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Abstract: In this work, we extend the formulation of the spatial-based graph convolutional networks
with a new architecture, called the graph-informed neural network (GINN). This new architecture is
specifically designed for regression tasks on graph-structured data that are not suitable for the well-
known graph neural networks, such as the regression of functions with the domain and codomain
defined on two sets of values for the vertices of a graph. In particular, we formulate a new graph-
informed (GI) layer that exploits the adjacent matrix of a given graph to define the unit connections
in the neural network architecture, describing a new convolution operation for inputs associated with
the vertices of the graph. We study the new GINN models with respect to two maximum-flow test
problems of stochastic flow networks. GINNs show very good regression abilities and interesting
potentialities. Moreover, we conclude by describing a real-world application of the GINNs to a flux
regression problem in underground networks of fractures.

Keywords: graph neural networks; deep learning; regression on graphs

MSC: 05C21; 65D15; 68T07; 90C35

1. Introduction

Graphs are frequently used to describe and study many different phenomena, such
as transportation systems, epidemic- or economic-default spread, electrical circuits, and
social interactions; the literature typically refers to the use of graph theory to analyze such
phenomena with the term “network analysis” [1].

Recently, new key contributions to network analyses have been proposed by the
neural network (NN) community; in particular, deep learning (DL) approaches can be
extended to graph-structured data via the so-called graph neural networks (GNNs). The
origin of GNNs dates back to the late 2000s [2–4] when their processing was still too
computationally expensive [5]. Nonetheless, the huge success of the convolutional neural
networks (CNNs) inspired a new family of GNNs, re-defining the notation of convolutions
for graph-structured data and developing the graph convolutional networks (GCNs).
According to the taxonomy defined in [5], two main families of GCNs can be observed:
the spectral-based GCNs [6–8], which are based on the spectral graph theory, and the
spatial-based GCNs [9–12], which are based on the aggregation of the neighbor nodes’
information. In particular, the spatial-based GCNs are, nowadays, preferred in many
applications, thanks to their flexibility and efficiency [5].

Typically, GCNs are used to perform the following tasks on graph data [5]: (i) semi-
supervised node regression or classification; (ii) edge classification or link prediction;
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and (iii) graph classification. Nonetheless, even if GCNs have been proven to be good
instruments to learn graph data, some challenges still exist. The two main challenges
for GCNs are [5]: (i) to build deep architectures with good performances; and (ii) to be
scalable for large graphs. The first issue is the most problematic one; indeed, the success
of DL lies in its depth, but the literature suggests that going deeper into a GCN is not
usually beneficial [5]. Moreover, experimental results for the spectral-based GCNs showed
that performances dropped considerably as the number of graph convolutional layers
increased [13].

In this work, we present a new type of spatial-based graph convolutional layer de-
signed for regression tasks on graph-structured data, a framework for which previous
GCNs are not well suited. Given a graph G with n nodes, a regression task on graph-
structured data based on G consists of approximating a function F : Ω ⊆Rn → Rm, m ≤ n,
depending on the adjacency matrix of G, and that returns the m values related to a fixed
subset of m nodes for each set of values assigned to the nodes of G. This type of regression
task has applications in many interesting fields, such as circulation with demand (CwD)
problems (see [chap. 7.7] in [14]), network interdiction models (NIMs) [15], and flux regres-
sion problems in underground fractured media [16,17]. A classic multi-layer perceptron
(MLP), or its suitable variants, can perform this regression task on the graph data with a
good performance [16,17], implicitly learning the node relationships during the training
(see [18,19]). On the other hand, the current GCNs in the literature are not comparable to
MLPs for such a regression task; indeed, as mentioned above, they are designed mainly
for other kinds of tasks and, in practice, they cannot exploit deep architectures. Then,
the idea is to define a new graph convolutional layer that exploits the graph structure
to improve the training of the NN (compared to an MLP), and that makes it possible to
build deep NN architectures. The new convolution operation for graph data that we define
is closer to the convolution of CNNs (see [chap. 9] in [20]) than the convolution of all
the other GCNs. Nonetheless, similarities with the classic NN4G layers in [3] and the
diffusion-convolutional neural networks (DCNNs) in [21] exist.

Put simply, the simplest version of our graph layer is characterized by a filter with
one weight wi associated with each graph node vi. Then, the output feature of a node is
computed by summing up the input features of the node itself and of its neighbors, where
each one is multiplied by the corresponding node weights. We call this new type of graph
layer a graph-informed (GI) layer. Indeed, given a scalar value wj associated with each
graph vertex vj, a GI layer looks like a fully-connected (FC) layer where, for each unit vi
connected with a unit vj of the previous layer, the weight wji is equal to 0 if (vj, vi) is not
an edge of the graph and i 6= j, otherwise wji = wj (see Equation (4) in Section 2).

Numerical experiments have shown the potentiality of the GI layers, which involves
training deep NNs made up of a sequence of GI layers. We define these NNs as graph-
informed neural networks (GINNs). In particular, the numerical experiments showed that
GINNs were characterized by improved regression abilities with respect to MLPs, thanks
also to their ability to overcome the depth problem typical of the other GCNs.

The work is organized as follows: in Section 2, the GI layers are formally introduced
and defined, explaining their fundamental operations, properties, similarities, and differ-
ences with respect to other spatial-based graph convolutional layers. Section 3 is dedicated
to the numerical experiments; in particular, we analyze the regression abilities of the GINNs
on a maximum-flow regression problem and we compare the results with the performances
obtained on the same problem with MLPs. We conclude the section with a real-world ap-
plication, studying the application of GINNs to a flux regression problem in underground
networks of fractures. In Section 4, we summarize the results and draw some conclusions.

2. Mathematical Formulation of the Graph-Informed Layers

In this section, we describe the mathematical formulation of the new GI layers, based
on the adjacency matrix of a graph. In particular, we describe the mathematical details that
define the function LGI , describing the action of a GI layer LGI . From now on, we will call
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the function describing the action of a generic NN layer as the characterizing function of
the layer.

Definition 1 (Graph-Informed layer: basic form). Let A ∈ Rn×n be the adjacency matrix
characterizing a given graph G = (V, E) without self-loops, and let Â be the matrix Â := A + In,
where In ∈ Rn×n is the identity matrix. Then, a graph-informed (GI) layer LGI , with respect to the
graph G, is an NN layer with n units connected to a layer with outputs in Rn with a characterizing
function LGI : Rn → Rn defined by

LGI(x) = f
(

Ŵ> x + b
)

, (1)

where:

• Given a vector w ∈ Rn of weights associated with the vertices V, the defined filter of LGI the
matrix Ŵ is obtained by multiplying the i-th row of Â by the weight wi, i.e.,

Ŵ := diag(w)Â , (2)

where diag(w) is the diagonal matrix with a diagonal that corresponds to vector w;
• Given the layer activation function f : R→ R, we denote by f the element-wise application

of f ;
• b ∈ Rn is the vector of biases.

Broadly speaking, given a directed graph G = (V, E), with n nodes and an adjacency
matrix A ∈ Rn×n, the main idea behind a GI layer is to generalize the convolutional
layer filters to the graph-structured features. Indeed, the objective is to endow the layer
with the implicit relationship between the features of the adjacent graph nodes, and also
to take advantage of the sparse interaction- and parameter-sharing properties typical of
convolutional NNs (see [chap. 9.2] in [20]).

Convolutional layers rely on the identification of images as lattices of pixels. The main
idea for the GI layer formulation is to adapt convolutional layer concepts to graphs that
are not characterized by a lattice structure. We generalize the filter mechanisms of the
convolutional layers to the graph-structured data, introducing the concept of graph-based
filters. In practice, for each node of the graph G, we consider a weight wj which is associated
to node vj ∈ V and we re-define the convolution operation as

x′i = ∑
j∈Nin(i)∪{i}

xj wj + bi , (3)

where

• xj denotes the input feature of node vj ∈ V, for each j = 1, . . . , n;
• Nin(i) is the set of indices j, such that there exists an incoming edge (vj, vi) ∈ E;
• bi is the bias corresponding to node vi;
• x′i is the output feature associated to vi, computed by the filter (see Figure 1).

For a non-directed graph G, Equation (3) does not change, since a non-directed edge
{vj, vi} is equivalent to two directed edges, (vj, vi) and (vi, vj). Indeed, Definition 1 holds
for both directed and non-directed graphs.

Similar to the convolutional layers, which act on the current pixel and on all its
neighbors for computing the output feature, in (3) the layer acts on xi and on the values
associated with the incoming neighbors of vi for the computation of x′i (see Figure 1).
Nonetheless, despite the inspiration received from convolutional layers, a GI layer LGI

described by (3) can be seen also as a constrained FC layer, where the weights are such that
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wji =


wj , if (vj, vi) ∈ E
wi , if j = i
0 , otherwise

, (4)

for each i, j = 1, . . . , n.
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Figure 1. Case of non-directed graph with n = 4 nodes. Example of the action of a filter w ∈ R4 (grey
“layer” of the plot) of a GI layer, applied to feature x1 of the first graph-node v1, for the computation
of x′1; for simplicity, the bias is not illustrated. The orange edges describe the multiplication of feature
xi, of node vi, with the filter’s weight wi, for each i = 1, . . . , 4.

In the next sections, we generalize the action of these kinds of layers to make them able
to: (i) receive any arbitrary number K ≥ 1 of input features for each node; and (ii) return
any arbitrary number F ≥ 1 of output features for each node.

2.1. Generalization to K Input Node Features

Equation (1) describes the simplest case of GI layers, where just one feature is consid-
ered for each vertex of the graph for both the inputs and the outputs. We start generalizing
the previous definition, taking into account a larger number of features tackled by LGI .

Definition 2 (Graph-Informed layer with K input features per node). Let G, A, andÂ be as
in Definition 1. Then, a GI layer with K ∈ N input features is an NN layer with n units connected
to a layer with outputs in Rn×K with a characterizing function LGI : Rn×K → Rn defined by

LGI(X) = f
(

W̃>vertcat(X) + b
)

, (5)

where:

• X ∈ Rn×K is the input matrix (i.e., the output of the previous layer) and vertcat(X) denotes
the vector in RnK obtained by concatenating the columns of X;

• Given the matrix W ∈ Rn×K, the defined filter of LGI , whose columns w·1, . . . , w·K ∈ Rn are
the vectors of weights associated with the k-th input feature of the graph’s vertices, the matrix
W̃ ∈ RnK×n is defined as

W̃ :=


Ŵ(1)

...

Ŵ(K)

 =


diag(w·1)Â

...

diag(w·K)Â

 ∈ RnK×n . (6)

The idea behind the generalization from Definitions 1 to 2 is rather simple. Let L be
an NN layer with outputs in Rn×K, K ≥ 1. Therefore, a generic output of L is a matrix
X ∈ Rn×K, whose row i ∈ {1, . . . , n} describes the K features xi1, . . . , xiK of node vi; on the
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other hand, each column x·1, . . . , x·K of X is equivalent to the output of an NN layer with
outputs in Rn.

Therefore, the generalization consists of summing up the action of the K “basic” single-
input filters w·1, . . . , w·K, where each one is applied to x·1, . . . , x·K, respectively; then, to
this sum, we add the bias vector and we apply the activation function. However, this
approach is equivalent to (5), i.e., defining one filter W obtained from the concatenation of
the basic filters. Indeed:

K

∑
k=1

Ŵ(k)>x·k = W̃>vertcat(X) . (7)

Remark 1 (Parallelism with convolutional layers). It is worth noting that the operations
summarized in (5) are an adaptation of the convolutional layer operations to the graph-based
inputs. Indeed, the input X ∈ Rn×K is equivalent to an n × 1 image with K channels, while
w·k is equivalent to the part of the convolutional filter corresponding to the k-th channel of the
input image. Then, the output LGI(X) ∈ Rn is equivalent to the so-called activation map of the
convolutional layers.

2.2. Generalization to F Output Node Features

We can further generalize (5) by increasing the number of output features per node
returned by the GI layer. This operation is equivalent to building a GI layer characterized
by a number F ≥ 1 of matricial filters, where each one used to compute one of the output
features. In a nutshell, the output of these general GI layers is a matrix Y ∈ Rn×F whose
l-th column y·l ∈ Rn, l = 1 . . . , F, describes the l-th feature of the nodes of G.

Definition 3 (Graph-Informed layer: general form). Let G, A, Â be as in Definition 1. Then,
a GI layer with K ∈ N input features and F ∈ N output features is an NN layer with nF units
connected to a layer with outputs in Rn×K with a characterizing function LGI : Rn×K → Rn×F

defined by
LGI(X) = f

(
W̃>vertcat(X) + B

)
, (8)

where:

• We define the filter of LGI , the tensor W ∈ Rn×K×F, given by the concatenation along
the third dimension of the weight matrices W(1), . . . W(F) ∈ Rn×K, corresponding to the F
output features of the nodes. Each column w(l)

·k ∈ Rn of W(l) is the basic filter describing the
contribution of the k-th input feature to the computation of the l-th output feature of the nodes,
for each k = 1, . . . , K, and l = 1, . . . , F;

• The tensor W̃ ∈ RnK×F×n is defined as the concatenation along the second dimension (i.e., the
column dimension) of the matrices W̃(1), . . . , W̃(F), such that

W̃(l) :=


Ŵ(l,1)

...

Ŵ(l,K)

 =


diag(w(l)

·1 )Â
...

diag(w(l)
·K )Â

 ∈ RnK×n , (9)

for each l = 1, . . . , F. Before the concatenation, the matrices W̃(1), . . . , W̃(F) are reshaped as
tensors in Rnk×1×n (see Figure 2);

• the operation W̃>vertcat(X) is a tensor–vector product (see Remark 2);
• B ∈ Rn×F is the matrix of the biases, i.e., each column b·l is the bias vector corresponding to

the l-th output feature of the nodes.

Notation 1. From now on, for the sake of simplicity, for each matrix X ∈ Rn×K, we denote by x
the vector vertcat(X) ∈ RnK.
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col.-dim.

3rd dim.

row-dim.

Ŵ(1,1)

...

Ŵ(1,K)

W̃(1)

W̃(2), . . . , W̃(F−1)

Ŵ(F,1)

...

Ŵ(F,K)

W̃(F)

Figure 2. Tensor W̃ obtained concatenating along the second dimension of the matrices
W̃(1), . . . , W̃(F) ∈ RnK×n. Before the concatenation, the matrices are reshaped as tensors in Rnk×1×n.

The generalization of (5) to the case of F output features is built as a function that, for
each X ∈ Rn×K, a matrix is returned Y ∈ Rn×F whose l-th column y·l , for l = 1, . . . , F, is
defined as the application of (5) with respect to a proper filter W(l) ∈ Rn×K. Indeed, given

y·l = f
(

W̃(l)>x + b·l
)

(10)

where b·l ∈ Rn is the bias vector associated to the l-th filter, we have

Y =
[
y·1 · · · y·F

]
=
[

f
(

W̃(1)>x + b·1
)
· · · f

(
W̃(F)>x + b·F

)]
= f

(
W̃>x + B

)
.

Put simply, the generalization to the F output features can be interpreted as a repetition
of (5), with respect to F different filters and biases, grouping the results in a matrix Y.

Remark 2. We recall that the matrix-tensor product of a matrix M ∈ Rp×q by a tensor T ∈ Rq×r×s

is given by
M · T = P ∈ Rp×r×s ,

where the (i, j, k)-th component pijk of the tensor P is defined as

pi j k =
q

∑
h=1

mi hth j k ,

where mih and thjk are components of M and T, respectively. Analogously, we can extend this
product to tensor–matrix or tensor–tensor pairs.

Moreover, we recall that, for a three-way tensor as W̃, the transpose is defined such that the
(i, j, k)-th element of W̃> is equal to the (k, j, i)-th element of W̃.

Remark 3 (Total number of parameters). The total number of parameters in a GI layer, with a
characterizing function (8), is nKF + nF, i.e., the number of weights plus the number of biases. Let
us recall that the number of parameters of a fully-connected layer, with an input shape n and an
output shape M is nM + M; then, in the case of M = n and (KF + F) < (n + 1), we see that the
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GI layers have a smaller number of parameters to be trained. This observation is important in the
case of very large graphs G (i.e., n� 1).

Remark 4 (GI layer contextualization). To the best of the authors’ knowledge, the GI layers
introduced above define a novel typology of spatial GCNs. Equation (1) partially recalls the NN4G
layer (see [sec. V.B.] in [3,5]), if one removes both the so-called residual and skip connections (i.e., the
extra connections used to directly transfer information between non-consecutive layers). However,
the formulation given by the authors in Equation (1) is generalizable to the tensor form (8), i.e., to
multiple input/output features, unlike the NN4G layers. It is worth noting that a tensor form , such
as (8), is very useful to manage graph-structured regression problems with more than one feature
per node.

Analogously, there are few similarities between the simple LGI layer of Equation (1) and the
diffusion-convolutional NNs (DCNNs) of [21] which can be observed, but these GCNs are still
different from the GINNs. Indeed, DCNNs are made for different types of tasks, such as node
classification or graph classification tasks, inferred from the known features of a subset of nodes.
In addition, DCNN layers are based on a degree-normalized transition matrix, computed from the
adjacency matrix, “that gives the probability of jumping from node i to node j in one step” [21].

Other similarities between the GINNs and other models can be observed in [22,23], where the
adjacency matrix is used to describe the flow of information. Nonetheless, in [22], the NN is built
connecting a set of simpler NNs, according to the adjacency matrix. In [23], the interconnected
NNs are trained similar to a physics-informed NN (see [24,25]).

In the end, we point the attention of the reader to the fact that, from a theoretical point of view,
nothing prevents us from adding a softmax layer at the end of a GINN to extend the new model
architecture to cover graph classification tasks with respect to vertex labels (like CNNs for image
classification); however, we defer the study of this possibility to future work.

2.3. Additional Properties for GI Layers

The GI layers, in their general formulation (8), can be endowed with additional
operations. As is commonly done for the convolutional layers, we add the possibility to
endow the GI layers with a pooling operation. However, this operation is different from
the one typically used in convolutional layers. Indeed, we define a pooling for GI layers
that aggregates the information in the columns of the output matrix, i.e., the values of the F
output features of each graph vertex. Given a “reducing” operation (e.g., the mean, the
max, the sum, etc.), labeled as rdc, and applied to each row of the matrix returned by (8),
the pooling operation for GI layers modifies (8) in the following way:

L(GI ; rdc)(X) = rdc
(

f
(

W̃>x + B
))

, (11)

where rdc is applied row-wise. For example, let Y ∈ Rn×F denote the argument of the
pooling operation in (11), namely Y = f

(
W̃>x + B

)
; the max-pooling operation for a GI

layer is such that:

L(GI ; max)(X) =


max{y11, . . . , y1F}

...

max{yn1, . . . , ynF}

 ∈ Rn . (12)

Note that the pooling operation can be generalized to the application of subgroups
to filters, instead of to all the filters. In this case, the pooling operation returns a matrix
Y ∈ Rn×F′ , with F′ < F.

Another operation that is defined for GI layers is the application of a mask on the
graph, such that the layer returns values only for a subset {vi1 , . . . , vim} of the chosen nodes.
Let I = {i1, . . . , im} ⊆ {1, . . . , n} label the subset of nodes on which we want to focus the
output of the GI layer. Then, a GI layer with a mask operation defined by the set I returns a
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sub-matrix Y′ ∈ Rm×F of the matrix Y ∈ Rn×F defined by (8), obtaining extracting rows
with index in I; namely,

L(GI ; I)(X) =


(

f
(

W̃>x + B
))

i1 ·
...(

f
(

W̃>x + B
))

im ·

 ∈ Rm×F . (13)

We end this section with the following proposition, characterizing the relationship
between the input and the output features of the graph nodes with respect to a GINN with
a subset of H consecutive GI layers. The proof of the statement is straightforward.

Proposition 1 (Number of consecutive GI layers and node interactions). Let H ∈ N, H ≥ 1,
be fixed and let A ∈ Rn×n be the adjacency matrix of a given graph G. Let us consider a GINN with
a subset of H consecutive GI layers LGI

1 , . . . , LGI
H , built according to A and with LGI

h connected to
LGI

h+1, for h = 1, . . . , H − 1. Let dij:= distG(vi, vj) ∈ N ∪ {+∞} be the distance between node
vi and node vj in G. Then, the input feature corresponding to node vi in LGI

1 contributes to the
computation of the output feature corresponding to vj in LGI

H if H ≥ dij.

The proposition above introduces a dependency of a GINN’s depth on the complexity
of the graph G = (V, E). Let F : Ω ⊆ Rn → Rm be a function defined on the n vertices
of G, and returning a vector of m values associated with the vertices vi1 , . . . , vim ∈ V. Let
F̂ : Rn → Rm be the characterizing function of a GINN that approximates F. If the output
feature of vertex vj ∈ {vi1 , . . . , vim} through F depends on the input feature of vertex vi,
then the GINN needs at least dij = distG(vi, vj) consecutive GI layers to guarantee that the
input feature of vi contributes in making predictions for the output feature of vj.

3. Numerical Tests

In this section, we study the potentialities of the GI layers, comparing the regression
abilities of GINNs and MLPs for graph-structured data.

The main test problem we consider is the maximum-flow problem: given a flow
network, that is, a graph with a source, a sink, and capacities defined on the edges, the goal
is to find the maximum flow value that can reach the sink (see [ch. 7.1] in [14]). In particular,
we are interested in the stochastic maximum-flow problem, i.e. a problem where the edge
capacities are modeled as random variables and the target is to find the distribution of the
maximum-flow (e.g., see [26]).

The stochastic maximum-flow problem is a sufficiently general problem for testing
GINNs, and it has many interesting applications in network analyses, such as the circula-
tion with demand (CwD) problems (see [ch. 7.7] in [14] and network interdiction models
(NIMs) [15]. Put simply, a CwD problem should identify whether or not the maximum flow
satisfies a given demand, varying the supply provided by the source and the capacities of
the edges; a NIM describes a game in which one or more agents modify the edge capacities
to minimize/maximize the maximum flow of the network. These models have many inter-
esting real-world applications, such as the administration of city traffic, the optimization of
goods distributions, and identifying vulnerabilities in an operational system.

The section is organized as follows: after a brief description of the maximum-flow
problem (Section 3.1), we illustrate the maximum-flow regression problem (Section 3.2).
Then, in Section 3.3, we report and compare the performances of the trained GINNs
and MLPs. We conclude the section with an example that shows the potentialities of
using GINNs in practical applications related to realistic underground flow simulations
(Section 3.4).
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3.1. The Maximum-Flow Problem

Flow networks are useful models to describe transportation networks, i.e., networks
where some sort of traffic flows from a source to a sink along the edges, using the nodes as
switches to let the traffic move from an edge to another one (see [ch. 7.1] in [14]). Here, we
briefly recall the definition of a flow network.

Definition 4 (Flow Network). A flow network G = (G, s, t, c) is a directed graph G = (V, E),
of nodes V and edges E ⊆ V ×V, such that:

• The two nodes s, t ∈ V, s 6= t, are defined as the source and the sink of the network, respectively;
• c is a real-valued non-negative function defined on the edges, c : E→ R≥0, assigning to each

edge e ∈ E a capacity ce := c(e).

A flow network G can be endowed with a flow function.

Definition 5 (Flow). Let G be a flow network. An s-t flow (or just flow) on G is a function

ϕ : E→ R≥0

that satisfies the following properties:

• The capacity condition: for each e ∈ E, it holds 0 ≤ ϕ(e) ≤ ce;
• The conservation condition: for each v ∈ V \ {s, t}, the amount of flow entering v must be

equal to the amount of flow leaving v, i.e.,

∑
e∈Ein(v)

ϕ(e) = ∑
e∈Eout(v)

ϕ(e) , ∀ v ∈ V \ {s, t} ,

where Ein(v) ⊂ V is the subset of the incoming edges of v, and Eout(v) ⊂ V is the subset of
outcoming edges of v;

• The amount of flow leaving the source s must be greater than, or equal to, the one entering s,
i.e., ∑e∈Ein(s) ϕ(e) ≤ ∑e∈Eout(s) ϕ(e).

For the sake of notation, for each v ∈ V we set

ϕin(v) = ∑
e∈Ein(v)

ϕ(e), ϕout(v) = ∑
e∈Eout(v)

ϕ(e), ∆ϕv = ϕout(v)− ϕin(v) ,

and we call the flow value of a vertex v the quantity ∆ϕv.
Then, due to the conservation condition, it holds that ∆ϕv = 0, for each v ∈ V \ {s, t},

and ∆ϕs ≥ 0. Note that the flow value of the source s is equal to the opposite of the flow
value of the sink t, i.e., ∆ϕt = −∆ϕs; for this reason, we refer to ∆ϕs as the flow value of
the network.

One of the most common issues concerning a flow network G is to find a flow that
maximizes the effective total flow of the sink t, i.e., to find ϕ∗, such that

ϕ∗ = arg maxϕ |∆ϕt| .

Such a kind of problem is called maximum-flow problem, and it can be solved through
the linear programming or many other algorithms (e.g., [27–31]). From a practical point of
view, the relationship between the maximum-flow problem and the minimum-cut problem
on a flow network G is particularily important (see [ch. 7.2] in [14] for more details).

Remark 5 (Flow networks and undirected graphs). Definitions 4 and 5 can be extended to the
more complicated case of undirected graphs. Indeed, as observed in Section 2, the non-directed edges
{vj, vi} of a graph are equivalent to the two directed edges (vj, vi) and (vi, vj). Then, a flow network
based on an undirected graph G = (V, E) can be defined as a flow network G = (G′, s, t, c), where
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G′ = (V, E′) is a directed graph, such that (u, v), (v, u) ∈ E′ if {u, v} ∈ E, whose capacity is
defined on the edges of G, i.e., c : E→ R≥0. As a result, a flow ϕ defined on such a flow network
is a function ϕ : E′ → R≥0 characterized by a slightly different capacity condition; namely, ϕ is
such that

0 ≤ ϕ((u, v)) + ϕ((v, u)) ≤ c({u, v}) , ∀ {u, v} ∈ E .

Another approach is to introduce an arbitrary ordering, denoted by “<”, on the graph nodes
and define a directed graph G′ = (V, E′), such that (u, v) ∈ E′ if {u, v} ∈ E and u < v. In this
case, a flow ϕ on the flow network G = (G′, s, t, c), with c defined on the edges E′ is a function
ϕ : E′ → R, such that the capacity condition is

0 ≤ |ϕ(e)| ≤ c(e) , ∀ e ∈ E′ ,

and where the entering/exiting behavior of the flows is described by the sign of ϕ(e) and not
by the edge direction; i.e., for (u, v) ∈ E′, if ϕ((u, v)) > 0 the flow ϕ((u, v)) enters in v,
whereas if ϕ((u, v)) < 0 then ϕ((u, v)) enters in u. This latter approach is mainly adopted by
software implementations.

3.1.1. The Stochastic Maximum-Flow Problem

The idea of the flow network, flow, and the maximum-flow problem can be easily
extended to a stochastic framework, in which edge capacities are modeled as random variables.

Definition 6 (Stochastic flow network). A stochastic flow network G = (G, s, t, p) is a directed
graph G = (V, E) of nodes V and edges E ⊆ V ×V, such that:

• The two nodes s, t ∈ V, s 6= t, are defined as the source and the sink of the network, respectively;
• p is a real-valued non-negative probability distribution for the edge capacities of the network.

We let G(c) denote the flow network (G, s, t, c) with edge capacities returned by c
sampled from p. More specifically, let e1, . . . , e|E| be all the edges of G; then G(c) = (G, s, t, c)
if:

• c ∈ R|E| is a vector whose ci is sampled from p;
• The function c is such that c(ei) = ci, for each i = 1, . . . , |E|.

We denote by ϕ(c) a flow defined on the flow network G(c).
The stochastic maximum-flow problem consists of finding the flow

ϕ∗(c) = arg maxϕ(c) |∆ϕ
(c)
t | , (14)

for each fixed vector c.
Alternatively, in stochastic maximum-flow problems, one may seek the flow distribu-

tion and/or its moments, or the maximum flow value entering the sink t, i.e.,

|∆ϕ
∗(c)
t | = max

ϕ(c)
|∆ϕ

(c)
t | , (15)

3.2. The Maximum-Flow Regression Problem

A maximum-flow regression problem, with respect to a given stochastic flow network,
consists of finding a function that, for each capacity vector c, returns an approximation of
the maximum flow |∆ϕ

∗(c)
t | or an approximation of all the flows reaching the sink t.

Let G be a stochastic flow network of n = |E| edges and, without a loss of generality,
let e1, . . . , em ∈ E, m ≤ n be all the incoming edges of the sink t. Let F : Ω ⊆Rn → Rm be a
function, such that

F(c) = [ϕ∗(c)(e1), . . . , ϕ∗(c)(em)]
> := ϕ , (16)

for each capacity vector c ∈ Ω ⊆Rn with the elements sampled from the distribution p of
the given network G.
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From now on, for the sake of simplicity, we drop the dependency from c and the
star symbol from the elements of ϕ, denoted by ϕ1, . . . , ϕm the m elements of the vector
ϕ = F(c). Moreover, assuming the convention of the non-negative flow functions on the
graph (see Section 3.1), we denote by ϕ the `1-norm of ϕ; specifically:

m

∑
j=1

ϕi =
m

∑
j=1
|ϕi| =‖ ϕ ‖1=: ϕ . (17)

Then, the target maximum flow with respect to c coincides with ϕ; indeed, |∆ϕt
∗(c)| =

∑m
j=1 ϕ∗(c)(ej) = ∑m

j=1 ϕi = ϕ.
Given the target function F defined by (16), we consider the maximum-flow regression

problem with respect to G looking for an NN with a characterizing function F̂ : Rn → Rm,
such that F̂(c) approximates F(c) for each capacity vector c. Namely, setting ϕ̂ = F̂(c)
and ϕ = F(c), we seek ϕ̂ ≈ ϕ. To train an NN with respect to F, we build a dataset (i.e.,
a multi-set) D of pairs (c , ϕ) ∈ Rn ×Rm, with ϕ = F(c), where the capacity vectors are
sampled with respect to the distribution p of G; then, D is split into a training set T , a
validation set V , and a test set P of arbitrary cardinalities. In particular, denoting Θ as
the multi-set T + V , we denote ϑ as the total number of pairs involved in the training
operations of the NN, i.e., the pairs in the multi-set Θ (ϑ := |Θ| = |T |+ |V|). For more
details about multi-sets, see Appendix A.

Once an NN is trained, we evaluate its regression performances by computing two
performance measures on the test set P : the edge-wise average mean relative error (MREav),
and the mean relative error on the predicted maxflow (MREϕ). These two errors represent
the mean relative error (weighted with respect to the true maxflow) of the predicted flows
of the m edges e1, . . . , em and the mean relative error of the predicted maxflow ϕ̂ := ∑m

i=1 ϕ̂j

(i.e., the sum of the elements of ϕ̂ = F̂(c)), respectively. For each prediction ϕ̂, let us denote

err(ϕ̂,ϕ) = [err1(ϕ̂,ϕ), . . . , errm(ϕ̂,ϕ)]> :=
[ |ϕ̂1 − ϕ1|

ϕ
, . . . ,

|ϕ̂m − ϕm|
ϕ

]>
as the vector of relative errors computed with respect to the true maxflow ϕ = ∑m

j=1 ϕj
(see (17)). Then, the performance measures MREav and MREϕ are defined as

MREav(P) :=
1
m

m

∑
j=1

 1
|P| ∑

(c,ϕ)∈P
errj(ϕ̂,ϕ)

 (18)

and

MREϕ(P) :=
1
|P| ∑

(c,ϕ)∈P

|ϕ̂− ϕ|
ϕ

, (19)

respectively.
The smaller both the MREav and the MREϕ values are on the test set, the better the

performances of the NN, with respect to the maximum-flow regression task, are.

Remark 6 (Interpretation of MREav and MREϕ). It is worth highlighting the different meanings
of the errors (18) and (19): MREav describes the average quality of the NN in predicting the single
elements ϕ1, . . . , ϕm of the target vector ϕ, while MREϕ describes the ability of the NN to predict
a vector ϕ̂, such that the corresponding maxflow ϕ̂ = ∑m

j=1 ϕ̂j approximates the true maxflow
ϕ = ∑m

j=1 ϕj. Therefore, a small MREav corresponds to a good approximation of the flow vectors
(i.e., ϕ̂ ≈ ϕ) and a small MREϕ corresponds to a good approximation of the maximum-flows
(i.e., ϕ̂ ≈ ϕ). Nonetheless, it is important to point out that a small MREav does not necessarily
imply a small MREϕ, and vice-versa. For example, an NN with large MREav, characterized by
the underestimation of the flows ϕj1 and by the overestimation of the flows ϕj2 , may return a
small MREϕ because the sum of the flows is not so far from the true maximum-flow; similarly, a
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large MREϕ can be obtained from a sufficiently small MREav if, e.g., the NN underestimates or
overestimates all the flows ϕ1, . . . , ϕm equivalently, such that ϕ̂≈ ϕ but ϕ̂ 6≈ ϕ.

3.2.1. Line Graphs for the Exploitation of GINN Models

Since the inputs of the target function F are the capacity vectors c, which are defined
on the edges of the graph G and not on the nodes, we need to compute the line graph L
of G in order to exploit the GINN models for the maximum-flow regression problem. We
recall, here, the definition of line graph (see [32,33]).

Definition 7 (Line Graph). Let G = (V, E) be a graph (either directed or not). The line graph of
G is a graph L = (E, E′), such that:

• The vertices of L are the edges of G;
• Two vertices in L are adjacent if the corresponding edges in G share at least one vertex.

Given the line graph L of the graph G of a stochastic flow network G, we can use
the adjacency matrix AL of L to define NN models characterized by GI layers to perform
the maximum-flow regression task. See the next section for more details about the GINN
architectures that are built.

3.3. Maximum-Flow Numerical Experiments

For the experiments related to the maximum-flow regression problem, we take into
account two stochastic flow networks:

• G1 = (GBA, s, t, p). The graph GBA of G1 characterizes a flow network built on an
extended Barabási–Albert (BA) model graph [34,35]. Put simply, an extended BA
model graph is a random graph generated using a preferential attachment criterion.
This family of graphs describes a very common behavior in many natural and human
systems, where few nodes are characterized by a higher degree if they are compared
to the other nodes of the network.
In particular, we generate an extended BA undirected graph using the NetworkX
Python module [36] (function extended_barabasi_albert_graph, input arguments
n = 50, m = 2, p = 0.15, and q = 0.35); then, we denote t (the sink of the network)
as the node with the highest betweenness centrality [37] and we add a new node
s (the source of the network) connected to the 10 nodes with smallest closeness
centrality [38,39]. With these operations, we obtain a graph GBA of 51 nodes and
n = |E| = 126 edges, where the source s is connected to the 10 nodes and the sink t is
connected to the m = 15 nodes (see Figure 3-left).
In the end, since, in real-world applications, truncated normal distributions seem to
be very common (see Remark 7), in order to simulate a rather general maximum-flow
regression problem, we chose a truncated normal distribution between 0 and 10, with
a mean of 0, and a standard deviation of 5/3, as a probability distribution p for the
edge capacities (see Section 3.1.1); i.e.,

ci ∼ p ≡ N[0,10](5 , 5/3) , ∀ i = 1, . . . , n . (20)

• G2 = (GER, s, t, p). The graph GER of G2 characterizes a flow network built on an
Erdős-Rényi (ER) model graph [40,41]. Put simply, an ER model graph is a random
graph generated with a fixed number of nodes, where the edge eij = (vi, vj) has a
fixed probability of being created. This family of graphs is typically used to prove
and/or find new properties that hold for almost all the graphs; for this reason, we
consider a stochastic flow network based on an ER graph in our experiments.
In particular, we generate an ER undirected graph using the NetworkX Python mod-
ule [36] (function fast_gnp_random_graph, input arguments n = 200, p = 0.01) and
we select its largest connected component G0 (in terms of the number of vertices).
Then, we add to G0 two new nodes: a node s (the source of the network) connected to
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all the nodes with degree equal to 1, and a node t (the sink of the network) connected
to the 15 most distant nodes from s. With these operations, we obtain a graph GER of
171 nodes and n = |E| = 269 edges, where the source s is connected to 37 nodes and
the sink t is connected to m = 15 nodes (see Figure 3-right).
In the end, we chose the truncated normal distribution (20) as the probability distribu-
tion p for the edge capacities.

Figure 3. Graph GBA of G1 (left) and graph GER of G2 (right). In cyan, and with a circle around the
source s, in magenta and with a circle around the sink t, in green the nodes connected to s, and in red
the nodes connected to t. All the other nodes are in blue.

Remark 7 (Regarding the truncated normal distribution for capacities). In a network describ-
ing a system of highroads, the capacity of a road is defined as c = k`/S [42], where k ∈ R+ is a
value depending on the type of the road, ` is the road length, and S is the average distance between
two vehicles, typically chosen as a constant value. Then, assuming a network with all roads of
the same type (i.e., k constant) and a truncated normal distribution for the length ` of the roads,
the capacity can be modeled as a random variable with a truncated normal distribution. Therefore,
generalizing the concept of the highroad capacity to other similar problems (e.g., a network of pipes,
a communication network, etc.) the distribution (20) can be considered sufficiently generic for the
numerical experiments of this section.

Given the stochastic flow networks G1 and G2, the corresponding maximum-flow
regression problems consist of the approximation of the functions F1 : Rn → Rm, n = 126,
m = 15, and F2 : Rn → Rm, n = 269, m = 15, respectively, where F1 and F2 are de-
fined as in (16). For each i = 1, 2, we build the dataset Di of Gi made of 10,000 pairs
(c , ϕ = F i(c)) ∈ Rn ×Rm, where 3000 of them are used as the test set (Pi) and the remain-
ing 7000 pairs are used to generate the multi-set Θi sampling ϑ ∈ {1, . . . , 7000} pairs. In
particular, 80% of the pairs in Θi are used as the training set (Ti) and the remaining 20% are
used as the validation set (Vi). An important aspect of our numerical experiments consists
of analyzing the performance of the trained NNs, varying the quantity of available data
for the training process (i.e., ϑ), and not only varying the hyper-parameters related to the
architecture and optimization method; in particular, we study the NN performances when
the number of training and validation data is ϑ = 7000, 1000, 500. Indeed, in real-world
problems, the amount of available data can be limited for many reasons (e.g., limited com-
putational resources for simulations, limited time for measurements, etc.). Then, studying
the performances of a regression model while decreasing ϑ is important to understand the
sample efficiency of the model.

The fluxes F i(c) = ϕ for the dataset creation are computed using the maximum_flow
NetworkX function that, specifically, allows the computatio of the flows for all the edges of
the network (given the capacities c). Then, considering all the 10,000 simulations executed
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to build the dataset Di, and denoting `
(i)
max(c) the length of the longest source-sink path in

Gi(c), we observe that:

1. `min(G1) = 4, `av(G1) ≈ 5.5, and `max(G1) = 9;
2. `min(G2) = 7, `av(G2) ≈ 10.7, and `max(G2) = 17;

where `min(Gi), `av(Gi), and `max(Gi) are the minimum, the average, and the maximum
lengths, respectively, of the longest source-sink path of the flow for Gi with respect to Di,
i.e.,

`min(Gi) := min
(c,ϕ)∈Di

`
(i)
max(c) , (21)

`av(Gi) :=
1
|Di| ∑

(c,ϕ)∈Di

`
(i)
max(c) , (22)

and
`max(Gi) := max

(c,ϕ)∈Di

`
(i)
max(c) . (23)

The values reported in items 1 and 2 show that, on the average, in a radius of the length
`av(Gi) from the sink t, it is likely to find almost all the nodes characterizing the maximum-
flow of the network Gi. This information is then taken into account while choosing the
depth values for the construction of the GINNs in the following Section 3.3.1. Indeed, we
recall that the number of consecutive GI layers in an NN tells us if the input feature of
node vi contributes to the computation of the output feature of node vj (see Proposition 1).
Therefore, it is interesting to verify if the regression performance of a GINN improves or
not, when the number of GI layers is related to one of the quantities (21)–(23).

3.3.1. NN Architectures, Hyper-Parameters, and Training

In the numerical experiments of this section, we study and compare the performances
of MLPs and GINNs concerning the maximum-flow regression problems related to F1 and
F2. Then, we consider the two archetypes of NN architectures: an MLP archetype and a
GINN archetype.

• MLP Archetype: The NN architecture is characterized by one input layer L0, H ∈ N,
hidden layers L1, . . . , LH with a nonlinear activation function f , and one output layer
LH+1 with a linear activation function. The output layer is characterized by m units,
while all the other layers are characterized by n units. Finally, we apply a batch
normalization [43] before the activation function for each hidden layer L1, . . . , LH . See
Figure 4.

• GINN Archetype: The NN architecture is characterized by one input layer L0 of n
units, H ∈ N hidden GI layers LGI

1 , . . . , LGI
H with a nonlinear activation function f , and

one output layer LGI
H+1 with a linear activation function. All the GI layers are built

with respect to the adjacency matrix AL ∈ Rn×n of the line graph of the network (see
Section 3.2.1) and they are characterized by F ∈ N filters (i.e., output features). Then,
the number of input features K of the GI layer LGI

h is K = F, if h > 1, and K = 1, if
h = 1. As for the MLP archetype, we apply a batch normalization before the activation
function of each hidden layer. Finally, the output layer is characterized by a pooling
operation and by the application of a mask (see Section 2.3) to focus on the m units
corresponding to the m target flows. See Figure 5.

For our experiments, given the two NN archetypes above, we built a set of untrained
NN models, varying the main hyper-parameters of the architectures. In particular, for the
MLPs, we varied the hyper-parameters H and f (i.e., the depth and activation functions
of the hidden layers), while for the GINNs, we also varied F (i.e., the number of filters of
the GI layers) and the pooling operation. Specifically, the hyper-parameters vary among
these values:

• MLP archetype. f ∈ {relu, elu, swish, softplus} and H ∈ {2, 3, 4, 5}. We do not use
deeper MLPs to avoid the so-called degradation problem [44], i.e., the problem in
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which increasing the number of hidden layers causes the performance of an NN to
saturate and degrade rapidly.

• GINN archetype. f ∈ {relu, elu, swish, softplus}, F ∈ {1, 5, 10}, and pooling opera-
tions in {max, mean} (only if F = 5, 10); H ∈ {3, 5, 7, 9} for G1 and H ∈ {4, 9, 14, 19}
for G2. In particular, we select these values of H because they are a discrete interval
around the value `av(Gi), also including cases near, or equal to, the minimum and
maximum values `min(Gi) and `max(Gi), respectively.

L0

c1

c2

...
...

cn−1

cn

L1

...

· · ·

· · ·

· · ·

· · ·

· · ·

LH

...

LH+1

ϕ̂1

...
...

ϕ̂m

Figure 4. MLP archetype. The units of the input layer L0 are in green, the units of the hidden layers
L1, . . . , LH are in purple, and the units of the output layer LH+1 are in red.

Rn

Input

Rn×1×F

GI

Rn×F

GI output

Rn×F×F

GI

Rn×F

GI output
Rn×F×F GI
(pool-max;
m-focus)

Rm

GI
output

Figure 5. Example of a GINN archetype with depth H = 2 and max-pooling operation for the output
layer. The output matrices Y of the NN layers are in orange, the weight tensors W of the hidden GI
layers are in red (see Definition 3), and the weight tensor W of the output GI layer with max-pooling
and masking operations (see Section 2.3) are in purple.

Then, these models are all trained on ϑ = 7000, 1000, 500 input–output pairs sampled
from Di −Pi, using a mini-batch size β = 128, 64, 32; the weight initialization is a Glorot
normal distribution [45] for the MLPs and it varies among a Glorot normal and a normal
distribution N (0, 0.5) for the GINNs. All the biases are initialized as zeroes.

The remaining training options are fixed and shared by all the models during the
training. In particular, these options are:

• Mean square error (MSE) loss, i.e.,

loss(B) :=
1
m

m

∑
j=1

 1
|B| ∑

(c,ϕ)∈B
(ϕ̂j − ϕj)

2

 , (24)

where B is any generic batch of input–output pairs;
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• The Adam optimizer [46] (learning rate ε = 0.002, moment decay rates ρ1 = 0.9,
ρ2 = 0.999);

• Early stopping regularization [20,47] (200 epochs of patience, restore best-weights), to
avoid overfitting;

• Learning rate reduction on plateau [47] (reduction factor α = 0.5, 100 epochs of
patience, minimum learning rate ε = 10−6).

The training of all the NN models, with respect to all the different training configura-
tions, returns 3168 trained NNs; in particular, we have 144 MLPs and 1140 GINNs, for each
stochastic flow network G1 and G2.

3.3.2. Performance Analysis of Maximum-Flow Regression

To evaluate the performance of an NN trained with respect to the maximum-flow regres-
sion task, we consider the errors MREav and MREϕ (see Section 3.2 and Equations (18) and (19),
respectively) measured on the test set. In particular, to better analyze the performances,
we visualize the NNs as points in the (MREav, MREϕ) plane (see Figures 6 and 7). Then,
the nearer a point is to the origin (i.e., the ideal zero-error NN), the better the regression
performances of the corresponding NNs are. We decide to use this representation because
of the characteristics of the errors reported in Remark 6. Indeed, it is important to analyze
the behavior of the NNs with respect to MREav and MREϕ together.

We start the analysis with the first stochastic flow network G1. In general, looking at
Figure 6, we clearly see that the GINNs have better regression performances than the MLPs.
In particular:

1. The MREϕ of the GINNs is generally smaller than the MLPs, and this effect increases
with ϑ;

2. The MREav of the GINNs is almost always smaller than the MLPs, and this effect
seems to be almost stable while varying ϑ;

3. Looking at the hyper-parameter F, we observe that the cases with F = 1, 10 generally
perform better with fewer training samples (i.e., ϑ = 1000, 500) while the cases with
F = 5 generally perform better with ϑ = 7000. This phenomenon suggests that
increasing the number of filters can improve the quality of the training, even if a clear
rule for the best choice of F is not apparent.
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Figure 6. Network G1. Scatter plots in the (MREav, MREϕ) plane. Left to right: NNs trained with
ϑ = 7000, 1000, 500 samples. Red circles: MLPs; green stars, blue crosses and purple “x”: GINNs with
F = 1, 5, 10, respectively.

We continue the analysis with the second stochastic flow network G2, increasing the
size and complexity of the flow network. Indeed, the graph GBA of G1 is characterized
by a reduced complexity of the maximum-flow problem, because the BA graphs are
generated using a preferential attachment criterion that keeps the average length of the
maximum source-sink path `av(G1) small, even when increasing the nodes of the graph
(this phenomenon was observed during some preliminary experiments).

Looking at Figure 7, we notice the same characteristics observed for G1, but much
more emphasized. In particular, for each ϑ = 7000, 1000, 500, we clearly see that the GINNs
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generally outperform the MLPs, especially with respect to the MREav. The reason for these
similarities probably lies in the nature of the graphs GBA and GER of G1 and G2, respectively;
indeed, the ER graphs are used to represent generic graphs and are typically used to show
properties that hold for almost all the graphs. On the other hand, the graph GBA is simpler
than GER. Then, it is reasonable that the observations made for G1 are confirmed looking at
G2 and it is reasonable that the performance differences observed in G2 are less emphasized
in G1, since the maximum-flow problem on GBA is less complex than on GER.
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Figure 7. Network G2. Scatter plots in the (MREav, MREϕ) plane. Left to right: NNs trained with
ϑ = 7000, 1000, 500 samples. Red circles: MLPs; green stars, blue crosses and purple “x”: GINNs with
F = 1, 5, 10, respectively.

Remark 8 (GINNs, small MREav, and regressions on graphs). We have just observed that the
GINNs genrally perform better than MLPs for regression tasks on graphs but, if we focus on the
MREav values, the GINNs clearly show better performances (see Figures 6 and 7 and Tables 1 and 2).
Specifically, Tables 1 and 2 show the three GINNs and MLPs with lowest MREav value on the
test sets of G1 and G2, respectively. The better performances of the GINNs, with respect to this
error measure, are particularly important if we extend the regression problem, e.g., if we want to
learn all the flow values ϕ∗(c)(e1), . . . , ϕ∗(c)(en) on the edges of the graph and not only the ones
characterizing the maximum-flow ϕ reaching the sink. Indeed, in this case, an NN with small
errors on the single elements of the target vector is fundamental, while an NN with small errors on
the sum of the elements of the target vector is useless; for this reason, in vector-valued regression
tasks, we use loss functions such as (24) (evidently similar to the performance measure MREav). In
conclusion, we believe that the GINNs have great potential in the field of regression graphs.

We continue to conclude the performance analysis, and we analyze how the errors of
the NN models change when varying the hyper-parameters.

The first observation is related to the activation functions and the mini-batch size.
We observe that the trained NN models (both GINNs and MLPs) generally exhibit worse
regression performances with a relu activation function and a mini-batch size equal to 128;
in Figure 8, we report the same scatterplots of Figures 6 and 7 but without the points
corresponding to the NNs with the relu activation function or a mini-batch size equal to 128.
It is worth noting that the general observations concerning the NN performances are even
more evident when removing these models. Moreover, among the remaining models, we
do not observe activation functions or mini-batch size values that are evidently better than
the others; in general, as can be expected, we only observe a few advantages of using a
mini-batch size of 32 samples instead of a mini-batch size of 64 samples, while decreasing ϑ.

From now on, we do not include in our analyses the models characterized by a relu
activation function or mini-batch size equal to 128. Moreover, we only focus on the GINN
models and, in particular, on their performances with respect to the hyper-parameter H,
characterizing the number of hidden layers. Indeed, the remaining hyper-parameters
(pooling operations and weight initializations) do not seem to have a particular impact on
the results.

The study of the GINN performances with respect to H is particularly interesting if
we consider Proposition 1. In fact, from this proposition, we expect the GINN models to
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have a better performance if the depth H is such that H + 1 & `av(Gi). This guess is indeed
satisfied. In particular, for G1, we see that by increasing the depth H, we obtain GINNs
with better performances in general (see Figure 9). On the other hand, for G2 we observe a
slightly different behavior. The GINNs that are sufficiently deep (i.e., H ≥ 9) show better
performances than the GINNs with H = 4, but their errors tend to increase with a small ϑ;
in particular, the more H is greater than `av(G2), the more the GINN performances seem to
deteriorate (see Figure 10). To summarize, the depth in a GINN model is very important
to obtaining good regression abilities, keeping in mind Proposition 1. Nonetheless, the
practice of using as much of a GI layer as possible is not always the best choice, and this
topic deserves attention in future work.

Table 1. Network G1. Top three GINNs and MLPs, for ϑ = 7000, 1000, 500. Models are sorted with
respect to the MREav error; the “rank” column describes their global position with respect to all the
other models.

G1 GINNs MLPs

ϑ Rank MREav H F f β Pool. Init. Rank MREav H f β

7000

1/528 0.00707 9 1 elu 64 - G.Norm. 446/528 0.00914 3 swish 32

2/528 0.00712 9 1 elu 128 - Norm. 453/528 0.00934 3 swish 64

3/528 0.00713 9 1 elu 32 - Norm 455/528 0.00939 4 swish 32

1000

1/528 0.00933 9 1 softplus 32 - G.Norm. 338/528 0.01272 5 softplus 32

2/528 0.00940 7 1 elu 32 - Norm. 353/528 0.01289 4 elu 32

3/528 0.00952 7 1 elu 32 - G.Norm. 357/528 0.01292 5 elu 32

500

1/528 0.01056 7 1 softplus 32 - Norm. 263/528 0.01433 5 softplus 32

2/528 0.01077 5 1 relu 32 - G.Norm. 279/528 0.01448 5 softplus 64

3/528 0.01092 7 1 softplus 32 - G.Norm. 284/528 0.01452 4 softplus 32

Table 2. Network G2. Top three GINNs and MLPs, for ϑ = 7000, 1000, 500. Models are sorted with
respect to the MREav error; the “rank” column describes their global position with respect to all the
other models.

G1 GINNs MLPs

ϑ Rank MREav H F f β Pool. Init. Rank MREav H f β

7000

1/528 0.00087 14 10 softplus 32 max G.Norm. 442/528 0.00557 2 elu 32

2/528 0.00092 14 10 softplus 32 mean G.Norm. 445/528 0.00571 5 softplus 64

3/528 0.00099 12 10 softplus 32 mean G.Norm 446/528 0.00573 5 elu 32

1000

1/528 0.00465 9 1 elu 32 - G.Norm. 263/528 0.01038 3 softplus 32

2/528 0.00478 19 1 elu 32 - G.Norm. 264/528 0.01038 2 swish 32

3/528 0.00479 14 1 softplus 32 - Norm. 267/528 0.01043 3 softplus 64

500

1/528 0.00593 14 1 elu 32 - G.Norm. 114/528 0.01266 2 swish 32

2/528 0.00674 14 1 softplus 32 - G.Norm. 118/528 0.01272 2 swish 64

3/528 0.00688 19 1 softplus 32 - G.Norm. 119/528 0.01272 5 softplus 32
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Figure 8. Scatter plots in the (MREav, MREϕ) plane for NNs trained with respect to G1 (top) and G2

(bottom). Left to right: NNs trained with ϑ = 7000, 1000, 500 samples. Red circles: MLPs; green stars,
blue crosses and purple “x”: GINNs with F = 1, 5, 10, respectively. We do not plot results with NNs
that have a relu activation function or a mini-batch size equal to 128.

Remark 9 (Training time). Along the conducted experiments (with training that occurred more
than 3000 times), we find that the average training time for the GINN models is approximately
20 min in total, and one second per epoch; on the other hand, the average training time for the MLP
models is approximately 10 min in total and half a second per epoch. Nonetheless, we point out that
the difference in training times between GINNs and MLPs can be reduced with code optimization.
Indeed, the GINN layers are a custom class of TensorFlow NN layers developed on purpose by the
authors for numerical experiments. The code of TensorFlow’s FC layers is extremely optimized.
Therefore, at the present time, the GINNs and MLPs cannot be compared in terms of computational
costs. More details about the average training times per epoch of the models are reported in Table 3,
and this quantity is indicative of the training computational cost of the NNs. However, we recall
that the experiments take into account more than three thousand models, each one with a different
training configuration that characterizes the training time per epoch. All the training was performed
on a workstation with a CPU of 4 Core and 8 Threads, 32 GB of RAM, and a GPU Nvidia 1080
8 GB.

Table 3. Global statistics of the average training time per epoch for GINN and MLP models, expressed
in seconds.

Avg. Time per Epoch (s)

GINNs MLPs

Mean 1.099 0.565

Std 1.359 0.292

25th perc. 0.318 0.380

50th perc. 0.567 0.431

75th perc. 1.296 0.632
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Figure 9. Scatter plots in the (MREav, MREϕ) plane for GINNs trained with respect to G1. Left to
right: GINNs trained with ϑ = 7000, 1000, 500 samples; top to bottom: red markers highlight GINNs
with H = 3, 5, 7, 9 (black markers for all the other models).
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Erdős-Rényi (ϑ = 1000; H.Layers = 4)

10−26× 10−3 2× 10−2

MREav - log10 scale

3× 10−2

4× 10−2

6× 10−2

M
R

E
ϕ

-
lo
g 1

0
sc

al
e

GINNs (1 Filt.)

GINNs (1 Filt.; 4 H.Layers)

GINNs (5 Filt.)

GINNs (5 Filt.; 4 H.Layers)

GINNs (10 Filt.)

GINNs (10 Filt.; 4 H.Layers)
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Figure 10. Scatter plots in the (MREav, MREϕ) plane of the GINNs trained with respect to G2. From
left to right, the GINNs are trained using ϑ = 7000, 1000, 500 samples; from top to bottom, the red
markers highlight the GINNs with hyper-parameters of H = 4, 9, 14, 19 (black markers for all the
other models).

3.4. GINNs for Flux Regression in Discrete Fracture Networks

In Section 3.3, we showed the regression abilities and the potentialities of the GINN
models for the maximum-flow regression problem, i.e., for a problem representative of
generic real-world applications.

In this section, we address a specific real-world application where GINNs can be
useful; in particular, we consider an uncertainty quantification (UQ) problem related to
underground flows in fractured media. Flow characterization in underground fractured
media is an interesting problem for many applications, such as civil engineering, industrial
engineering, and environmental analyses. A helpful model to describe the flow in an
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underground network of fractures is represented by the discrete fracture network (DFN)
models [48–50]. These models express the fractures as two-dimensional polygons into a
three-dimensional domain, and each fracture is described by specific hydro-geological
properties (e.g., fracture transmissivity) and geometrical properties (e.g., barycenter po-
sition and orientation). Intersections between fractures, denominated “traces”, define
flux exchange phenomenons, such that the flow model is typically ruled by the following
assumptions: (i) the rock matrix is impenetrable; (ii) the Darcy law is used for the flux
propagation on each fracture; and (iii) the head continuity and flux balance is imposed
on all the traces. However, since the hydro-geological and geometrical characteristics of
the network of fractures are usually not accessible in detail, the DFN models are typically
generated by sampling their hydro-geological and geometrical features from known distri-
butions [51–54]. Therefore, a statistical approach is required to study real fractured media,
resorting to UQ analyses.

In recent literature, several new methods have been proposed to reduce the compu-
tational costs of the DFN flow simulations (e.g., see [55–57]); nonetheless, they are still
computationally expensive in many situations and the UQ analyses can involve thousands
of these simulations. Therefore, it is fundamental to take into account the techniques for
the complexity reduction, such as machine learning-based techniques (e.g., see [16,17,58]).
In particular, in [16,17], NN models are trained on datasets built using DFN simulations to
provide surrogate models; finally, in a negligible amount of time, the NN models are used
to generate a large set of approximated DFN flow simulation results, which are particularly
useful to speed up the UQ analyses.

In this section, the idea is to take advantage of the DFN’s graph structure to build GINN
models and to analyze the advantages of using such models for the DFN flux regression
tasks instead of the more classic NN architectures (e.g., MLPs or multi-task NNs).

3.4.1. The DFN Model and the Flux-Regression Task in DFNs

Here, for the reader’s convenience, we briefly describe the problem of the flow simula-
tions in DFNs. We point the interested reader to [55–57] for full details.

A DFN model is a discrete representation of an underground network of fractures in
a fractured rock medium using a set of intersecting planar polygons (the fractures) in a
three-dimensional domain D ⊂ R3 (the rock medium); see Figure 11 for a DFN example.
Each fracture (i.e., polygon) is labeled and identified by an index belonging to an arbitrary
set I; i.e., for each i ∈ I, we denote each fracture by Fi. Then, a DFN is defined as the
union of all the fractures, i.e., ∪i∈IFi. Since the traces, i.e., the segments obtained from the
intersection of two or more fractures that connect the fractures define a network, a DFN
can be represented as a graph where the fractures are the nodes and the traces are edges
(see Figure 11).

Figure 11. External surface of a natural fractured medium (left), a 3D view of a DFN (center), and a
graph representation of the same DFN (right). The DFN illustrated in this figure is DFN158, i.e., the
one used for the numerical tests of Section 3.4.
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Each fracture in a DFN is characterized by a transmissivity parameter κi and by
geometrical properties, such as the size and the orientation in R3. These characteristics are
generally sampled from known probability distributions, and they characterize the flow
simulations of the DFN. Indeed, a DFN flow simulation depends both on the geometry
and the hydro-geological properties of the fractures, such as the transmissivities κi of
the fractures.

The DFN flux regression problem addressed in this section is characterized as follows.
The DFN considered consists of n = 158 fractures and we donote it by DFN158. The
geometry of DFN158 is fixed, and the fractures are immersed into a domain D described by
a cube of 1000 m along the long edge (see Figure 11). The domain boundary conditions
are such that a fixed pressure difference ∆H = 10 m is imposed between two opposite
faces of D, therefore representing an inlet and outlet face, respectively. Moreover, those
fractures cut by the inlet and outlet faces of the domain are defined as inflow and outflow
fractures, respectively. The edges of all the other fractures are insulated (homogeneous
Neumann condition). It is possible to observe that the fixed geometry and the given
boundary conditions affect the flux directionality in DFN158; on the other hand, the
fracture transmissivities characterize the flow intensity exiting from the outflow fractures.
In particular, we assume that the fracture transmissivities of the fractures F1, . . . ,Fn are
isotropic parameters κ1, . . . , κn, respectively, described by random variables with a log-
normal distribution [51,52]:

log10 κi ∼ N (−5, 1/3) , ∀ i = 1, . . . , n .

In the test case considered, we use octagons to represent the fractures and they have
been randomly created according to the distributions in [53,54]. For their geometrical
properties: a truncated power law distribution for the fracuture radii, with an exponent
γ = 2.5 and an upper and lower cut-off ru = 560 and r0 = 50, respectively; a Fischer
distribution for fracture orientations, with a mean direction µ = (0.0065,−0.0162, 0.9998)
and a dispersion parameter of 17.8; and a uniform distribution for the mass centers of the
fractures. However, the first eight fractures F1, . . . ,F8 are not randomly sampled but are
created to ensure an inlet-outlet path for the flow, where F1 is an inflow fracture and F8 is
an outflow fracture.

Together with the boundary conditions described above, the geometry of DFN158 is
such that we have m = 7 outflow fractures in DFN158. Therefore, we can define a flux
function representing the DFN flow simulations for DFN158; i.e., a function F : Rn → Rm

such that, for each vector κ = [κ1, . . . , κn]> ∈ Rn of fracture transmissivities with n = 158,
it returns the vector F(κ) = ϕ = [ϕ1, . . . , ϕm]> ∈ Rm of fluxes exiting from the m outflow
fractures, m = 7.

Now, assuming the need to perform UQ analyses of the fluxes ϕ1, . . . , ϕm of DFN158
while varying the fracture transmissivities, it is worth considering the flux regression
problem that looks for NN-based approximations F̂ of F.

3.4.2. Performance Analysis of DFN Flux Regression

In this subsection, we extend the numerical experiments and analyses of Section 3.3
to the example represented by DFN158. Then, we study and compare the performances
of the MLPs and GINNs concerning the flux regression problem related to the function
F : Rn → Rm described in Section 3.4.1. The two archetypes of MLP and GINN architectures
are the same as in Section 3.3.1, as are most of the hyper-parameter values and the training
options used; the only differences are the following:

• ϑ = 1000, 500 (number of training and validation data);
• β = 64, 32 (mini-batch size);
• The relu activation function is not considered in the experiments;
• For the GINN models, we consider the depth parameter values H ∈ {4, 7, 9, 14, 19}.

The rationale behind this choice is that it is a set of values around 8, which is the
number of deterministic fractures that, on average, represent an inlet-outlet flow path
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for DFN158 (in the absence of a value equivalent to `av that cannot be easily computed
for DFN158);

• The GI layers are built with respect to the adjacency matrix A of DFN158; indeed,
we do not need to introduce the line graph of the network since the features (i.e., the
transmissivities) are assigned to the nodes of the graph and not to the edges.

As in Section 3.3.2, we evaluate the performance of the NNs trained with respect to
the DFN flux regression task measuring the errors MREav and MREϕ on the test set (also, in
this case, P is made of 3000 samples). Then, we visualize the results of the NNs as points
in the (MREav, MREϕ) plane (see Figure 12). Analyzing the error values and looking at
the scatter plots of Figure 12, we clearly observe that the GINN models outperform the
MLPs, and that they are characterized by more regular error behaviors than the GINNs
trained for the maximum-flow regression task, with respect to the filter hyper-parameter
(see Section 3.3.2). In particular:

1. Both the MREϕ and the MREav of the GINNs are almost always smaller than the ones
of the MLPs, independently of ϑ;

2. Looking at the filter hyper-parameter F, we observe that the GINN performances are
better as F increases (from F = 1, to F = 5, to F = 10).
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Figure 12. Scatter plots in the (MREav, MREϕ) plane for NNs trained with respect to DFN158. NNs
are trained using ϑ = 1000 (left) and ϑ = 500 (right) samples. Red circles: MLPs; green stars, blue
crosses and purple “x”: GINNs with F = 1, 5, 10, respectively.

We continue the analysis of studying the relationships between the GINN errors and
the other hyper-parameters of the models. With respect to the activation functions, we
observe that the GINN models with the elu activation functions have, in general, slightly
better performances than other models; on the other hand, all the GINN models with the
worst performances (i.e., the points in the top-right corners of Figure 12) have softplus
activation functions. Concerning the mini-batch size β, we observe that the GINNs with
the best performances (corresponding to points in the bottom-left corners of Figure 12)
are trained with β = 32. Similar results hold for the weights initialization, where the
best performing GINNs are initialized with a Glorot normal distribution. Concerning the
pooling operations, we do not observe particular differences in the error values of GINN
models using a max-pooling or a mean-pooling operation.

Analogous to Section 3.3.2, we conclude with a focus on the error behaviors with
respect to the depth H of the GINN models. Moreover, for the DFN flux regression task, we
observe that the depth H of the model can improve the regression quality. In particular, for
each ϑ = 1 000, 500, we observe that the best performances are obtained by the GINNs with
a depth of H = 7, 9, 14, while both the shallowest and the deepest GINNs (H = 4, 19) have
higher errors (see Figures 13 and 14). In accordance with Proposition 1 and the observations
of Section 3.3.2, this characteristic let us deduce that, on average, the maximum inlet-outlet
flux path in DFN158 is probably made of 8 to 15 fractures; i.e., a value not so far from the
length of the inlet-outlet path defined by the fractures F1, . . . ,F8.
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Figure 13. Scatter plots in the (MREav, MREϕ) plane for GINNs trained with respect to DFN158,
ϑ = 1000. Left to right, top to bottom: red markers highlight GINNs trained with H = 4, 7, 9, 14, 19,
respectively (black markers for all the other models).
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Figure 14. Scatter plots in the (MREav, MREϕ) plane for GINNs trained with respect to DFN158,
ϑ = 500. Left to right, top to bottom: red markers highlight GINNs trained with H = 4, 7, 9, 14, 19,
respectively (black markers for all the other models).

4. Conclusions

In this work, we presented the graph-informed (GI) layers, a new type of spatial-
based graph convolutional layer, designed for regression tasks on graph-structured data.
With respect to the other types of GCN layers, our GI layers stand out for their tensor
formulation (see (8)), managing multiple input/output features; moreover, these layers let
users build deep NN architectures which are able to exploit the depth needed to improve
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the regression performances (see Proposition 1 and Sections 3.3.2 and 3.4.2). The GI layers
have been formally defined, from the simplest version to the most general and tensor
version. Moreover, additional optional operations are introduced: the pooling operation
and mask operations.

To study the regression abilities of graph-informed NNs (GINNs), i.e., NNs made
from GI layers, we trained thousands of NN models (both GINNs and MLPs) on two
maximum-flow regression problems, with networks based on a Barabási–Albert graph (G1)
and an Erdős–Rényi graph (G2). We selected the maximum-flow regression problem as a
representative test since it is a sufficiently general problem to demonstrate the applications
in many topics of the network analysis. Analyzing the approximation errors of the NNs,
we observed that the GINNs have better performances than the MLPs. in general. In
particular, for G2, the GINNs in almost all the cases outperform the MLPs. The study of the
regression performances also showed an interesting relationship between small errors and
a depth greater than, or equal to, the average length of the maximum source-sink path in
the stochastic network.

After the test on the maximum-flow regression task, we illustrated an example of
a possible application of the GINNs to a real-world problem: a DFN flux regression
problem, i.e., an uncertainty quantification problem for the characterization of the exiting
flux distribution of an underground network of fractures. In this practical application,
the GINN models completely outperform the MLPs; moreover, both the depth and the
filter hyper-parameters of the GINNs proved to be significant enough to improve the
approximation quality of the target function.

In conclusion, we believe that our work introduces a new, useful, contribution to the
family of spatial-based graph convolutional networks; indeed, the numerical experiments
illustrated here show that the new GI layers and the GINNs have great potentialities in the
framework of regression tasks on graph-structured data.
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Abbreviations
The following abbreviations and nomenclatures are used in this manuscript:

BA Barabási–Albert
CNN Convolutional Neural Network
CwD Circulation with Demand
DCNN Diffusion-Convolutional Neural Networks
DFN Discrete Fracture Network
DL Deep Learning
ER Erdős–Rényi
FC Fully-Connected
GCN Graph Convolutional Network
GI Graph-Informed
GINN Graph-Informed Neural Network
GNN Graph Neural Network
ML Machine Learning
MLP Multi-Layer Perceptron
MRE Mean Relative Error
MREav Edge-Wise Average MRE
MREϕ MRE on the Predicted Maxflow/Outflow
MSE Mean Square Error
NIM Network Interdiction Model
NN Neural Network
UQ Uncertainty Quantification

Appendix A. Multi-Sets

Definition A1 (Multi-set [59,60]). A multi-set A is a collection of objects, called elements, which
may occur more than once. The number of times an element occurs in a multi-set is called its
multiplicity. The cardinality of a multi-set (denoted by |A|) is the sum of the multiplicities of
its elements.

In other words, a multi-set may be formally defined as a pair A = (A, m), where A is the
underlying set of the multi-set, formed from its distinct elements, and m : A→ Z+ is a function
that, for each a ∈ A, returns the multiplicity m(a) ≥ 1 of a in the multi-set.

Definition A2 (Relations and Operations with Multi-sets [60]). The usual relations and
operations on sets can be extended to multi-sets by considering the multiplicity function. Let
A = (A, mA) and B = (B, mB) be two multi-sets; then, we can define the following relations
and operations.

• Equality: A is equal to B (A = B) if A = B and mA(a) = mB(a), for each a ∈ A.
• Inclusion: A is included in B (A ⊂ B) if A ⊂ B and mA(a) < mB(a), for each a ∈ A.

Analogously, A is included in, or equal to, B (A ⊆ B) if A ⊆ B and mA(a) ≤ mB(a), for
each a ∈ A.

• Intersection: the intersection of A and B (A ∩ B) is a multi-set C = (C, mC), such that
C = A ∩ B and mC(c) = min{mA(c), mB(c)}, for each c ∈ C.

• Union: the union of A and B (A∪ B) is a multi-set C = (C, mC), such that C = A ∪ B and
mC(c) = max{mA(c), mB(c)}, for each c ∈ C.

• Sum: the sum of A and B (A+ B) is a multi-set C = (C, mC), such that C = A ∪ B and
mC(c) = mA(c) + mB(c), for each c ∈ C.

• Difference: the difference of A and B (A− B) is a multi-set C = (C, mC), such that A =
C + B.
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