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Abstract: Multi-center location of pharmaceutical logistics is the focus of pharmaceutical logistics
research, and the dynamic uncertainty of pharmaceutical logistics multi-center location is a difficult
point of research. In order to reduce the risk and cost of multi-enterprise, multi-category, large-
volume, high-efficiency, and nationwide centralized medicine distribution, this study explores the
best solution for planning medicine delivery for the medicine logistics. In this paper, based on the
idea of big data, comprehensive consideration is given to uncertainties in center location, medicine
type, medicine chemical characteristics, cost of medicine quality control (refrigeration and monitoring
costs), delivery timeliness, and other factors. On this basis, a multi-center location- and route-
optimization model for a medicine logistics company under dynamic uncertainty is constructed.
The accuracy of the algorithm is improved by hybridizing the fuzzy C-means algorithm, sequential
quadratic programming algorithm, and variable neighborhood search algorithm to combine the
advantages of each. Finally, the model and the algorithm are verified through multi-enterprise, multi-
category, high-volume, high-efficiency, and nationwide centralized medicine distribution cases, and
various combinations of the three algorithms and several rival algorithms are compared and analyzed.
Compared with rival algorithms, this hybrid algorithm has higher accuracy in solving multi-center
location path optimization problem under the dynamic uncertainty in pharmaceutical logistics.

Keywords: uncertainty; medicine distribution; FCM-SQP-VNS hybrid algorithm

MSC: 37M10

1. Introduction

The location of pharmaceutical logistics centers has become an important research
direction due to the stringent service requirements, strict timeliness standards, and difficulty
in quality control in pharmaceutical logistics. At present, the following phenomena exist in
the pharmaceutical logistics industry: (1) uncertain disasters always affect the location of
pharmaceutical logistics centers; (2) multi-enterprise, multi-category, multi-specification,
high-volume, high-efficiency, nationwide centralized medicine distribution has become
the trend of pharmaceutical logistics development. However, there are few studies in
the pharmaceutical logistics literature involving multi-enterprise, multi-class, and multi-
specification drug distribution. The paper addresses the problem of multi-enterprise, multi-
category, large-volume, high-efficiency, and nationwide centralized medicine distribution.
In order to reduce the risk and cost of multi-enterprise, multi-category, high-volume, high-
efficiency, and nationwide centralized medicine distribution, comprehensive consideration
is given to uncertainties in center location, medicine type, medicine chemical characteristics,
cost of medicine quality control (refrigeration and monitoring costs), delivery timeliness,
and other factors to design a multi-center location- and route-optimization plan under
dynamic uncertainty. An FCM-SQP-VNS hybrid algorithm is designed.

Current research in pharmaceutical logistics has focused on static problems [1–4], with
less attention to dynamic problems and situations affected by uncertainty.
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In addition, most studies have addressed single-dimensional rather than multi-dimensional
problems [3,5]. There is a lack of studies investigating the national-scale, multi-category,
high-volume, and high-efficiency centralized distribution of medicines. Additionally, there
is no comprehensive consideration of factors such as the uncertainties in center location,
medicine type, medicine chemical characteristics, costs of medicine quality control, delivery
timeliness, and other factors in studies on multi-center location and route optimization for
pharmaceutical logistics enterprises.

Based on the idea of big data, this paper designs a multi-center location- and route-
optimization plan under dynamic uncertainty by considering uncertainty factors such as
center location, medicine type, medicine chemical characteristics, cost of medicine quality
control (refrigeration and monitoring costs), delivery timeliness, and other factors. We
design an FCM-SQP-VNS hybrid algorithm. The accuracy of the algorithm is improved
by combining the respective advantages of the fuzzy C-means (FCM) algorithm, sequen-
tial quadratic programming (SQP) algorithm, and variable neighborhood search (VNS)
algorithm. Finally, the model and algorithm are verified through multi-enterprise, multi-
category, high-volume, high-efficiency, and nationwide centralized medicine distribution
cases, and various combinations of the three algorithms and several rival algorithms are
compared and analyzed. It is proved that the model and algorithm are effective and feasible.

2. Literature Review
2.1. Research on Traditional Logistics and Cold Chain Logistics

Logistical network planning on a rational, scientific basis can reduce logistical costs,
improve service levels and capital use efficiency, and realize automation, informatization,
and efficiency of logistics. These benefits have attracted the attention of researchers in China
and abroad. Logistical cost factors, such as carbon emissions, cargo damage, transportation
time, center location, and transportation costs, have been intensively studied. Researchers
in both traditional logistics and cold chain logistics typically take the minimum total cost as
the objective function and use heuristic algorithms to solve the minimization problem. The
emergence of logistics distribution centers has become a popular phenomenon in the global
economic process over the past decades [6]. Kim et al. [7] employed an analytic hierarchy
process to analyze the hierarchal structure of determinants for selecting the location of a re-
gional logistics distribution centers. Tomáš [8] considered those locations in Bratislava—the
capital of the Slovak Republic—which were designated, or suitable for the establishment
of urban logistics centers. These locations were afterwards evaluated in a real-world case
study employing methods of mathematical programming (linear programming), the near-
est neighbor method, and the Clarke–Wright method. Yen [9] modeled the center locations
and designed adaptive genetic algorithms based on the current state of ASEAN logistics
networks and the characteristics of hub-based networks with taking the total cost mini-
mization as the optimization objective. Lin [10] constructed a vehicle routing optimization
model to minimize carbon emissions by logistics enterprises, and used an improved genetic
algorithm to solve the model with reduced time complexity. Peng et al. [11] constructed
a robust location–path optimization model for emergency resources that was capable of
reducing the overall logistical cost. Bao and Zhang [12] constructed a joint distribution
route optimization model that comprehensively considered the time window, carbon emis-
sion cost, cargo damage cost, and other factors to improve the delivery timeliness and
reduce the overall cost. Qin et al. [5] constructed a path optimization model to minimize
the cost of customer satisfaction and thereby reduce the overall service cost. Chen et al. [13]
by comprehensively considering the constraints of a customer soft time window, mobile
battery capacity, and charging vehicle mileage, constructed a mathematical programming
model that reduced the overall cost. Huang and Yang [14] incorporated the capacity limits
of distribution centers, fixed costs, transportation costs, and time penalty costs into a mathe-
matical programming model to improve the delivery timeliness and reduce the overall cost.
Li and Zhou’s [15] multi-objective location model for distribution centers comprehensively
considered factors including carbon emissions, customer satisfaction, construction costs,
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and operating costs, and was demonstrated to reduce the overall carbon emissions and costs
of logistics and improve customer satisfaction. Xu et al. [16] designed an improved wolf
pack algorithm to solve a logistics distribution center model. The algorithm was demon-
strated to be more robust than other intelligent algorithms. Yong et al. [17] considering
the influence of the COVID-19 pandemic, constructed a location model for an e-commerce
logistics center. Using an improved particle swarm algorithm to solve the model was found
to enhance computational efficiency and positioning accuracy. Yu et al. [18] constructed
a vehicle path model based on data from real-world problems, which was solved by an
improved ant colony algorithm. The algorithm successfully improved the timeliness and
accuracy of the calculations.

The research content of traditional logistics and cold chain logistics is rich and the
theory is mature. Medicine logistics is characterized by stringent service requirements,
strict timeliness standards, and difficulty of quality control. Therefore, traditional logistics
and cold chain logistics solutions such as those investigated in the above studies are usually
inadequate for medicine distribution.

2.2. Medicine Logistics Research

Medicine logistics has attracted much research attention in its own right. Multi-cost,
reverse, flexible, multi-objective pharmaceutical logistics has become an important object
of research. Chen et al. [19] comprehensively considered factors such as distance and time,
and used a weighting method based on a membership function to obtain a plan for medical
center location and allocation. Zhou et al. [1] constructed a location–inventory model for a
national strategic reserve blood bank, with consideration of distance, time, and inventory,
to optimize the layout of the blood bank and enhance its ability to respond to sudden
disasters. Zhou [20] comprehensively considered the costs of transportation, distribution,
operation, land occupation, storage, damage, and other factors to construct a model for cost
minimization in medicine logistics. Wang and Huang [21] constructed a model specifically
to minimize the costs associated with drug expiration by incorporating recovery point costs,
processing center costs, operating costs, transportation costs, recovery costs, sales revenue,
and subsidy revenue. The model reduced the overall cost of recycling. Cao and Lin [2]
constructed a medicine reverse-supply-chain model to improve the recovery rate of expired
drugs. Sabouhi et al. [22] comprehensively considered volume discounts and the risk of
interruption in medicine delivery to construct a flexible supply chain model that improved
the overall robustness of medicine distribution against risk. Similarly, Lawrence [23]
used the Bayesian network method to construct a medicine delivery model improving the
robustness of medicine distribution. Hamdan and Diabat [3] constructed a dual-objective
robust optimization model to improve the timeliness of blood distribution and reduce
unnecessary casualties. According to Pereira [4], reverse logistics is also important in
the pharmaceutical sector to help reduce medication exposure to other people and the
environment. The absence of reverse logistics for household waste medicine could lead to
serious environmental and public health challenges [24].

The above studies mostly focused on static problems. Less attention has been paid
to dynamic problems and situations affected by uncertainty. In addition, most studies
have addressed single-dimensional rather than multi-dimensional problems. No study
has investigated the national-scale, multi-category, high-volume, and high-efficiency cen-
tralized distribution of medicines. Nor have factors such as the uncertainties in center
location, medicine type, medicine chemical characteristics, costs of medicine quality control,
delivery timeliness, and other factors been comprehensively considered in any study of the
multi-center location and route optimization of a medicine logistics company.

3. Mathematical Model
3.1. Research Method

The study is applied and quantitative. In this paper the data are based on the National
Medicine Centralized Procurement Document and tender results. Pharmaceutical compa-



Mathematics 2022, 10, 953 4 of 15

nies are randomly selected in different regions and different types of medicines. The travel
time on each road section for each vehicle is based on real-time road condition data from
Auto Navi Map. The objective is to plan the best solution for medicine delivery with the
least risk and cost. In this paper, based on the idea of big data, comprehensive consideration
is given to uncertainties in center location, medicine type, medicine chemical characteristics,
cost of medicine quality control (refrigeration and monitoring costs), delivery timeliness,
and other factors. On this basis, a multi-center location- and route-optimization model for a
medicine logistics company under dynamic uncertainty is constructed. The FCM-SQP-VNS
hybrid algorithm is designed. The algorithm in this paper is developed in C++ language,
and its testing and running are carried out in an environment with a 2.5 GB CPU, 8 GB
memory, and the Windows 10 operating system. The model and algorithm are verified
through multi-enterprise, multi-category, high-volume, high-efficiency, and nationwide
centralized medicine distribution cases, and various combinations of the three algorithms
and several rival algorithms are compared and analyzed. It is proved that the model and
algorithm are effective and feasible.

3.2. Problem Formulation

In accordance with the requirements of the National Medicine Centralized Procurement
Document, medicine suppliers in China distribute drugs from medicine logistics centers to
medical institutions based on the volume and time requirements of medical institutions.
The amount of each medicine possessed by each supplier, the delivery cities, and the
distribution volume of each medicine in each city are known. For transportation from
medicine manufacturers to medicine logistics centers, and from logistics centers to cities, a
variety of vehicles are available. The available medicine logistics centers are known, and
the cost of monitoring for transportation by each type of vehicle is known. The probability
of future disasters for each candidate medicine logistics center is also known.

To reduce the cost of medicine distribution for logistics companies, this paper ad-
dresses the problem of multi-enterprise, multi-type, large-volume, high-efficiency, and
nationwide centralized medicine distribution. Comprehensive consideration is given to
uncertainties in center location, medicine type, medicine chemical characteristics, cost of
medicine quality control (refrigeration and monitoring costs), delivery timeliness, and
other factors to design a multi-center location- and route-optimization plan under dynamic
uncertainty. The schematic diagram of the medicine logistics network is shown in Figure 1.
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3.3. Notation and Decision Variables

(1) Notation

h: a pharmaceutical manufacturer, h = 1, . . . , H;
j: an alternative medicine logistics center, j = 1, . . . , J;
i: a city participating in centralized medicine procurement, i = 1, . . . , I;
n: the type of medicine, n = 1, . . . , N;
k: the type of vehicle used for medicine transportation, k = 1, . . . , K;
ck0: the environmental monitoring cost per unit time by vehicle type k;
c1: the environmental monitoring cost per cubic meter of inventory per day;
qh

in: the amount of the nth medicine delivered to city i produced by pharmaceutical
manufacturer h;

wh
jn: the amount of the nth medicine delivered to medicine logistics center j produced

by pharmaceutical manufacturer h;
bkhn: the refrigeration cost per unit volume per unit time for the nth medicine produced

by pharmaceutical manufacturer h transported by vehicle type k;
ωhn: the unit penalty cost of the nth medicine produced by pharmaceutical manufac-

turer h that does not arrive on time;
ohn: the weight per cubic meter of the nth medicine produced by pharmaceutical

manufacturer h;
shn: the weight of each box of the nth medicine produced by pharmaceutical manufac-

turer h;
tkhjn: the travel time from pharmaceutical manufacturer h to medicine logistics center

j using vehicle type k to deliver the nth medicine;
tkjihn: the travel time from medicine logistics center j to city i to transport the nth

medicine produced by pharmaceutical manufacturer h by vehicle type k;
Qh

n: the total distribution amount of the nth medicine produced by pharmaceutical
manufacturer h;

Vj: the medicine logistics center j storage space;
l: the area around the alternative medicine logistics center;
y: year;
djl : the average distance between the alternative medicine logistics center j and sur-

rounding area l;
pj: the predicted probability of future disasters for the alternative medicine logistics

center j, j = 1, . . . , J;
pjl : the predicted probability of future disasters in the area around the alternative

medicine logistics center j, l = 1, . . . , L;
Pj: the predicted probability of future disasters for the alternative medicine logistics

center j.

(2) Decision variables

Xkhjn: If a medicine logistics company chooses the kth type of transportation vehicles
to deliver nth type of medicines from the pharmaceutical manufacturer h to the medicine
logistics center j, then Xkhjn = 1; otherwise, Xkhjn = 0; Ykjihn: If a medicine logistics com-
pany chooses the kth type of transportation vehicles to deliver the nth medicine produced
by pharmaceutical manufacturer h from the medicine logistics center j to the city i, then,
Ykjihn = 1; otherwise, Ykjihn = 0; Gh

jn: If a medicine logistics company chooses medicine
logistics center j to deliver the nth medicine produced by pharmaceutical manufacturer h,
then Gh

jn = 1; otherwise, Gh
jn = 0.

3.4. Components of the Optimization Model under Dynamic Uncertainty

This paper uses the above notation, parameters and decision variables. Comprehen-
sive consideration is given to uncertainties in center location, medicine type, medicine
chemical characteristics, cost of medicine quality control (refrigeration and monitoring
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costs), delivery timeliness, and other factors. On this basis, a linear programming model
is constructed.

(1) Medicine quality control cost

The cost of medicine quality control includes two parts: the cost of medicine refrigera-
tion and the cost of medicine storage environment monitoring.

1. The refrigeration cost consists mainly of the cost of refrigeration during medicine
distribution. It is directly proportional to the transportation time and volume of the
medicine, and is expressed as:

f1 =
J

∑
j=1

H

∑
h=1

N

∑
n=1

(
K

∑
k=1

⌈
wh

jn

ohn

⌉
bkhnXkhjntkhjn +

K

∑
k=1

I

∑
i=1

⌈
qh

in
ohn

⌉
bkhnYkjihntkjihn

)
(1 + Pj)Gh

jn (1)

2. Environmental monitoring cost of medicine storage

The cost of environmental monitoring of medicine storage consists of two main parts,
associated with the costs of environmental monitoring of medicine transportation and
that of medicine inventory. The first part is directly proportional to the time and volume
of medicine transportation. The second is directly proportional to the storage time and
volume of medicines. The combined cost is expressed as:

f2 =
J

∑
j=1

H

∑
h=1

N

∑
n=1

[
K

∑
k=1

ck0

⌈
wh

jn

ohn

⌉
Xkhjntkhjn +

I

∑
i=1

K

∑
k=1

ck0

⌈
qh

in
ohn

⌉
Ykjihntkjihn + c1

⌈
wh

jn

ohn

⌉
th
n

]
(1 + Pj)Gh

jn (2)

(2) Satisfaction cost of medicine delivery time

The main component of the medicine delivery time is the transportation time from the
medicine logistics center to the target city. To accord with the delivery time requirements
for centralized medicine procurement (response within 12 h, delivery within 24 h) and the
penalty policy, the delivery time is set to a maximum of 24 h, beyond which penalties will
be imposed. The time cost of medicine delivery is expressed as:

f3 =
J

∑
j=1

H

∑
h=1

I

∑
i=1

N

∑
n=1

(
ωhn

⌈
qh

in
shn

⌉
max

{
Ykjihntkjihn − 24, 0

})
(1 + Pj)Gh

jn (3)

According to the above definitions, under dynamic uncertainty, the route optimization
model for medicine logistics multi-center location selection is expressed as:

F = min{ f1 + f2 + f3}

= min
J

∑
j=1

H
∑

h=1

N
∑

n=1

{
K
∑

k=1

⌈
wh

jn
ohn

⌉
(bkhn + ck0)Xkhjntkhjn

+
K
∑

k=1

I
∑

i=1

⌈
qh

in
ohn

⌉
(bkhn + ck0)Ykjihntkjihn + c1

⌈
wh

jn
ohn

⌉
th
n

+
I

∑
i=1

(
ωhn

⌈
qh

in
shn

⌉
max

{
Ykjihntkjihn − 24, 0

})}
(1 + Pj)Gh

jn

(4)

s.t.
I

∑
i=1

qh
in ≤ Qh

n, h ∈ H, n ∈ N (5)

H

∑
h=1

N

∑
n=1

K

∑
k=1

⌈
wh

jn

ohn

⌉
Xkhjn < Vj (6)

H

∑
h=1

N

∑
n=1

K

∑
k=1

I

∑
i=1

⌈
qh

in
ohn

⌉
Ykjihn < Vj (7)
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J

∑
j=1

wh
jnGh

jn ≥
I

∑
i=1

qh
in, h ∈ H, n ∈ N (8)

K

∑
k=1

J

∑
j=1

Xkhjn ≥ 1, h ∈ H, n ∈ N (9)

K

∑
k=1

J

∑
j=1

Ykjihn ≤ 1, i ∈ I, h ∈ H, n ∈ N (10)

Xkhjn, Ykjihn, Gh
jn ∈ {0, 1}, ∀k, h, j, i, n (11)

Constraint condition (5) indicates that the total amount of each medicine delivered
by the medicine supplier is greater than or equal to the sum of the amount of medicines
delivered to each city; constraint condition (6) indicates that the volume of medicines
distributed from pharmaceutical manufacturers to the medicine logistics center is smaller
than the storage space of the medicine logistics center; constraint condition (7) indicates
that the storage space of the medicine logistics center is larger than the demand space for
the distribution of medicines; constraint condition (8) indicates that the delivery volume of
medicines is not less than the demand of the city; constraint condition (9) indicates that a
pharmaceutical manufacturer can choose multiple medicine logistics centers; constraint
condition (10) indicates that a city only chooses a medicine logistics center for distribution;
constraint condition (11) indicates decision variables.

3.5. Comprehensive Prediction Model of Future Disasters for Medicine Logistics Centers

(1) The prediction model of future disasters in the medicine logistics centers and sur-
rounding areas

In order to improve the safety of the medicine logistics center site selection and
drug distribution routes and reduce the impact of sudden disasters on pharmaceutical
distribution, this paper uses the ratio of the number of major sudden disasters occurring in
the local area within 20 years to the selected period 20 as the predicted probability of future
major disasters in the area based on the idea of big data. The probability model of future
disasters in the medicine logistics center and surrounding areas is established as follows:

pj =
2020

∑
y=2001

jy
20

, pjl =
2020

∑
y=2001

ly
20

(12)

(2) Comprehensive prediction model of future disasters for medicine logistics centers

In order to avoid the impact of sudden disasters on the medicine logistics center,
it is necessary to fully consider the probability of disasters affecting the location of the
alternative medicine logistics center and the surrounding area before selecting the location
of the medicine logistics center. Generally, the farther the medicine logistics center is from
the source of risk, the smaller the probability of the medicine logistics center suffering from
disasters, otherwise, the greater the probability of suffering disasters. The expression is:

Pj = pj +
L

∑
l=1

pjle
−θdjl (13)

Among them, djl is the distance between the candidate medicine logistics center j
and the surrounding area l, and θ is the distance sensitivity coefficient, with a value of
0 < θ < 1 [25,26]. If θ is large, the impact of the surrounding area on the alternative logistics
center will be particularly small; if θ is small, the impact of the surrounding area on the
alternative logistics center will be particularly large. In order to reflect the impact of the
surrounding area on the alternative logistics center, this paper combines the horizontal
earthquake influence coefficient and takes θ = 0.01.
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4. FCM-SQP-VSN Hybrid Algorithm
4.1. Problem Analysis

The model is a strategic location–allocation problem, and its solution has been proved
to be NP-hard. There are many ways to solve such problems, including the ant colony
algorithm, particle swarm optimization algorithm, tabu search algorithm, VNS algorithm,
and others. However, these methods are often affected by issues such as poor initial
solution quality, slow search speed, and low global search capability when solving complex
site-selection problem models, leading to low accuracy.

4.2. Solution Approaches

VNS is a heuristic algorithm for solving optimization problems. It has shown out-
standing performance in terms of simplicity, speed, humanity, and innovation, and has
been applied to solve many combinatorial optimization problems [27–29]. The selection of
the initial solution in VNS has a direct impact on the optimal solution, computing time, and
number of iteration steps. If the initial solution is selected well, the time and the number of
iteration steps required to obtain the global optimal solution will be reduced [30–32].

Studies have shown that the use of the FCM algorithm in combination with VNS can
improve the initial solution and calculation efficiency [33–35]. Furthermore, the larger the
solution neighborhood, the higher the number of feasible solutions in the neighborhood,
and the longer the local search time. In this context, SQP is recognized as one of the best
algorithms for medium and small-scale nonlinear programming problems. It has good local
convergence and high super-linear convergence speed [36–38]. To improve the accuracy
of the local optimal solution search, this paper integrates the SQP algorithm into the VNS
algorithm. To further improve the local search ability of the algorithm, multiple points
in the neighborhood are selected simultaneously as the starting point, the SQP algorithm
is run in parallel, and the optimal local solution is compared with the existing optimal
solution. This not only improves the initial solution selection and maintains the advantage
of the SQP algorithm in solving local optimal solutions but also exploits the characteristics
of the global convergence of the VNS algorithm [39–41] (Algorithm 1).

Algorithm 1. Algorithm Design.

(1) Run the FCM algorithm to obtain the initial solution x = [x1, x2, · · · , xc], with neighborhood
structure Nk(x), k = 1, 2, · · · , kmax, where kmax is the largest neighborhood;

(2) Let k = 1;
(3) Randomly select a solution x′1, x′2, · · · , x′m in the neighborhood of x;
(4) Using x′1, x′2, · · · , x′m as the initial solution, run multiple SQP algorithms in parallel, obtain

the local optimal solution x′′ 1, x′′ 2, · · · , x′′ m, choose the best solution as x′′ ;
(5) If F(x′′ ) < F(x′), let x = x′′ , go to (2); otherwise, let k = k + 1;
(6) If k ≤ kmax go to (3);
(7) If the termination rule is met, output the result and end the calculation.

4.3. Time Complexity Analysis

The time complexity of the FCM-SQP-VNS hybrid algorithm includes three parts,
which are the time consumed by FCM, SQP and VNS, respectively. In practical applications,
the time complexity of the FCM algorithm is 0 (N), the time complexity of the SQP algorithm
is 0(N2), and the time complexity of the VNS algorithm is 0 (kN). The time complexity
of SQP-VNS algorithm is 0 (kN2), and the time complexity of the FCM-SQP-VNS hybrid
algorithm is 0 (kN2 + N). The accuracy of the algorithm has been improved.

5. Case Study and Results
5.1. Case Study

To meet the demand for medicines delivery, a third-party medicine logistics company
undertakes the centralized distribution of three medicines: flurbiprofen ester (injection),
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amoxicillin (oral regular-release dosage form), and cefuroxime (oral regular-release dosage
form), denoted 1, 2, and 3, respectively. The companies and medicines are shown in
Table 1, and the parameter values are shown in Table 2. The medicine logistics company
comprehensively considers the uncertainties in center location, medicine type, medicine
chemical characteristics, cost of medicine quality control, and medicine delivery timeliness,
and seeks multi-center location and route optimization plans.

Table 1. Companies and medicines.

No. Enterprise Name No. Medicine Name Specifications Number

12 Beijing Ted 1 Flurbiprofen ester 50 mg/5 mL 516.41 × 104

13 Shiyao Group 2 Amoxicillin 250 mg 5614.6 × 104

14 Chengdu Times 3 Cefuroxime 250 mg 3351.59 × 104

Table 2. Parameter values.

Parameter Value Parameter Value

Q12
1 258,205 g Q13

2 14,036,500 g
Q14

3 8,378,975 g ω11 20 ¥
ω22 0.2 ¥ ω33 1 ¥
b1hn 3 ¥/h b2hn 2.5 ¥/h
b3hn 2 ¥/h t1

1 30 day
c10 2 ¥/h t2

2 30 day
c20 1.5 ¥/h t3

3 30 day
c30 1 ¥/h c1 2 ¥/h
s11 50 mg o11 2 kg/m3

s22 250 mg o22 50 kg/m3

s33 250 mg o33 30 kg/m3

v1 70 km/h v2 90 km/h
v3 80 km/h P1 0.17
P2 0.15 P3 0.18
P4 0.21 P5 0.19
P6 0.19 P7 0.20
P8 0.18 P9 0.18
P10 0.16 P11 0.17

The algorithm in this paper is developed in C++ language, and its testing and running
are carried out in an environment with a 2.5 GB CPU, 8 GB memory, and the Windows 10
operating system. With respect to parameters, m = 2, ε = 0.001, θ = 0.01, Vj = 5000 m3,
kmax = 20, the neighborhood radius difference is 50 km, and the travel time on each road
section for each vehicle is based on real-time road condition data from Auto Navi Map.
The distribution of medicines in each city is shown in Table 3. Default values are used for
other parameters. The calculation results of the program are rounded to the nearest whole
number. The results of the operation are shown in Table 4, and the optimized medicine
delivery route is visualized in Figure 2.
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Table 3. Medicine delivery volume in each city (104).

No. Name

Medicine Name and No.

1 2 3

Flurbiprofen Ester Amoxicillin Cefuroxime

q12
i1 q13

i2 q14
i3

1 Shanghai 54,355 g 2,753,775 g 2,193,800 g
2 Beijing 53,230 g 203,850 g 3,069,250 g
3 Tianjin 41,785 g 229,175 g 598,475 g
4 Chongqing 4820 g 190,350 g 47,750 g
5 Shenzhen 21,915 g 1,588,475 g 785,425 g
6 Dalian 3805 g 1,073,025 g 140,775 g
7 Shenyang 19,185 g 709,275 g 204,375 g
8 Xi’an 11,360 g 215,300 g 29,275 g
9 Guangzhou 39,025 g 1,227,700 g 901,325 g
10 Chengdu 4055 g 5,539,525 g 378,800 g
11 Xiamen 4670 g 306,050 g 29,725 g

Table 4. Optimal solution for medicine logistics.

Medicine
(n)

Medicine
Supplier

(h)
Vehicle

(k)
Logistics

Center
(j)

w12
j1 w13

j2 w14
j3

Vehicle
(k)

City
(i) Cost

1 2 3
12
13
14

3 1 54,355 g 2,753,775 g 2,193,800 g 2 1
119,452 ¥3 2 118,005 g 2,215,325 g 4,012,875 g 2 2 3 6 7

3 10 20,235 g 5,945,175 g 455,825 g 2 4 8 10
3 11 65,610 g 3,122,225 g 1,716,475 g 2 5 9 11
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Figure 2. Diagram of optimized medicine distribution path.

5.2. FCM-SQP-VSN Algorithm Analysis

The timeliness and accuracy of the FCM-SQP-VSN hybrid algorithm designed in this
paper are first compared with those of the VNS algorithm and SQP-VSN algorithm. Each
algorithm’s parameter settings are shown in Table 5. The programs are run 20 times, and
the results are shown in Table 6 (calculation times are rounded).
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Table 5. Parameter settings.

Algorithm Name Parameter

VNS
The initial solution is randomly selected; neighborhood radius difference:
50 km, maximum number of iterations: 50, number of neighborhood steps
per iteration: 100.

SQP-VSN
The initial solution is randomly selected; neighborhood radius difference:
50 km, maximum number of iterations: 50, number of neighborhood steps
per iteration: 100.

FCM-SQP-VSN Weighted index: 2, threshold: 0.001, neighborhood radius difference: 50 km,
maximum number of iterations: 50, neighborhood steps per iteration: 100.

Table 6. Algorithm comparison.

Algorithm
Name

Average
Optimal Value

Minimum
Optimal Value

Optimal Number
of Times Accuracy

VNS 128,471 ¥ 119,452 ¥ 13 65%
SQP-VSN 126,351 ¥ 119,452 ¥ 13 65%

FCM-SQP-VSN 121,638 ¥ 119,452 ¥ 16 80%

The VSN algorithm, the SQP-VSN hybrid algorithm, and the FCM-SQP-VSN hybrid
algorithm all eventually find the optimal solution to the problem, but differ with respect to
the accuracy. Of the three algorithms, FCM-SQP-VSN has the highest accuracy.

Then, FCM-SQP-VSN is compared with the simulated annealing (SA) algorithm, the
tabu search (TS) algorithm, and the particle swarm optimization (PSO) algorithm. Each
algorithm’s parameter settings are shown in Table 7. As before, the programs are run
20 times. The results are shown in Table 8 (calculation times are rounded).

Table 7. Parameter settings.

Algorithm Name Parameter

SA Cooling speed: 0.98, maximum number of iterations: 1000.

TS Tabu length: 10, maximum number of iterations: 1000.

PSO Number of particles: 20, maximum number of iterations: 1000, learning
factors: both 2, inertia weight: 1.2, eps: 10−6.

FCM-SQP-VSN Weighted index: 2, threshold: 0.001, neighborhood radius difference: 50 km,
maximum number of iterations: 50, neighborhood steps per iteration: 100.

Table 8. Algorithm comparison.

Algorithm
Name

Average
Optimal Value

Minimum
Optimal Value

Optimal Number
of Times Accuracy

SA 129,841 ¥ 119,452 ¥ 14 70%
TS 134,292 ¥ 119,452 ¥ 11 55%

PSO 138,975 ¥ 119,452 ¥ 10 50%
FCM-SQP-VSN 121,638 ¥ 119,452 ¥ 16 80%

The SA, TS, and PSO algorithms each eventually find the optimal solution to the prob-
lem, but differ with respect to the accuracy. Again, the FCM-SQP-VSN hybrid algorithm
has the highest accuracy.

Finally, to further demonstrate the effectiveness of the FCM-SQP-VSN hybrid algo-
rithm, Cplex software is used to solve the problem, with the program likewise run 20 times.
The results are shown in Table 9 (calculation times are rounded).
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Table 9. Algorithm comparison.

Algorithm
Name

Average
Optimal Value

Minimum
Optimal Value

Optimal Number
of Times Accuracy

Cplex 122,517 ¥ 119,452 ¥ 15 75%
FCM-SQP-VSN 121,638 ¥ 119,452 ¥ 16 80%

We can see from Table 9 that although Cplex can obtain the global optimal solution, its
accuracy is lower than the FCM-SQP-VSN hybrid algorithm.

Overall, the FCM-SQP-VSN hybrid algorithm can solve the multi-center location- and
route-optimization model for a medicine logistics company under dynamic uncertainty
with a relatively high accuracy compared with rival algorithms.

5.3. Results and Discussion

This paper addresses the problem of multi-enterprise, multi-category, large-volume,
high-efficiency, and nationwide centralized medicine distribution. Comprehensive con-
sideration is given to uncertainties in center location, medicine type, medicine chemical
characteristics, cost of medicine quality control (refrigeration and monitoring costs), deliv-
ery timeliness, and other factors to design a multi-center location- and route-optimization
plan under dynamic uncertainty. The model is a strategic location-allocation problem, and
its solution has been proved to be NP-hard. There are many ways to solve such problems,
including the ant colony algorithm, particle swarm optimization algorithm, tabu search
algorithm, VNS algorithm, and others. However, these methods are often affected by issues
such as poor initial solution quality, slow search speed, and low global search capability
when solving complex site-selection problem models, leading to low accuracy.

Based on the idea of big data, this paper selects the disaster data of the candidate
medicine logistics centers and their surrounding areas in the past 20 years (data from
National Bureau of Statistics of China).

The multi-center location- and route-optimization model for a medicine logistics com-
pany under dynamic uncertainty is constructed. The FCM-SQP-VNS hybrid algorithm
is designed by hybridizing the fuzzy C-means (FCM) algorithm, sequential quadratic
programming (SQP) algorithm, and variable neighborhood search (VNS) algorithm to
combine the advantages of each. According to the National Medicine Centralized Procure-
ment Document and tender results, the pharmaceutical companies are selected in different
regions and different types of medicines. The model and algorithm are verified through
multi-enterprise, multi-category, high-volume, high-efficiency, and nationwide centralized
medicine distribution cases. Various combinations of the three algorithms and several
rival algorithms are compared and analyzed. The model can reduce the risk and cost of
multi-enterprise, multi-category, large-volume, high-efficiency, and nationwide centralized
medicine distribution. The FCM-SQP-VSN hybrid algorithm can solve the multi-center
location- and route-optimization model for a medicine logistics company under dynamic
uncertainty with higher accuracy compared with rival algorithms.

According to research results in Table 4, the farther the medicine logistics center is
from the source of risk, the smaller the probability of the medicine logistics center suffering
from disasters, the overall risk and cost of drug logistics are lower. Otherwise, the greater
the probability of suffering disasters, the overall risk and cost of drug logistics are higher.

According to the operation results in Tables 6, 8 and 9, the FCM-SQP-VSN hy-
brid algorithm can solve the multi-center location- and route-optimization model for
a medicine logistics company under dynamic uncertainty with higher accuracy compared
with rival algorithms.

6. Conclusions and Suggestions

This paper is based on the background of the National Medicine Centralized Procurement
with Volume, this paper addresses the problem of multi-enterprise, multi-category, large-
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volume, high-efficiency, and nationwide centralized medicine distribution. The multi-
center location- and route-optimization model for a medicine logistics company under
dynamic uncertainty is constructed. The FCM-SQP-VNS hybrid algorithm is designed.
The model and algorithm are verified through multi-enterprise, multi-category, high-
volume, high-efficiency, and nationwide centralized medicine distribution cases, and
various combinations of the three algorithms and several rival algorithms are compared
and analyzed. The FCM-SQP-VSN hybrid algorithm can solve the multi-center location-
and route-optimization model for a medicine logistics company under dynamic uncertainty
with a relatively high accuracy compared with rival algorithms.

In pharmaceutical logistics research, comprehensive consideration of the future risks
of medicine logistics centers can reduce the overall risk and cost of medicine distribution.
Using big data methods to predict the future comprehensive risks of medicine logistics
centers, this paper constructed the multi-center location- and route-optimization model for
a medicine logistics company under dynamic uncertainty, designed the FCM-SQP-VNS
hybrid algorithm, which expanded the scope of medicine logistics research, improved the
accuracy of model calculations and reduced the overall risk and cost of medicine delivery.
The innovations of this paper are: (1) based on the idea of big data, the comprehensive prob-
ability model for predicting future disasters of medicine logistics centers was constructed;
(2) the multi-center location- and route-optimization model for a medicine logistics com-
pany under dynamic uncertainty was constructed; (3) the FCM-SQP-VSN hybrid algorithm
was designed, which was shown to improve the accuracy of the model solution compared
with a variety of rival algorithms.

The main limitation of the study is that only some of the medicine logistics factors
and medicine transport vehicles are considered. Comprehensive consideration of multiple
medicine distribution cost factors will be the direction of the authors’ next research.

The comprehensive prediction model of future disasters for medicine logistics centers
is affected by various disasters, and there are still many areas to be studied to improve
the predictability of the model. Two suggestions are made for future research: (1) the
location of distribution centers for multi-center medicine logistics companies could be
optimized; (2) the problem of dynamic and uncertain scenarios in multi-center location
and route optimization for medicine logistics companies could be extended to multi-
dimensional cases.
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