challenger sets the
values of s, e, aE and KH for all H beforehand.

Let C denote the set of corrupt players and B the set of honest players. The Attack
Game works as follows. Assume that whenever a corrupt player needs to sample a uniform
distribution it sends a query to the challenger for a random value from a random oracle. Let
CC = Commit(s̊C, e̊C, Ks

NHC
, Ke

NHC
, K′HC

, aE
′
C) the challenge output byA, the first step of the

interaction in Protocol 2 as we can see in Table 3. Then, the challenger chooses b $←− {0, 1}
and proceeds as follows:
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• If b = 0: The challenger and the adversary follow Protocol 2 to generate aE, bE and
the shares s′B, e′B, KB

H , aE
B and outputs (aE, bE, s′B, e′B, KB

H , aE
B).

• If b = 1: The challenger samples s, e ∼ ∑u χ, aE
$←− Rq and every KH

$←− Zq and
computes bE = aE · s + e. Then he uses the trapdoor in the commitment scheme to
recover (s̊C, e̊C, Ks

NHC
, Ke

NHC
, K′HC

, aE
′
C), and proceeds as follows. We will divide the ex-

planation depending on what he is simulating to ease comprehension, but everything
will be done simultaneously, following the flow of information seen in Table 3.

– For the “generation” of s, the challenger will use the keys Ks
NHC

(of which he

knows all of them as he/she controls more than t players), to recover sC, the con-
tribution of the corrupt players to s. With this information, the challenger can
compute sB the contribution of the honest players to s such that s = sC + sB.
With these values computed, the challenger proceeds with the protocol.

– For the “generation” of e the challenger proceeds identically as with generating s′.
– For the “generation” of KH , the challenger recovers KHC (as it controls more than

t players) the contribution of the corrupt players to KH . With this information,
the challenger can compute KHB the contribution of the honest players such that
KH = KHC + KHB for all H. With these values computed, the challenger proceeds
with the protocol.

– For the “generation” of aE, the challenger recovers aEC (as it controls more than
t players) the contribution of the corrupt players to aE. With this information,
the challenger can compute aEB the contribution of the honest players such that
aE = aEC + aEB. With these values computed, the challenger proceeds with
the protocol.

– For the “generation” of bE the challenger outputs bE at the end of the protocol.

Then, the challenger outputs (aE, bE, s′B, e′B, KB
H , aE

B).

Finally, A outputs b̃ ∈ {0, 1}, meaning whether it thinks it has interacted with the
protocol or with a simulation, and the Game concludes.

It is clear that the flow of information is the same in both cases and that the values
will be correct and what the challenger has sampled beforehand, so we just need to see
that the adversary cannot distinguish between the values received when b = 0 from the
ones received when b = 1. We can see they are indistinguishable as the challenger uses
the trapdoor in the commitment scheme to get the values necessary before any message
were sent from the challenger to the adversary. Moreover, once again, we know that no
information was leaked in the NIVSS by the same reasoning from the proof of Theorem 4.

Therefore, (aE, bE, s′B, e′B, KB
H , aE

B) are indistinguishable to the adversary whether they
have been computed with b = 0 or b = 1, so∣∣∣∣Pr

[
b̃ = b

]
− 1

2

∣∣∣∣ = neg(λ)

as we wanted to see.

Having proved the security of each protocol individually, we only need to see that using
both protocols together still gives us an encryption scheme which is semantically secure.

Theorem A4. Assume the conditions in Theorems A1 and A3 are fulfilled. Then, if K-DGSγ is
hard, then encryption under keys generated by Protocol 2 and decryption following Protocol 1 is
semantically secure against a static and passive adversary corrupting up to t = u− 1 players acting
through the Key Generation phase and the same adversary being active corrupting up to t < u

3
players in the Decryption phase.

Proof. The proof is analogous to the proof of the Main Theorem but changing Theorems 1 and 4
for Theorems A1 and A3, respectively.
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Appendix B. Proofs of Auxiliary Theorems and Lemmas

Appendix B.1. Proof of Theorem 2

Theorem A5. Given χ a distribution over Rq, there exists a reduction to the semantic security of
the Encryption Scheme 1 from the decisional R-LWEχ problem.

Proof. What we want to see is that given an efficient adversary A who has non-negligible
semantic security advantage, we can construct an efficient adversary B with access to A
who given an instance of the decisional R-LWE problem, it can solve it with probability
non-negligibly bigger than 1

2 .
Let (ai, bi) ∈ Rq × Rq be an instance of the decisional R-LWE problem. What we

need B to do is to output whether a polynomial amount of instances are samples of the
distribution As,χ or of the uniform distribution over Rq × Rq, in other words, we want to
know whether bi = ai · s + e for some s ∈ Rq and e←− χ.

Note that any adversary A who breaks semantic security may be of one of two
types. Either A has non-negligible semantic security advantage against the encryption
scheme when (aE, bE) are generated independently uniformly at random (instead of having
bE = aE · s + e) or it does not. We will construct two different adversaries for these cases.

Assume first that A has a negligible semantic security advantage against the encryp-
tion scheme when (aE, bE) are generated independently uniformly at random. Let (a1, b1)
be an instance of the R-LWEχ problem, then we define the following attack game.

Attack Game A1. The attack game goes as follows:

• Set the public key to (a1, b1) and send it to A.

• Receive m01, m11 from the adversary, and choose b1
$←− {0, 1}.

• Compute u1 = a1 · rE + eu and v1 = b1 · rE + ev + mb11b
q
2c with rE, eu, ev ←− χ, and send

(u1, v1) to A.
• Receive b̂1 from the adversary.

Then, B will work as follows. When given the instances, it picks (a1, b1) and performs
the Attack Game 1 with A a polynomial amount of times. Then, it computes the advantage

SSAdv∗1 [A,S ] =
∣∣∣∣∣Number of queries where b̂1 = b1

Total number of queries
− 1

2

∣∣∣∣∣.
We know from how we have defined the adversaryA, as SSAdv[A,S ] is non-negligible,

if the instances follow the distribution As,χ then SSAdv∗1 [A,S ] will be non-negligible and
if the instances are uniform over Rq × Rq then SSAdv∗1 [A,S ] will be negligible. This
means that with non-negligible probability B can solve the decisional R-LWEχ problem as
we wanted.

Assume now that A has a non-negligible semantic security advantage against the
encryption scheme when (aE, bE) are generated independently uniformly at random. Let,
once again, (a1, b1) and (a2, b2) be two instances of the R-LWEχ problem, then we define
the following attack game.

Attack Game A2. The attack game goes as follows:

• Set the public key to (a1, a2) and send it to the adversary.

• Receive m02, m12 from the adversary, and choose b2
$←− {0, 1}.

• u2 = b1 and v2 = b2 + mb22b
q
2c and send (u1, v1) to A.

• Receive b̂2 from the adversary.
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Then, B will work as follows. When given the instances, it picks two of them (a1, b1)
and (a2, b2), and performs the Attack Game 2 with A a polynomial amount of times. Then,
it computes the advantage

SSAdv∗2 [A,S ] =
∣∣∣∣∣Number of queries where b̂2 = b2

Total number of queries
− 1

2

∣∣∣∣∣.
We know from how we have defined the adversary A, since SSAdv[A,S ] is non-

negligible, if the instances follow the distribution As,χ then SSAdv∗2 [A,S ] will be non-
negligible and if the instances are uniform over Rq × Rq then SSAdv∗2 [A,S ] will be negli-
gible, since if bi are uniformly at random then v2 is independent from the public key and
mb22. This means that with non-negligible probability B can solve the decisional R-LWEχ

problem as we wanted, since it is possible to distinguish, with non-negligible probability,
a negligible event from a non-negligible event.

Appendix B.2. Proofs of Lemmas 2 and 3

Lemma A1. Let Y be a probability distribution over Z such that |Y| is bounded by κ and X be a
discrete uniform distribution in the integer interval [−a, a] with a ≥ κ · 2λ. Then, ∆(X, X̃) ≤ 2−λ,
where X̃ = X + Y.

Proof. The first thing to notice is that for any z ∈ Z such that |z| > κ + a, we will clearly
have X̃(z) = X(z) = 0, as the support of X̃ will only go from −κ− a to κ + a. Furthermore,
for n ∈ [−a + κ, a− κ], we can do the following analysis:

X̃(n) =
κ

∑
m=−κ

Y(m)X(n−m)

= X(n)
κ

∑
m=−κ

Y(m)

= X(n)

=
1

2a + 1

using that n−m will always fall in the support of X (thus X(n−m) is never zero), that X
is uniform and that Y only takes values in [−κ, κ].

Now taking everything together we get from the definition of statistical distance:

∆(X̃, X) =
1
2 ∑

n∈Z

∣∣X̃(n)− X(n)
∣∣

=
1
2 ∑

n∈[−a−κ,−a+κ−1]∪[a−κ+1,a+κ]

∣∣X̃(n)− X(n)
∣∣

≤ 1
2 ∑

n∈[−a−κ,−a+κ−1]∪[a−κ+1,a+κ]

max
m
{X(m)}

=
1
2 ∑

n∈[−a−κ,−a+κ−1]∪[a−κ+1,a+κ]

1
2a + 1

=
2 · 2κ

2 · (2a + 1)

≤ κ

κ · 2λ

= 2−λ.
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Lemma A2. Let X, Y be two probability distributions over a countable support N such that
∆(X, Y) ≤ 2−λ, and n ∈ Z>0 with n = 2β for some β ∈ R>0. Then ∆(Xn, Yn) ≤ 2−λ+β.

Proof. We define the n-dimensional distributions

X̂i = (Y, . . . , Y︸ ︷︷ ︸
i

, X, . . . , X)

where we have Xn = X̂0 and Yn = X̂n. It is also clear that

∆(X̂i, X̂i+1) = ∆(X, Y).

Finally, because of the triangle inequality for distances

∆(Xn, Yn) = ∆(X̂0, X̂n)

≤
n−1

∑
i=0

∆(X̂i, X̂i+1)

= n∆(X, Y)

≤ 2−λ+β

Appendix B.3. Proof of Lemma 4

To prove the lemma we will use another distribution called rounded discrete Gaussian.

Definition A1. The rounded Gaussian distribution over Z with parameter σ > 0 is defined by
the probability function

Ωσ(z) =
∫ z+ 1

2

z− 1
2

ρσ(x)dx

for z ∈ Z with

ρσ(x) =
1√

2πσ2
e−

x2

2σ2 .

The distribution we are interested in is Ω̂σ, its standard reduction modulo q as it is
defined as

Ω̂σ(i) = ∑
k∈Z

Ω(i + kq).

It is clear once again from the definition that if Y ∼ Ωσ, then Y = bXe with
X = N(0, σ), hence the name rounded Gaussian.

Now, we can see the relation between Ω̂ and Ψ.

Lemma A3. For any σ ∈ R, we have that Ω̂σ is indeed a random variable and in fact we have that
Ω̂σ = Ψ σ

q
.
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Proof. First, we need to see that Ω̂σ is a random variable. Indeed,

q−1

∑
i=0

Ω̂σ(i) =
q−1

∑
i=0

∑
k∈Z

Ωσ(i + kq)

= ∑
k∈Z

q−1

∑
i=0

Ωσ(i + kq)

= ∑
k∈Z

Ωσ(k)

= ∑
k∈Z

∫ k− 1
2

k− 1
2

ρσ(x)dx

=
∫ +∞

−∞
ρσ(x)dx

= 1.

Now, we can see that Ω̂σ(i) = Ψ σ
q
(i) for all i ∈ Zq, and therefore Ω̂σ = Ψ σ

q
as

random variables.

Ω̂σ(i) = ∑
k∈Z

Ωσ(i + kq)

= ∑
k∈Z

∫ i+kq+ 1
2

i+kq− 1
2

1√
2πσ

e−
(

x√
2σ

)2

dx

= ∑
k∈Z

∫ i+ 1
2

q

i− 1
2

q

1√
2πσ

e−
(

q(y+k)√
2σ

)2

q · dy

=
∫ i+ 1

2
q

i− 1
2

q
∑
k∈Z

1√
2π σ

q
e
−
(

y+k√
2 σ

q

)2

dy

= Ψ σ
q
(i)

where we have used the change of variables y = x−kq
q and the dominated convergence

theorem.

Therefore, if we know a bound for Ω̂, we know a bound for Ψ. Given this result, we can
now bound the distributions using the fact that Ω is a rounded Gaussian and Mill’s inequality:

Pr[|N(0, σ)| > t] = 2
∫ +∞

t
ρσ(x)dx ≤

√
2
π

e−
(

t√
2σ

)2

t
.

Lemma A4. For all c, σ > 0, then

Pr
[∣∣∣Ψ σ

q

∣∣∣ > c
]
≤
√

2
π

e
−
(
dce− 1

2√
2σ

)2

dce − 1
2

.
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Proof. Let c, σ > 0, then

Pr
[∣∣∣Ψ σ

q

∣∣∣ > c
]
= Pr

(∣∣Ω̂σ

∣∣ > c
)

≤ Pr(|Ωσ| > c)

= 2
+∞

∑
j=dce

∫ j+ 1
2

j− 1
2

ρσ(x)dx

= 2
∫ +∞

dce− 1
2

ρσ(x)dx

≤
√

2
π

e
−
(
dce− 1

2√
2σ

)2

dce − 1
2

where we have used Lemma A3, thus seeing what we wanted.

Appendix C. Link to Repository

All relevant codes for the implementation can be found in the following GitHub
repository, last update made on 20 December 2021: https://github.com/FerranAlborch/
Implementation-RLWE-based-distributed-key-generation-and-threshold-decryption.
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