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Abstract: Because of the large-scale impact of COVID-19 on human health, several investigations are
being conducted to understand the underlying mechanisms affecting the spread and transmission
of the disease. The present study aimed to assess the effects of selected environmental factors such
as temperature, humidity, dew point, wind speed, pressure, and precipitation on the daily increase
in COVID-19 cases in Mississippi, USA, during the period from January 2020 to August 2021. A
machine learning model was used to predict COVID-19 cases and implement preventive measures
if necessary. A statistical analysis using Python programming showed that the humidity ranged
from 56% to 78%, and COVID-19 cases increased from 634 to 3546. Negative correlations were found
between temperature and COVID-19 incidence rate (−0.22) and between humidity and COVID-19
incidence rate (−0.15). The linear regression model showed the model linear coefficients to be 0.92
and −1.29, respectively, with the intercept being 55.64. For the test dataset, the R2 score was 0.053.
The statistical analysis and machine learning show that there is no linear dependence of temperature
and humidity with the COVID-19 incidence rate.

Keywords: Python programming; machine learning; linear correlation; linear regression model;
COVID-19

1. Introduction

The virus SARS-CoV-2 is a member of a large family of viruses called coronaviruses [1,2].
As the incidence of Coronavirus Disease 2019 (COVID-19) began to increase rapidly across
the world [3], the World Health Organization (WHO) declared a global pandemic on
11 March 2020 [4].

Similar to the coronavirus family, COVID-19 is an infectious disease, and human-
to-human contact is the primary factor of transmission of the virus–by touching infected
surfaces and then mediating the infection through the mouth, nose, or eyes. The complexity
and gravity of the situation also led machine learning investigators to understand the
mechanism of the spread of the disease with a view to control and mitigate. Machine
learning is a non-invasive tool that acts on a large dataset of observations to find association
features among the data. Machine Learning is being used in different research fields
and applications such as genetic programming for the nondestructive testing of critical
aerospace systems [5], machine learning-based detection techniques for NDT in industrial
manufacturing [6], and machine learning in medical imaging [7]. Similarly, machine
learning can be applied to COVID-19 data to predict useful features from the complex
data in contrast to using a traditional computation-based method. Particularly, machine
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learning with COVID-19 data can be used to deduce risk factors related to weather, air
quality, social habits, demographics, and location. A recent surveys on applications of
machine learning for the COVID-19 pandemic is provided by Kushwaha et al. [8]. Hybrid
machine learning methods are also used to predict the time series of infected individuals
and mortality rate [9]. Machine learning is also utilized to accurately predict the risk for
critical COVID-19 [10]. Some machine learning methods are studied to compare their
performance in terms of COVID-19 transmission forecasting [11].

Apart from using machine learning for the prediction of COVID-19 transmission, the
scientific community has sought to study and understand the impact of environmental
factors such as temperature and humidity on the prevalence of COVID-19.

The survivability and persistence of SARS-CoV-2 depend on weather conditions that
indirectly control the virus transmission. The association between weather variables and
COVID-19 transmission is complex. Some studies have shown that weather factors such
as humidity have a determining factor for virus survival in aerosols [12,13]. The effect of
sunshine on the transmission of pathogens is not positive [14]. Yasir et al. [15] showed
that humidity was associated with a lower incidence of COVID-19, and lower death rate;
whereas temperature was associated with higher daily incidence and death rate due to
COVID-19. Colin et al. [16] pointed out that weather probably influences COVID-19, but
not significantly compared to other preventive measures. Merow et al. [17] investigated the
seasonality and uncertainty of global COVID-19 growth rates and reported that uncertainty
remains high in establishing an association between them.

The study by Gupta et al. [18] on the effect of weather on COVID-19 spread showed
that it is possible to predict vulnerable regions with high chances of weather-based
spread in already affected countries, and countries with high populations, such as In-
dia. Zohair et.al [19] studied the association between weather data and COVID-19 to
predict mortality rate using a machine learning approach.

Given the continued interest of the scientific community in the role of weather factors
on COVID-19, there is a need to consider local prevailing cases and weather in order
to identify an association between them, and to examine, on a local scale, if a rise in
temperature or low humidity decrease the transmission of the disease and hence reduce
the number of COVID-19 cases.

In the present study, we examined the effect of weather factors on COVID-19 cases
in Jackson, MS, USA, to understand and predict its potential association with weather
factors. We also seek to determine if local weather conditions could be a factor in the
spread of COVID-19. Statistical and machine learning methods will be used to corroborate
the results.

2. Materials and Methods
2.1. Data Sources

Daily cases of COVID-19 in MS, USA were obtained from the Department of Health,
MS, USA [20] and the incidence rates were computed. The weather data used for the
study included temperature, humidity, dew point, pressure, wind speed, and precipitation.
Daily averages of the weather data were taken from Weather Underground [21] for the
same region and the period of study. It was assumed that the weather conditions of the
neighboring regions did not vary much from that of Jackson, MS, USA. The period from
22 January 2020 to 4 August 2021, was selected due to simultaneous weather and COVID-
19 data availability. The Mississippi region was selected to identify local effects. The
cumulative dataset consisted of daily COVID-19 incidence rates, temperature, humidity,
dew point, pressure, wind speed, and precipitation. For a cross-correlation analysis,
COVID-19 incidence rates were used. Table 1 shows a sample of the collected data.
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Table 1. A sample of data set collected—COVID-19 incidence rate and weather data over Mississippi
22 January 2020 to 4 August 2021.

Date Temperature
◦F

Humidity
%

Dew Point
◦F

Wind Speed
mph

Pressure
Hg

Precipitation
in

Incidence
Rate

1/22/2020 39.4 21.7 50.5 6.1 29.9 0 0.00
1/23/2020 50 44.8 82.8 7.3 29.6 0.02 0.00
1/24/2020 43.7 37.9 81.5 6.3 29.7 0.59 0.00
1/25/2020 40.6 32.5 75.7 1.4 29.8 0 0.00
1/26/2020 49 45.7 88.3 3.8 29.7 0.03 0.00
7/31/2021 83.1 74.3 73.4 2.1 29.7 0 56.16
8/1/2021 84 73 74.1 4.5 29.7 0 56.23
8/2/2021 76.8 85.7 72.2 5 29.7 0.02 53.15
8/3/2021 77.3 78.3 69.5 3.7 29.6 0.83 95.26
8/4/2021 76.8 65 63 6 29.7 0 106.85

Using statistical methods and a machine learning model, the data were analyzed to
determine the correlations between weather factors and COVID-19 incidence rate, if any,
and to make inferences that would help policymakers to take preventive measures.

2.2. Analytical Procedures

The Scikit-learn module of Python 3 [22–26] was used to analyze the data and identify a
correlation between the weather data and COVID-19 incidence rate using machine learning.
Here, it was assumed that high temperature and humidity would decrease the incidence
of COVID-19 cases. In the present work, a linear-regression machine learning model was
applied to the dataset to determine the relationship between weather-data variables and
the spread of COVID-19 and to draw inferences, if any exist. The linear algorithm was
selected to predict the COVID-19 incidence rate from its dependence on environmental
factors. A Jupyter Notebook was used to run the Python code on the NVIDIA Xavier NX
developer kit [27].

For each variable of the dataset, plots of the daily values were obtained. Exploratory
data analysis (EDA) was conducted to determine the frequency, mean, standard deviation,
minimum, maximum, and quantiles. To understand the inter-relationships between the
variables of the data, a cross-correlation analysis was carried out.

2.3. Machine Learning Model

In addition to the cross-correlation analysis, a linear-regression machine learning
model [19,22–26] was run to determine model fitting for the relationship between the
COVID-19 incidence rate and the humidity and temperature taken from the weather data.
See Table 1 for the features used to train the linear model. Here, the input features (X)
of the model are limited to humidity and temperature because of the assumption that
high temperature and humidity would decrease the spread of COVID-19 cases. The target
variable (Y) of the linear model is the COVID-19 incidence rate. The methodology of linear
models for implementation in Python is well documented [22,26]. The general form of the
linear model [22,26] is given by,

Y = B0 + B1 × X1 + B2 × X2, (1)

where Y is for the COVID-19 incidence rate, X1 is for humidity, and X2 is for temperature.
The corresponding model coefficients are represented by B1, and B2, respectively, with B0
being the coefficient for the intercept.

The dataset consisting of weather data and the COVID-19 incidence rate were divided
into two parts, namely the training data set and the testing data set. The model training
was run on the training data set, and the test set which was not included earlier was used
for validation and prediction. The performance of the model was evaluated by standard
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performance evaluation metrics, namely R2 (R-square metric), Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Square Error (RMSE).

3. Results
3.1. Time Series Analysis Results

A sample of the time series of COVID-19 cases, temperature, and humidity over, Mis-
sissippi for the period of study 22 January 2020 to 4 August 2021, is shown in Figure 1A,B.
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Figure 1. (A) Time series of COVID-19 cases (new incidence) for Mississippi 22 January 2020 to
4 August 2021. (B) Time series of COVID-19 incidence rate, temperature, and humidity for Mississippi
22 January 2020 to 4 August 2021.

3.2. Exploratory Data Analysis Results

The results of the EDA analysis are shown in Table 2. The mean number of COVID-19
cases was 633 (with a minimum = 0, and maximum = 3546) during the period of study in
Mississippi. For each of the variables, the mean, minimum, and maximum values are as
follows: Temperature: 65.9 ◦F, 19.6 ◦F, and 86.4 ◦F, respectively; Humidity: 55.8%, 11.6%,
and 85.7%, respectively; Dew Point: 72.5 ◦F, 40. 5 ◦F, and 93.5 ◦F, respectively; Wind Speed:
6.42 mph, 0. 5 mph, and 17.2 mph, respectively; Pressure: 29.7 Hg, 29.2 Hg, and 30.2 Hg,
respectively; Precipitation: 0.17 in, 0, and 3.6 in, respectively; and COCVI-19 incidence rate:
21.43, 0, and 119.7, respectively.
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Table 2. Exploratory data analysis of the data sets, including weather data and the COVID-19
incidence rate in Mississippi 22 January 2020 to 4 August 2021.

Temperature
◦F

Humidity
%

Dew Point
◦F

Wind Speed
mph

Pressure
Hg

Precipitation
in

Incidence
Rate

count 561.00 561.00 561.00 561.00 561.00 549.00 561.00
mean 65.88 55.84 72.50 6.42 29.72 0.17 21.43

std 13.67 14.61 10.73 3.01 0.15 0.46 21.91
min 19.60 11.60 40.50 0.50 29.20 0.00 0.00
25% 56.00 45.00 65.70 4.20 29.60 0.00 5.91
50% 68.30 59.10 73.40 6.10 29.70 0.00 13.34
75% 77.30 68.50 80.80 8.50 29.80 0.06 29.62
max 86.40 85.70 93.50 17.20 30.20 3.61 119.75

3.3. Cross-Correlation Analysis Results

The results of the cross-correlation analysis are shown in Table 3. A scatter plot of
the COVID-19 incidence rate against each of the weather data variables (Temperature,
Humidity, Dew Point, Windspeed, Pressure, and Precipitation) is shown in Figure 2.

Table 3. Correlation between the variables of the data set. Variables include Temperature, Humidity,
Dew Point, Wind Speed, Pressure, Precipitation, and the COVID-19 incidence rate over Mississippi
22 January 2020 to 4 August 2021.

Temperature Humidity Dew Point Wind Speed Pressure Precipitation Incidence Rate

Temperature 1.000 0.944 0.079 −0.086 −0.442 −0.002 −0.222
Humidity 0.944 1.000 0.394 −0.041 −0.551 0.083 −0.148
Dew Point 0.079 0.394 1.000 0.080 −0.448 0.262 0.143

Wind Speed −0.086 −0.041 0.080 1.000 −0.184 0.198 −0.155
Pressure −0.442 −0.551 −0.448 −0.184 1.000 −0.255 0.089

Precipitation −0.002 0.083 0.262 0.198 −0.255 1.000 −0.049
Incidence

Rate −0.222 −0.148 0.143 −0.155 0.089 −0.049 1.000

The correlation coefficients between the COVID-19 incidence rate and the weather
variables (Temperature, Humidity, Dew Point, Wind Speed, Pressure, Precipitation) are
−0.221, −0.148, 0.143, −0.155, 0.089, and −0.049, respectively.

Figure 3 shows the correlation between humidity and COVID-19 cases in Jackson, MS,
USA, as a function of temperature for the period of study 22 January 2020 to 4 August 2021.

3.4. Machine Learning Model Results

A linear regression machine learning model [22,26] was run on the data set. By apply-
ing Equation (1), the model coefficients were computed. The values of model coefficients B1,
B2, and B0 are 0.92, −1.30, and 55.64, respectively. The model performance evaluation met-
ric values of R2, MAE, MSE, and RMSE are 0.053, 15.25, 457.04, and 21.38, respectively. The
linear model results are summarized in Table 4. A scatter plot of test values vs. predicted
values over Mississippi 22 January 2020 to 4 August 2021 is shown in Figure 4.
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Table 4. Linear Regression Model results.

Quantity Value

Sample Size 556
B1; Humidity effect 0.92

B2; Temperature effect −1.3
B0; Intercept 55.64

Mean absolute error 15.25
Mean squared error 457.04

RMSE 21.38
R2 score 0.053
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4. Discussion

Among the six weather variables of the dataset of COVID-19 and weather data in Jack-
son for the period of study from 22 January 2020 to 4 August 2021, the statistical description
of data (Table 3) shows a considerable variation in the range of values corresponding to
temperature (from 19.6 ◦F to 86.4 ◦F), humidity (11.6% to 85.7%) and dew point (40.5 ◦F to
93.5 ◦F). However, the cross-correlation analysis (Table 3, Figures 2 and 3) shows either a
slight positive or negative correlation of the COVID-19 incidence rate with these weather
data variables, of −0.221, −0.148, and 0.143, respectively. Regardless, we carried out a
linear regression model to run these variables so as to test the hypothesis that an increased
temperature and humidity would decrease the spread of COVID-19 cases. The results of
the linear regression model shown in Table 4 and Figure 4 show that the R2 value of 0.0529
is too small to consider any linear dependency between COVID-19 and the input features
of temperature and humidity. The results of the machine learning model also agree with
that of the results of the statistical method (Figures 1B and 3). The results of the statistical
method do show a linear dependency between temperature and humidity but not with
COVID-19 incidence.

There is an increasing interest in understanding the regional effects of weather factors
on COVID-19 to reduce the large-scale impact of COVID-19 on mortality or health disorders.
More specifically, identifying incidence rates and distribution in semi-rural and rural plain
geographical terrain with relatively poor populations is not addressed. It is a common
understanding that a rise in temperature or low humidity will decrease the transmission of
the disease and hence reduce the number of COVID-19 cases. Our results also agree with
the findings described by Colin et al. [16] that weather probably influences COVID-19, but
not significantly compared to other preventive measures, and by Merow et al. [17] that
uncertainty remains high in establishing an association between seasonality and COVID-19
growth rates. However, the present study provides a relatively efficient method of studying
weather impacts on the COVID-19 incidence rate that would be useful for policymakers in
terms of taking preventive measures.

5. Conclusions

This study illustrates that the association between weather variables and the COVID-
19 incidence rate is not statistically significant in the study region. The computed values of
correlation coefficients were −0.221, −0.148, 0.143, −0.155, 0.089, and −0.049 between the
COVID-19 incidence rate and temperature, humidity, dew point, wind speed, pressure, and
precipitation, respectively. Additionally, a low R2 score of 0.053 was generated from the
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machine learning model, rejecting the hypothesis that increased temperature and humidity
would decrease the spread of COVID-19 cases in the study region.
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