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Abstract: The aim of this paper is to carry out an improved analysis of the convergence of the
Nyström and degenerate kernel methods and their superconvergent versions for the numerical
solution of a class of linear Fredholm integro-differential equations of the second kind. By using
an interpolatory projection at Gauss points onto the space of (discontinuous) piecewise polynomial
functions of degree 6r − 1, we obtain convergence order 2r for degenerate kernel and Nyström
methods, while, for the superconvergent and the iterated versions of theses methods, the obtained
convergence orders are 3r + 1 and 4r, respectively. Moreover, we show that the optimal convergence
order 4r is restored at the partition knots for the approximate solutions. The obtained theoretical
results are illustrated by some numerical examples.

Keywords: degenerate kernel method; Nyström method; Fredholm integro-differential equation

1. Introduction

Integro-differential equations emerged at the beginning of the twentieth century
thanks to the work of Vito Volterra. The applications of these equations have proved
worthy and effective in the fields of engineering, mechanics, physics, chemistry, astronomy,
biology, economics, potential theory, electrostatics, etc. (see [1–4] and references therein).

Many numerical methods have been developed for solving integro-differential equa-
tions. Each of these methods has its inherent advantages and disadvantages, and the search
for easier and more accurate methods is a continuous and ongoing process. Among the
existing methods in the literature, we cite the Adomian decomposition [5], homotopy anal-
ysis [2], Chebyshev and Taylor collocation [6], Taylor series expansion [7,8], integral mean
value [9], and decomposition method [10]. For other methods to solve integro-differential
equations, see [11–14].

Recently, many authors have used spline functions for the numerical solution of
integro-differential equations; in particular, a semi-orthogonal spline wavelets approxima-
tion method for Fredholm integro-differential equations was proposed in [15]. In [16], the
authors used a fast multiscale Galerkin method for solving second order linear Fredholm
integro-differential equation with Dirichlet boundary conditions. In [17], the authors ap-
plied B-spline collocation method for solving numerically linear and nonlinear Fredholm
and Volterra integro-differential equations, and in [18] an exponential spline method for
approximating the solution of Fredholm integro-differential equation was studied. More
recently, in [19] Kulkarni introduced an efficient method called modified projection method
or multi-projection method to solve Fredholm integral equations of the second kind. In-
spired in Kulkarni’s method, authors in [20] have introduced superconvergent Nyström
and degenerate kernel methods to solve the same type of equations.
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This work is concerned with numerical methods to solve a class of linear Fredholm
integro-differential equations of the form y′(x) + a(x)y(x) =

∫ 1

0
k(x, t)y(t) dt + f (x), x ∈ [0 , 1],

y(0) = y0,
(1)

where y0 ∈ R, a, f , and k are continuous functions, and y is the function to be determined.
The paper is organised as follows. In Section 2, the proposed methods to solve (1)

are defined along with relevant notations. In Section 3, error estimates are given and
precise convergence orders are obtained. Implementation details on the linear systems
are discussed in Section 4. Finally, in Section 5, we provide some numerical results that
illustrate the convergence orders of the proposed methods and we give a comparison with
other known approaches in the literature.

2. Methods and Notations

Consider the following partition of the interval [0, 1]

0 = x0 < x1 < · · · < xn = 1. (2)

Let Ii = [xi−1, xi], hi = xi − xi−1, i = 1, 2, . . . , n, and let h = max1≤i≤n hi be the
maximum step size of the partition. We assume that h→ 0 as n→ ∞. For r ≥ 1, we denote
by Pr the space of all polynomials of degree ≤ r− 1. Let

Sr,n :=
{

u : [0, 1] 7→ R : u|Ii
∈ Pr, 1 ≤ i ≤ n

}
,

be the space of piecewise polynomials of degree≤ r− 1, with breakpoints at x1, x2, . . . , xn−1.
No continuity conditions are imposed at the breakpoints. Let Br := {τ1, . . . , τr} be the set
of r Gauss points, i.e., the zeros of the Legendre polynomials pr(t) = (dr/dtr)

(
t2 − 1

)r in
[−1, 1]. Define fi : [−1, 1]→ [xi−1, xi] as follows:

fi(t) =
1− t

2
xi−1 +

1 + t
2

xi, t ∈ [−1, 1].

Then

A =
n⋃

i=1

fi(Br) =
{

τij = fi
(
τj
)

: 1 ≤ i ≤ n, 1 ≤ j ≤ r
}

:= {ti , i = 1 , . . . , nr} ,

is the set of Nh := nr Gauss points in [0, 1]. Let

`i(x) :=
r

∏
k=1
k 6=i

x− τk
τi − τk

, i = 1, 2, . . . , r, x ∈ [−1, 1] ,

be the Lagrange polynomials of degree r− 1 on [−1, 1], which satisfy `i
(
τj
)
= δij.

Define

ϕkp(x) :=

{
`k

(
f−1
p (x)

)
, x ∈

[
xp−1, xp

]
,

0, otherwise.

It is easy to verify that ϕkp ∈ Sr,n and ϕkp
(
τij
)
= δjkδip, i, p = 1, 2, . . . , n, j, k =

1, 2, . . . , r.
Let

φ(p−1)r+k := ϕkp , k = 1, . . . , r and p = 1, . . . , n.

For a fixed p, the family of functions
{

ϕkp : k = 1, 2, . . . , r
}

form a basis (Lagrange
basis) for the space of polynomials functions of degree r− 1 in [xp−1, xp]. As, in the space
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Sr,n, no continuity conditions are imposed at the breakpoints, we deduce that the set{
ϕkp : k = 1, . . . , r , p = 1, . . . , n

}
=
{

φj : j = 1, . . . , nr
}

form a basis of this space.
Let πn : C[0, 1]→ Sr,n be the interpolatory operator defined by

πnu(x) :=
Nh

∑
i=1

u(ti)φi(x) . (3)

It follows that πnu ∈ Sr,n , πnu(ti) = u(ti), i = 1, 2, . . . , Nh . Then πnu → u as
n → ∞ for each u ∈ C[0, 1]. By using a result in [21], πn can be extended to a projection
from L∞[0, 1] to Sr,n.

Equation (1) can be written as{
y′(x) + a(x)y(x) = Ky(x) + f (x), x ∈ [0 , 1],
y(0) = y0,

(4)

where K is the integral operator defined by

K(u)(s) :=
∫ 1

0
k(s, t)u(t)dt . (5)

Under the regularity assumptions on a , f , and k, it is well known that (see e.g., [22])
the initial value problem (4) has a unique solution y that satisfies the integral equation

y(x) = y0eA(0)−A(x) +
∫ x

0

(
Ky(t) + f (t)

)
eA(t)−A(x)dt , (6)

where A is a primitive function of a.
We consider the following Volterra operator

Vu(x) :=
∫ x

0
u(t)eA(t)−A(x)dt , (7)

and we define
g(x) := y0eA(0)−A(x) + V f (x).

Then, Equation (6) becomes
y− VKy = g . (8)

In this paper, we propose to solve the above equation by using the four following
methods based on the projection πn given in (3).

1. Degenerate kernel method, where the operator K is approximated by the following
degenerate kernel operator

Kn,1(u)(s) :=
∫ 1

0
kn(s, t)u(t)dt,

with

kn(s, t) := πnk(s, ·) =
Nh

∑
i=1

k(s, ti)φi(t).

The approximate equation of (8) is then given by

yn,1 − VKn,1yn,1 = g . (9)



Mathematics 2022, 10, 893 4 of 15

2. Nyström method, where the operator K is approximated by the Nyström operator
based on πn and defined by

Kn,2(u)(s) :=
Nh

∑
i=1

wik(s, ti)u(ti) ,

with wi :=
∫ 1

0 φi(t)dt, i = 1, 2, . . . , Nh. The corresponding approximate equation of (8)
is then given by

yn,2 − VKn,2yn,2 = g . (10)

3. Superconvergent degenerate kernel method, where the operator K is approximated
by the following finite rank operator

KSn,1 := πnK+Kn,1 − πnKn,1.

The corresponding approximation of (8) becomes

ySn,1 − VKSn,1ySn,1 = g. (11)

Furthermore, we define the iterated solution by

ỹSn,1 := VKySn,1 + g. (12)

4. Superconvergent Nyström method, where the operator K is approximated by the
following finite rank operator

KSn,2 := πnK+Kn,2 − πnKn,2.

The corresponding approximation of (8) becomes

ySn,2 − VKSn,2ySn,2 = g. (13)

Additionally, we define the iterated solution by

ỹSn,2 := VKySn,2 + g. (14)

We show later that, for i = 1, 2, the iterated solutions ỹSn,i converge to y faster than ySn,i.
The reduction of (9)–(11) and (13) to systems of linear equations is presented in Section 4.

3. Convergence Analysis

In addition to the assumptions about a, f , and k required previously to insure the
existence and the uniqueness of the exact solution of (1), we assume in the subsequent
considerations that the operator I − VK is invertible with a bounded inverse. Therefore, it
is easy to verify that, for the above four methods, the operators I − VKn,i and I − VKSn,i
are invertible for enough large n and we have∥∥∥(I − VKn,i)

−1
∥∥∥

∞
6 Li < ∞ and

∥∥∥∥(I − VKSn,i

)−1
∥∥∥∥

∞
6 L′i < ∞,

where Li and L′i are constants independent of n [20,21].
Hence for large enough n, the approximate equations have unique solutions. More-

over, in the following lemma, we give some error estimates essential in the proof of the
convergence orders.
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Lemma 1. For a sufficiently large integer n and for i = 1, 2, the following estimates hold:

‖y− yn,i‖∞ 6 Li‖(VK − VKn,i)y‖∞ , (15)∥∥∥y− ySn,i

∥∥∥
∞
6 L′i‖V(I − πn)(K−Kn,i)y‖∞ , (16)∥∥∥y− ỹSn,i

∥∥∥
∞
6 Ci

(
‖KV(I − πn)(K−Kn,i)y‖∞ (17)

+‖KV(I − πn)(K−Kn,i)‖∞

∥∥∥y− ySn,i

∥∥∥
∞

)
,

where Li, L′i, and Ci are constants independent of n.

Proof. The proof can be investigated in a similar way with the proof of Theorem 4
of [20].

In the rest of this section the following estimates are crucial. For y ∈ Cr[0, 1], (see [23],
Corollary 7.6, p. 328), it holds

‖(I − πn)y‖∞ 6 C1hr
∥∥∥y(r)

∥∥∥
∞

. (18)

For y ∈ C2r[0, 1] and g ∈ Cr[0, 1] , we find∣∣∣∣∫ xi

xi−1

g(t)(I − πn)y(t)dt
∣∣∣∣ 6 C2h2r+1

∥∥∥g(r)
∥∥∥

∞

∥∥∥y(2r)
∥∥∥

∞
, i = 1, . . . , n, (19)

where C1 and C2 are constants independent of n.
The following results provide the convergence orders associated with each approxi-

mate solution defined above.

Theorem 1. Let yn,1 and yn,2 be the approximate solutions defined, respectively, by (9) and (10).
In the case of the degenerate kernel method, we assume that k(·, ·) ∈ Cr−1,2r([0, 1] × [0, 1]),
a ∈ Cr−1[0, 1], and f ∈ Cr−1[0, 1], while in the case of the Nyström method, we assume that
k(·, ·) ∈ C2r,2r([0, 1]× [0, 1]), a ∈ C2r[0, 1], and f ∈ C2r[0, 1]. Then

‖y− yn,i‖∞ = O
(

h2r
)

, i = 1, 2. (20)

Proof. Let i = 1. From (15), we find

‖y− yn,1‖∞ 6 L1‖V(K−Kn,1)y‖∞ 6 L1‖V‖‖(K−Kn,1)y‖∞. (21)

Moreover, by using (19) we have

|(K−Kn,1)y(x)| =
∣∣∣∣∫ 1

0
y(t)(I − πn)k(x, .)(t)dt

∣∣∣∣ ≤ C2h2r‖y(r)‖∞

∥∥∥∥ ∂2r

∂t2r k(x, t)
∥∥∥∥

∞
.

By taking a supremum over x in the last inequality and by using (21), estimate (20)
follows.

For i = 2, the proof is similar.

Theorem 2. Let ySn,1 and ySn,2 be the approximate solutions defined, respectively, by (11) and (13).
Let ỹSn,1 and ỹSn,2 be the iterated versions defined respectively by (12) and (14). For both methods, we
assume that k(·, ·) ∈ C2r,2r([0, 1]× [0, 1]) , a ∈ Cr−1[0, 1], and f ∈ Cr−1[0, 1]. Then for i = 1, 2,
we have
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∥∥∥y− ySn,i

∥∥∥
∞
= O

(
h3r+1

)
, (22)∥∥∥y− ỹSn,i

∥∥∥
∞
= O

(
h4r
)

. (23)

Proof. We only consider the case of superconvergent degenerate kernel method (i = 1).
For the case of superconvergent Nyström method (i = 2), the proof can be investigated in a
similar way. Let x ∈ [0 , 1] and let m (0 ≤ m ≤ n− 1) be an integer such that x ∈ [xm , xm+1].
We have

VKy(x)− VKSn,1yn(x) = V(I − πn)(K−Kn,1)y(x)

=
∫ x

0
eA(t)−A(x)(I − πn)(K−Kn,1)y(t)dt

=
m

∑
j=1

∫ xj

xj−1

eA(t)−A(x)(I − πn)G(t)dt

+
∫ x

xm
eA(t)−A(x)(I − πn)G(t)dt,

(24)

where G(t) := (K−Kn,1)y(t).
On one hand, from (19), it follows that∣∣∣∣∣ m

∑
j=1

∫ xj

xj−1

eA(t)−A(x)(I − πn)G(t)dt

∣∣∣∣∣ 6 C2Cr,xh2r
∥∥∥G(2r)

∥∥∥
∞

, (25)

and using (18) yields∣∣∣∣∫ x

xm
eA(t)−A(x)(I − πn)G(t)dt

∣∣∣∣ 6 C0,xh‖(I − πn)G‖∞

6 C1C0,xhr+1
∥∥∥G(r)

∥∥∥
∞

,
(26)

where Cj,x := supt∈[0,1]

∣∣∣ ∂j

∂tj eA(t)−A(x)
∣∣∣.

On the other hand, for j = 0, . . . , 2r and again using (19), we find∣∣∣G(j)(t)
∣∣∣ = ∣∣∣∣∫ 1

0
y(s)(I − πn)

∂j

∂tj k(t, ·)(s)ds
∣∣∣∣

6 C2Cj,th2r
∥∥∥y(r)

∥∥∥
∞

.
(27)

where Cj,t := sups∈[0,1]

∣∣∣ ∂2r

∂s2r
∂j

∂tj k(t, s)
∣∣∣.

Taking supremum over x, t ∈ [0, 1] in (25)–(27) and using (24), we deduce the error
estimate (22).

Now, we prove (23). From (19), we can show that

|KV(I − πn)(K−Kn,1)y(x)| =
∣∣∣∣∫ 1

0
k(x, s)V(I − πn)(K−Kn,1)y(s)ds

∣∣∣∣
=

∣∣∣∣∫ 1

0
k(x, s)

(∫ s

0
(I − πn)(K−Kn,1)y(t)eA(t)−A(s)dt

)
ds
∣∣∣∣

=

∣∣∣∣∫ 1

0
vx(t)(I − πn)G(t)dt

∣∣∣∣
6 Ch2r

∥∥∥v(r)
x

∥∥∥
∞

∥∥∥G(2r)
∥∥∥

∞
,
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where vx(t) :=
∫ 1

t k(x, s)eA(t)−A(s)ds . Using (27) for j = 2r, we deduce that

‖KV(I − πn)(K−Kn,i)y‖∞ = O
(

h4r
)

. (28)

Moreover, it is easy to prove that

‖VK(I − πn)(K−Kn,1)‖∞ = O(hr) ,

Then, from (22), it follows that

‖VK(I − πn)(K−Kn,1)‖∞

∥∥∥y− ySn,1

∥∥∥
∞
= O

(
h4r+1

)
. (29)

Now, by combining (17), (28), and (29) we find (23).

In the following theorem, we give superconvergence results for the approximate
solutions ySn,1 and ySn,2 at the partition knots.

Theorem 3. Let ySn,1 and ySn,2 be the approximate solutions defined, respectively, by (11) and (13).
According to the same assumptions of Theorem 2, the following superconvergence orders at the
partition knots hold∣∣∣y(xj)− ySn,i(xj)

∣∣∣ = O(h4r
)

, j = 1, . . . , n, i = 1, 2. (30)

Proof. Let i = 1. The error function en,1 := y− ySn,1 satisfies the following equation

e′n,1(x) + a(x)en,1(x) = Ken,1(x) + δn,1(x) , (31)

where
δn,1(x) =

(
K−KSn,1

)
ySn,1(x) .

Under the regularity assumptions on a , f , and k, Equation (31) has a unique solution
satisfying the initial condition en,1(0) = 0, which is given by

en,1(x) =
∫ x

0
r(x, s)δn,1(s)ds,

where r is the differential kernel (see [22]).
Then

en,1(xj) =
∫ xj

0
r(xj, s)δn,1(s)ds =

j

∑
`=1

∫ x`

x`−1

r(xj, s)δn,1(s)ds.

Next, for 1 ≤ ` ≤ j, we have∣∣∣∣∫ x`

x`−1

r(xj, s)δn,1(s)ds
∣∣∣∣ ≤ ∣∣∣∣∫ x`

x`−1

r(xj, s)
(
K−KSn,1

)
y(s)ds

∣∣∣∣
+

∣∣∣∣∫ x`

x`−1

r(xj, s)
(
K−KSn,1

)
(y− ySn,1)(s)ds

∣∣∣∣. (32)

Using (19) and the regularity of the resolvent kernel r(x, s), it is easy to show that the
first term on the right hand side of (32) is on O(h4r+1). For the second, using (18) and (22),
we find∣∣∣∣∫ x`

x`−1

r(xj, s)
(
K−KSn,1

)
(y− ySn,1)(s)ds

∣∣∣∣ ≤ h‖r(xj, .)‖∞‖K −KSn,1‖∞‖y− ySn,1‖∞

= O(h4r+2).



Mathematics 2022, 10, 893 8 of 15

We deduce that ∣∣∣∣∫ x`

x`−1

r(xj, s)δn,1(s)ds
∣∣∣∣ = O(h4r+1).

Hence

en,1(xj) = O(h4r),

which proves (30). For i = 2, the proof is similar.

4. Implementation Details

In this section, we consider the reduction of (9)–(11) and (13) to systems of linear
equations. Let X := L2[0, 1], ki := k(·, ti), k̃i := k(ti, ·) and let 〈, 〉 denote the usual inner
product on X , we put

• Degenerate kernel and Nyström approximate solutions

Theorem 4. Let B and B̃ be the vectors with components

Bi := 〈g, φi〉 and B̃i := g(ti). (33)

Let M and M̃ be the matrices with entries

Mi,j := 〈Vk j, φi〉 and M̃i,j := wjVk j(ti) . (34)

The approximate solutions yn,1 and yn,2 of (9) and (10) are given by

yn,1 = g +
Nh

∑
j=1

XjVk j and yn,2 = g +
Nh

∑
j=1

wjYjVk j ,

where X := (X1, . . . , XNh)
T and Y := (Y1, . . . , YNh)

T are, respectively, the solutions of the linear
systems of size Nh given by

(I −M)X = B and (I − M̃)Y = B̃ .

Proof. From Equation (9), the approximate solution yn,1 can be written as

yn,1(x) = g(x) +
∫ x

0

(∫ 1

0
yn,1(s)πnk(t, .)(s)ds

)
eA(t)−A(x)dt

= g(x) +
Nh

∑
j=1

(∫ 1

0
yn,1(s)φj(s)ds

) ∫ x

0
k(t, tj)eA(t)−A(x)dt (35)

= g(x) +
Nh

∑
j=1

XjVk j(x).

The coefficients Xj, j = 1, . . . , Nh are obtained by replacing yn,1 into Equation (9) and
by identifying the coefficients of the functions k j , j = 1, . . . , Nh, which we suppose to be
linearly independent.

More precisely, we find the equations

Xi −
Nh

∑
j=1

(∫ 1

0

∫ t

0
k j(s)eA(s)−A(t)φi(t)dsdt

)
Xj

=
∫ 1

0

(
y0eA(0)−A(t) +

∫ t

0
f (s)eA(s)−A(t)ds

)
φi(t)dt , i = 1, . . . , Nh,
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which are expressed in matrix form as

(I −M)X = B ,

where B and M are given by (33) and (34). This completes the proof for yn,1.
By the same techniques, the form of yn,2 and the corresponding linear system are

derived.

• Superconvergent degenerate kernel and Nyström approximate solutions

Theorem 5. Let B and B̃ be vectors with components

Bi := 〈k̃i, g〉 −
Nh

∑
`=1
〈φ`, g〉k`(ti) and B̃i := 〈g , φi〉, (36)

and let F , F̃ , G , and G̃ be matrices with entries

Fi,j := 〈k̃i ,Vφj〉 −
Nh

∑
`=1
〈φ` ,Vφj〉k`(ti) and F̃i,j := 〈Vk j , φi〉, (37)

Gi,j := −〈k̃i ,Vk j〉+
Nh

∑
`=1
〈φ` ,Vk j〉k`(ti) and G̃i,j := −〈Vφj , φi〉 . (38)

The approximate solution ySn,1 is given by

ySn,1 = g +
Nh

∑
i=1

ZiVφi +
Nh

∑
j=1

Z̃jVk j ,

where
[

Z Z̃
]T

is the solution of the following linear system of size 2Nh:

(
I − F G

G̃ I − F̃

)(
Z
Z̃

)
=

(
B
B̃

)
.

Proof. From (11) and the explicit expression of KSn,1, it is easy to prove that yn,1 takes
the form

yn,1(x) = g(x) + VKSn,1yn,1(x)

= g(x) + V(πnKyn,1 +Kn,1yn,1 − πnKn,1yn,1)(x) (39)

= g(x) +
Nh

∑
i=1

ZiVφi(x) +
Nh

∑
j=1

Z̃jVk j(x), (40)

where the coefficients Zj and Z̃j, j = 1, . . . , Nh, are obtained by replacing yn,1 given by (40)
into the approximate Equation (11) and by identifying coefficients of the family of functions
{φj, k j}, j = 1, . . . , Nh, supposed to be linearly independent. More precisely, we find the
following equations
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Zi =
Nh

∑
j=1

(∫ 1

0

∫ t

0
k̃i(t)φj(s)eA(s)−A(t)dsdt−

Nh

∑
`=1

(∫ 1

0

∫ t

0
φj(s)φ`(t)eA(s)−A(t)dsdt

)
k`(ti)

)
Zj

+
Nh

∑
j=1

(∫ 1

0

∫ t

0
k̃i(t)k j(s)eA(s)−A(t)dsdt−

Nh

∑
`=1

(∫ 1

0

∫ t

0
k j(s)φ`(t)eA(s)−A(t)dsdt

)
k`(ti)

)
Z̃j

+
∫ 1

0
k̃i(t)g(t)dt−

Nh

∑
`=1

∫ 1

0
g(t)φ`(t)dtk`(ti) , i = 1, . . . , Nh ,

and

Z̃i =
Nh

∑
j=1

(∫ 1

0

∫ t

0
k j(s)eA(s)−A(t)φi(t)dsdt

)
Z̃j +

Nh

∑
j=1

(∫ 1

0

∫ t

0
φj(s)eA(s)−A(t)φi(t)dsdt

)
Zj

+
∫ 1

0
g(t)φi(t)dt , i = 1, . . . , Nh .

In matrix form (
I − F G

G̃ I − F̃

)(
Z
Z̃

)
=

(
B
B̃

)
.

where B , B̃ , F , F̃ , G , and G̃ are given by (36)–(38), respectively.
The proof is complete.

Theorem 6. Let F and F̃ be the vectors with the components

Fi := 〈k̃i, g〉 −
Nh

∑
`=1

w` k̃i(t`)g(t`) and F̃i := g(ti),

and let M , M̃ , H , and H̃ be the matrices with the entries

Mi,j = 〈k̃i ,Vψj〉 −
Nh

∑
`=1

w`

(
k̃i Vψj

)
(t`) and M̃i,j = wjVk j(ti) ,

Hi,j = −wj

(
〈k̃i ,Vk j〉 −

Nh

∑
`=1

w`

(
k̃i Vk j

)
(t`)

)
and H̃i,j = −wjVψj(ti) .

The approximate solution is given by

yn = g +
Nh

∑
i=1

XiVψi +
Nh

∑
j=1

wjX̃jVk j ,

where
[

X X̃
]T

is the solution of the following linear system of size 2Nh:

(
I −M H

H̃ I − M̃

)(
X
X̃

)
=

(
F
F̃

)
.

Proof. The proof can be presented in a similar way as that of Theorem 5 .

Remark 1. It should be noted that there are integrals in setting up the above systems and in
evaluating the approximate solutions and their iterated versions. These integrals are evaluated
numerically by suitable quadrature rules with high accuracy to imitate the exact integration.
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5. Numerical Results
In this section, we illustrate the accuracy and effectiveness of theoretical results es-

tablished in the previous sections for numerically solving Fredholm integro-differential
equations. More precisely, we consider four numerical examples of such equations defined
on [0, 1] and given in the following table.

Kernel k Function a Function f Exact Solution y

Example 1
1

t + exp(s)
−1 − log

(
t + e
t + 1

)
exp(t)

Example 2 sin(t + s) − sin(t)
1
4
(cos(t + 2)− cos(t))− 1

2
(3 sin(t) + sin(2t)) cos(t)

Example 3 ts −1 −2 sin(x)− x(−1 + 2 sin(1)) cos(x) + sin(x)

Example 4 sin(4πt + 2πs) −1 −2π sin(2πx)− cos(2πx)
(
1 + sin(2πx)

)
cos(2πt)

Firstly, for Examples 1 and 2, we consider the space of piecewise constant functions
(r = 1) and the space of piecewise linear functions (r = 2) defined on the interval [0, 1]
endowed with the uniform partition

0 <
1
n
<

2
n
< · · · < n− 1

n
< 1. (41)

For different values of n and for i = 1, 2, we compute the maximum absolute errors

Ei,∞ := ‖y− yn,i‖∞, ESi,∞ := ‖y− ySn,i‖∞,

ẼSi,∞ := ‖y− ỹSn,i‖∞, ESi := max
j
|y(xj)− ySn,i(xj)|.

Moreover, we present the corresponding numerical convergence orders denotedNCO
and obtained by the logarithm to base 2 of the ratio between two consecutive errors. The
obtained results are illustrated in the following tables.

Tables 1–4 show that the superconvergent Nyström and degenerate kernel methods
are more accurate than the Nyström and degenerate kernel methods, and the computed
NCOs match well with the expected values.

Next, in order to give a comparison, we illustrate in Tables 5 and 6 the punctual
errors provided by the application of the superconvergent Nyström and degenerate kernel
methods and other known errors obtained in [24,25]. In particular, for i = 1, 2 we denote by

Ei,j = |y(xj)− ySn,i(xj)|, xj = j/10 , j = 0, · · · , 10,

the punctual errors obtained by our methods for r = 1 and n = 4, while ESp,j denote the
errors obtained in [24] by using a cubic spline interpolation, and EAd,j are those obtained
in [25] by using Adomian’s decomposition with four iterations.
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Table 1. Numerical methods based on piecewise constant functions (r = 1).

Example 1 i = 1

n Ei,∞ NCO ES
i,∞ NCO ẼS

i,∞ NCO ES
i NCO

2 2.37(−02) −− 2.22(−04) −− 1.02(−04) −− 1.62(−04) −−
4 5.82(−03) 2.02 1.23(−05) 4, 17 4.92(−06) 4.38 7.04(−06) 4.52
8 1.43(−03) 2.02 7.11(−07) 4.11 2.80(−07) 4.13 3.75(−07) 4.23
16 3.21(−04) 2.02 4.52(−08) 4.00 1.82(−08) 3.93 2.23(−08) 4.07

Theoretical order − 2.0 − 4.0 − 4.0 − 4.0

i = 2

2 1.81(−03) −− 2.81(−04) −− 1.20(−04) −− 2.81(−04) −−
4 4.51(−04) 2.00 2.21(−05) 3.66 9.66(−06) 3.63 2.21(−05) 3.66
8 1.12(−04) 2.00 1.47(−06) 3.90 6.48(−07) 3.89 1.47(−06) 3.90
16 2.81(−05) 2.00 9.38(−08) 3.97 4.16(−08) 3.96 9.38(−08) 3.97

Theoretical order − 2.0 − 4.0 − 4.0 − 4.0

Table 2. Numerical methods based on piecewise constant functions (r = 1).

Example 2 i = 1

n Ei,∞ NCO ES
i,∞ NCO ẼS

i,∞ NCO ES
i NCO

2 2.85(−02) −− 1.43(−04) −− 4.55(−05) −− 5.07(−05) −−
4 7.06(−03) 2.01 1.15(−05) 3.63 3.25(−06) 3.80 2.95(−06) 4.10
8 1.74(−03) 2.02 7.09(−07) 4.02 2.16(−07) 3.91 1.76(−07) 4.06
16 3.25(−04) 2.41 4.70(−08) 3.91 1.54(−08) 3.80 1.08(−08) 4.01

Theoretical order − 2.0 − 4.0 − 4.0 − 4.0

i = 2

2 4.41(−02) −− 4.98(−04) −− 2.58(−04) −− 4.98(−04) −−
4 1.11(−02) 1.98 2.96(−05) 4.07 1.53(−05) 4.07 2.96(−05) 4.07
8 2.78(−03) 1.99 1.83(−06) 4.01 9.44(−07) 4.01 1.83(−06) 4.01
16 6.69(−04) 1.99 1.14(−07) 4.00 5.89(−08) 4.00 1.14(−07) 4.00

Theoretical order − 2.0 − 4.0 − 4.0 − 4.0

Table 3. Numerical methods based on piecewise linear functions (r = 2).

Example 1 i = 1

n Ei,∞ NCO ES
i,∞ NCO ẼS

i,∞ NCO ES
i NCO

2 7.25(−05) −− 1.60(−07) −− 7.83(−08) −− 1.60(−07) −−
4 4.51(−06) 4.00 1.40(−09) 6.83 4.68(−10) 7.38 9.51(−10) 7.40
8 2.82(−07) 4.00 1.28(−11) 6.77 2.07(−12) 7.82 4.27(−12) 7.79
16 1.76(−08) 4.00 1.01(−13) 6.97 8.02(−15) 8.01 1.70(−14) 7.97

Theoretical order − 4.0 − 7.0 − 8.0 − 8.0

i = 2

2 1.94(−06) −− 9.40(−08) −− 4.19(−08) −− 9.40(−08) −−
4 1.20(−07) 4.01 6.56(−10) 7.16 3.07(−10) 7.09 6.56(−10) 7.16
8 7.50(−09) 4.00 6.52(−12) 6.65 1.43(−12) 7.73 3.07(−12) 7.73
16 4.68(−10) 4.00 3.68(−14) 7.46 4.88(−15) 8.20 1.24(−14) 7.95

Theoretical order − 4.0 − 7.0 − 8.0 − 8.0
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Table 4. Numerical methods based on piecewise linear functions (r = 2).

Example 2 i = 1

n Ei,∞ NCO ES
i,∞ NCO ẼS

i,∞ NCO ES
i NCO

2 1.97(−04) −− 8.96(−08) −− 1.14(−08) −− 1.13(−08) −−
4 1.21(−05) 4.02 6.36(−10) 7.13 4.29(−11) 8.05 4.90(−11) 7.85
8 7.52(−07) 4.00 4.97(−12) 6.99 1.57(−13) 8.09 2.00(−13) 7.93
16 4.69(−08) 4.00 3.78(−14) 7.03 6.02(−16) 8.03 7.91(−16) 7.98

Theoretical order − 4.0 − 7.0 − 8.0 − 8.0

i = 2

2 2.55(−04) −− 1.05(−07) −− 1.29(−08) −− 1.42(−08) −−
4 1.56(−06) 4.03 7.69(−10) 7.10 4.87(−11) 8.05 5.85(−11) 7.93
8 9.70(−07) 4.00 6.08(−12) 6.98 1.81(−13) 8.06 2.40(−13) 7.92
16 6.05(−08) 4.00 4.56(−14) 7.05 3.33(−16) 9.09 1.11(−15) 7.76

Theoretical order − 4.0 − 7.0 − 8.0 − 8.0

The results in Tables 5 and 6 show that the error obtained by our methods are com-
parable with those given in [24,25]. However, we notice that in [24] cubic spline functions
(piecewise polynomials of degree three) are used, and in [25], four iterations were needed
to obtain these errors, while in our case only piecewise constant polynomials defined on
the partition (41) with n = 4 were enough to obtain the same accuracy.

Table 5. Comparison with results given in [24].

Example 3

Present Methods Method in [24]

xj E1,j E2,j ESp,j

0 0 0 0
0.1 1.59× 10−5 1.71× 10−6 1.71× 10−5

0.2 1.27× 10−5 1.37× 10−6 3.27× 10−5

0.3 1.39× 10−5 1.50× 10−6 3.59× 10−5

0.4 2.12× 10−5 2.29× 10−6 4.17× 10−5

0.5 8.54× 10−6 8.87× 10−7 4.94× 10−5

0.6 2.59× 10−5 2.64× 10−6 5.88× 10−5

0.7 2.41× 10−5 2.18× 10−6 6.88× 10−5

0.8 2.65× 10−5 1.85× 10−6 8.49× 10−5

0.9 3.47× 10−5 1.59× 10−6 8.79× 10−5

1 2.20× 10−5 1.84× 10−6 1.48× 10−4

Table 6. Comparison with results given in [25].

Example 4

Present Methods Method in [25]

xj E1,j E2,j EAd,j

0.1 2.37502× 10−3 7.18395× 10−6 6.77227× 10−4

0.2 3.24853× 10−3 1.32702× 10−5 3.57926× 10−4

0.3 3.78369× 10−3 5.49501× 10−5 7.20389× 10−4

0.4 3.64555× 10−3 1.14361× 10−4 1.65557× 10−3

0.5 1.69840× 10−3 2.07833× 10−4 2.33402× 10−3

0.6 4.39557× 10−3 3.47537× 10−4 3.76522× 10−3

0.7 5.61879× 10−3 4.93954× 10−4 6.78844× 10−2

0.8 6.51049× 10−3 6.49503× 10−4 1.09211× 10−2

0.9 6.91467× 10−3 1.02800× 10−3 1.49581× 10−2
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6. Conclusions

In this paper, we have developed Nyström, degenerate kernel methods and their
superconvergent/iterated superconvergent versions for the numerical solution of Fred-
holm linear integro-differential equations. We have proved that these methods exhibit
high convergent orders. Finally, such methods turn out to be very effective, with low
computational cost and comparable with other methods known in the literature.
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