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Abstract: Proof, a key topic in advanced mathematics, also forms an essential part of the formal
learning experience at all levels of education. The reason is that the argumentation involved calls for
pondering ideas in depth, organizing knowledge, and comparing different points of view. Geometry,
characterized by the interaction between the visual appearance of geometric elements and the
conceptual understanding of their meaning required to generate precise explanations, is one of the
foremost areas for research on proof and argumentation. In this qualitative analysis of the arguments
formulated by participants in an extracurricular mathematics stimulus program, we categorized
students’ replies on the grounds of reasoning styles, representations used, and levels of generality. The
problems were proposed in a lesson on a quotient set based on the similarity among triangles created
with Geogebra and the responses were gathered through a Google form. By means a content analysis,
the results inform about the reasoning style, the scope of the argumentation, and the representation
used. The findings show that neither reasoning styles nor the representations used conditioned the
level of generality, although higher levels of argumentation were favored by harmonic and analytical
reasoning and the use of algebraic representations.
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1. Introduction

International acknowledgment of the importance of proof in learning mathematics has
inspired considerable research, although certain questions such as the extent of students’
aptitude for geometric proof and reasoning have yet to be answered [1,2]. Students have
been observed to feel no need for proof or to be able to distinguish verification from
explanation or proof [3]. This heightens the difficulties they encounter in higher education,
with its emphasis on structured criteria such as rigor and logic [4].

Above and beyond the role of argumentation as a formal mathematical requirement,
in mathematics education it is instrumental in learning [5] and explanation [6], for formu-
lating arguments entails pondering ideas, organizing knowledge, and comparing different
points of view [7]. This study consequently focused on argumentation in mathematics
education, understood as the mathematical arguments generated by students and teachers
in mathematics classrooms [8].

Geometry is a key area for researching proof and argumentation in primary and
secondary school students [9]. More specifically, geometric transformations have been
shown to be important for the recognition of similar figures [10]. By exploring the properties
of shapes and their images using geometric transformations, students learn to justify and
prove their arguments and to establish interconnections with algebra [8].

Spatial reasoning calls for “the mental manipulation of visual stimuli to transform spa-
tial into other visual forms by thinking analytically about the structural features of spatial
forms” [11] (p. 78). In other words, geometric reasoning is characterized by the interaction
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between the visual and the conceptual [12]. In many geometric proof problems, students
find it difficult to make the verbal–symbolic/graphic–visual connection [13,14]. Reasoning
styles or approaches that may prove helpful in algebra may hinder the construction of
geometric proofs [15,16]. Proofs explicitly based on visual reasoning are often deemed
explanatory, whereas, with scant exceptions, purely algebraic proofs are not [17]. This is
because representation, on whose correct choice the use of symbols and furtherance of
reasoning depend, plays different roles in algebra and geometry [18].

For those reasons, encouraging the use of different types of representation (verbal
and symbolic notation among them) in argumentation has been highlighted as one of the
principles of proof problem design [19]. The aim is to identify teaching characteristics that
generate in students a need for proof beyond what the educator requires and assess their
ability to do so [20]. Failure in that respect is an acknowledged weakness of other more
traditional approaches to proof teaching [21,22].

Any number of empirical studies (including [23–25]) suggest that dynamic geometry
software (DGS) or environments (DGEs) favor the development of deductive reasoning.
Despite the use in recent years of proof assistant software and evidence of its benefits for
learning to solve proof problems, however, its utility for classroom mathematics teaching
has not been firmly established [26,27]. In the context of geometric transformations and the
use of different types of representation, Geogebra accommodates constructs that can be
dynamically altered by dragging separate objects, affording the program huge potential
for proof and visualization in geometric problems [28–30]. Drag functions are ideal for
solving proof problems with dynamic geometry software: building and validating figures,
dragging to find properties, formulating conjectures and validating the properties and
conjectures identified, and proving conjectures deductively [31]. Students taught receiving
instruction on the definitions and congruency properties of triangles may find it easier
to master deductive strategies in proof tasks [32]. The dragging function integrated in
dynamic geometry software can be used to analyze the properties conserved on the grounds
of similarity such as the Pythagorean theorem or to verify conjectures around triangles
of different dimensions [33]. Moving figures and dragging one of the vertices to form
a complete family has enormous potential, although whether or not students perceive
the meaning of invariability or the many advantages involved remains unclear [34]. One
potential advantage is the definition of a boundary case between condition-compliant and
-noncompliant examples, which is crucial to generalizing conjectures [35]. That not all cases
can be verified, even with dynamic geometry software, may encourage students to broach
problems more deductively [7]. The possible simultaneous use of algebraic expressions
with graphic representations may favor the formulation of more complete proofs [36].

Overall, proof problems require students to “do mathematics”, the highest level in
the cognitive demand model (above memorization, procedures without connections, or
procedures with connections) [37]. The greater complexity involved calls upon students
to engage in more intensive thinking, making such problems more of a challenge and
contributing to student enrichment [38]. Beyond the rigor demanded by the respective
community, some generic proofs are more transparent than others. The appropriate choice
of tasks and the demand for rigor and evidence consequently continue to be open ques-
tions [39], as is the transition from empirical proof to completely deductive proof [40,41].
Consideration should be given with respect to the degree of generality students attribute
to their arguments, for they must be aware not only that the examples used constitute
empirical evidence, but also that they must identify a general structure from such examples.
For an argument to be sufficiently general and deemed a valid proof, it must hold for all
the cases in a given domain [2].

In light of the foregoing ideas on proof in geometry, we believe argumentation must
be analyzed on the grounds of the following three considerations: students’ reasoning style,
representations in the justifications, and level of generality.

More summarily, this study aims to identify whether certain reasoning styles and
representations favor generalized justifications. We determine whether they justify all
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possible cases or allude to particular situations which, a priori, may be drawn from visual
perception. Concretely, we propose the following goals:

• Analyze students’ reasoning style and their willingness to use visual or analytical
processes in proofs must be determined;

• Detect the role of representation in the justifications put forward by students;
• Organize the level of generality shown by the student in their arguments.

With this endeavor, we hope to furnish information on teaching tasks and processes
that may favor the manipulation of and interconnection between different types of repre-
sentation and improve students’ spatial reasoning [42,43].

In pursuit of these aims, we delivered a lesson on differently represented geometric
proof problems and introduced a new way to characterize similar triangles. The resulting
analysis of reasoning styles and representations used by secondary school students in their
arguments sought to reply to calls for information in recent research on mathematics educa-
tion practice. A number of authors have contended that students can gain an understanding
of ideas associated with geometric transformations by deploying dynamic geometry envi-
ronments (DGEs) [1,44] and using representations to justify their thinking [45,46]. The role
of visualization or algebra in geometric reasoning was also explored [42,47].

2. Theoretical Framework

Many studies have endorsed the importance and utility of proof in mathematics
education, which continues to be deemed a topic meriting further research [2]. That
notwithstanding, no consensus has been reached on the consistent theoretical framework
for mathematical reasoning deemed necessary by some authors [48].

Here by proof we mean “a connected sequence of assertions for or against a mathemat-
ical claim” [49] (p. 291). Related terms sometimes used include explanation, justification,
and argumentation [4,22,50]. They differ in nuance, however, regarding (for instance) the
degree of conviction and rigor, which depends on the community at issue [51]. Argumen-
tation is nonetheless often found in a broader context of mathematical activity described
with terms such as proof or reasoning, which may entail exploring examples or particular
instances, formulating or refining conjectures, and putting forward arguments to establish
such conjectures as proofs or using them as elements of proofs [20]. One criterion for an
argument to be deemed a proof is that it must use statements, types of reasoning and
of representation generally accepted in the classroom community’s conceptual environ-
ment [49]. Here, the context was a secondary school lesson in which the primary aim was
to encourage proof as an aid to understanding [26].

The three elements around which we organized our study are described below. The
second requirement is that reasoning styles and the representations used by students to
support their arguments are consistent with the elements proposed by Stylianides et al. [20],
to which we added the third criterion, the scope of argumentation/level of generality.

2.1. Reasoning Styles

Reasoning styles were classified as per Krutetskii [52] into analytical, geometric, and
harmonic, depending on the procedure used to solve the problems and in keeping with a
study by Hadamard, Menchinskaya, Poincaré, Richardson, and Walter [53].

• Analytical: where the logical–verbal dimension prevails over the visual–pictorial
component. Scantly developed spatial concepts, inability to use visual support to
solve problems, and no need felt for such support;

• Geometric: where the pictorial–visual dimension prevails over the logical–verbal
component. Well-developed spatial concepts, and ability to use and acceptance of
visual support as necessary for problem solving;

• Harmonic: where the logical–verbal and visual–pictorial components are in balance.
Well-developed spatial concepts.
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In Krutetskii’s studies with 34 mathematically talented students, 23 exhibited har-
monic reasoning. In geometric instruction, teaching practice associated with argumentation
encourages connections with other branches of mathematics and coordinates perceptual
with numerical or symbolic skills [1,45,54,55]. Research has nonetheless revealed stu-
dent preference for logical–verbal over visual processing [53], which is observed in fewer
students [56].

Studies geared to characterizing high mathematical performance have shown mathe-
matically talented students’ scant willingness to use visual methods [57–59]. Others have
nonetheless found a positive relationship between visualization and effective mathematics
problem solving [60–63].

A third group of researchers have reported that the preference for a given type of
argument may not be found consistently across different contexts. Liu [64] concluded that
students may deploy deductive reasoning in one area while finding visual illustration
or the use of examples more convincing in others. Half of the 476 eighth-grade students
participating in Liu’s study acknowledged that proving special cases did not suffice for
argumentation to be deemed generally applicable, although most were unaware of the
advantages of symbolic expressions for representing the general case. Other studies have
identified the effect of other factors in students’ preference for one type of argumentation
or another, including mathematical aptitude [65], beliefs [41], or the establishment of
inter-representational relationships [66].

2.2. Representation

In proof, students’ argumentations may entail inductive, algebraic, visual, or percep-
tual reasoning defined on the grounds of how conclusions are drawn [67]. In inductive
reasoning, conclusions are based on the veracity of certain cases; in algebraic reasoning,
on a symbolically represented general case; in visual reasoning, on a geometric image;
and in perceptual reasoning, on a known context. Therefore, the type of representation
plays a significant role in students’ proofs. Gulkilik et al. [18] concluded that their ability
to use algebraic representations and relate them to visual and verbal representations was
important when transitioning from inductive to deductive arguments. Beitlich et al. [68],
in turn, showed that students who spent time revising pictorial representations exhibited
greater understanding when solving problems with pictures than with symbolic or verbal
elements. The students participating in Healy and Hoyles’ study [69] found arguments
involving symbols more difficult to follow than those using words, which they deemed
clearer. Research by Liu [64] revealed visually, verbally, numerically, or symbolically
represented examples to be the type of evidence of choice to support argument validity.

In this study, we deemed mathematical representations to be visible or tangible ele-
ments that code, represent, or integrate mathematical ideas [70]. They include diagrams,
number lines, specific objects or manipulatives, physical models, written words, math-
ematical expressions, formulas and equations, and computer screen depictions, among
others.

As the efficiency of a given type of representation depends on the associated task [71],
several should be used with geometric notions to help students synopsize and convey
their ideas [46]. Rodríguez and Gutiérrez [72] showed that DGE helped students identify
and check their conjectures empirically, but did not prove to be more helpful than paper
and pencil when building informal arguments in geometric proof problems. Other studies
revealed that students found it difficult to draw the connection between properties or
definitions and visual representations [73,74]. Surveys on problems using two-dimensional
representations of three-dimensional geometric forms concluded that, when more than one-
step reasoning is required, “either spatial visualization or property-based spatial analytical
reasoning ( . . . ) these two skills have to be harmonised” [42] (p. 235). The degree of
generality attributed by students to the representation used must be borne in mind in this
process, for it may either further or hinder their ability to grasp the general characteristics
of an idea or result [39].
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2.3. Scope of Argumentation

We define the scope of argumentation as the level of generality involved in a proof.
Generality is expressed with more or less sophistication depending on the degree of con-
traction of the semiotic media used [75] and may exist at different levels depending on the
individual, for what is symbolic and abstract for one may be specific for another [76]. A
generic argument entails explaining the reason why a statement about an object character-
istic of its class is true [77]. Generic examples, which have attracted particular attention in
the literature on proofs [40], may serve to transition from empirical to deductive proofs [78].
Mason and Prim [79] associated the idea “generic example” with the representative charac-
teristic of the respective class. In that vein, a model for representing triangles that stresses
the representative role of a class in terms of its properties is described below.

In mathematics, generalization may be divided into two main categories, empirical
and theoretical. This study focused on empirical generalization, in which the basic process
consists in detecting a feature or property common to two or more objects or situations
based on perception and then defining those features as generally present in all the re-
spective objects or situations [80]. Although deductive generalization often stems from
empirical cases, mathematical generalization is not always based on such instances, for it
may arise from changes in the way a given mathematical problem is posed. In general-
ization, the operators and sequence of operations identified that are common to specific
cases are extended to the general case [81]. In the inductive reasoning model [82], the
transition from working with specific cases to generalizing for all cases prior to the proof
entails several steps: (1) working with specifics, (2) organizing specific cases, (3) seeking
and predicting, (4) formulating conjectures, (5) justifying conjectures, (6) generalizing, and
(7) proving or formally validating.

This study analyzed students’ reasoning styles, representations, and generalizations as
they solved geometric proof problems. The subsequent qualitative analysis of the findings
aimed to furnish information on the scope of generality in the arguments used in the
various reasoning styles and representations.

3. Methodology
3.1. Subjects and Problems

In this descriptive qualitative study, data were gathered on the occasion of a lesson
forming part of a program for stimulating mathematical talent. The program, whose
lessons were delivered on Saturdays outside classroom hours, was designed to enlarge
on curricular and extracurricular content. The students participating were selected in-
tentionally from different schools in the southeast of Spain on the grounds of their high
performance, willingness, and proven aptitude to undertake non-routine mathematical
tasks. Those characteristics were closely aligned with research conducted to date in the
field, such as the ability to think harmonically, generalize, and flexibly use different types
of representation [52,83,84].

The lesson at issue was attended by 34 students enrolled in the program. Due to
the circumstances imposed by the COVID-19 pandemic, it was delivered virtually on the
Google Meet platform. The sample for this study is composed of 34 14- to 16-year-old
students who took part in the program, but only 21 voluntarily sent in their replies to a
questionnaire on a Google form. The lesson was delivered by two teachers who were also
the head researchers for this study, posing the tasks both verbally (accompanied by slides)
and written into a Google form. Although some features of proofs had been addressed
previously, the content involved in this lesson had not been explicitly dealt with in any
earlier session.

The data used for analysis consisted in the transcription of the video recording of
the lesson, including chat interventions, and the students’ replies to a questionnaire that
contained five problems (see Appendix A). The problems were designed based on two
criteria: (a) the representations used to solve the problem; and (b) gradually increasing
complexity. After the problems were validated with the cooperation of two enrichment



Mathematics 2022, 10, 789 6 of 21

program teachers, they were structured as follows: problems 1 and 2 familiarized students
with proof based on their knowledge of right triangles and in-plane movement. Problems
3, 4, and 5 addressed an unknown property posed as a more cognitively demanding proof
problem [37].

Problem 1 was posed using pictorial and algebraic representation, while problem 2 was
posed verbally only. Problems 3 and 4 were supplemented with Geogebra manipulatives
and problem 5 used Geogebra to represent the equivalence class of triangles (Figure 1) in
which all similar triangles were represented by a single member of the class (on the grounds
of similarity-determined equivalence). In that space, each point on the plane represented
a class of triangles, and argumentations built for the representative were generalized to
the entire class. The description of a property in any triangle in the equivalence class was
generalized to all similar triangles. The outcome was a higher level of generality in the
reasoning drawn from visual descriptions. Geogebra, which is a common resource within
the program, was used in twofold ways: firstly, to show the construction of the equivalence
class and how to manipulate it; secondly, a modeled resource of the equivalence class was
provided to the students, so they were able to manipulate Geogebra to check, analyze,
synthesize, and argument about the required questions.

Figure 1. Construction of the equivalence class of triangles. Each triangle is identified to a point C.

The replies were sent in sequentially after the students completed each problem. The
forms accommodated written answers, pictures of their drawings, and Geogebra constructs.
After all the individual responses were handed in, they were discussed collectively by some
of the students, with the teachers acting as moderators.

Lesson Components and Sequence

The table below summarizes lesson components and sequence under four headings:
problem stage, stage targets, description, and timing (Table 1).

Table 1. Lesson components and sequence.

Problem/Stage Target/s Description Timing

1/questionnaires Proof with graphic and algebraic
representation Introduction to the lesson Start

1/group pooling
Compare proofs S13: harmonic proof Minute 29

- R1: visual proof 1 -

Use Geogebra to visualize proof elements Pythagorean theorem in acute
and obtuse triangles Minute 35

- Familiarity with Geogebra Drag tool -

2/questionnaires Proof with verbal representation Explanation of homotheties and translation;
definition of similarity Minute 39
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Table 1. Cont.

Problem/Stage Target/s Description Timing

2/group pooling

Examples of isometric properties S8’s answer Minute 56
- R1: Isometry -

Distinction between proof and checking Examples in Pythagorean triples -
- Isometric properties -

-
Similarity in equilateral triangles

R2: Distinction between proof and checking
(example with paper triangle)

-

3/questionnaires Proof with verbal representation
and Geogebra

Perpendicular bisector and its properties
Construction of perpendicular bisector with

Geogebra (command and process)
Minute 69

3/group pooling Compare proofs S4’s proof Minute 85
- S13’s rebuttal -

Break - - -

4/questionnaires Proof with verbal representation
and Geogebra

Shape-dependent properties
Definition of circumcenter Minute 100

4/group pooling Compare proofs S18’s answer Minute 115

Explanation of
equivalence class

In-plane construction of the equivalence
class of triangles

R1: Similarity with equivalent fractions
R2: Construction process (using paper

example and Geogebra)
Minute 119

Use the equivalence class model
with Geogebra Model using Geogebra to manipulate -

5/questionnaires Proof using the equivalence class Construction of circumcenter
with Geogebra Minute 140

5/group pooling Compare proofs

S13’s answer
(involving the inverse)

S13’s reply (visual)
Role of points as representatives in the

equivalence class

Minute 165

Note: 1 Si: student “i”; R: researchers’ remarks.

3.2. Analysis of Questionnaires

The unit of analysis for each student was established as their answer to each problem
on the questionnaire and their participation during the pooling session. The three topics
defined earlier were analyzed in each case: reasoning styles, level of generality, and
representations used by students to support their arguments.

Reasoning style categories based on the Krutetskii [52] definitions were adapted to
problem particulars.

• Geometric (visual): prevalence of the pictorial–visual component. Argumentation is
supported by visual elements only, alluding exclusively to visually perceived equality
of areas or lengths.

• Analytical: prevalence of the logical–verbal component. Argumentation is supported
by algebraic expressions, deduction of properties, or the use of theorems.

• Harmonic: even balance between the two components. Argumentation is supported
by the connection between visualization and analytical reasoning, alluding to area
equality in the graphics to deduce algebraic expressions and vice-versa.

The scope of argumentation was characterized on the grounds of three deductive
model stages [82]: particular, sets (of cases), and generalization.

• Particular: argumentation focused on a specific case, with allusion to no other.
• Set: argumentation with allusion to a given set of elements.
• Generalization: generalized argumentation valid for all cases.
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Representations were categorized under the following headings, borrowed from
Goldin [70].

• Verbal: use of natural language only.
• Algebraic: use of symbolic notation and algebraic expressions.
• Pictorial: use of resources such as drawings, diagrams, and graphics, including manip-

ulation with Geogebra.

4. Results

An initial overview of the most significant elements of group behavior as a whole in
each problem is followed by a qualitative review of the connection between reasoning style
and generalization.

4.1. Overall Data

Tables 2–6 summarize the categories observed for each topic, citing only the students
who answered each problem.

Harmonic reasoning styles were observed in problem 1 only, the only one of the five
formulated with both graphic and algebraic representations. All but four of the students
formulated generally valid arguments applicable to all possible cases. Verbal representation
predominated in their answers, usually in conjunction with algebraic notation.

Students’ answers to problem 2 were very uniform, with visual reasoning, general
argumentation, and verbal representation (occasionally with algebraic symbols) prevailing.

As (interestingly) students’ replies to problem 3 were based on counter examples, the
level of generality in their arguments could not be established. Pictorial representation
predominated.

Many fewer students answered problem 4 than the preceding three, with an-
alytical reasoning, the highest scope of argumentation, and verbal and pictorial
representation prevailing.

Table 2. Answers to Problem 1.

Student Reasoning Style Scope of Argumentation Representation

S1 Visual General Verbal
S2 Harmonic General Algebraic and pictorial
S3 Harmonic Particular Verbal and algebraic
S4 Visual Generalization Verbal
S5 Harmonic Generalization Verbal and algebraic
S6 NA 1 Generalization Pictorial
S7 Visual Generalization Verbal
S8 Visual Generalization Verbal
S9 NA Generalization Verbal

S10 Visual Particular Pictorial
S11 Visual Generalization Verbal
S12 NA Particular -
S13 Harmonic Generalization Verbal and algebraic
S14 Visual Generalization Verbal
S15 NA Generalization Verbal
S16 Visual Generalization Verbal
S17 Visual Generalization Verbal
S18 Harmonic Generalization Verbal and algebraic
S19 NA Generalization Verbal
S20 NA - -
S21 Visual Generalization Verbal

1 No argument given.
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Table 3. Answers to Problem 2.

Student Reasoning Style Scope of Argumentation Representation

S1 Visual Particular Pictorial
S2 Visual Generalization Verbal
S4 Visual Generalization Verbal
S5 Visual Generalization Verbal
S6 Visual Generalization Verbal
S8 Visual Generalization Verbal
S9 Visual Generalization Verbal

S10 Visual Generalization Verbal and algebraic
S11 Visual Generalization Verbal and algebraic
S13 Visual Generalization Verbal
S14 Visual Generalization Verbal
S15 Visual Generalization Verbal
S16 Visual Generalization Verbal
S17 Visual Generalization Verbal
S18 Visual Generalization Verbal
S19 Visual Generalization Verbal

Table 4. Answers to Problem 3.

Student Reasoning Style Scope of Argumentation Representation

S2 Counter examples - Algebraic and pictorial
S4 Analytical Generalization Verbal
S6 Counter examples - Pictorial
S8 Counter examples - Pictorial
S9 Counter examples - Pictorial

S10 Counter examples - Pictorial
S11 Counter examples Set Verbal
S13 Counter examples Set Verbal
S16 Counter examples - Verbal
S17 Counter examples - Verbal
S18 Counter examples - Pictorial
S19 Counter examples - Pictorial
S21 Counter examples - Pictorial

Table 5. Answers to Problem 4.

Student Reasoning Style Scope of Argumentation Representation

S4 Analytical Generalization Algebraic and pictorial
S6 Analytical Generalization Verbal
S8 Visual Set Pictorial
S9 NA 1 - -

S10 Analytical - Verbal
S11 Analytical Generalization Verbal
S13 Visual Generalization Pictorial
S15 Analytical Generalization Verbal
S16 Analytical Generalization Verbal
S18 Analytical Generalization Verbal
S18 Analytical Generalization Verbal

1 No argument given.
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Table 6. Answers to Problem 5.

Student Reasoning Style Scope of Argumentation Representation

S4 Visual Generalization Verbal
S5 Visual Set Verbal
S8 Visual Set Verbal
S9 Visual Generalization Verbal

S13 Visual Set Verbal
S15 Visual Generalization Verbal
S16 Visual Generalization Verbal
S18 Visual Set Verbal

All the replies to likewise scantly answered problem 5 involved visual reasoning and
verbal representation. The scope of argumentation included allusions to given sets of
elements as well as to overall generality.

On the whole, visual reasoning prevailed except in problem 4, where analytical rea-
soning predominated. Students who reasoned analytically in that problem nonetheless
used visual reasoning in others. The inference derived from the overall findings was that
the use of multiple representations to pose problems appeared to favor the connection
between verbal and algebraic arguments in students reasoning harmonically. The type
of representation used in the problem itself was not a determinant for any given reason-
ing style, however, each student exhibited different styles depending on the nature of
the problem [64].

In problems 1, 2, and 4, most students’ argumentations drew from all the cases
involved to reach a given level of generality. Problem 3 was solved in most cases with
a counter example, with only two replies referring to a specific set of cases. In problem
5, the number of students who generalized was the same as the number who reasoned
for a specific set of cases. The inference was that students generalized, irrespective of
reasoning style or the ability to put forward formal proofs, by applying their arguments
to the general case [81]. They nonetheless experienced difficulty in encompassing all
the examples or generalizing what they perceived when building certain examples with
Geogebra representations [34,39].

Verbal representations were predominantly used to complete arguments. Problem 1
prompted the largest proportion of algebraic representations, observed in conjunction with
harmonic reasoning. Despite the lack of visual support in its formulation, problem 3 favored
pictorial representations because students replied with a drawing depicting a counter
example. Again, the inference was that the demands involved in solving a given problem
had a greater impact than the representation used in the problem formulation on the
way argumentation was represented [71]. That notwithstanding, although reasoning style
did not determine a preference for the type of representation, all the students deploying
harmonic reasoning combined algebraic with verbal or pictorial representations [42].

4.2. Reasoning Styles
4.2.1. Harmonic Reasoning

This type of reasoning was observed in only five students (S2, S3, S5, S13, and S18)
and in problem 1 only. In their arguments, all five combined prior visual work that entailed
identifying equal areas with the use of algebraic expressions.

S5, for instance, alluded to the position of the triangles, but supported his argument
on equality with the respective equations.

S5: This is the proof of the Pythagorean theorem. If the triangles are sub-
tracted from the large square, the result is an area of c2 . If the position of the
triangles changes, two squares would be left, a2 and b2 , which means that
c2 = (a + b)2 − 2ab and a2 + b2 = (a + b)2 − 2ab and, therefore, that c2 = a2 + b2.
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S2, in turn, simplified the algebraic expressions deduced after calculating the areas of
the four right triangles (Figure 2).

Figure 2. Student S2’s answer to problem 1.

All the students using harmonic reasoning in problem 1 recognized the proof to refer
to the Pythagorean theorem and formulated generalized arguments. Except for student
S3, whose reasoning made no allusion to generality, harmonic reasoning was associated
with that scope of argumentation and reinforced by the use of symbolic expressions, more
broadly applicable than the specific pictorial representation used.

In her (pronouns indicating gender have been assigned randomly to protect students’
anonymity) arguments, S13 alluded explicitly to generalization, although she mentioned
the role of graphic representation when deducing the formula:

S13: This proof is for the Pythagorean theorem. You know that because the formula
represented is the sum of a + b squared. a and b form triangles because if you formulate
an equation with them, you get c2 = (a + b)2 + (a × b + a × b + a × b + a × b)/2. If
you simplify that equation, the result is a2 + b2.

Yes, it would be graphic proof because you can see from the drawing that the
Pythagorean theorem holds. And you can also derive the formula from the
graphic representation. Because in the end all you vary is their length. In other
words, in the end [it doesn’t matter] whether the length is larger or smaller in the
drawing, it will always be a + b and the area will be a times b divided by 2 and in
the end you get the same result.

Some students represented their visual arguments with algebraic expressions, supple-
menting verbal discourse with symbolic representation:

S18: I think this is the proof of the Pythagorean theorem. I think it’s a proof first
of all because if you find for the whole square you get a2 + b2 + 2ab and if you
subtract the four right triangles from the square what should remain is the area
of the central square, a2 + b2 + 2ab – 4 × ab/2 = a2 + b2, so c is the area of the
square. And since the two squares have the same area when you remove the right
triangles, which together sum the same area as the ones in the first square, what
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we have is that the sum of the areas of the squares with sides a and b is the same
as the area of the square with side c in the first square, so again a2 + b2 + 2ab.

The behavior observed for the students who deployed harmonic reasoning denotes
their willingness to use different strategies depending on the demands of the problem
broached. S3 failed to reply to the other questions, whereas S2, S5, and S13 exhibited visual
reasoning in the other problems, and S18 exhibited visual reasoning in problems 2 and 5
and analytical reasoning in problem 4.

4.2.2. Visual Reasoning

Visual reasoning was the style most frequently observed throughout the experiment.
Students using that style based their arguments on their visual skills [85], particularly to
recognize spatial relationships and positioning in objects after they were moved:

S4: When you rotate or move (the triangle) the angles remain unaffected so it
continues to be a right triangle to which you can apply the Pythagorean theorem.
Thanks to symmetry and homotheties it’s the same for similar triangles. The
shape (angles) goes unchanged, except that the result is a larger or smaller mirror
image.

The scope of argumentation differed in students using visual representation depending
on the problem involved. Only two (S1 and S10) focused their arguments on specific cases
without alluding to any other. In problem 2, S1, for instance, depicted movement in a
particular triangle without arguing that the same properties would be applicable to any
triangle (Figure 3).

Figure 3. Student S1’s particular case-based answer to problem 2.

Four other students (S5, S8, S13, and S18) used visual reasoning in conjunction with
generalization for a given set of elements. In such cases, these students recognized the
property by type of triangle as well as the general applicability of the property to a set of
objects. They nonetheless did not argue on the grounds of generality but confined their
description to the properties perceived with the manipulation of the examples, using the
Geogebra drag function [34]. The argument and Figure 4 transcribed below, for instance, is
the mere description of the student’s observations:

S8: Yes, they intersect at the circumcenter, which is the point where all perpen-
dicular bisectors for all sides of the triangle intersect. In right triangles that
point is located on the hypotenuse; in obtuse triangles outside the triangle and in
equilateral tringles inside it (inner point).



Mathematics 2022, 10, 789 13 of 21

Figure 4. Student S8’s drawing for the manipulative construction of the circumcenter.

In contrast, in most of the answers involving visual reasoning, the arguments used to
justify the generalization of the properties referred explicitly to their validity for any case
or to properties known to be applicable:

S6: It holds in all [cases] because as long as the triangle has a right angle, it holds.
It doesn’t matter if it’s moved or the sides are larger or smaller (Figure 5).

S19: Yes, because the triangle is always the same (and therefore always has a right
angle which is why the Pythagorean theorem holds), except that the position
changes.

Visual reasoning was not associated with any single type of representation. As in
the other reasoning styles, verbal representation prevailed, although generalization was
also represented algebraically and pictorially. In some cases, pictorial representation itself
afforded a synoptic description of students’ reasoning, when they identified area equality,
for instance.

Figure 5. Student S8’s drawing for the manipulative construction of the circumcenter.
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In contrast to harmonic reasoning, in visual reasoning symbolic representation was
used only to supplement some of the properties identified:

S11: It also holds after applying symmetry because the symmetric triangle would
have the same angles and sides as the original, but in different positions.

It also holds after homotheties because if all the sides are multiplied times the
same number, the squares [of those products] would comply. If m is the number
times which they are multiplied, then m2(a2 + b2) = m2 × c2. If you then divide
both sides of the equation by m2 you get the same equation.

4.2.3. Analytical Reasoning

This reasoning style was detected primarily in problem 4, where students based
their arguments on the deduction or use of known properties, with no allusion to visual
perception. Student S4, for instance, used this type of reasoning in problems 3 and 4 both,
where he deduced the necessary properties:

S4: The perpendicular bisectors are a straight line where all the points are at
an equal distance from both edges. Each bisector is therefore consistent with
the definition. If all the points are at the same distance from both ends on the
bisectors, there must be one point that’s at the same distance from all three points
and that point would have to be on the three bisectors.

S4: The three bisectors intersect at a point that must be at the same distance from
a, b and c. Since the circumcenter is the circumference formed with the points on
the triangle, it has to be at that point.

Analytical reasoning was associated exclusively with arguments valid for the general
case, with no reference to particular situations. S16 stressed that validity for all cases did
not depend on the initial triangle for which the property was described:

S16: Yes, because it doesn’t matter what the triangle is like because since the point
is at the same distance from all the vertices you’ll always be able to draw a circle
that touches them all.

Although students worked manipulatively with Geogebra, representation was verbal
only and their arguments were not associated with any other type of representation:

S11: Yes, it’s true, because like a classmate said, the perpendicular bisector for a
is at the same distance from vertex a as from vertex b; the bisector for b is at the
same distance from vertex b as from c and the bisector for c is at the same distance
from c as from a. In that case, the point where the three bisectors intersect is
at the same distance from all the vertices, and that distance is the radius of the
circumcenter.

These findings appear to relate analytical reasoning to generalization and verbal repre-
sentation. Irrespective of whether they worked with manipulative graphic representations,
having to provide general arguments dissuaded them from using graphic representations.

4.3. Equivalence Class-Based Reasoning

Our perception was that students found working with equivalence class representation
a challenge. On the one hand, only eight students replied to problem 5, four of whom
reasoned solely on the grounds of a given set of elements, confining their arguments to a
description of their observations around right triangles:

S13: Yes, for all right triangles the circumcenter would be on the hypotenuse.
That is so because the perpendicular bisector for one leg is parallel to the other
leg, and vice-versa. And they intersect at the midpoint of the leg where they form
as well as at the midpoint of the hypotenuse, and the bisector for the hypotenuse,
like the bisectors for the legs, springs from its midpoint.
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Despite their use of visual reasoning supported with the manipulative represen-
tations observed, four students (S4, S9, S15, and S18), identified the examples as class
representatives, extending the validity of the argument only to the set represented. Such
considerations reveal the potential of equivalence class representation for arguing the
general case, as may be perceived in some sample replies:

S13: There are infinite equilateral triangles, but they’re all similar.

S13: Yes, but it’s easier to prove than in all cases of right triangles that the
circumcenter is on one side. It’s harder to prove than when the circumcenter is
on one side, that it’s a right triangle.

S4: If the circumcenter is on one side, that means the point is equidistant from the
edges of the triangle. It has to be a right triangle then, because if it were an acute
triangle it would be inside and if it were an obtuse triangle, it would be outside it.

Another point worth highlighting is the use of the equivalence class built with Geoge-
bra to confirm conjectures or formulate counter examples. This group of students used
their constructs as an item for discussion during the pooling session. The following excerpt
shows how one student formulated an erroneous argument because he used a property
based on particular instances. When a classmate described an explicit counter example, he
admitted that his initial argumentation was not valid:

S4: The perpendicular bisector is a straight line where all the points are at an equal
distance from both edges of the segment. Therefore if we take the three bisectors
there must necessarily be in all triangles a point that’s at the same distance from
a as it is from b and c, in other words, the three vertices. The bisectors for legs ab,
ac and ca will pass through that point. And it’s there they’ll intersect and it has
to be inside because otherwise it wouldn’t be at the same distance from the three
points.

R1: ( . . . ) Does anyone think otherwise?

S13: I don’t fully agree. Because when I uploaded it to Geogebra I found that
when a right triangle is involved, the perpendicular bisector for one leg is parallel
to the other leg and the same happens with the other leg. And the bisector for the
hypotenuse intersects the square formed by the legs and the bisectors diagonally.
And if the triangle is obtuse, it would start to shorten . . . and the point would
lie outside. That would contradict what S4 said because the point where all the
points are at the same distance doesn’t have to lie inside the triangle. In an obtuse
triangle that point would be outside the triangle.

S4: What can I say? ( . . . ) You’ve convinced me.

Although the aim of the study was not to explore the functions of proof, the students
were observed to understand the use of Geogebra as a tool to validate conjectures or check
properties, while distinguishing it from formal proof. The foregoing example of the student
who used Geogebra to counter the validity of her own argumentation is a case in point:

S13: Well . . . If the triangle is acute, the circumcenter lies inside it. And when it’s
obtuse, outside.

R1: And why would that be?

S13: I’d have to think about that.

R1: If when you see in Geogebra that when it moves it falls outside, would that
be a valid proof for you?

S13: It would be evidence, but not proof.

5. Discussion and Conclusions

In this study, we explored the effect of reasoning styles and the representations used
in argumentation on the level of generality of the justifications put forward by students
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in proof problems. Analysis of the answers to a questionnaire designed for that purpose
furnished information on three elements: students’ capacity to prove and reason geometri-
cally [1]; the role of representation in guiding reasoning [18]; and the validity of proof for
the general case, here termed the scope of the argumentation [2]. Three key takeaways can
be identified.

Firstly, reasoning style alone was not observed to determine the level of generality,
although harmonic and analytical reasoning proved to be more favorable than visual
reasoning to generalized argumentation. In the lesson discussed here, the students built on
a variety of reasoning styles, especially visual and analytical, to generalize their arguments.
More precisely, those who deployed analytical reasoning or who combined harmonic
reasoning with the use of algebraic expressions formulated arguments with a high level of
generality. In contrast, the scope of argumentation was narrower in students who reasoned
visually, whose justifications were confined to the description of the specific properties of
a particular case or the set analyzed. Argumentation based on visual reasoning is more
demanding cognitively, for generalizing what is perceived in visual scenarios may mean
that reliable routines, such as those that can be applied in algebraic procedures, may not
always be at hand [86].

The recommendation ensuing from these considerations is to favor the transition
from visual to harmonic reasoning. One aim would be to establish a connection
between the visual work performed to identify properties or perceive regularities and
the construction of general arguments based on deduction or algebraic expressions. A
second would be to highlight the advantages of that strategy for validating the general
case [64]. Given that students exhibit different reasoning styles depending on the
demands of the problem at hand, we contend that teaching approaches favoring the
connection between visual arguments and algebraic expressions enhance the efficacy
of students’ spatial reasoning [42,43].

The second takeaway from this study is that the type of representation was not
found to be the sole determinant for the level of generality, although the use of algebraic
representations favored the formulation of more general justifications.

The type of representation used to initially pose a problem had no clear effect on
students’ use or otherwise of that specific style. Although the presence of both pictorial and
algebraic representations favored the use of harmonic reasoning, the demands inherent in
the problem had a greater impact on reasoning style than its formulation [64].

Moreover, students tended to use verbal representation to support their arguments,
particularly when comparing different perspectives. That may infer that they deemed
words to afford clearer explanations than other types of representation [70]. Their occa-
sional use of Geogebra in their images or constructions, graphically supplementing their
arguments, denoted a fuller understanding of the problem [68].

In this study, analytical reasoning was present in conjunction with verbal representa-
tion only, although the students involved used drawings in other instances, such as when
suggesting counter examples. Here again, students deploying different types of represen-
tation in their arguments were observed to be more prone to supplement pictorial and
algebraic features with multiple types of representation, including algebraic expressions,
pictorial items, and Geogebra-mediated manipulative constructs [13,14].

The final idea that may be gleaned from this survey is that the use of representa-
tion systems based on items representative of whole sets may favor the transition from
perceptive to general.

The students were introduced to the use of equivalence classes as a system for rep-
resenting triangles. Although the problem posed constituted a challenge, some students’
answers supported the hypothesis that arguments deriving from the visual perception of
a particular case can be generalized. With the use of Geogebra in the equivalence class
model, such representations could be manipulated via geometric transformations, making
visualization easier and enhancing the understanding of some features of triangles [44].
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Despite the complexity attributable to the cognitively demanding nature of the prob-
lem [37], some students who reasoned visually from the equivalence class model were
observed to put forward more general arguments. That model might consequently be a
way of transitioning from empirical to deductive work [40,41].

Summarizing, we underline our three main results:

• Harmonic and analytical reasoning proved to be more favorable than visual reasoning
to generalized argumentation

• The type of representation was not found to be the sole determinant for the level of
generality

• The use of representation systems based on items representative of whole sets may
favor the transition from perceptive to general

We are aware that the present findings, based on a small sample and certain specific
problems, narrowly limit the scope for drawing general conclusions. We nonetheless deem
them to be indicative of the role of reasoning styles and representations in students’ ability
to generalize when engaging in geometric proof and reasoning [1]. Moreover, in order to
improve and support this result, we plan new implementations in different contexts and
with different students’ profiles.
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Appendix A

Questionnaire:

• Problem 1: What is being proven in the Figure A1 below?

Figure A1. Visual proof.
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• Problem 2: If the Pythagorean theorem holds in a right triangle:

Does it hold if the triangle is rotated?
If it is translated?
If it is symmetrically transformed?
If it is homothetically transformed?
Would it hold in a similar triangle?

• Problem 3: Is the following statement true? Explain your answer.

The three perpendicular bisectors in a triangle intersect on a point inside the triangle.

• Problem 4: Is the following statement true? Explain your answer.

The three perpendicular bisectors of a triangle intersect at the circumcenter.

• Problem 5: Is the following statement true? Explain your answer.

If the circumcenter lies on one of the three sides, the triangle is a right triangle.
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