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Abstract: The importance of statistical methods in finding patterns and trends in otherwise unstruc-
tured and complex large sets of data has grown over the past decade, as the amount of data produced
keeps growing exponentially and knowledge obtained from understanding data allows to make
quick and informed decisions that save time and provide a competitive advantage. For this reason,
we have seen considerable advances over the past few years in statistical methods in data mining.
This paper is a comprehensive and systematic review of these recent developments in the area of
data mining.
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deep learning
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1. Introduction

Data mining (DM) is the process of finding patterns and correlations within large data
sets to predict outcomes. Through techniques that range from statistics to machine learning
or to artificial intelligence, DM has entered all areas of knowledge by allowing us to make
informed decisions based on the the data themselves.

In this review, we will provide the state of the art in statistical methods in DM,
by considering the most cited papers in the most impactful journals over the period
spanning mainly from 2020 to the present, 2022.

Given the vast range of topics that DM covers, it is not possible to have a strict
procedure regarding the choice of papers. Statistics journals and computer science journals
differ substantially in the way articles are shared and have their success and impact
measured. Given this impossibility for an absolute procedure, each subsection has the most
relevant recently published papers in the area.

In the special issue of Statistical Methods in Data Mining https://www.mdpi.com
/journal/mathematics/special_issues/Statistical_Methods_Data_Mining (accessed on 20
February 2022),

“Statistics is, nowadays, more important than ever because of the availability
of large amounts of data in many domains like science, finance, engineering,
medicine, etc. For a long time, statistics has developed as a sub-discipline of
mathematics. Nevertheless, computing is also a very important tool for statistics.
This is particularly true in statistical methods in data mining, which is an inter-
disciplinary field involving the analysis of large existing databases in order to
discover patterns and relationships in the data. It differs from traditional statistics
on the size of the dataset and on the fact that the data were not initially collected
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according to some experimental design but rather for other purposes. On the
other hand, asymptotic analysis, which has for a long time been an important
area of statistics approaching problems where the sample size (and more recently,
also, the number of variables) tends to infinity, is obviously also appropriate in
data mining for dealing with huge amounts of data.”

In the next sections, we will discuss the problem of statistical significance (the famous p-
value), which is very relevant in the presence of large number of tests; then, we discuss high-
dimensional data, including LASSO, RIDGE, PCA, and other topics. Other recent topics
in regression will follow and then other recent developments in supervised classification
methods. Although all of these topics can be cast in the area of statistical learning, we
consider next a new section devoted to other recent developments in statistical learning.
We proceed with a more extensive section of neural networks and deep learning, including
applications in computer vision, time series and other sequence data, dimensionality
reduction, density estimation, etc. The last three sections are devoted to clustering, software
applications and closing remarks.

2. Statistical Significance

We will start by briefly discussing recent views on the topic of statistical significance—the
claim that a result of an experiment is not likely to occur randomly or by chance, but is
instead likely to be attributable to a specific cause. Many areas of knowledge that depend
on data analysis and research, such as physics, medicine or economics, need this metric as
a way to evaluate the accuracy of the conclusions.

The most broadly accepted metric in the science community is the p-value; results
that have a p-value smaller than the threshold (usually 0.05) are said to be statistically
significant, while the rest are branded as inconclusive. The drawbacks of this classification
are well known [1] and recently, there has been a pull against this binary classification,
as many studies are labeled contradictory and much research goes to waste [2]. A group of
authors in [3] proposed tightening the p threshold to 0.005. In [4], the authors go further
by proposing to abandon completely the absolute screening role of statistical significance.
They instead propose to treat the p-value as a continuous metric, which, helped by the
other metrics—e.g., data quality, related prior evidence, plausibility of mechanism, study
design, and other factors that vary by research domain—leads to a more complete decision
on the study in question.

A related fundamental question in statistical significance is whether two means differ
or not. For this, the most popular approach is the t-test, which has a primary role in many
of the empirical sciences. In recent years, several different Bayesian t-tests have been
introduced due to their theoretical and practical advantages. In [5], a flexible t-prior for
standardized effect size is proposed that gives the possibility to compute the Bayes factor
by evaluating a single numerical integral. It generalizes prior work, with the previous
objective and subjective t-test Bayes factors as special cases.

Another relevant question in the area regards ways to combine individual p-values to
aggregate multiple small effects. In order to overcome computational issues that performing
this operations with the traditional methods in large and complex data sets provoke, in [6],
the authors propose a new test that is defined as a weighted sum of Cauchy transformation
of the individual p-values. They show that this new test is not only accurate, but also
equally as simple to perform as the classic t-test or z-test.

When performing model selection, often, different criteria used reach different conclu-
sions, and justification of their use and why they were chosen is often lacking in research
papers. In [7], the case of information criteria (ICs) based on penalized likelihood is an-
alyzed, and a different view on these criteria that can help in interpreting their practical
implications in more complex situations in order to make informed decisions is presented.
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3. High-Dimensional Data

In this section, we discuss the case when the number of features p is much larger than
the number of observations N, p >> N. Data in this category suffer from the aforemen-
tioned curse of dimensionality: computational burden, statistical inaccuracy and algorithmic
instability. An overview of methods in high-dimensional data can be found in [8]. In this
section, we consider penalized regression and feature selection, feature screening for
ultrahigh-dimensional problems, estimation and inversion of covariance matrices and
linear discriminant analysis in high dimensions, statistical inference for longitudinal data
with ultrahigh-dimensional covariates and a new method of principal component analysis.

In the case of regression, the most common approach consists of using regularization,
that is, applying penalties on the size of the regression coefficients, performing feature se-
lection and model fitting simultaneously. In general, given input data X ∈ Rp and response
data Y ∈ R, with a Tikhonov regularization term given by 1

2γ ||w||22, the problem becomes,

min
w

1
2
||Y− Xw||22 +

1
2γ
||w||22

s.t. ||w||k ≤ λ (1)

For LASSO, we drop the Tikhonov regularization term and use k = 1; for RIDGE
regression, we also drop the Tikhonov regularization term and use k = 2; and for Elastic
Net, we keep the full formulation with k = 1. An equivalent and more common formulation
for Elastic Net is:

min
w

||Y− Xw||22 + λ1||w||1 + λ2||w||22 (2)

The LASSO regression has the advantage over RIDGE of not only reducing the size of
the coefficients, but also setting several to zero, thus reducing the dimensionality of the
data. However, LASSO performs poorly in terms of highly correlated features, tending to
choose one of them and ignore the others, and generally selects n features before saturating.
To overcome this limitation, Elastic net combines the two approaches. In Figure 1, one can
see why LASSO usually sets some of the coefficients to zero, since the point inside the
corresponding parameter space closest to the least squares solution is in a corner; that is,
the first coordinate equals zero (in the case of the figure). In the case of more dimensions,
the number of corners and flat edges is much greater, increasing therefore the possibility of
zero coefficients.

Figure 1. Parameter domains for RIDGE, LASSO and ElasticNet heuristics; β̂LSM is the usual least-
squares estimator.

One traditional approach to selecting features consists in finding the best subset of the
p original features; unfortunately, it is not feasible in practice when p is moderately large.
This is also a particular case of formulation (1) if we drop the Tikhonov regularization term
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and use k = 0, and it is known as the sparse regression problem [9] (in fact, ||w||0 is not
really a norm). This case has the advantage of sparsifying the regressor without unwanted
shrinking, while using the l1-norm leads to biased regression regressors, penalizing both
large and small coefficients.

In [9], a new binary convex reformulation, which is equivalent to (1) with k = 0,
and a novel cutting plane algorithm that solves to provable optimality exact sparse regres-
sion problems are presented, which can deal with regressor dimensions in the 100,000 s,
with an improvement of two orders of magnitude over similar known methods, while
being faster (faster than LASSO). The results show that exact sparse regression can solve
high-dimensional problems, refuting the idea that heuristic methods are necessary (see
Table 1 [9]).

When performing a regression model on high-dimensional data, if the data are dis-
tributed (meaning, large-scale data, stored in L different local machines), traditional meth-
ods discussed above as LASSO are not applicable due to storage and computation limi-
tations. Furthermore, if the data feature heavy-tailed noise, most theories, namely, least
squares and Huber loss-based statistics, would not work, as the assumption of a finite vari-
ance for the noise is not fulfilled. The common approach to such problems is the averaging
divide-and-conquer approach, where one builds, on each machine, a local estimator β̂k
by solving

β̂k = arg min
β∈Rp+1

1
m ∑

i∈Hk

ρτ(Yi − XT
i β) + λm|β|1, (3)

where Hk is the set of data indexes from the kth machine, m = n
L and ρτ is the quantile

regression loss function (see Roger Koenker. Quantile Regression. Cambridge University
Press, 2005), and then averaging over all machines: β̂avg = 1

L ∑L
k=1 β̂k. Similar constructed

debiased approaches also exist but they all suffer from several problems, namely, being
computationally costly and the local estimator being no longer sparse. In [10], the authors
propose a new distributed estimator for estimating a high-dimensional linear model with
heavy-tailed noise that achieves the same convergence rate as the ideal case with pooled
data, while establishing the support recovery guarantee.

For ultrahigh-dimensional problems, the seminal work by Fan and Lv [11] introduces
the notion of sure screening and proposes a new method called sure independence screen-
ing based on correlation learning in order to reduce dimensionality from high to a moderate
scale below the sample size. In [12], the authors also use screening procedures that make
some assumptions on the the data. Their approach, which eliminates redundant covariates
in high-dimensional data, is a model-free feature screening procedure. The method, known
as covariate information number-sure independence screening (CIS), can be used for data
with continuous features, with any kind of response. The new method is based on a co-
variate information number (CIN), which captures the marginal association of each feature
with the response, without assuming any specific underlying model, and can be interpreted
in terms of the traditional Fisher information in statistics. A first model-free forward
screening based on the concept of cumulative divergence is introduced in [13]. Cumulative
divergence is a new correlation metric that characterizes functional dependence; it is robust
to the presence of outliers in the conditioning variable. In contrast to marginal screening
approaches, in this new model, the joint correlations among features are considered, while
also being robust to model misspecification.

In statistical methods, we often need to use covariance matrices and their inver-
sion; their calculation can be innacurate, numerically unstable and unfeasible in high-
dimensional problems. The authors of [14] establish the first analytic formula for nonlinear
shrinkage estimation of covariance matrices. It performs better than previous similar mod-
els, being about 1000 times faster, with similar accuracy, when compared with Quantized
Eigenvalues Sampling Transform (QuEST), and it is also able to tackle covariance matrices
of dimension of an order up to 10,000. Methods such as linear discriminant analysis are
heavily dependent on a good estimation of the mean vectors and the population covari-
ance matrix, while being based on the premise of an equal population covariance matrix
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among all classes. In [15], the authors introduce an improved LDA classifier based on the
assumption that the covariance matrices follow a spiked covariance model (see [15] for
further details).

In [16], the authors approach the problem of statistical inference for longitudinal data
with ultrahigh-dimensional features, by introducing a novel quadratic decorrelated infer-
ence function approach. It simultaneously eliminates the effect of unwanted parameters
and accounts for the correlation to improve the efficiency of the estimation process. Simula-
tion studies conducted by the authors show that the newly proposed method can control
Type I error for testing a low-dimensional parameter of interest and the false discovery rate
in the multiple testing problem.

Linear combinations of covariates are a traditional way of reducing dimension, for
instance, principal component analysis (PCA), although the components retained have
some loss of information which, sometimes, is crucial for other tasks. In [17], the authors in-
troduce a new paradigm which replaces high-dimensional covariates with a small number
of linear combinations in the context of regression, which does not cause loss of informa-
tion. In [18], a new method of PCA, called Tensor Robust Principal Component Analysis
(TRPCA), is introduced. It aims to exactly recover the low-rank and sparse components.
This same low-rank tensor recovery has applications in many areas, given the amount of
high-dimensional data available nowadays, often unlabelled. In [19], the authors analyze
the case of visual data, which can be easily corrupted and noisy, and introduce a unified
presentation of the surrogate-based formulations that include simultaneously the features
of rectification and alignment, and establish error bounds for the recovered tensor.

4. Regression

Regression is one of the oldest areas of data mining that this paper covers, but it is still
one of the most active fields of research, given its important and wide uses across fields of
science. In this section, we will cover some of these recent developments.

When dealing with big data sets, dividing the data among several machines is a
common approach to overcoming hardware limitations. Recently, this divide-and-conquer
technique has been adapted in the field of statistics to include inferential procedures,
based on the mean and other measures of central tendency. These approaches have some
shortcomings, namely, assuming homoscedastic errors or sub-Gaussian tails. In order to
tackle these issues, the work in [20] proposes to use quantile regression in order to extract
features of the conditional distribution of the response in a two-step model that does not
sacrifice accuracy.

The RIDGE formulation discussed in the section on high-dimensional data (Equation (2)
with λ1 = 0) attempts to find the best balance between variance and bias by fine-tuning the
parameter λ2. However, in practice, the best solution is often setting λ2 = 0 and finding the
minimum-norm solution among those that interpolate the training data. In [21], the authors
isolate what appears to be a new phenomenon of implicit regularization for interpolated
minimum-norm solutions in Kernel “ridgeless” regression.

The maximum likelihood estimator (MLE), on which methods such as logistic regres-
sion rely heavily, has been shown to not always exist. In particular, the MLE does not
exist if and only if there is no overlap of data points, i.e., there is a hyperplane separating
the data classes in logistic regression. Working on this, the authors of [22] establish the
existence of a phase transition in the logistic model with Gaussian features, and compute
the phase transition boundary explicitly (see [23] for an R package, mlt, that implements
maximum likelihood estimation in the class of conditional transformation models).

In [24], the authors propose a new framework that allows to approximate the eigende-
composition using only the eigendecomposition of the Laplacian and the spectral density of
the covariance function. The method allows for theoretical analysis of the error caused by
the truncation of the series and the boundary effects. This has vast applications in diverse
areas, e.g., medical imaging.
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When dealing with strong prior information and weak data, it may happen that the
fitted variance is higher than the total variance; in this case, the proportion of variance
explained, R2, can be greater than one, which is a problem. In [25], the authors propose a
generalization that has a Bayesian interpretation as a variance decomposition, by suggesting
the alternative definition of the variance of the predicted values divided by the variance of
predicted values plus the expected variance of the errors.

In [26], the authors reformulate the modal regression problem from a statistical learn-
ing viewpoint, which renders the problem dimension-independent.

Although modern massive and high-dimensional data promise the discovery of subtle
patterns that might not be possible with a small dataset, they also bring great challenges
both computational and statistical. Significant progress has been made in this century in
obtaining useful information from large datasets with high-dimensional covariates and sub-
Gaussian tails. However, sub-Gaussian tails are not a valid assumption in many practical
applications; in fact, heavy-tailed distributions and outliers are a common presence for high-
dimensional data. In 1973, Peter Huber introduced the concept of robust regression, which
is not as affected by some violations of the linear model assumptions as the traditional least
squares model is, for instance, in the presence of outliers and heavy-tailed distributions.
However, the robustification parameter is set fixed in the works about robust regression,
and this introduces problems of estimation when the sample distribution is not symmetric.
In [27], an adaptive Huber regression for robust estimation and inference is proposed
where the robustification parameter adapts to the sample size, dimension and moments for
optimal balance between bias and robustness. Their methodology, which is extended to
allow both heavy-tailed predictors and observation noise, is shown to be more robust and
predictive in a real-life application.

In [28], a new method, SuSiE, is introduced for variable selection in linear regression.
It focuses on quantifying uncertainty in which variables should be selected. For this,
the sparse vector of regression coefficients are written as a sum of ‘single-effect’ vectors,
each with one non-zero element. Additionally, a Bayesian analogue of stepwise selection
(IBSS) is introduced, which, instead of selecting a single variable at each step, computes a
distribution on variables to capture uncertainty regarding which variable to select. Their
method is very appropriate in the presence of highly correlated and sparse variables, such
as in genetic fine mapping applications, which they illustrate. In [28], the possibility of
applying these methods to generic variable-selection problems is also discussed.

5. Other Recent Developments in Supervised Classification Methods

We will now describe some recent developments in other supervised classification
methods, such as decision trees, support-vector machines, K-NN, etc.

The oldest method of supervised classification is linear discriminant analysis (LDA)
of Fisher (1936) for two classes, and Rao (1948) for more than two. Somewhat similar to
PCA, LDA projects the data into a space of a lower dimension (K − 1); however, unlike
PCA, which finds the space where the data have maximum dispersion, LDA finds the space
where the classes are well separated and then, in the prediction phase, for a new query, it
chooses the class whose projected mean is the closest. In [29], by using the connection that
naturally exists between LDA and linear regression, a penalized LDA is introduced, called
the moderately clipped LASSO (MCL), which can be applied when the number of variables
is larger than the sample size. In numerical studies, the authors find that it has better finite
sample performance than LASSO.

On the topic of linear boundaries, when the data can be perfectly separated by a
hyperplane, the support-vector machine (SVM) finds the hyperplane that maximizes the
margin between the classes, which is different from the LDA hyperplane. Statistical
learning theory suggests also that this hyperplane has good generalization properties. It
is, of course, rare that the classes be linearly separable and for that reason, SVMs use
the Kernel trick, which consists of projecting the data into a space of larger dimension,
eventually infinite, hoping that data are linearly separable there. This is achieved without
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actually needing to define the mapping. Since all we need is an inner product in the final
space, a Kernel function is used that corresponds to an inner product. If w is a vector
defining the hyperplane that maximizes the margin (2/||w|| ), our problem consists of
min ||w||2 s.t. Yi(wTzi + b) ≥ 1, ∀i = 1, 2, . . . , n, where (xi, Yi) are the initial data and Zi
corresponds to the projected values of Xi. Of course, even in the larger space, the data
might not be linearly separable and for that reason, SVMs use a relaxation, which consists
of using slack variables ξi ≥ 0, and the problem becomes

min
1
2
||w||2 + C

n

∑
i=1

ξi s.t. Yi(wTzi + b) ≥ 1− ξi, ∀i = 1, 2, . . . , n (4)

SVMs have been implemented in many research fields, ranging from text classification
to face recognition, financial application, etc. Although SVMs have good properties, such
as a small number of parameters to estimate, the possibility of finding the global optimum
(unlike neural nets) and being fast in predicting (since only the support vectors are used),
they take a long time to train, of the order of n2. For this reason, they are not very
popular with very large data sets and there is not much work about them. Recently, in [30],
the authors explored support-vector machines in data mining classification algorithms
and summarized the research status of various improved methods of SVM. They found a
solution for speeding up the SVM algorithm, and concluded that it can be widely used in the
context of big data. The performance of SVMs depends highly upon the choice of Kernel
functions and their parameters, as well as on the distance used. Many improvements
have been made in the last decade to enhance the accuracy of SVM (see [31]), such as
twin SVM (TWSVM), which has a computational cost of approximately one-fourth of
the SVM. It requires solving two small-size quadratic programming problems in lieu
of solving a single large-size one (SVM), in order to find two nonparallel hyperplanes.
In [32], a comprehensive review on twin support-vector machines (TWSVM) and twin
support-vector regression (TSVR) is given with applications in classification, regression,
semi-supervised learning, clustering, and with applications such as Alzheimer’s disease
prediction, speaker recognition, text categorization, image denoising, etc.

Many improvements of TWSVM have been proposed by researchers as a result of its
favorable performance, especially in cases of handling large datasets.

Decision trees (DT) are a nonparametric supervised learning method used for clas-
sification and regression. The objective is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features. A tree
can be seen as a piecewise constant approximation. It approximates the data via a series of
if-then-else decision rules. It facilitates feature importance and data relations analysis, being
easy to interpret.

Despite being a simple model to understand, DTs, by themselves, have some draw-
backs. Namely, they are unstable to changes in data, often quite inaccurate, and calculations
can become quite complex if a right pruning algorithm is not jointly applied.

In [33], generalized random forests are proposed, a method for nonparametric statistical
estimation based on random forests (Breiman, 2001). Forests estimate µ(x) = E(Y|X = x)
and theoretical results regarding the consistency and confidence intervals exist for such
estimates (see [33]). This paper extends Breiman’s random forests into a flexible method
for estimating any quantity θ(x), not just µ(x), and uses their approach to create new
methods for nonparametric quantile regression, conditional average partial effect estima-
tion, and heterogeneous treatment effect estimation via instrumental variables. A software
implementation is also provided.

Bayesian additive regression trees (BART) provide an alternative to the parametric
assumptions of the linear regression model. In [34], extensions of the original BART to new
models are introduced for several different data types, in addition to changes to the BART
prior to tackling higher dimensions and smooth regression functions. Recent theoretical
results regarding BART are also presented and discussed, as well as the application of
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methods based on BART to causal inference problems. The paper also describes available
software and challenges it may face in the future.

Another nonparametric method of supervised classification is the well-known KNN,
which, despite coming from the nonparametric estimation of the densities fk, k = 1, . . . , K,
results in sorting any new query into the most dominant class amongst its K neighbors.
In [35], the authors seek estimators for the entropy of a density distribution, which repre-
sents the average information content of an observation, and can be seen as a measure of
unpredictability of the system. This has applications in many statistical methods, namely,
to test goodness of fit and independent component analysis. They use weighted aver-
ages of existing estimators based on the k-nearest neighbor distances of a sample of n
independent and identically distributed random vectors. They obtain efficient estimators
for larger dimensions than the original estimators, as well as confidence intervals for the
asymptotically valid entropy.

In practice, when applying regression or classification models, we can have underfit-
ting (large error in both training and testing) or overfitting (low training error and large
expected test error). By using regularization techniques, we can address this gap between
the training error and the test error in overfitting. The work in [36] introduces a new
regularization method for semi-supervised learning that identifies the direction in which
the classifier’s behavior is most sensitive. Naturally occurring systems and several stud-
ies suggest that a predictor robust against random and local perturbations is effective in
semi-supervised learning. For instance, with neural networks, it is possible to improve the
general performance by applying random perturbations to each input in order to create
artificial input points and encouraging the model to assign similar outputs to the set of
artificial inputs derived from the same point (see [36]). It has been found, however, that
random noise and random data augmentation often cause the predictor to be very vul-
nerable to a small perturbation in a specific direction, known as the adversarial direction,
for, instance when using L1 and L2 regularization. Adversarial training (Goodfellow et al.
2015) is an attempt to solve this problem that has succeeded in improving generalization
performance and made the model robust against adversarial perturbation. Unlike adver-
sarial training, the work in [36] proposes a method that defines the adversarial directions
(only “virtually” adversarial, in fact) without label information and can, for this reason, be
applied in semi-supervised learning. The application in supervised and semi-supervised
learning tasks on many benchmark datasets demonstrates very competitive performance
when compared to state-of-the-art methods.

6. Statistical Learning

The concept of statistical learning refers to a set of tools for modeling and understand-
ing complex data sets, and it combines the areas of statistics and machine learning. It
covers a wide range of concepts. In this section, those not covered in other sections will be
discussed, normally filed under the topic of statistical learning themselves.

Zero-shot learning aims to recognize objects whose instances may not have been seen
during training (classifying images where there is a lack of labeled training data). In the
past few years, there has been a rapid increase in the number of new zero-shot learning
methods that have been proposed. These are due to the many cases where AI needs to
adapt to previously unseen data, from self-driving cars to new disease diagnosis, e.g.,
COVID-19. In [37], the authors present a comprehensive review on the state of the art in
the area, comparing all methods and presenting a new data set to perform the testing in
order to have common metrics between models.

When the data in a study are corrupted or heavy-tailed, recently introduced median-
of-means (MOM)-based procedures have been shown to outperform classical least-squares
estimators (e.g., LASSO). MOM estimators partition the data set into k blocks, (Zi)i∈Bk ,
k = 1, . . . , K of the same cardinality, and then calculate the median of the K empirical means
of each block:
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MOMk(Z) = median
{

1
|Bk| ∑

i∈Bk

Zi, k = 1, . . . , K
}

(5)

Despite their advantages, these procedures cannot be implemented. In [38], the au-
thors introduce min–max MOM estimators and demonstrate that, both in small and high-
dimensional statistics, they obtain similar sub-Gaussian deviation bounds as the alterna-
tives models, while being efficient under moment assumptions on data that may have been
corrupted by a few outliers.

In many areas of knowledge, nonparametric estimation of a probability density func-
tion is an essential tool in the analysis. Using local polynomial techniques, in [39], the au-
thors introduce a novel nonparametric estimator of a density function. The distinctive
feature of this estimator is that it adapts to the boundaries of the support of the density
automatically; it does not require particular data modifications or choosing additional tun-
ing parameters, something almost all state-of-the-art methods are incapable of performing
without compromising the finite and large-sample properties of the estimator.

Many of the new methods cited in this paper—namely, neural nets, deep learning,
boosting, support-vector machines, random forests—have became widely popular and are
widely used in all kinds of data sets due to their well-known advantages. In [40], the author
compares these new ‘trends’ with the classic approaches, such as ordinary least squares
and logistic regression, focusing on the differences between prediction and estimation or
prediction and attribution (significance testing).

Given the increasing size and complex structure of data sets in the most varied areas,
black-box supervised learning models, such as neural networks, boosted trees, random
forests, k-nearest neighbors or support-vector regression, commonly replace more trans-
parent linear and logistic regression models in order to capture nonlinear phenomena.
They are, however, difficult to interpret in terms of fully understanding the effects of the
features on the response. In many cases, this relationship is vital information. Generally,
the solution is to use partial dependence (PD) plots. However, they can produce poor
results if the covariates are strongly correlated, as they require extrapolation of the response
at predictor values that are significantly outside the multivariate envelope of the training
data. To resolve this, in [41], the authors present a new visualization approach called
accumulated local effects (ALE) plots, which, in addition to being computationally less
expensive, does not require this unreliable extrapolation with correlated features.

In [42], the authors review and introduce a general framework on the area of metare-
search. Metaresearch is the area of research that studies research itself, in order to investigate
quality, bias and efficiency. Work in this area is important in maintaining the credibility of
the scientific method.

A concept we are all familiar with (even if unknowingly) is prediction-based decision
making. It has made its way to government policy decisions, environmental discussions
or industry standards. Decisions based on predictions of an outcome have become the
norm. This newly acquired attention has been related to how consequential predictive
models may be biased, in aspects such as race, gender or class. Studying and correcting
such biases has motivated a field of research known as algorithmic fairness. The work
in [43] provides a framework for this scattered topic, establishing terminology, notation and
definitions, offering a concise reference frame for thinking through the choices, assumptions,
and fairness considerations of prediction-based decision making.

In social sciences, structural equation modeling (SEM)—which explains the relation-
ships between measured variables and latent variables, as well as the relationships between
latent variables themselves—has become the standard. Recently, however, partial least
squares path modeling (PLS-PM), a composite-based approach to SEM, has been gaining
traction in a wide range of uses, as it allows researchers to estimate complex models with
many constructs and indicator variables, even at low sample sizes. In [44], the authors
explore whether, and when, the in-sample measures such as the model selection criteria
can substitute out-of-sample criteria that require a holdout sample.
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MCMC methods are a fundamental tool for Bayesian inference and they use the
Metropolis–Hastings (MH) algorithm ([45,46]), which is used to produce samples from
distributions that may otherwise be difficult to sample from, and is generally used for sam-
pling from multidimensional distributions, especially when the number of dimensions is
large. Yet, when faced with big data, these methods do not work well. In [47], a new family
of Monte Carlo methods is introduced, which is based upon a multidimensional version
of the Zig-Zag process in [48]. This new method has often more favorable convergence
properties. A sub-sampling version of the Zig-Zag process is introduced, which seems to
work well with big data.

Low-rank matrix estimation, which is used in mathematical modeling and data com-
pression, consists of finding an approximating matrix to a given data matrix, and is related
to PCA, factor analysis, etc. Many of these estimators are NP-hard but, fortunately, some
computationally efficient algorithms using leading eigenvectors exist. The authors of [49]
investigate the behavior of eigenvectors for a large class of random matrices whose expec-
tations are low-rank.

In many large-scale regression problems, matrix products such as XTWX are needed
and in [50], a new and considerably more efficient way to compute XTWX is presented.
Starting from discretized covariates, these new algorithms manage to be more efficient than
previous algorithms, thereby substantially reducing the computational burden for large
data sets.

In [51], the authors introduce an alternative procedure to the minimum covariance
determinant (MCD) approach. MCD estimates the location and scatter matrix using the
subset of a given size with the lowest sample covariance determinant; this is useful, for
instance, to avoid outliers. However, the MCD approach cannot be applied when the
dimension of the data, p, exceeds the subset size, h. In [51], the authors introduce the
minimum regularized covariance determinant (MRCD) approach. It can be applied when
p > h, and it differs from the MCD in that the scatter matrix is a convex combination of
a target matrix and the sample covariance matrix of the subset. The aim is to substitute
the subset-based covariance with a regularized covariance estimate, defined as a weighted
average of the sample covariance of the h-subset and a predetermined positive definite
target matrix. This estimated covariance matrix is guaranteed to be invertible, it performs in
higher dimensions, it is suitable for computing robust distances and for linear discriminant
analysis and graphical modeling.

In machine learning and statistics, it is most common to have data which consist of
vectors of features. However, in the era of big data, other types of data exist, such as
graph recommender systems (users and products with transactions and rating relations),
ontologies (concepts with relations), computational biology (protein–protein interactions),
computational finance (web of companies with competitor, customer, subsidiary relations,
supply chain graph, graph of customer–merchant transactions), etc. (see [52]). It is of
course possible to ignore relations and treat these data as vectors of features; however,
these relations hold additional valuable information. Most of the research on graphs has
been conducted on static graphs (fixed nodes and edges). Many applications, however,
involve dynamic graphs that change over time, and in [52], a survey is presented of the
recent advances in representation learning for dynamic graphs with several prominent
applications and widely used datasets.

7. Neural Networks and Deep Learning
7.1. Introduction

The function obtained by a neural network with input vector X = (X1, X2, . . . , Xp),
one hidden layer T = (T1, T2 . . . , Tl) and output Y = (Y1, Y, 2, . . . , YK) is such that

Yj = fo(b +
l

∑
i=1

wh
ij fh(a +

p

∑
m=1

wI
miXm)),
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where the parameters b, a and matrices WI and Wh are to be estimated from data, and
the activation functions fo, fh are usually the hyperbolic tangent, sigmoid, RELU, etc.
(see in Figure 2 a graphical representation of this 1-hidden-layer neural network). Deep
networks have many more hidden layers and so, the final function becomes quite difficult
to differentiate in order to estimate the parameters, which has to be achieved using some
form of gradient descent (GD). Back-propagation was a breakthrough that allowed the
training of multilayer networks of neurons and new architectures (SOM, RBF, Hopfield,
etc.) and applications appeared. In the 1990s, the use of neural networks was generalized
and new developments emerged.

Figure 2. Generic neural network.

Deep learning or deep neural networks (see Chapter 14 of [53,54] for an overview)
has achieved tremendous success in the last decade in many areas such as artificial intel-
ligence, statistics, applied mathematics, clinical research, etc. Deep learning uses many
compositions of linear transformations followed by nonlinear ones in order to approximate
high-dimensional functions, and it has greatly improved the performance on complex
datasets such as images, texts and voices in applications such as computer vision, natural
language processing, machine translation, etc. The tremendous success of deep learning
is due in part to its response to the bias–variance trade-off, since, by using huge datasets,
with millions of samples, the variance is reduced and at the same time, due to the current
availability of enormous computing power, one can train large neural networks, which
reduces biases. On the other hand, given the huge number of parameters to be estimated,
sometimes more parameters than data observations, the training of a deep neural network
requires the use of some form of regularization in order to prevent the parameters from
‘exploding’ and avoid overfitting of the model. The regularization consists of adding a
penalty to the loss to be optimized, and it results in simpler models. For instance, L2
regularization, or weight decay, is very popular for training neural networks.

On the other hand, L1 regularization introduces sparsity in the weights by forcing some
of the weights to be zero, which, in particular, causes some of the features to be discarded.
Other forms of regularization exist, such as Dropout (which has some resemblance to
bagging introduced by Breiman in 1996 [55]) where during training some number of
connections are randomly ignored, with probability p, although during the test, all of the
connections are taken into account.

Popular deep learning software use computational graphs, which provide an efficient
way of representing function composition and computing gradients by back-propagation.
In addition, in order to minimize the total “error” or loss, that is, the average of the errors
between the output value given by the network and the real value, for each data observation,
another important aspect is the use of stochastic gradient descent (SGD). Thus, in each
pass, instead of computing the gradient for the entire dataset, which is computationally
very costly, the gradient is only computed for a small random sample. By the law of large
numbers, this stochastic gradient should be close to the full-sample one, it converges faster
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than GD and is widely used in ML. Other important aspects that contribute to the success
of deep learning will emerge as we introduce some popular models below.

Despite the huge success of deep learning, one must remember that according to the
universal approximation theorem, a neural network with one hidden layer and a linear
output layer may approximate any Borel measurable functions well. In practice, a one-
hidden-layer neural network with a large number of nodes can still achieve high prediction
performance. Taking this into consideration, recently, the authors of [56] introduced a
training algorithm, called local linear approximation (LLA), which uses the first-order
Taylor expansion to locally approximate activation functions of each neuron, such as RELU,
and can be used in both regression and classification problems.

Note that, while any state-of-the-art review always runs the risk of quickly becoming
outdated, this section in particular moves fast, and any top method at the time of publishing
will likely be surpassed in benchmark tests by the following month. For this reason,
the selection of the papers cited on this topic will follow the methods that caused a paradigm
shift in the approaches used, as most of the others are combinations and variations on these.
This is the case, for instance, in computer vision.

A historical survey on deep learning in neural networks can be found in [57].

7.2. A Statistical View of Deep Learning

In [58], the authors present a survey of recent progress in statistical learning theory,
which are useful in deep learning.

According to the authors,

“Broadly interpreted, deep learning can be viewed as a family of highly nonlinear
statistical models that are able to encode highly nontrivial representations of data.
A prototypical example is a feed-forward neural network with L layers, which is a
parameterized family of functions x 7→ f (x; θ) defined on Rd by

f (x; θ) := σL(WLσL−1(WL−1 . . . σ1(W1x) . . .)) (6)

where the parameters are θ = (W1, ..., WL) with Wl ∈ Rdl×dl−1 and d0 = d,
and σl : Rdl → Rdl are fixed non-linearities, called activation functions.”

These authors conclude that, surprisingly, deep learning models find solutions that
give a near-perfect fit to noisy training data, and, at the same time, lead to excellent
prediction performance on test data; and this is achieved with no explicit effort made to
control model complexity.

The classical approach in statistical learning involves a rich, high-dimensional model,
combined with some kind of regularization, to encourage simple models, while allowing
more complexity if that is warranted by the data. The deep learning models, on the
other hand, are built upon two surprising empirical discoveries: (1) As deep learning
uses models with many parameters, the fit to the training data is simplified and simple,
local optimization approaches, variants of stochastic gradient methods, are extraordinarily
successful in finding near-optimal fits to training data. The idea of overparametrization
seems contradictory from the point of view of classical learning theory, which states that
these models should not generalize well; (2) Deep learning models are, in fact, outside the
realms of classical learning theory, they are trained with no explicit regularization and,
although they typically overfit the training data, exhibiting a near-perfect fit, with empirical
risk close to zero, they produce nonetheless excellent test-prediction performance in a
number of settings. They conclude that deep learning practice has demonstrated that poor
predictive accuracy is not an inevitable consequence of this benign overfitting.

See the work in [58] for further theoretical details for understanding this behavior of
deep learning models and see why, although there is no explicit regularization, implicitly,
they impose regularization.
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7.3. Examples of Deep Neural Networks
7.3.1. Convolutional Neural Networks (CNN) and Computer Vision

Methods in computer vision have vastly improved in recent years. Object detection—
where the goal is to classify individual objects and localize each using a bounding box,
and semantic detection/image segmentation—where the task consists of clustering parts
of an image together which belong to the same object class, are the two main problems.
A performance comparison between all these methods in different benchmark test sets
with accompanying papers can be found at https://paperswithcode.com/area/computer-
vision (accessed on 20 February 2022), while a review on object detection using deep
learning can be found in [59], and a review on image segmentation can be found in [60].

Currently, the vast majority of computer vision algorithms use convolutional neural
networks (CNNs). CNNs are a specialized kind of neural network for processing data that
has a known grid-like topology. Their uses are diverse, but they are more commonly used
on input of the form of image data (2-D).

The idea of using this mathematical concept in computer vision was first introduced
by LeCun et al. [61] in 1998, to help solve the problem of recognition of hand-written digits.
CNNs are simply neural networks that use convolution in place of matrix multiplication in
at least one of their initial layers. This, however, speeds up the learning period immensely
as matrix multiplication is computationally costly, and, in these applications, it usually
returns a sparse matrix which a CNN can obtain with less redundant information (for more
details, see Chapter 9 of [62]).

In Figure 3, we can see the usual configuration of a CNN. In the first stage, the layer
performs several convolutions in parallel to produce a set of linear activations. In the
second stage, each linear activation is run through a nonlinear activation function, such
as the rectified linear activation function (RELU). In the third stage, we use a pooling
function to modify the output in order to make it invariant to small translations of the
input, while, typically, reducing the size of the data—the most common pooling function
is max pooling, which returns the maximum output within a rectangular neighborhood.
In the end, the output is flattened into a 1-D array so it can be run through a neural network
for classification. The most popular image classification algorithms, including LeNet [61]
and AlexNet [63], follow this structure, varying the number of convolutional layers and
changing the hyperparameters, such as the pooling width and stride.

Figure 3. Configuration of a typical convolutional network.

While traditional object detectors usually consist of three stages—frame candidate
regions on a specified image and locate the object, extract features of these candidate regions,
use the trained classifier for classification—current state-of-the-art object detectors either
have two stages or only one stage. A two-stage detector is a proposal-driven mechanism,
where it initially uses a region proposal network to generate regions of interest (RoIs), and,
in the second stage, sends the region proposals down the pipeline for object classification
and bounding-box regression. They are the most precise framework, but also slower

https://paperswithcode.com/area/computer-vision
https://paperswithcode.com/area/computer-vision
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compared with their counterparts. One of the most successful two-stage detectors is the
region-based convolutional neural network (R-CNN) [64], which obtains a manageable
number of candidate regions and evaluates convolutional networks independently in each
region of interest, by classifying each candidate location as one of the foreground classes
or as background. On the other hand, there have also been promising results for one-
stage detectors, namely, YOLO [65] and SSD [66], which lose 10–40% to the best two-stage
methods in terms of accuracy, but are considerably faster. In [67], the authors present a
simple two-stage dense detector named RetinaNet, which matches the speed of previous
one-stage detectors, while surpassing the accuracy of all existing state-of-the-art two-stage
detectors, including the ones mentioned in this section.

In [68], the authors present a new general framework, called Mask R-CNN, for in-
stance segmentation, which combines elements from the two classic computer vision tasks
mentioned before in a simple and efficient way, claiming to surpass all previous methods.
Most of the advances in computer vision are driven by powerful baseline systems such
as Fast/Faster R-CNN [69,70] and fully convolutional network (FCN) [71] frameworks.
Faster R-CNN is built on the R-CNN framework by learning the attention mechanism
with a region proposal network (RPN). Building on Faster R-CNN, Mask R-CNN adds a
branch for predicting segmentation masks on each region of interest, in parallel with the
existing branch for bounding-box regression. That is, to the previous outputs—class label
and bounding-box offset—for each candidate object, it adds a third branch that outputs the
mask that bounds the object. It improves on previous instance segmentation algorithms,
while also excelling at object detection; it is also easily generalized for performing different
vision tasks, such as human pose estimation, as the paper shows. Mask R-CNN is simple
to train and adds only a small overhead to Faster R-CNN, running at 5 fps.

At the time of publishing, the best-performing model in both object detection and
instance segmentation on the COCO test-dev data set is SwinV2-G (HTC++) [72], with 63.1%
object AP (average precision) on the former, and 54.4% mask AP on the latter.(see Table 1).

Table 1. Comparison table between the aforementioned methods on the COCO dataset benchmark.

Model Backbone Architecture Date Box AP Mask AP

Mask R-CNN ResNetXt-101-FPN Jan/2018 39.8% 37.1%
SpineNet-190, 1536×1536 Jun/2020 - 46.1%

RetinaNet ResNetXt-101-FPN Feb/2018 40.8% -
SwinV2-G HTC++ Nov/2021 63.1% 54.4%

An important challenge in vision tasks is the diversity of the scale of the features we
are trying to identify. Convolutional neural networks (CNNs) naturally learn coarse to fine
multiscale features through a stack of convolutional operators. This inherent multiscale
feature extraction ability of CNNs leads to effective representations for solving numerous
vision tasks. Designing a more efficient network architecture is the key to further improving
the performance of CNNs. In [73], a new multiscale backbone architecture is introduced,
Res2Net, which adds a new dimension, scale, to the previous existing dimensions of depth,
width and cardinality.

By exploiting the multiscale potential at a granular level, orthogonal to existing
methods that utilize layerwise operations, it can be easily added to previous CNN models,
such as ResNet or DLA, improving them further.

A common practice used in convolutional neural networks is flattening a layer fol-
lowed by a fully connected layer. Despite empirical success, this method discards possible
multilinear structures within the data. A solution is proposed in [74]—using tensor alge-
braic operations, thus preserving this multilinear structure at every layer. The authors
propose tensor contraction layers (TCLs)—which reduce the dimensionality of their input
while preserving their multilinear structure using tensor contraction—and tensor regression
layers (TRLs)—which express outputs through a low-rank multilinear mapping from a
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high-order activation tensor to an output tensor of arbitrary order—as end-to-end train-
able components of neural networks. By replacing fully connected layers with tensor
contractions, this method aggregates long-range spatial information while preserving a
multimodal structure, while by enforcing a low rank, it reduces the number of parameters
needed significantly with minimal impact on accuracy.

Extracting low-rank tensors from data, where unknown deformations and sparse
but arbitrary errors exist, is an important problem with many applications across fields.
Noise pollution, missing observations, partial occlusion, misalignments and other degra-
dation factors are a common occurrence in visual data, from mobile phones to cameras,
surveillance cameras and medical imaging equipment. In [19], a general framework that
incorporates the features of rectification and alignment simultaneously, and establishes
worst-case error bounds of the recovered tensor, is presented. Previous state-of-the-art
methods, such as RASL or TILT, are particular cases of this formulation.

7.3.2. Recurrent Neural Network (RNN) for Time-Series Data and Other Sequential Data

Recurrent neural networks (RNNs) are a class of neural networks that allow previous
outputs to be used as inputs while having hidden states. They are naturally suited for
processing time-series data and other sequential data, allowing inputs of arbitrary length.
They consists of several successive recurrent layers, and these layers are sequentially
modeled in order to map the sequence with other sequences. RNNs have a strong capability
of capturing the contextual data from a sequence. They are mostly used for natural language
processing and speech recognition. RNNs can solve many different kinds of problems and
can be categorized into the following: One-to-One—standard mode of classification without
RNN (e.g., image classification); Many-to-One—sequence of inputs and a single output (e.g.,
sentiment analysis); One-to-Many—takes an input and produces a sequence of outputs (e.g.,
image captioning); Many-to-Many—sequences of inputs and outputs (e.g., text translation);
Many-to-Many—sequence-to-sequence learning (e.g., video classification).

RNNs, alone or together with other neural network types, have had uses in the most
diverse areas in the past few years. These uses range from enhancing the resolution of
images [75] to predicting the price of the stock market [76], predicting the behavior of
chaotic systems [77] and detecting process fault [78].

A review on RNNs and long short-term memory (LSTM) networks can be found
in [79].

7.3.3. Autoencoders for Dimensionality Reduction and Applications

An autoencoder is a deep neural network that is trained to attempt to copy its input
to its output. It is an unsupervised artificial network that efficiently compresses the data
from the reduced encoded representation to a representation that is as close to the original
input as possible. In doing so, it learns a lower-dimensional representation (encoding) of
the higher-dimensional data, capturing the most important parts of the input. Its uses are
diverse, from reduction of dimensionality (in fact, principal component analysis is a special
case of autoencoding) to anomaly detection and image denoising.

In particular, in recent years, it has been shown to work in character recognition [80],
unsupervised image clustering [81], denoising RNA sequences [82], in cybersecurity [83]
(see survey of deep-learning methods in cybersecurity in [84]), in 3-D MRI brain seg-
mentation [85], fault diagnosis [86] and unsupervised anomaly detection in high-energy
physics [87].

7.3.4. Generative Adversarial Networks (GANs) for Density Estimation and Applications

In classical density estimators, the density function is defined in relatively low di-
mensions. A generative adversarial network [88], on the other hand, is an implicit density
estimator in much higher dimensions, such as data from images, natural scenarios or
handwritten data. GANs place a greater emphasis on sampling from the distribution PX
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rather than estimation, and define the density implicitly through a source distribution PZ
and a generator function g(.), which is usually a deep neural network [53].

GANs use an unsupervised algorithm that discovers and learns regularities and
patterns in input data in such a way that it can be used to generate new examples that
plausibly could have been drawn from the original dataset. It combines two models:
a model that generates candidate outputs and a classifier that evaluates whether the
data created by the first model are real or computer-generated. The algorithm ‘fools’ the
classifier when half of the input is misclassified. GANs are one of the most cited topics
in DL. Their popularity is mostly due to the ability to create photorealistic objects and
people or to change settings in a scene [89], but uses of GANs are not limited to image
processing. Speech and audio processing, medical information processing and many other
areas produce active research in this field.

Recently, due to the outbreak of COVID-19, GANs have been used to improve positive
case detection and treatment [90,91]. Other uses include fault diagnosis [92,93] and de-
raining images (i.e., removing weather effects such as rain or snow from images; [94]). A
literature review on the topic can be found in [95], a comparative analysis of Deep Convo-
lutional GAN and Conditional GAN can be found in [96] and a review on progress and
research issues in [97].

7.3.5. Other Applications of Deep Learning

Graph neural networks (GNNs) are a class of deep-learning methods designed to
perform inference on data described by graphs. A comprehensive survey on GNNs can be
found in [98].

Reinforcement learning (RL) concerns an agent interacting with the environment,
learning an optimal policy, by trial and error, for sequential decision-making problems. It
began with Google DeepMind, becoming popular when it was used to beat the best chess
player and the best Go player in the world. Overviews of deep reinforcement learning can
be found in [99,100].

Most machine learning methods are built on a common premise: the training and test
data are drawn from the same feature space and the same distribution. If this distribution
changes, the majority of the models described in this paper have to be rebuilt from scratch,
using newly collected training data. It can be expensive or even impossible to collect again
the needed training data and rebuild the models in many practical examples. In such
cases, knowledge transfer or transfer learning between task domains would be desirable.
A network is trained with a large amount of data, with the model learning the weights
and bias during training. These weights can be transferred to other networks to test or
retrain a similar new model, so that the network can start with pretrained weights instead
of training from zero. An overview on the topic can be found in [101] and an application in
natural language processing can be found in [102].

Drug design aims to identify (new) molecules with a set of specified properties. Given
that it still is a lengthy, expensive, difficult, and inefficient process with a low rate of
new therapeutic discovery, there is great interest in developing automated techniques
to discover sizable numbers of plausible, diverse and novel candidate molecules with
desirable properties. In [103], a novel variational autoencoder for molecular graphs is
proposed, whose encoder and decoder are especially designed to account for the unique
characteristics of molecular graphs. Experiments reveal that their variational autoencoder
can discover plausible, diverse and novel molecules more effectively than several state-of-
the-art models.

A new area that has gathered momentum in deep learning is physics-informed neural
networks (PINNs)—neural networks that are trained to solve a problem while obeying
physical laws (either explicitly or using the system’s symmetries and conservation laws),
or to find the physical laws from existing data. Its framework was introduced in [104],
and its current state of the art can be found in [105]. This concept of data-driven discovery
of governing equations has also seen significant advances recently on the topic of the
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discovery of coordinates and universal embedding of nonlinear dynamic systems [106,107]
(see [108] for a review of Koopman’s theory of nonlinear dynamics).

Speech recognition [109–111] and machine translation [112,113] (Google) are other
applications of deep learning.

8. Clustering

In data mining, we are often faced with high-dimensional data where observations
have from a few dozen to thousands of features or dimensions. In order to overcome the
associated difficulties, such as visualization of the data and the curse of dimensionality
(enumeration of all subspaces is prohibitive), a dimensionality reduction technique or
feature selection is often employed beforehand. However, the obtained results depend
on the dimensionality reduction technique used, many dimensions can be irrelevant to
clustering and identifying them is not easy.

Subspace clustering tries to circumvent these problems, by clustering, simultaneously,
features and observations. This in turn might result in overlapping clusters in both the
space of features and observations. This means that, for instance, it might be possible to
identify a cluster of the observations in a subspace with 10% of the dimensions that was
not possible to identify in the entire space. There are: (1) Bottom-up approaches which
start by finding clusters in low-dimensional spaces and iteratively merge them to find
clusters in higher-dimensional spaces; (2) Top-down approaches, which find clusters in
the full set of dimensions and then, for each cluster, find the corresponding subspace.
In addition, subspace clustering approaches can be categorized into iterative methods,
algebraic approaches, statistical methods and spectral clustering-based methods (see [114]).

Subspace clustering has had many successful applications. Recently, novel subspace
clustering models have been proposed which use multiple views of the data, not just one,
in order to decrease the influence the original features have when the observations are
insufficient. These methods produce v subspace representations Z(v) and feature matrix
X(v), corresponding to the optimization problem,

min
{Z(v)}V

v=1

L
(
{(X(v), X(v)Z(v))}V

v=1
)
+ λΩ

(
{Z(v)}V

v=1
)
, (7)

where L is a loss function and Ω a regularization term.
As a way to explore the relationships between data points and effectively deal with

noise, the work in [114] proposes using a latent representation for multiple views (Latent
Multi-view Subspace Clustering). This method learns a latent representation to encode
complementary information from multiview features and produces a common subspace
representation for all views, rather than one of each individual view. Furthermore, the
authors generalize their model for nonlinear correlation, and propose the generalized Latent
Multi-view Subspace Clustering (gLMSC). They show by experimenting on both synthetic
and benchmark datasets significant advantages of the learned latent representation for
multiview subspace clustering when compared to the other modern multiview clustering
approaches.

As another illustration and application of the use of multiple views in clustering,
in [115], a new method is proposed for detecting coherent groups in crowd scenes.

Other types of data are also subject to clustering algorithms nowadays, for instance,
longitudinal data, which differ from time-series data because series, despite being shorter,
come in much larger numbers. For that reason, it is of great practical importance to cluster
them. Recently, in [116], the authors introduced a new confinement index and a new way
of comparing countries, by using clustering of three-dimensional longitudinal trajectories,
in the context of COVID-19. In the same work [117], new methods of clustering longitudinal
data are also presented.
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9. Software Applications

With the amount and diversity of algorithms and applications, one of the current
challenges in software is to explain its outputs to a broader audience. AI Explainability
360, presented in [118], is another step in that direction which involves providing an open-
source Python toolkit that provides explainability, interpretability and transparency to the
algorithms.

In [119], the package Tslearn, a Python machine learning library, is introduced to
handle time-series data. It includes preprocessing routines, feature extractors and machine
learning models for classification, regression and clustering, it and can treat both univariate
and multivariate time-series data. It also treats series of variable length. In [120], a similar
package for time-series classification in Python is presented, called pyts. It provides
implementations of several algorithms published in the literature, preprocessing tools
and data set loading utilities.

For time series using deep learning, the Gluon Time Series Toolkit (GluonTS) intro-
duced in [121] provides the necessary components and tools for quick model development,
as well as efficient experimentation and evaluation. It is based on the Gluon API2 of the
MXNet deep learning framework. Based on the same structure, in [122], the libraries
GluonCV and GluonNLP are introduced. They are deep learning toolkits for computer
vision and natural language processing, which provide state-of-the-art pretrained models,
in order to facilitate rapid prototyping and promote reproducible research. They are flexible,
being applicable to different programming languages.

Given the rapid growth in diverse areas of graph-structured data, the authors of [123]
introduced GraKeL, a library that unifies several graph kernels into a common framework,
and can be easily combined with other modules of the scikit-learn interface.

Graphical models are very popular for identifying patterns amongst a set of observed
variables in many disciplines. Often, there is a mix of variable types, e.g., binary, categorical,
ordinal, counts, continuous, skewed, etc. In addition, if measurements are taken across
time, we can be interested in studying the relations between variables not only at one
time point (mixed graphical models (MGMs)), but also across time (mixed Autoregressive
(mVAR) models). In [124], the mgm package is introduced for estimating time-varying
mixed graphical models in high-dimensional data, which extend graphical models for
only one variable type, since data sets consisting of mixed types of variables are very
common in applications. It is written in R and uses the glmnet package (Friedman, Hastie,
and Tibshirani 2010) for generalized linear models (GLMs). The mgm package is used
to estimate mixed graphical models (MGMs) and mixed autoregressive (mVAR) models,
both as stationary models (mgm() and mvar()) and time-varying models (tvmgm() and
tvmvar()). In [124], the authors provide the background implemented methods, as well as
examples that illustrate how to use the package.

10. Closing Remarks

Any state-of-the-art paper in data mining runs the risk of quickly being outdated. Any
article-driven review in such specialized subtopics runs the risk of appearing disjointed in
some parts. Any review paper certainly runs the risk of leaving out important developments
in the area. Despite trying to be as objective as possible in the criteria used to choose the
papers here presented, many other choices of topics and papers would be equally valid.
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