
����������
�������

Citation: Nadaf, T.; Lotfi, T.; Shateyi,

S. Revisiting the Copula-Based

Trading Method Using the Laplace

Marginal Distribution Function.

Mathematics 2022, 10, 783. https://

doi.org/10.3390/math10050783

Academic Editor: Ioannis K. Argyros

Received: 27 January 2022

Accepted: 25 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Revisiting the Copula-Based Trading Method Using the Laplace
Marginal Distribution Function
Tayyebeh Nadaf 1, Taher Lotfi 1,* and Stanford Shateyi 2,*

1 Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan 1584743311, Iran;
tnaddaf.math@yahoo.com

2 Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences,
University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa

* Correspondence: lotfitaher@yahoo.com (T.L.); stanford.shateyi@univen.ac.za (S.S.)

Abstract: Pairs trading under the copula approach is revisited in this paper. It is well known that
financial returns arising from indices in markets may not follow the features of normal distribution
and may exhibit asymmetry or fatter tails, in particular. Due to this, the Laplace distribution is
employed in this work to fit the marginal distribution function, which will then be employed in a
copula function. In fact, a multivariate copula function is constructed on two indices (based on the
Laplace marginal distribution), enabling us to obtain the associated probabilities required for the
process of pairs trade and creating an efficient tool for trading.
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1. Introduction

Taking the Basel Committee documents into consideration, we divide the risk for
business into five main parts [1]: 1. The risk of country, which contains the lack of certainties
of political systems and the internal dynamics of societies. 2. The risk of settlement, which
contains the external uncertainties of running finance processes along with the operating
sequences. 3. The market risk that includes the fuzziness of factors inside markets in
association with the valuation and price mechanisms. 4. The credit risk that contains the
lack of certainty for external economical effects on sources required from the economic
environment. 5. The operational risk, which relates to the structures and parameters of
internal organizational processes in connection to individual failures and misbehavior.
Hence, managing risk or reinvestigating well-known algorithmic methods is of interest in
mathematical finance [2,3].

We name a multidimensional cumulative distribution function (CDF) as a copula,
when each variable has a uniform marginal probability distribution on [0,1]. These functions
are employed to illustrate the dependency of several given stochastic variables. In fact, they
have broadly been employed in multivariate statistics and quantitative finance ranging
from trading in portfolios with several stocks to risk management [4–6].

Perhaps the most fundamental finding for copulas is the theorem given by Sklar in [7],
which mentions that any multidimensional joint distribution could be obtained via one-
dimensional marginal distribution functions along with a copula function that shows the
structure of dependency among several variables. These distributions were first introduced
in the 1940s, and their related machinery and terminology were improved in the 1950s and
1960s [8].
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Mostly, Archimedean copulas, unlike the Gaussian copula, possess an explicit formula.
They have been widely employed because of their mathematical tractability and also their
ability to cover broad range of dependency. For a continuous and decreasing function

ψ : [0, ∞)→ [0, 1], (1)

with the conditions
ψ(0) = 1, ψ(+∞) = 0, (2)

and ψ = φ−1 being the pseudo-inverse [7], we have:

Cψ(u1, u2, . . . , un) = ψ(φ(u1) + φ(u2) + · · ·+ φ(un)), (3)

for any ui ∈ [0, 1], i = 1, 2, . . . , n,

which is an Archimedean copula having ψ as the generator when

(−1)kψ[k](x) ≥ 0,

for all k = 0, 1, . . . , n− 2. Here, φ(·) is the cumulative of the (standard normal) distribu-
tion, and

(−1)n−2ψ[n−2](x),

is convex and decreasing. The function (3) consists of several famous copulas including
the Ali-Mikhail-Haq (AMH) copula, the Clayton copula, and the independence (product)
copula [8].

In general, if there are two known marginal continuous distributions we cannot derive
their joint distribution, but we can recover a joint distribution using a copula function. One
of the merits of employing copulas is their isolation of the structure of dependence from
the structure of the marginal distributions, etc. The marginal distribution may capture
different types of symmetries, asymmetries, fat tails, and structural breaks with a strong
influence on the estimation results for modeling of the dependence structure. A copula
enables us to separate the joint distribution into the marginal distributions of each variable.
This separation enables us to model the dependency among the variables directly.

We recall that it is necessary to use nonparametric measures, such as Kendall’s τ or
Spearman’s ρ (Spearman’s correlation coefficient) [8], in several practical cases, since the
basic Pearson correlation coefficient measures the linear dependence only.

Consider the parameter ρ ∈ [−1, 1]; then, the unique bivariate normal (or Gauss, or
Gaussian) copula is given via the use of the Sklar’s theorem as follows:

C(u1, u2; ρ) = φ2(φ
−1(u1), φ−1(u2); ρ), (4)

where φ2(·) is the CDF of the bivariate standard normal distribution. Note that for
ρ = {−1, 1}, the correlation matrix of the two-dimensional standard normal distribu-
tion becomes singular. The Gaussian copula (4) is flexible in the sense that it useful for both
negative and positive dependency. The correlation parameter ρ is given as:

ρ = sin
(π

2
Kendall’s τ

)
, (5)

wherein
Kendall’s τ = 4

∫ ∫
C(u1, u2) dC(u1, u2)− 1. (6)

Sometimes, two-dimensional copulas are named doubly-stochastic measures.
In this work, we investigate how to construct a copula with Laplace marginal distribu-

tion function. The constructed copula is then be employed on pair trading (also known as
pairs trading) as an efficient trading method in quantitative finance.
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The Laplace distribution has been shown to provide better fits on economic and
financial data when compared to the famous normal distribution [9]. So, this is employed
herein as a good tool for managing risk. In fact, the motivation behind choosing the Laplace
distribution for risk management is the point that this distribution leads to fatter tails
(in contrast to normal distribution tails), which matches much more preferably with the
observations of the market [10].

The remainder of this paper is organized as follows. In Section 2, the Laplace dis-
tribution is defined briefly. Next, in Section 3, the pairs trading strategy is given briefly.
A trading algorithm is furnished in Section 4 as an efficient tool for risk managers and
traders. Further simulation results and comparisons are described in Section 5. They
confirm the applicability of the Laplace marginal distribution function in contrast to the
normal distribution for risk management. Section 6 ends the paper with a conclusion and
future focuses.

2. Laplace Distribution

The Laplace distribution is the distribution of differences between two independent
variates with identical exponential distributions. In fact, the difference between two
independent identically distributed exponential random variables is controlled by a Laplace
distribution, as is a Brownian motion computed at an exponentially distributed random
time. This distribution is employable in situations wherein the lower values originate under
different external conditions than the higher ones such that they follow a different pattern,
see [11,12] for further discussions.

It is useful in predicting when a fatter tail (in contrast to normal distribution tails) on
the underlying prices exists in the market and to express very different events [13,14]. The
statistical continuous Laplace distribution with µ as the mean and σ as the scale parameter
is defined over the set of real numbers. Here, if

X ∼ Laplace(µ, σ),

then its probability density function (PDF) is provided by:

f (x) =


e

µ−x
σ

2σ
, x ≥ µ,

e
x−µ

σ

2σ
, x < µ.

(7)

Note that this distribution has a specific position along the normal distribution, being
stable under geometric rather than ordinary summation; therefore, it is appropriate for
stochastic modeling [13].

3. A Review of Pairs Trade

It is known that pairs trade is a famous strategy for trading broadly employed by
investment banks and hedge funds [15]. This statistical arbitrage and convergence trading
strategy is able to obtain profits irrespective of the direction of the market. It is derived
via two steps. In the first step, an asset pair whose prices historically have moved with
each other is detected. In the second step, by considering that in the future this equilibrium
relationship should persist, the spread between the values of the stocks are controlled
over a period of time. Furthermore, the investor shorts the overvalued asset and buys the
undervalued one, when this deviates from its historical mean. After the price convergence,
the positions are closed.

In the literature for the first part, two procedures are basically recommended. One is
to perform a complete search for all available candidates among the chosen securities [16].
The second is to cluster them based on unsupervised machine learning techniques such
as k-means++ and then constrain the groups into pairs. However, we consider here
that we have already chosen these two appropriate pairs. In fact, pairs trading can be
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implemented after constructing an efficient portfolio via the clustering analysis procedure
in unsupervised machine learning when the stocks of a portfolio have been clustered based
on their associated risks, see the recent work [17] for further information.

In pairs trading based on copula theory, the pairs choice stage determines the suitable
candidate pairs, choosing the promising ones. Starting with the quest for suitable pairs, the
trader must choose the appropriate pairs.

4. An Algorithm Based on the Laplace Distribution

The two stocks considered for imposing the copula distribution function with the
Laplace marginal distribution function are shown in Table 1. This is only one sample choice;
in practice, any two highly correlated stocks inside a portfolio can be considered. The pairs
can be obtained via strategies such as clustering analysis.

To show how the compared two stocks in our portfolio of companies behave through
time, we compared their price trends, as shown in Figure 1.
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Figure 1. Price trends for the NYSE:LUV and NASDAQ:AAPL stocks over time.

Based on the discussions in Sections 1–3, it is now possible to write Algorithm 1
to perform the trading method. In fact, after constructing the copula function, the joint
probability for each observed pair can be calculated.

Note that if only one joint distribution shows a lower tail dependence, then it is
considered riskier than the one with a symmetric and weaker dependence.

Table 1. Features of the equity pair considered for pairs trade. The dates on which the data were
gathered, the copula function was constructed, and the prediction was calculated are provided.

Title Symbol of Ticker Market Sector
Floating
Shares

In-Sample
Formation

Period

Out of
Sample
Period

Southwest
Airlines NYSE:LUV NYSE Airlines 590273067

1 January 2015
through

31 December
2019

4 January 2020
through

20 November
2020

Apple NASDAQ:AAPL NASDAQ
Consumer
Electronics 17001802000

1 January 2015
through

31 December
2019

4 January 2020
through

20 November
2020
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The third item in Algorithm 1 includes a distribution fit test based on a hypothesis
for test data. To illustrate the applicability of the proposed Laplace distribution in contrast
to the normal distribution, Tables 2 and 3 are furnished based on the same test stocks
we considered in Table 1. Floating shares are given based on the time of gathering the
information for this work. The results clearly reveal that the normal distribution must not
be assumed for the returns.

Several statistical test are shown in Tables 2 and 3. Note that a statistical hypothesis
test is a method of statistical inference used to determine a possible conclusion from two
different, and likely conflicting, hypotheses [18] (Chapter 9). For instance, the Anderson-
Darling test is a statistical test, which shows whether a considered set of data is drawn
from a given probability distribution or not. In its basic form, the test assumes that there
are no parameters to be estimated in the distribution being tested, in which case the test
and its set of critical values is distribution-free. When applied to testing whether a normal
distribution properly describes a set of data, it is one of the most useful tools in finding
departures from normality.

At the sixth step of the Algorithm 1, one is able to derive a Gaussian copula with
marginal Laplace distributions. The PDF of the constructed copula is plotted in Figure 2.

Algorithm 1 Pairs trade employing the Laplace marginal distribution function.

1: Choose the appropriate equity pair. Here, it was selected based on Table 1 on the given
dates.

2: Gather daily prices on these indices and compute the log returns series.
3: Using the returns, we find the marginal distribution function. Here, the Laplace

distribution based on Section 2 is fitted to these data.
4: We estimate the involved parameters by the maximum likelihood method.
5: The goodness-of-fit test is conducted and supports the selection of the Laplace distri-

bution in contrast to the normal distribution with has a tighter tail dependency for
the marginal distribution. This is where the proposed Laplace distribution helps us in
practice.

6: Construct the bivariate normal copula (4), and save the final (estimated) copula distri-
bution function as D.

7: We calculate the returns during the out-of-sample period for our indices.
8: By considering the transactions costs to be negligible, we choose a threshold probability

level of 95% and consider that we hold the trade for one day only, opening and closing
the trade at the start and end of the day, after the signal is obtained.

9: Calculate each pair’s probability for daily observations.
10: Now, we obtain the signal based on the joint probabilities over the out-of-sample days

of the series.
11: In the following days, when one observes the pairs with abnormally low/high esti-

mated probabilities, s/he conducts the trading.

Figure 2. The PDF of the Gaussian copula constructed based on the stocks shown in Table 1, which
shows how it behaves on the domain.
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Table 2. Examination of whether the financial data follow the normal test under the best-fitted
normal distribution. Goodness-of-fit tests are based on several well known statistical measures to test
whether the sample data have the skewness and kurtosis matching a normal distribution.

NYSE:LUV NASDAQ:AAPL

Statistical Test Statistic p-Value Statistic p-Value

Pearson χ2 121.37 9.61 × 10−12 144.16 1.60 × 10−15

Cramér-von Mises 2.12 6.75 × 10−6 2.47 1.09 × 10−6

Anderson-Darling 12.23 1.82 × 10−6 14.21 6.50 × 10−7

Baringhaus-Henze 17.12 1.27 × 10−9 21.01 1.21 × 10−10

Jarque-Bera ALM 1510.45 0. 896.42 0.
Mardia Combined 1510.45 0. 896.42 0.
Mardia Kurtosis 37.95 2.86 × 10−315 29.25 3.64 × 10−188

Mardia Skewness 49.46 2.02 × 10−12 27.98 1.22 × 10−7

Shapiro–Wilk 0.94 1.46 × 10−21 0.94 2.67 × 10−20

Table 3. Examination of whether the financial data follow the best-fitted Laplace distribution.

NYSE:LUV NASDAQ:AAPL

Statistical Test Statistic p-Value Statistic p-Value

Pearson χ2 34.20 0.45 48.14 0.05
Cramér-von Mises 0.10 0.58 0.19 0.27
Anderson-Darling 0.67 0.57 1.10 0.30

5. Simulation Results

In this work, the implementations were conducted using Mathematica 12.0 [19]
(Chapter 7) with a computer equipped with Core i7-9750H and SSD memory. It is necessary
to check the effectiveness of the derived Gaussian copula under the marginal Laplace dis-
tribution. For this purpose, in Figure 3, the empirical data of the two stocks are compared
with 103 random numbers generated using the Gaussian copula function with the fitted
marginal Laplace distribution. The results show how well the revisited copula works for
fitting financial data. This distribution is fits stock market returns better, and it allows
professionals working in the industry to obtain a more realistic expectation of daily returns.

In Table 4, the Pearson correlation, the Spearman ρ, and the Kendall τ for all data as
well as for the lower and upper tails of the distribution of stock returns are provided.

- 0.03 - 0.02 - 0.01 0.01 0.02 0.03

- 0.04

- 0.02

0.02

0.04

0.06

Empirical

- 0.04 - 0.02 0.02 0.04

- 0.06

- 0.04

- 0.02

0.02

0.04

Gaussian

Figure 3. Comparison of empirical data (left) and simulated data from the copula function (right).

Table 4. Correlation comparisons for the considered sticks, as well as their lower and upper tails.

Pearson Spearman Kendall

Overall 0.380776 0.360071 0.250801
Lower 5%-tile 0.375530 0.438191 0.323109
Upper 95%-tile 0.349495 0.333201 0.230797
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Recall that the key element needed for this strategy is a conditional probability function.
In fact, P(U ≤ u|V = v) and P(V ≤ v|U = u) are differentiations of the associated copula
in terms of v and u, respectively, (see for instance [5,20]:)

P(U ≤ u|V = v) =
∂C(u, v)

∂v
, (8)

P(V ≤ v|U = u) =
∂C(u, v)

∂u
. (9)

Note that the probability threshold is always an obstacle for this approach. However,
stocks are determined as being relatively undervalued as long as the conditional probability
is less than 0.5 and relatively overvalued as long as the conditional probability is greater
than 0.5 [20]. Additionally, the conditional probabilities’ values are an indication of the
certainty or confidence about the position of the stocks as well.

Thus, the execution of trade must be performed when one of the conditional probabili-
ties is approaching 1. As such, the use of conditional probability functions is necessary for
the strategy.

Some of the results are shown in Table 5 for pairs trading. After a very high prob-
ability reading for 26 February 2020, we can conduct the trading. To illustrate further,
we see the very high probability; then, by taking equal weighted positions, we long the
NASDAQ:AAPL index and short the NYSE:LUV index on 27 February 2020. We close the
position at the end of the day, producing a total return of 5.136%. Similarly, we can employ
this pairs trade method to the entire sample and illustrate the resulting profit and loss.

Table 5. Results based on pairs trade and Algorithm 1 showing when to conduct the trades based on
the probabilities.

NYSE:LUV NASDAQ:AAPL Probability

6 January 2020 0.01580 0.02255 0.02
7 January 2020 −0.00897 −0.00976 0.65
8 January 2020 −0.00405 0.00793 0.20
9 January 2020 0.00295 −0.00471 0.33
10 January 2020 0.00147 0.01595 0.08
13 January 2020 −0.00128 0.02101 0.06
14 January 2020 −0.00665 0.00225 0.35
15 January 2020 0.00092 0.02113 0.05
16 January 2020 0.00921 −0.01359 0.23
17 January 2020 0.00986 −0.00429 0.19
21 January 2020 0.00489 0.01248 0.09
22 January 2020 −0.00525 0.01101 0.16
23 January 2020 −0.02708 −0.00679 0.72
24 January 2020 −0.00112 0.00356 0.26
27 January 2020 0.03527 0.00480 0.01
28 January 2020 0.02054 −0.00288 0.08
29 January 2020 −0.00531 −0.02984 0.67
30 January 2020 0.02371 0.02789 0.009
31 January 2020 −0.01240 0.02071 0.07
3 February 2020 −0.01880 −0.00145 0.55
4 February 2020 −0.01534 −0.04535 0.85
5 February 2020 0.00435 −0.00275 0.28
6 February 2020 0.00829 0.03248 0.01
7 February 2020 0.02255 0.00812 0.04
10 February 2020 0.01343 0.01162 0.05
11 February 2020 −0.00800 −0.01605 0.69
12 February 2020 0.00279 0.00473 0.19
13 February 2020 0.00884 −0.00605 0.21
14 February 2020 0.00944 0.02347 0.03
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Table 5. Cont.

NYSE:LUV NASDAQ:AAPL Probability

18 February 2020 0.00102 −0.00714 0.40
19 February 2020 −0.00978 0.00024 0.44
20 February 2020 −0.00640 −0.01848 0.67
21 February 2020 −0.00854 0.01437 0.13
24 February 2020 −0.00298 −0.01031 0.54
25 February 2020 −0.00722 −0.02289 0.70
26 February 2020 −0.04375 −0.04866 0.98
27 February 2020 −0.08581 −0.03445 0.97
28 February 2020 −0.01542 0.01573 0.12
2 March 2020 −0.04753 −0.06760 0.98
3 March 2020 −0.00948 −0.00058 0.47

Further acceleration of the pairs trade under Laplace marginal distribution can be pur-
sued using parallel computation. In fact, using parallelization of the Table[] Mathematica
command or the similar ones used in programming can help to improve the CPU time of
the running times as much as possible.

In sum, the computational pieces of evidence reveal that the pairs trading under
a copula approach is a good choice as long as a fat-tail marginal distribution (such as
the Laplace distribution) is employed for fitting the data when we are calibrating the
copula function.

6. Conclusions

In this paper, we reviewed pairs trading using the copula approach with an emphasis
on the use of the well-known fat-tailed Laplace distribution. The fat-tailed feature of the
considered distribution, particularly when used on the marginal functions, helped us to
produce copula distribution functions, which had a better ability to fit stock data. The
computational pieces of evidence in Section 5 supported the discussions.

Finally, we note that due to the growth in the availability of data, sometimes it is
difficult to determine efficient pairs. Hence, further questions can be investigated in future
studies such as:

1. How to determine the best pairs while limiting the search space; and,
2. How to stop facing long decline periods due to prolonged divergent pairs.
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