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Abstract: The battery management system in an electric vehicle must be reliable and durable to
forecast the state of charge. Considering that battery degradation is generally nonlinear, state of
charge (SOC) estimation with lower degradation can be challenging. Lithium-ion batteries are highly
dependent on the knowledge of aging, which is usually costly or not available online. In this paper,
we suggest the state of charge estimation of lithium-ion battery systems by using an extreme gradient
boosting algorithm for electric vehicles application, which acquires the nonlinear relationship model
can with offline training. The extreme gradient boosting algorithm is the tree on based learning,
which effectively performs and speeds. Voltage-time data used as an input of this system from
the partial constant current phase; the proposed algorithm improves the accuracy of predicting the
relevant. Additionally, no initial state of charge is required in our proposed method; thus, estimating
the state of charge can consider each battery state.

Keywords: lithium-ion battery; capacity; state of charge; extreme gradient boosting

1. Introduction

Lithium-ion batteries play a significant role in portable consumer electronics, electric
vehicles, hybrid electric vehicles, and large power energy storage systems in portable con-
sumer electronics, electric vehicles, and large power energy storage systems. Their promi-
nent features include lightweight, high efficiency, long lifespan, and low self-discharge.
Similarly, the performance of Li-ion batteries diminishes over time as their electrochem-
ical constituents degrade, leading to a loss of capacity and power [1]. Overcharging or
over-discharging for a battery management system is a crucial indicator to optimize con-
trol strategies to the batteries due to preclude to stretch their life. When a battery cell’s
capacity is accurately decided, the battery can be replaced before the device limitation
life and extend proper battery life without compromising safety. The capacity ratio of the
current state cycle of charge and discharge is used to determine the health state of cells to
compare the capacity of the initial status [2]. Due to the increased safety risks associated
with Li-ion batteries, developed battery management systems are needed to prevent fires
and explosions caused by reactive chemicals. Batteries should be managed by a system that
evaluates safety-relevant input from the battery, such as temperature, current drawn from
the battery, and the state of health and charge of the battery. An essential parameter of the
BMS is the measurement of SOC, which provides the key to ensuring that all cells have
a constant voltage [3]. At the Lithium-ion batteries electrochemical systems, in general,
cells’ performance degrades during usage and storage, increasing the need to evaluate a
cell’s reliability and longevity. Thus Lithium-ion battery health monitoring, as a battery
management system, can consider a function that is important for manufacturers and
customers of electric vehicles. Additionally, lithium-ion rechargeable batteries have become
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increasingly popular over the past two decades in various applications, such as power
backup, consumer electronics, and grid storage. For ensuring that Li-ion battery packs
perform safely and reliably, battery management systems must be able to display real-time
information about each cell [4]. In recent years, various estimation methods have been
suggested, divided into conventional methods, adaptive filtering, and machine learning.
Utilizing conventional methods at the battery can estimate the state of charge directly,
such as discharge current, resistance, and impedance [5]. Researchers’ modeling for online
capacity estimation presented intelligent data-driven methods with attention to multiple
features and battery capacity, such as neural networks [6,7]. Recurrent neural networks are
a type of neural network that can use for getting the nominal capacity and as an input time
sequence [8].

State of charge and state of health usually determine the battery state. Besides provid-
ing information about the charge-discharge operation, taking into account, the battery state
is also beneficial for determining whether the operating environment is safe and reliable.
An accurate estimation of a BMS’s SOC will be difficult due to aging, varying environ-
mental situations, and charge–discharge cycles associated with a battery, which will make
SOC comparable to a fuel consumption indicator on gasoline cars. As well as the state of
health-giving the percentage of remaining battery life, there is no measurement of an exact
physical property for state of health because there is no consensus on its description [9].
SOC crucially influences battery state estimation since it represents the remaining capacity
and determines how long a battery will last before it requires a recharge. As a general rule,
Qa available is defined as the ratio in SOC. Furthermore, Qr is described as rated capacity,
which is seen in the Equation (1) [10].

SOC =
Qa

Qr
(1)

Lithium-ion batteries, however, experience electrochemical reactions over time that
can change their rated capacity to some period and subsequently gradually reduce it. Thus,
calculating SOC operating a fixed rated capacity remains controversial [11]. Applications
based on machine learning require little effort to model with the correct test data. With
the development of algorithms, it is possible to employ machine learning applications
in practical applications for SOC estimation. Machine learning applications for SOC
estimation are currently in usage in the literature because they are comfortable to use
and provide accurate results with accurate data. SOC estimation has benefited from the
development of new methods in data science. Recent approaches such as XGBoost have
been created and are applied to SOC estimation. Similarly, the choice of health metrics
and battery performance evaluations depends not only on the battery model content, but
also on data-driven approaches. Electric vehicle battery management systems (BMS) rely
heavily on the battery’s state of charge (SOC) estimation. The study utilizes the XGBoost
algorithm to predict the state of charge of lithium-ion batteries in electric vehicles based
on the data collected from the battery management system used a comprehensive online
phase procedure for online estimation of lithium-ion batteries to determine the online
capacity estimation performance. XGBoost algorithm cells are used to find the remaining
capacity under operation. A cell’s partial are constant current charging curve is the input
to this paper’s network, with voltage and time samples, temperature. The information is
deemed the most reliable without operational interference and does not require further
feature engineering or processing. The proposed model’s ability evaluates the prediction
and classification accuracy.

The main contribution of this process summarized as below:

• Using machine learning techniques to estimate battery capacity online is the main
focus of this work.

• We considered a dataset of aging cell experience from lithium-ion batteries.
• In this study, the main variables are voltage and temperature.
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• As a random process, the suggested method shows impressive estimation performance,
such as learning the relationship between the features and the state of charge.

• The paper’s final portion illustrates how the XGBoost model can predict and perform
aging cell batteries.

The rest of this process is as followed: we begin in Section 2 with related work, while
Section 3 will focus on the method. The result is shown in Section 4. We present a discussion
in Section 5. Conclusions and future work are presented in Section 6.

2. Related Work

A battery system needs to accurately estimate the state of charge to make a more
suitable battery cell. For lithium-ion batteries, an accurate SOC can supply precise param-
eters. A stable SOC is vital for E.V. battery systems, controlling the batteries from being
over-discharged and over-charged, thereby keeping the system’s safety, maximizing effi-
ciency, and growing battery life. This identification can only be achieved by remembering
the parameters and estimating their state using a battery model. Li-ion batteries can be
estimated based on electricity, open-circuit voltage (OCV), impedance, internal resistance,
and lithium content associated with their state of charge (SOC) resolution. The state of
charge could not accurately estimate the reason for battery aging. Additionally, the main
causes of battery aging are the decay of internal resistance, capacitance, and accessible
power; Figure 1 shows the factors and analysis of the reasons for battery aging [12].

Figure 1. Battery aging analysis.

As renewable-energy-based technologies advance, lithium-ion batteries provide the
power to power them. An overview of a lithium battery dataset in the public domain is
presented. The following studied the existing public domain battery dataset and catego-
rized the testing regimes, cell specifications, and data files [13]. Electric vehicles require
lithium-ion batteries to have a predictable cycle life. Since lithium-ion batteries are com-
paratively safer and have more energy and power density than other commercialized
batteries, they are gaining extensive attention. Lithium-ion batteries, whose degradation
mechanisms have yet to be distinctly apprehended, produce complex, nonlinear behavior,
thereby limiting standard predicting methods. Machine learning techniques have been
attracted increasing attention for empirically learning and predicting battery behaviors. By
using machine learning approaches, this analysis has been illustrated how to detect hidden
features in complex, nonlinear methods that can accurately predict a system’s service life
in this article [14]. This work suggested an estimation of lithium-ion battery state of charge
based on alternate adaptive extended Kalman filter and ampere-hour counting methods;
these strategies can be challenging to apply in real applications due to the limited compu-
tational capacity of the BMS. They operated a battery module; the situation is especially
problematic when every battery pack module needs to be estimated simultaneously. This
article aimed to estimate the SOC per battery module in a battery pack simultaneously,
handled by this balance [15,16].
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2.1. Overview Lithium-Ion Batteries with Electrochemical Model and Impedance Spectroscopy

To estimate a cell’s health status, several approaches such as controlled experimen-
tal, controlled modeling approach. This work has been presented a characterization of
high-power lithium-ion batteries using electrochemical impedance spectroscopy that a
commercial high-power lithium-ion cell’s performance concerning the temperature and
charge state [17–19]. Lithium batteries have a higher energy and power density, a higher
frequency of operation, and an improved temperature range compared with other tech-
nologies. Monitoring the battery’s state online is crucial to avoid dangerous operating
conditions and extend battery life. In this study, a method has been described to examine
the aging of lithium polymer batteries using electrochemical impedance spectroscopy based
on an analysis done of the impedance spectra [20–22]. It is crucial to predict degradation
in lithium-ion batteries to ensure battery safety. The first prediction of capacity fades in
lithium-ion batteries using electrochemical impedance spectroscopy under overcharge
conditions [23,24]. A variety of mechanisms cause Lithium-ion batteries to degrade. Con-
ductivity loss, active material loss, and lithium supply loss to simplify aging mechanisms
is degradation modes. In the battery management system, based on a decreasing capac-
ity and an increase in resistance, the battery’s state of health has typically been used to
quantify battery degradation. Incremental electrochemical capacitance spectroscopy has
been compared with differential voltage spectroscopy electrochemical impedance spec-
troscopy over the same data set [25,26]. Model electrochemical is complex because it has
a complicated identification process; thus, identifying parameters relies on identifiability
analysis. The article has proposed Parameter sensitivity analysis for lithium-ion batteries
using electrochemical model-based. An electrochemical model under realistic charging
and driving conditions have been analyzed to determine the parameter sensitivity [27,28].
An extended model is developed based on absolute nodal coordinates, which provides
high accuracy while requiring little processing power. In this study, they used an observer
that continuously has estimated parameters in real-time with attention to the problem of
parameter identification in an electrochemical model of a Lithium-ion battery [29–31]. A
composite electrode lithium-ion battery can improve energy and power density and longer
cycle life than batteries made from a single active material, which presented an electrochem-
ical model reduced from composite; they used an extended Kalman filter to estimate charge
state in real-time [32–34]. For lithium-ion batteries to be reliable and efficient, the state of
charge must be accurately modeled and estimated. Physics-based electrochemical models
have been highly desirable to push batteries to their physical limits, presenting a trial of
proportional–integral observers to estimate the state of charge, capacity simultaneously,
and resistance for lithium-ion batteries [35,36].

2.2. Lithium-Ion Batteries with Machine Learning Algorithms

When a lithium-ion battery is in operation, the discharge current varies according to
the load, making it challenging to measure capacity online using the traditional method.
There are solutions for problems suggested based on the charge curve to estimate a lithium-
ion battery’s capacity and state of health. They used voltage variations, and charge currents
have been used as the health indicators for predicting capacity [37]. A nonlinear autore-
gressive was proposed to estimate the state of charge and health works based on recurrent
networks, and the battery’s internal parameters have not been required. The long short-
term memory for the lithium-Ion battery-based estimation has been used because the
online state of health is the main issue for battery management due to the condition limit
environment for measurement [38]. An accurate prediction in the lithium-ion battery has a
significant role in the intelligent battery health management systems that use life batteries.
Using an autoencoder and deep neural network to predict the remaining useful life of
lithium-ion batteries has been proposed [39]. An online method for lithium-ion battery
remaining practical life estimation using importance sampling and neural networks has
been afforded an online strategy; battery performance would differ depending on age and
condition. The voltage curves have been analyzed for each cycle number during the charg-
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ing process [40]. The loss in rated capacity has been described as the health of lithium-ion
batteries. The proposed support vector machine for online state health estimation has been
used to analyze the extraction of three feature variables like energy signal, throughput
and charge duration [38]. The state of charging and discharging happens under a constant
current in the battery, which this situation might be available for hence voltage versus time
measurements. Situ capacity estimation of lithium-ion batteries using the Gaussian process
regression method has been considered voltage measurements for battery capacity over
short periods of the galvanostatic process [41]. The analysis has been focused on healthy
features and long short-term memory in the battery. The battery aging practice always
requires considerable time for data recovery in actual purposes and real performance in the
battery, which speeds up the aging operation. The state of health estimation focusing on
healthy features and long short-term memory in the battery with charging and discharging
battery voltage while changing has been collected in the cycle life experiment until the
healthy features have been extracted correlating to battery degradation. Then, the state of
health of the debasement station of lithium-ion batteries has been determined [42]. Different
lithium-ion batteries require separate aging mechanisms, depending on the primary battery
scheme and applied materials. Besides, battery systems are the main critical components
of battery electronic vehicles that effectively affect each charge and driving performance:
a multi-island genetic algorithm and Gaussian process regression for the state of health
estimation. The aim has been an efficient parameter of Incremental capacity curves has
been identification [43]. The following studies illustrate, in Table 1, the charging features,
discharging features, and estimation status of batteries.

Table 1. Related studies on lithium-ion batteries in machine learning.

Reference Model Error Rate Benefit
[44] Elman neural network MAE 1.29% Prediction

[45]
Semi-supervised transfer
component analysis MAE 1.29% Learning

[46]
Incremental capacity
analysis technique RMSE 2.99% Analysis technique

[47] Gaussian process regression RMSE 3.45% Optimize
[48] Extreme learning machine RMSE 2% Prediction
[49] Geometrical approach RMSE 3.84% High accuracy
[50] Random forest RMSE 3.58% Prediction

3. Methodology

In this section, the state-of-charge estimation of batteries, state-of-charge analysis of
machine learning algorithms, model framework, data information, and extreme gradient
boosting are presented in detail.

3.1. State-of-Charge Estimation of Batteries

In electric vehicles, it is not easy to predict the state of charge due to the durability of
the battery management systems. Due to this, we proposed a type of ML algorithm that
can be used to create an accurate state of charge (SOC). SOC estimation using ML is shown
in Figure 2.
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Figure 2. Block diagram of machine learning for SOC estimation.

3.2. State of Charge in the Machine Learning Applications

Several models in machine learning presented the state of charge estimation utilization
and different regression methods studied nowadays to estimate the state of charge and
state of health, executed with a dataset to various parameters. The absence of the necessity
of parameter identification is the most significant benefit of the data-driven models since
parameter identification demands comprehensive tests that can take months to complete.
Applications that use battery management systems gain a great deal from this feature.
Due to their variable time constants, different models have been created for different cell
chemistries [51]. This disadvantage has been eliminated with data-driven models. However,
data-driven models also need a considerable amount of data. Likewise, we mentioned
several previous research studies, such as support vector machine [52], Gaussian process
regression [53], etc., in the machine learning algorithm. The existing literature is constantly
revised with new machine learning algorithms.

3.3. Model Framework

Overview suggested model includes a server, aging experiments, electric vehicles, and
battery management system. A data-driven approach to SOC estimation is described in
Figure 3. Here are two central parts in the online capacity estimation model processes with
the XGBoost method. We used a dataset processed before a train to train save in the server
for the training model. The main framework in the proposed model includes a training
model and online estimation of the trained model to vehicles on the operation. There is a
bidirectional connection in the server, and the main task is to present the best model with
the devices connected to it.

Figure 3. The framework of the proposed model.

3.4. Data Information

The dataset has been collected from NASA Ames PCoE for 18,650 lithium-ion batteries;
the dataset has been used in this study based on the lithium-ion battery aging data [54].
This study has been generated a method to estimate the remaining capacity for equivalently
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simulated cells to determine cell-specific degradation. A cyclic aging experiment includes
characterization tests that have been interspersed. The Table 2 shows the information types of
cells.

Table 2. Cells information.

Cell Type of Dataset

Specifications
Nominal voltage 3.6 V

Charging method Constant current
Constant voltage

Maximum weight 44.5 g
Room temperature 24 ◦C
The end of life criteria 30% fade
Train 80%
Test 20%

There are 48 cells in the dataset, but we show Figure 4 as a degradation trend over a
single cell’s lifetime. The trend isn’t linear, but changes at a given point in the life of each cell.

Figure 4. One cell’s degradation over time.

Cycling of the cells is conducted at a constant temperature of 24 ◦C. A cycle begins
with 2.7 V discharge at 1.5 A in constant current mode and finishes with 4.2 V charge at
2 A in continuous current mode, followed by a constant voltage (CV) phase for 30 min. A
battery’s accelerated aging is caused by repeated charge and discharge cycles. Voltage, output
current, battery temperature, current, load voltage, time, battery capacity with attention to the
discharge cycle collected. Thus, there is a non-uniform sampling rate used for each of them.
In this work, the proposed method focuses on known partial data for predicting the complete
charging curve. We considered three modules: input parameters, feature extraction, and
estimates of the state of charge. In the dataset, one temperature and profile for battery aging
are provided as the first proof of concept. We have divided the dataset into training, validation,
and testing. There are 80% training and 20% validation in the training set, which includes
43,355 data values. The experiments are performed at 24 ◦C at a constant temperature.
The battery’s performance is affected by changes in the rising temperature and increase.
Nomenclature in the last page shows the notations used in the proposed approach.
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3.5. Extreme Gradient Boosting

An optimized distributed gradient boosting library, XGBoost is flexible, scalable, and
portable. XGBoost includes clever penalization of trees, a proportional shrinking of leaf
nodes, newton boosting extra randomization parameter. With XGBoost, trees can have
variable nodes, and trees calculated with less evidence have smaller left weights. Boosting
by Newton is an alternative to gradient descent that uses the Newton–Raphson approxima-
tion. Adding an extra randomization parameter can achieve a lower correlation between
trees. A classifier ensemble with a low correlation will perform better than one with a
high correlation. It has been possible to decide regression and classification issues utilizing
decision trees since the 1980s. In the recent past, the XGBoost algorithm has attracted much
attention. The decision tree basis of XGBoost’s evaluation offers possible explanations
dependent upon specific situations. Different models have been combined, and random
decision trees are gathered, like bags. A model with high-performing conduct is given
(boosted) more dominance to achieve error minimization. Parallel processing has been
carried out in addition to regularization to control overfitting. XGBoost modeling deter-
mines a regression tree that fits the residual of the last prediction based on a generalized
definition of the objective function. Although decision trees can be unstable and generally
incorrect in data errors, they offer many benefits. Besides being a scalable machine learning
algorithm consistent with distributed examples, XGBoost does not depend on only one
machine learning model. XGBoost also utilizes parallel and dispersed computing to ex-
plore model data fast. A fast learner iterates constantly to make continuous predictions.
The XGBoost algorithm achieves high error minimization and can predict high accuracy,
even with very little data. Compared to other machine learning algorithms, they require
reasonably little data to complete an outcome; in addition, they are pretty simple and easy
to understand. The algorithms or machine learning models can also be composed of these
models [55]. The machine learning (ML) algorithms can develop an accurate state of charge.
Therefore, according to the offered strategy, a wide field of battery situations have been
evaluated to consider the performance state of charge estimation. The lithium-ion battery’s
four important parameters can be used to estimate the state of charge established on the
XGBoost algorithm; based on the available data, the battery current, voltage, capacity, and
temperature can be determined. The XGBoost algorithm utilized in this study is elaborated
in the following. Boosting based on gradients is another commonly operated machine
learning algorithm. A feeble learner has been transformed into a powerful one. Thus, the
final algorithm can be viewed as an orchestra comprising various tools. XGBoost is an
ensemble classifier that uses gradient boosting, which the model structure to a loss function
that is further expanded by adding an expansion function. In general, gradient boosting
algorithms optimize different loss functions to enhance prediction. Decision trees have been
used to control the complexity of trees using variations in loss functions. Understanding
XGBoost requires understanding the underlying machine learning algorithms and concepts:
supervised learning, decision trees, ensemble learning, and gradient boosting. Figure 5
shows a XGBoost classifier [56].

The regression tree provides a residual of a previous prediction, given a generalized
description of the objective function. It can decide to predict a category or numerical
value. Designing gradient boosted decision trees has been used for performance, speed,
and implementation. A short explanation from XGBoost is random sample selection and
column subsamples, XGBoost stochastic methods, reduce overfitting and speed up training.
The XGBoost algorithm can use a compacted column-based system for minimizing the
mathematical of computation by finding the best split. XGBoost has been presented in
the following brief way. With attention to the data set, m represents the features, and N
represents the capacity in the data set, which includes Equation (2).

E = {(ai, bi)|i = 1 . . . n}, i f
{

ai ∈ Rm

bi ∈ R
(2)
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We have n train samples and m features for each sample. bi shows the state of charge
in the i sample. The trees boosting are grouped as a collection:

F =
{

fk(a) = wq(a)
}

, i f k ∈ Rm (3)

Here is the formula that predicts the value of a tree boosting model, which as output
bi and f is a function in Equation (3). What follows is a definition of K trees in the
following equations:

b̂i =
k

∑
K=1

( fk(ai))|{ fk ∈ F} (4)

Minimizing the followership regularized target function fk is demanded to determine a
suitable set of functions fk:

bi =
k

∑
k=1

ΩD → D = fk(ai) (5)

where

Ω(D) = αN +
β‖w‖2

2
(6)

In Equation (6) Ω determine the complexity of the model, α is parameters controlling
and β the number of leaves N, W is the magnitude of leaf weights. During each round of
model training fk, the XGBoost algorithm adds a new function to the model, keeping the
prediction results of the last band unchanged [56].

Figure 5. XGBoost architecture.

4. Results

This section details the implementation process, such as experimental setup, perfor-
mance evaluation, and SOC estimation based on the extreme gradient boosting system.

4.1. Experimental Setup

In this study, we presented a summary for experimental setup in Table 3, in which
the system takes out all experiments and results by using a Windows 10. Furthermore, the
device’s memory is 30 GB memory with CPU Intel(R) Core(T.M.) i5-9600 CPU @ 3.20 GHz
processor. The lithium-ion battery was used estimation capacity. This work performed
classification and prediction using the XGBoost machine learning algorithm. In addition,
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Python was used as a framework and library for developing the proposed system. A
version of WinPython-3.8.3 was used to design this system.

Table 3. System components and specification.

Component Description

Operating system Windows 10 64 bit
Browser Google Chrome
CPU Intel(R) Core(TM) i5-9600K CPU @ 3.70 GHz
Memory 30 GB
Programing language Win Python 3.8.3
Library and framework Python
Machine learning algorithm XGBoost
Battery Lithium-Ion

4.2. Performance Evaluation

To compare our forecasted SOC to the experiment SOC to evaluate its actual perfor-
mance. Therefore, we need to consider performance metrics by comparing our predicted
SOC with the experiment SOC’s results. As a measure of accuracy, the root means the
square error is frequently the square root of the square mean of all the errors. RMSE
can only be used to compare predictions from the model to actual data, not to compare
comparisons between variables. A commonly used metric for measuring the difference
between predictions and observations is the root mean square error (RMSE). The MAE is
identical, but offers more weight to more significant absolute values, penalizing them more
than MAE does. As the variance in individual errors increases, the MAE/RMSE difference
increases the RMSE can be described as follows in Equation (7):

RMSE =
n

∑
i=1

1
n
(yi − ŷi)

2 (7)

In Mean Absolute Error (MAE), all the errors have the same weight. It averages the
absolute differences between the tested and predicted values when Mean Absolute Error
(MAE) is small, accurate to the forecast results in Equation (8) [57].

MAE =
n

∑
i=1

|yi − ŷi|
n

(8)

Below is a definition of the error metrics in Equation (9): y shows the real estimated
capacity, ŷ shows, respectively, and n shows the number of data points per battery cell.

APE =

∣∣∣∣1
y
(ŷ− y)

∣∣∣∣× 100% (9)

here for evaluating metric each battery cell with calculating the mean absolute percentage
error (MAPE) presented in the Equation (10):

MAPE =
1
n

n

∑
i=1

(

∣∣∣∣1
y
(ŷ− y)

∣∣∣∣× 100%)i (10)

The absolute percentage error (MAPE) calculates the average accuracy of the sample’s
estimates over the cell’s entire life. In this test, data is randomly selected and dropped from
the model before it is fed input so that the model can demonstrate its predictive abilities.
The estimation network was used to validate the model by randomly dropping 15% of the
input samples before forwarding it to simulation.
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The features extraction such as terminal voltage, temperature charge, and discharge is
an input put and output used as shown in the Table 4.

Table 4. Features extraction.

Features Description

Terminal voltage provided voltage
Temperature provided temperature
Charge State of charge
Discharge State of discharge

In the following Table 5, we provide the results metrics found in the validation set.

Table 5. Model validation based on extreme gradient boosting.

Definition

Train 0.96%
Test 0.92%
Validation 0.78%

The error rate comparisons in Table 6 show that our suggested approach performs at
least on par with existing methods. Based on the error rate comparisons, we estimated the
proposed method to be at least as good as existing methods.

Table 6. Comparison of error rates between previous approaches and the proposed method.

Reference Model Error Rate

[58] Unscented Kalman filter RMSE 2.00%

[59] Convolutional gated recurrent unit
–recurrent neural network MAE 3.96%

Proposed Method XGBoost RMSE 2.56
MSE 10.03

A vital reference in the battery is estimating the available battery capacity to determine
the battery life before it needs to be charged. While charging from the vehicle can obtain
relatively easy sensor data, charging is a consistent process during the life of a cell since it
coincides with charging conditions or over a similar period. In this method, we utilized
constant current-constant voltage as inputs to the model because the upper step current-
constant will be available on the curve charge in the cell’s lifetime. However, they can be the
raw charging curve of time and voltage patterns. Discharge curves can depend on diverse
vehicle behavior, attention to distance traveled, traffic trends, and driving. Additionally,
the vehicle can start to charge from whatever point in the charge cycle, but usually go to
100% before stopping.

The battery’s terminal voltage and temperature curves have significantly been modi-
fied during discharge. Different battery aging stages produce different terminal voltages
and temperatures under constant load discharge profiles as seen in the Figure 6, along with
the deepening of aging, which verifies that the presented features Terminal voltage and
Temperature are age-aware.
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Figure 6. The voltage and temperature changes.

4.3. Soc Estimation

This section offers the capacity estimation state of charge based on the XGBoost
algorithm. A separate set of training and test data are used for XGBoost, which reports
the accuracy of the proposed method and the results presented. To train the machine and
to obtain results, XGBoost has been used. The identical training data have been used to
estimate SOC. The terminal voltage, current, and temperature are available from monitoring
data at the battery management system. This section estimates the state of charge. We
considered voltage and temperature from the discharge process. At the offline process, the
elements are divided using XGBoost for the features-state of charge mappings training
until the efficiency and accuracy improve, with attention to split based on the discharge
voltage curve. Additionally, the offline trained represses are used to estimate the state of
charge online.

At the different stages of battery aging, temperatures curve and produce different
voltage curves during the discharge process also show significant changes in the proposed
method. Then, the proposed temperature in the room is 24 ◦C. As shown in Figure 7,
there are charge and discharge cycles in which repeated processes accelerate battery aging.
Additionally, during charging, the current has been constant.

Figure 7. Charge cycle of the battery aging reputation.

In this part, for estimating the online state of charge, we used offline training to
simulate online training. Here, data points have been randomly selected of all the life
cycles of a battery, as shown in Figure 7; the estimation results in attention to different
aging degrees and primary state of charge. Then, the result has been compared between
the actual state of charge and the XGBoost model, in which the proposed method has been
showing good performances.

Figure 8 shows the validation result for the comparison plot for estimates and reference
prediction. (a) is the worst aging cell in the battery, and (b) is the best aging.
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Figure 8. Comparison for estimate and reference.

5. Discussion

Parallel decision trees speed up operations by evaluating various parameters according
to several data. Therefore, XGBoost provides more accurate and faster SOC estimations
than other algorithms. Operating machine learning algorithms overcome the drawbacks of
conventional SOC estimation techniques for test data, overfitting, and parameter tuning.
The lithium-ion battery has been widely used in different applications. The state estimation
has attracted increasing interest, particularly for state-of-charge and state-of-health. There
are significant challenges in charge, such as accuracy and computational complexity. In
Table 7, the benefits and drawbacks of ML and DA have been compared. Similarly, we have
outlined some of the benefits and drawbacks of each process [5].

Table 7. Comparing SOC estimation techniques—benefits and drawbacks.

Methods Benefit Drawback

Machine learning

1- Estimation accuracy
of high quality.
2- Models based
on physical
properties are
not required.
3- Dynamic operational
situation

1- Complex computations.
2- The modality and
amount of training
data affect estimation accuracy.

Differential Analysis

1- Available
2- Comfortable to integrate

into a BMS
3- Computability low

1- The variation in
temperature affects
the accuracy of estimations.
2- Charges and discharges
must be controlled.

6. Conclusions and Future Direction

We present a methodology for predicting the battery SOC based on an ensemble
boosting algorithm. We use the proposed machine learning model to analyze the nonlin-
ear mapping between voltage and current values as input features into SOC estimation.
The battery SOC estimation technique uses a machine-learning algorithm because it is
better suited for handling nonlinear data. Due to the diversity of parameters available
for evaluation and the parallel decision trees that can be constructed, also operation can
be accelerated. As a result, the extreme gradient boosting algorithm can generate faster
and more accurate estimates for SOC applications. As a result of the optimized features
input into the machine learning model, the user and researcher will predict the battery state
of charge by identifying the best battery for their specific applications. Simulations and
experiments demonstrate that the extreme gradient boosting algorithm performs well in
estimating SOCs. In future work, other parameters will be incorporated into the proposed
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estimation techniques. Research can be concentrated on the change of cells in a battery
pack since batteries are widely used in many applications. The state of charge estimation
and state of health in the area from the battery can be in actual performance situations.
Developing the model’s predictive capacity by analyzing can be additional options for
raising training efficiency and looking at new network architectures in the work future. The
scope of this model will be expanding in various approaches in the future. Furthermore, it
can analyze additional options to increase training efficiency, which is key to improving the
model’s predictive capability by using another machine learning algorithm. Another can
be validation, which would be a necessary step. A part of future work and the estimation
accuracy be evolved by bypassing overfitting and thus lessening errors.
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Nomenclature
The following abbreviations are used in this manuscript:

Symbols
I Current
t Time
Ω Penalizes the complexity of the model
α,β Parameter Control
N The number of leaves
w Weight
bi Output
ai Input
m Features
n Train sample
fk Function
K trees
Qmax Represents the maximum Capacity
Acronyms
SOC State of charge
EV Electrical Vehicle
Ah Ampere hour
OCV Open Circuit Voltage
SOH State of Health
BMS Battery Management System
XGBoost Extreme gradient boosting
ML Machine learning
DA Differential Analysis
Subscript
min Minimum value
max Maximum value
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