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Abstract: Recently, video surveillance systems have gained significant interest in several application
areas. The examination of video sequences for the detection and tracking of objects remains a major
issue in the field of image processing and computer vision. The object detection and tracking process
includes the extraction of moving objects from the frames and continual tracking over time. The
latest advances in computation intelligence (CI) techniques have become popular in the field of
image processing and computer vision. In this aspect, this study introduces a novel computational
intelligence-based harmony search algorithm for real-time object detection and tracking (CIHSA-
RTODT) technique on video surveillance systems. The CIHSA-RTODT technique mainly focuses
on detecting and tracking the objects that exist in the video frame. The CIHSA-RTODT technique
incorporates an improved RefineDet-based object detection module, which can effectually recognize
multiple objects in the video frame. In addition, the hyperparameter values of the improved RefineDet
model are adjusted by the use of the Adagrad optimizer. Moreover, a harmony search algorithm
(HSA) with a twin support vector machine (TWSVM) model is employed for object classification. The
design of optimal RefineDet feature extraction with the application of HSA to appropriately adjust
the parameters involved in the TWSVM model for object detection and tracking shows the novelty
of the work. A wide range of experimental analyses are carried out on an open access dataset, and
the results are inspected in several ways. The simulation outcome reported the superiority of the
CIHSA-RTODT technique over the other existing techniques.

Keywords: computational intelligence; video surveillance; object detection; object tracking; deep
learning; metaheuristics

1. Introduction

The rapid development of hardware services such as processing machines, smart-
phones, and cameras has resulted in an explosion of research in automatic video analysis
for tracking and detecting objects [1]. It is a hot research topic in image processing and
computer vision (CV). Object tracking and detection in a video sequence is a fundamental
method in the expansion of different video analysis applications that endeavors to track
and detect objects through a series of images by replacing the conventional method of a
surveillance camera with a human operator [2]. Object detection needs precise classification
of objects in images and requires the precise location of the object, and is an automated
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image detection system based on geometric and statistical features [3]. The accurateness
of object location and object classification is a major indicator to evaluate the efficiency
of the detection system. Object detection is more commonly employed in military object
detection, intelligent monitoring, unmanned vehicles, intelligent transportation, and UAV
navigation [4]. However, due to the variety of detected objects, the present system failed
to identify objects. Complex backgrounds and changing light increase the complexity of
object detection, particularly for objects in challenging conditions [5].

The tracking method works by identifying an object once it originally appears in
a frame and forecasting its trajectory [6]. This detection-based algorithm estimates the
object’s position in all the frames independently. It requires an offline training phase and
could not be employed on unknown objects. Many tracking and detection methods have
been developed in modern times. However, the numerous problems encountered during
this procedure mean that this field requires further study. The problems that complicate
tracking and detection include rapid illumination changes, camera jitter, moving cameras,
dynamic backgrounds, shadow detection, and so on [7]. These problems cannot be resolved
by a simple algorithm due to the improbable factors, complexities, and impreciseness
present in the intermediate step. To resolve this, computational intelligence (CI) and deep
learning approaches have been initiated [8].

Computational intelligence includes approaches such as artificial neural network
(ANN), genetic algorithm (GA), fuzzy logic control (FLC), adaptive neuro-fuzzy inference
scheme (ANFS), and particle swarm optimization (PSO) [9]. Research has been conducted
to discover methods for reliable and efficient load shedding. CI technology, which shows
desirable effectiveness and efficiency in data mining and data processing, is also receiving
considerable interest with regards to CV tasks. In recent times, deep convolutional neural
networks (DCNN) and their derivates are typical examples. These examples have made
considerable achievements in CV tasks, including semantic segmentation and classification,
automated image representation generation, data restoration, object detection, and track-
ing [10]. They have significantly outperformed conventional techniques. Because of the
effective performance of CI approaches in data processing and DM in CV tasks, it could be
effective and reasonable to explore this CI technology to tackle the problem in a real-time
scenario.

This study introduces a novel computational intelligence-based harmony search al-
gorithm for real-time object detection and tracking (CIHSA-RTODT) technique on video
surveillance systems. The CIHSA-RTODT technique designs an Adagrad optimizer with
an improved RefineDet-based object detection technique. Moreover, a harmony search
algorithm (HSA) with a twin support vector machine (TWSVM) model is employed for
object classification. The application of HSA helps to appropriately adjust the parameters
involved in the TWSVM model and thereby leads to improved classification results. A
wide range of experimental analyses is carried out on an open access dataset and the results
are inspected in several ways.

2. Literature Review

Elhoseny [11] presented new MODT methods. The presented approach makes use
of the optimum Kalman filtering method to track the object moving in the video frame.
The video clip was transformed according to the number of frames into a morphological
operation with the region growing method. After differentiating the object, Kalman filter-
ing was employed for parameter optimization using the probability-based grasshopper
approach. With the optimum parameter, the carefully chosen object was tracked in all the
frames by a similarity measure. The authors in [12] developed a multi-object detection and
tracking model using background subtraction and the K-means clustering technique. The
presented technique has the ability to handle object occlusion, shadows, and camera jitter.
Background subtraction removes the unwanted data, and K-means clustering is used to
select moving objects from the rest of the data. It is also able to handle the merging and
splitting of moving objects via spatial information.
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Lyu et al. [13] proposed to increase a highly qualified object detector using effective
and efficient class-agnostic convolution regression trackers for object detection tasks. The
tracker learns how to track objects by reutilizing the feature from the object detectors that
is a lightweight increment to the detectors, with a small speed drop for the object detection
process.

Xiong et al. [14] introduced an enhanced active obstacle-separation model that em-
ployed push and drag–push operations to separate the problems from the target in three
phases. The push and drag vectors were precisely calculated and simplified based on the
accurate location of the obstacle. Moreover, in contrast to the system that only “looked”
once for the whole picking procedure, the novel scheme utilized a hybrid vision-based
control system. Lin et al. [15] introduced a hybrid track association (HTA) approach that
models the past appearance distance of a track with an increment Gaussian mixture model
(IGMM) and incorporates the derived statistical data into the evaluation of the detection-
to-track association cost. Chen et al. [16] proposed an architecture using multiple object
tracking (MOT) for detection. Fast RCNN is utilized for obtaining detected objects, and the
KCF tracker is utilized for tracking object trajectories. The Hungarian algorithm is utilized
for bounding box matching to attain previous data of trajectory to enhance recognition
efficiency. Schöller et al. [17] recommended an approach to track an object that is identi-
fied by an NN system. The proposed technique is estimated on data attained in Danish
near-coastal water. The approach uses a feature that is evaluated in the detection phase,
thus ensuring a good feature that is typical for the provided object while saving the time it
would take to calculate a novel feature. Shi et al. [18] described a solution to resolve the
problem of automated multi-pedestrian counting and tracking. Firstly, the background
modeling approach is employed to actively obtain multi-pedestrian candidates; after that is
the authorization stage using classification. Next, all the pedestrian patches can be managed
by real-time TLD (Tracking–Learning–Detection) to attain a new prediction location based
on similarity measures.

3. The Proposed Model

In this study, a new CIHSA-RTODT technique was developed to detect and track
objects on video surveillance systems. The CIHSA-RTODT technique designed an Adagrad
with an improved RefineDet-based object detector, which can effectually recognize multiple
objects in the video frame. Moreover, the HSA with TWSVM model is applied to properly
categorize the existence of objects in the video frame and thereby leads to improved
classification results.

3.1. Object Detection Module: Adagrad with Improved RefineDet Model

At the initial stage, the improved RefineDet model was applied for the identification
of objects that exist in the video frame. The improved RefineDet technique, with VGG16
networks as core networks, creates a series of anchors with distinct scales and various
feature ratios from all feature-map cells by utilizing the anchor generation process of
RPN [19] and attains a set quantity of object bounding boxes, then two classification and
regression boxes, as well as probabilities of the presence of distinct classes under these
bounding boxes. Eventually, the last classification and regression outcomes were attained
with non-maximum suppression (NMS). The improved RefineDet method is separated
into three modules such as the object detection module (ODM), anchor refinement module
(ARM), and transfer connection block (TCB). Figure 1 illustrates the structure of RefineDet.
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Figure 1. Architecture of RefineDet.

3.1.1. ARM Module

The ARM was mostly collected from the backbone network VGG16 and more convo-
lutional layers. The ARM mostly performs anchor refinement, feature extraction, negative
anchor (NA) filtering, and anchor generation. The anchor refinement changes the place
and size of the anchor box, and the NA filter implies that, in ARM, if the confidence of the
negative instance is greater than 0.99, this technique removes it and does not utilize it in the
last detection of the ODM. The NA filter effectually filters out the NA box with classification
and alleviates the instance imbalance. During this procedure of feature extraction, two
convolutional layers, for instance, ConVo6_1 and ConVo6_2, are at the end of the VGG16
networks. Afterwards, four additional convolutional layers, such as ConVo7_1, ConVo7_2,
ConVo8_1, and ConVo8_2, can be added to capture more high-level (HL) semantic data
from this technique. Moreover, the HL feature of ConVo8_2 was fused with the low-level
(LL) feature of ConVo7_2. Afterwards, the fused feature was transmitted to the LL feature
by TCB, but the LL feature map utilized for detection had maximum semantic data and
enhanced the detection accuracy of the floating object.

3.1.2. TCB Module

The TCB was mostly utilized for connecting the ARM and ODM and transferring the
feature data of the ARM to the ODM. Furthermore, related to the infrastructure of FPN,
neighboring TCBs were linked to achieve the feature fusion of high as well as LL features
and enhance the semantic data of the LL feature.

3.1.3. ODM Module

The ODM was one of the collection outputs of the TCBs and forecast layer (classifi-
cation and regression layers, that is, convolutional layers with 3 × 3 kernel sizes). The
result of the forecast layer is a particular type of refined anchor, and the coordinate off-
set is comparative to the refined anchor box. The refined anchor was utilized as input
for more classification and regression, and the last bounding box was chosen based on
non-maximum suppression (NMS).
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3.1.4. Hyperparameter Optimization

The hyperparameters involved in the object detection model are effectually tuned by
the Adagrad optimizer [20]. In the case of the Adagrad optimizer, the gradients (gτ) and
accumulated squared gradients of every variable at the round t are expressed as follows:

Gt =
t

∑
τ=1

gτ � gτ (1)

where � indicates an element-wise multiplication, and gτ ∈ R|θ| indicates the gradient of
the present at the τ round. The upgrade value of variables (∆θt) can be the Adagrad and is
represented as follows.

∆θt = −
α√

Gt + ε
� gτ (2)

where α indicates the learning rate and ε represents a smoothing element that avoids
division by zero. Since the learning rate can be predefined before training, Equation (3) is
rewritten as follows.

θt = −α(
1√

Gt + ε
� gτ) (3)

where Gt implies earlier gradient computation, and gradient revision g′t can be represented
as follows:

g′t =
1√

Gt + ε
� gτ (4)

Therefore, the Adagrad can be updated by the use of:

∆θt = −αg′t (5)

where ∆θt denotes upgrade values of a variable at round t and α indicates the learning rate.

3.2. Object Classification Module: HSA with TWSVM Model

Once the objects were identified, the next stage was to classify them into distinct
classes using the TWSVM model [21]. The TWSVM is an enhanced version of the traditional
SVM [22]. The SVM is a supervised classification model employed in several real-time
applications [23,24]. The TWSVM’s purpose is to find two symmetry planes so that all
planes have a distance of nearly one data class and are feasible in another data class [21].
Assume a training dataset D, which holds a set of m row vectors in n dimensional space,
D = {(xi, yi)|xi ∈ Xm, yi ∈ {−1,+1}, i = 1, 2, . . . , N} and yi ∈ {+1,−1} represents the
class to which the ith instance belongs. Thereafter, there are d1 data points from class +1
and d2 data point from class −1 so as d1 + d2 = d. The procedure (d1 × n) matrix A has
the data points from class +1, and (d2 × n) matrix B has the data points from class −1. The
two non-parallel hyperplanes are [20]:

xTw1 + b1 = 0 (6)

xTw2 + b2 = 0 (7)

where x refers to the data vector, w1 signifies the weight parameter to the primary hyper-
plane, b1 denotes the bias parameter to the initial hyperplane, w2 represents the weight
parameter to the second hyperplane, and b2 implies the bias parameter to the second hyper-
plane. The TWSVM technique was attained by resolving the subsequent pair of quadratic
programming problems [21]:

TWSVM 1:
min

w1,b1ξ2,

1
2
‖Aw1 + e1b1‖2 + c1eT

2 ξ2 (8)

subject to
− (Bw1 + e2b1) ≥ e2 − ξ2 (9)
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ξ2 ≥ 0 (10)

and
TWSVM 2:

min
w2,b2ξ1,

1
2
‖Bw2 + e2b2‖2 + c2eT

1 ξ1 (11)

subject to
− (Aw2 + e2b2) ≥ e1 − ξ1 (12)

ξ1 ≥ 0 (13)

where c1 > 0 and c2 > 0 imply the penalty parameters, ξ1 and ξ2 denote the slack variables,
and e1 and e2 indicate the vectors of ones, for instance, all components are ‘one’ only [20].

The two hyperplanes of TWSVM with kernel [20]:

K
(

xT , CT
)

u1 + b1 = 0 (14)

K
(

xT , CT
)

u2 + b2 = 0 (15)

where CT = [A, B]T , u1, u2 ∈ Rd, and K refer to the kernel matrix equivalent to the suitably
selected kernel function. The kernel TWSVM is attained by resolving the optimized
problem [21]:

KTWSVM 1:
min

w1,b1ξ2

1
2
‖K

(
A, CT

)
u1 + e1b1‖2 + c1eT

2 ξ2 (16)

subject to
−

(
K
(

B, CT
)

u1 + e2b1

)
≥ e2 − ξ2 (17)

ξ2 ≥ 0 (18)

and
KTWSVM 2:

min
w2,b2ξ1

1
2
‖K

(
B, CT

)
u2 + e2b2‖2 + c2eT

1 ξ1 (19)

subject to
−

(
K
(

A, CT
)

u2 + e2b2

)
≥ e1 − ξ1 (20)

ξ1 ≥ 0 (21)

where c1 > 0 and c2 > 0 define the penalty parameters, ξ1 and ξ2 demonstrate the slack
variables, e1 and e2 stand for the vectors of ′ones′ , that is, all the components are ‘one’
only, and CT = [A, B]T , u1, u2 ∈ Rd, and K refer to the kernel matrix equivalent to suitably
selected kernel functions.

To attain optimal classification performance, the HSA was applied to TWSVM param-
eters such as penalty parameters (c1 and c2) and slack variables (ξ1 and ξ2). The HSA was
chosen due to the following benefits: easier implementation, fewer adjustable parameters,
and quick convergence. The HSA is a metaheuristic method that searches for optimization
issues and generates an accurate state of harmony by improvising the searching procedure.
It has wide-ranging applications since it is easy to implement, simple, and involves fewer
parameters [25]. The natural musical method is improvised (in terms of pitch adjustment)
to produce an optimal state of harmony using HS. It is an optimization approach that
is similar to global and local searching methods used to discover an optimal solution.
HS is characterized as a set of solution vectors named harmony memory (HM), whereas
every individual (a harmony or vector) is analogous to the chromosome of DE or GA and
particles in PSO. HM is initialized by an arbitrary solution vector and is upgraded by
every improvisation via some parameter adjustment. The control parameter consists of
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bandwidth (BW), harmony memory consideration rate (HMCR), and pitch adjustment rate
(PAR). The process involved in the HSA is given in Algorithm 1. Optimization with the
harmony search approach is given below.

Step 1: Initialize Control Parameter.
Step 2: Initialize Harmony memory.
Step 3: Estimate the efficiency of present harmony.
Step 4: Estimate the efficiency of recently created harmony and improvise harmony.
Step 5: Check ending condition.

Algorithm 1 Pseudocode of the harmony search algorithm (HSA).

Begin;
Determine objective function f (x), x = (x1, x2, . . . , xd)

T

Determine Harmony Memory Considering rate (HMCR)
Determine Pitch adjusting rate (PAR) and other parameters
Create Harmony Memory with arbitrary harmonies
while (t < max number of iterations)

while (I <= number of variables)
if (rand < HMCR),

Select the value in HM for the variable i
if (rand < PAR),

Modify the value by adding a particular amount
end if

else
Select an arbitrary value

end if
end while

Take the New Harmony (solution) if better
end while

Define the present optimum solution
End

The HSA approach derives an FF to reach higher classification performance. It resolves
a positive integer to signify an optimum efficacy of the candidate solution. During this
analysis, the minimization of the classification error rate, which was regarded as FF, is
provided in Equation (22). A better solution is a lower error rate, and the worst solution
reaches an enhanced error rate.

f itness(xi) = Classi f ier Error Rate(xi)=
number o f misclassi f ied objects

Total number o f objects
∗ 100 (22)

4. Performance Validation

This section includes the experimental result analysis of the CIHSA-RTODT technique
carried out on the benchmark UCSD dataset. The proposed model was executed on a
Processor—i5-8600k, Graphics Card—GeForce 1050 Ti 4 GB, 16 GB RAM, and OS Storage—
250 GB SSD. The proposed model was simulated using the Python 3.6.5 tool. The parameter
settings of the proposed model were given as follows: batch size: 500, max. epochs: 15,
learning rate: 0.05, dropout rate: 0.2, and momentum: 0.9. The results were inspected using
several measures. For experimental validation, the entire dataset was divided into 70% of
training data and 30% of testing images.

4.1. Dataset Details

The performance validation of the CIHSA-RTODT technique was performed using
the benchmark UCSD dataset [26], which comprises two testbeds, namely the Pedestrian-
1 and Pedestrian-2 datasets. The Pedestrian-1 dataset and Pedestrian-2 dataset include
360 frames with a 12 s duration, as shown in Table 1. Figure 2 illustrates the sample test
images from the UCSD dataset along with its ground truth images.
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Table 1. Description of dataset.

Dataset Testbed Frames No. Time (s)

UCSDped2
Pedestrian-1 Dataset

360 12Pedestrian-2 Dataset

Figure 2. Sample images with ground truth images: First column, original images; second column,
ground truth.

4.2. Detection Results of CIHSA-RTODT Technique

A sample visualization result analysis of the CIHSA-RTODT technique is shown in
Figure 3. The results indicate that the CIHSA-RTODT technique effectually identified the
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objects that exist in all the video frames. From the figure, it is evident that the CIHSA-
RTODT technique effectively recognized the objects in the video frames.

Figure 3. Sample test images detection and tracking.

4.3. Running Time Analysis of CIHSA-RTODT Technique

Table 2 and Figure 4 offer a detailed running time examination of the CIHSA-RTODT
technique on the Pedestrian-1 and Pedestrian-2 datasets. The results indicate that the
CIHSA-RTODT technique has a superior minimum running time over the other methods.
For instance, with the Pedestrian-1 dataset, the CIHSA-RTODT technique offered a lower
running time of 0.035 min, whereas the MDT, SCLF, AMDN, and ADVAE techniques ob-
tained higher running times of 0.336 min, 0.328 min, 0.188 min, and 0.057 min, respectively.
Moreover, with the Pedestrian-2 dataset, the CIHSA-RTODT algorithm offered a lower run-
ning time of 0.057 min, whereas the MDT, SCLF, AMDN, and ADVAE algorithms obtained
maximum running times of 0.373 min, 0.300 min, 0.207 min, and 0.094 min, respectively.

Table 2. Running Time analysis of CIHSA-RTODT technique.

Models
Running Time (min)

Pedestrian-1 Pedestrian-2

MDT Model 0.336 0.373
SCLF Model 0.328 0.300
AMDN Model 0.188 0.207
ADVAE Model 0.057 0.094
CIHSA-RTODT 0.035 0.057
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Figure 4. Running time analysis of CIHSA-RTODT technique.

4.4. Comparative Result Analysis of CIHSA-RTODT Technique

Figure 5 offers a brief average accuracy analysis of the CIHSA-RTODT technique
with recent methods on the Pedestrian-1 and Pedestrian-2 datasets. The results indicate
that the CIHSA-RTODT technique accomplished better results than the existing methods.
For instance, with the Pedestrian-1 dataset, the CIHSA-RTODT technique resulted in an
increased average accuracy of 98.64%, whereas the DLADT, Region CNN, FR-CNN, MDT-
PWD, and MPPCA-PWD techniques had reduced accuracies of 97.44%, 97.17%, 85.2%,
80.18%, and 73.66%, respectively. Furthermore, with the Pedestrian-2 dataset, the CIHSA-
RTODT technique attained a maximal average accuracy of 91.23%, whereas the DLADT,
Region CNN, FR-CNN, MDT-PWD, and MPPCA-PWD methodologies offered reduced
average accuracies of 89.8%, 87.16%, 81.33%, 77.41%, and 70.84%, respectively.

Table 3 and Figure 6 provide a brief AUC analysis of the CIHSA-RTODT technique
with recent methods on the Pedestrian-1 and Pedestrian-2 datasets. The results indicate that
the CIHSA-RTODT technique accomplished optimum results compared with the existing
algorithms. For instance, with the Pedestrian-1 dataset, the CIHSA-RTODT technique
resulted in a higher AUC of 97.51%, whereas the DLADT, Region CNN, FR-CNN, MDT-
PWD, and MPPCA-PWD techniques had reduced accuracies of 60%, 66.85%, 67.11%,
81.84%, and 92%, respectively. Moreover, with the Pedestrian-2 dataset, the CIHSA-RTODT
technique attained a maximum AUC of 94.32%, whereas the DLADT, Region CNN, FR-
CNN, MDT-PWD, and MPPCA-PWD algorithms obtained lower AUCs of 69.87%, 55.42%,
61.43%, 82.85%, and 90.75%, respectively.
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Figure 5. Average accuracy of CIHSA-RTODT technique.

Table 3. AUC analysis of CIHSA-RTODT technique with existing techniques.

Models
AUC (%)

Pedestrian-1 Pedestrian-2

MPPCA Model 60.00 69.87
SF Model 66.85 55.42
SFMPPCA Model 67.11 61.43
MDT Model 81.84 82.85
AMDN Model 92.00 90.75
ADVAE Model 95.85 92.63
CIHSA-RTODT 97.51 94.32

Table 4 and Figure 7 provide the result analysis of the CIHSA-RTODT technique
with the existing techniques on the Pedestrian-1 dataset [27–29]. The results show that
the CIHSA-RTODT technique obtained increased TPR over the other methods, with a
rise in the false positive rate (FPR). For instance, with an FPR of 10, the CIHSA-RTODT
technique attained a higher TPR of 45.50%, whereas the SF, SFMPPCA, AMDN, and
ADVAE techniques had lower TPRs of 18.20%, 20.10%, 24.70%, and 20.80%, respectively.
Moreover, with an FPR of 30, the CIHSA-RTODT technique attained a higher TPR of
42.50%, whereas the SF, SFMPPCA, AMDN, and ADVAE techniques had lower TPRs
of 44%, 64.10%, 68.50%, and 93.80%, respectively. Furthermore, with an FPR of 50, the
CIHSA-RTODT technique attained a higher TPR of 63.30%, whereas the SF, SFMPPCA,
AMDN, and ADVAE techniques had lower TPRs of 63.30%, 72.40%, 84.70%, and 91.10%,
respectively.
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Figure 6. AUC analysis of CIHSA-RTODT technique.

Table 4. Result analysis of CIHSA-RTODT technique with existing techniques on Pedestrian-1 dataset
in terms of TPR (in %).

FPR
Methods

SF Model SFMPPCA Model AMDN Model ADVAE Model CIHSA-RTODT

10 18.20 20.10 24.70 20.80 45.50
20 30.20 31.70 46.40 44.50 68.80
30 42.50 44.00 64.10 68.50 93.80
40 53.40 60.90 73.80 79.60 92.00
50 63.30 72.40 84.70 91.10 95.80
60 71.40 81.50 91.30 95.60 98.60
70 88.00 98.00 98.70 98.80 99.40
80 89.30 99.90 99.70 98.80 98.90
90 90.40 96.70 97.30 98.90 99.70
100 91.39 94.30 96.80 98.50 99.60

Table 5 and Figure 8 offer the outcome analysis of the CIHSA-RTODT approach with
existing methodologies on the Pedestrian-2 dataset. The outcomes show that the CIHSA-
RTODT methodology reached maximum TPR, in contrast to the other approaches, with an
increase in FPR. For instance, with an FPR of 10, the CIHSA-RTODT approach reached a
superior TPR of 28.20%, whereas the SF, SFMPPCA, AMDN, and ADVAE methodologies
had minimum TPRs of 19.50%, 19.30%, 28.10%, and 16.40%, respectively. Moreover, with
an FPR of 30, the CIHSA-RTODT methodology gained a TPR of 79.30, whereas the SF,
SFMPPCA, AMDN, and ADVAE algorithms resulted in lower TPRs of 40.10%, 56.30%,
57.20%, and 69.10%, respectively. Furthermore, with an FPR of 50, the CIHSA-RTODT
technique attained a higher TPR of 99.10%, whereas the SF, SFMPPCA, AMDN, and ADVAE
methodologies resulted in lower TPRs of 73.40%, 84.90%, 86.60%, and 87.60%, respectively.
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Figure 7. Result analysis of CIHSA-RTODT technique on Pedestrian-1 dataset.

Table 5. Result analysis of CIHSA-RTODT technique with existing techniques on Pedestrian-2 dataset
in terms of TPR (in %).

FPR
Methods

SF Model SFMPPCA Model AMDN Model ADVAE Model CIHSA-RTODT

10 19.50 19.30 28.10 16.40 28.20
20 28.10 41.50 48.10 28.50 60.20
30 40.10 56.30 57.20 69.10 79.30
40 55.60 71.10 74.30 81.60 94.30
50 73.40 84.90 86.60 87.60 99.10
60 85.50 92.60 93.40 94.70 99.20
70 99.00 97.30 98.30 99.40 99.90
80 99.60 98.90 98.60 99.60 99.80
90 99.60 99.50 99.40 99.70 99.70
100 99.70 99.20 99.30 99.50 99.80
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Figure 8. Result analysis of CIHSA-RTODT technique on Pedestrian-2 dataset.

4.5. Discussion

From the above-mentioned results, it is clear that the proposed model accomplished
enhanced performance with average accuracies of 97.51% and 94.32% on the test Pedestrian-
1 and Pedestrian-2 datasets, respectively. The enhanced performance of the CIHSA-RTODT
technique is due to the inclusion of the Adagrad optimizer and HSA for the parameter-
tuning process. Therefore, the presented CIHSA-RTODT technique can effectually detect
and track objects in the video surveillance system. The proposed CIHSA-RTODT technique
can be employed in real-time scenarios such as public places, hospitals, smart cities, etc., to
assure security. It can also be utilized for crowd behavior and anomaly events in crowd
scenes.

5. Conclusions

In this study, a new CIHSA-RTODT technique was developed to detect and track
objects on video surveillance systems. The CIHSA-RTODT technique designed an Adagrad
with an improved RefineDet-based object detector which can effectually recognize multiple
objects in the video frame. The HSA with TWSVM model was also applied to properly
categorize the existence of objects in the video frame and thereby lead to improved clas-
sification results. A wide range of experimental analyses were carried out on an open
access dataset, and the results were inspected in several ways. The comparative simulation
outcome reported the superiority of the CIHSA-RTODT technique over the other existing
techniques. Therefore, the CIHSA-RTODT technique appeared to be an effective tool for
real-time object detection and tracking. In the future, filtering techniques can be used as a
pre-processing step that helps to boost the detection performance.
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3. Połap, D.; Woźniak, M. Meta-heuristic as manager in federated learning approaches for image processing purposes. Appl. Soft

Comput. 2021, 113, 107872. [CrossRef]
4. Hatwar, R.B.; Kamble, S.D.; Thakur, N.V.; Kakde, S. A review on moving object detection and tracking methods in video. Int. J.

Pure Appl. Math. 2018, 118, 511–526.
5. Wieczorek, M.; Sika, J.; Wozniak, M.; Garg, S.; Hassan, M. Lightweight CNN model for human face detection in risk situations.

IEEE Trans. Ind. Inform. 2021. early access. [CrossRef]
6. Kaushal, M.; Khehra, B.S.; Sharma, A. Soft Computing based object detection and tracking approaches: State-of-the-Art survey.

Appl. Soft Comput. 2018, 70, 423–464. [CrossRef]
7. Wen, L.; Du, D.; Cai, Z.; Lei, Z.; Chang, M.C.; Qi, H.; Lim, J.; Yang, M.H.; Lyu, S. UA-DETRAC: A new benchmark and protocol

for multi-object detection and tracking. Comput. Vis. Image Underst. 2020, 193, 102907. [CrossRef]
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