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Abstract: In this work we consider the NP-hard three-index axial assignment problem. We formulate
and investigate a problem of combining feasible solutions. Such combination can be applied in a
wide range of heuristic and approximate algorithms for solving the assignment problem, instead of
the commonly used strategy of selecting the best solution among the found feasible solutions. We
discuss approaches to a solution of the combination problem and prove that it becomes NP-hard
already in the case of combining four solutions.
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1. Introduction

Multi-index axial assignment problems arise when it comes to solving a multitude
of applied problems in the logistics and planning area [1–3]. An overview of the results
obtained through analysis of the subclasses of multi-index assignment problems is given
in [1]. The class of multi-index axial assignment problems is known to be NP-hard even in
the three-index case [4]. In [5] it was proved that no polynomial ε-approximate algorithms
for solving a three-index axial assignment problem (here ε is an arbitrary constant) exist,
otherwise P = NP.

There are known approximate and heuristic algorithms for solving the NP-hard axial
assignment problem [2,6–11]. As a rule, such algorithms construct a series of feasible solu-
tions to the problem. The general approach in the final step of the algorithms is choosing
the best solution from the constructed feasible solutions. As an improvement of the final
step of such algorithms we propose building an optimal combination of the found feasible
solutions instead of commonly applied selection of the best solution. The optimal combi-
nation of feasible solutions is an optimization problem where the fragments of the found
feasible solutions need to be optimally combined. Obviously, such an optimal combination
is no worse than a standard selection of the best solution. But, as we will demonstrate later,
solutions combination outperforms (based on computational experiments) selection of the
best solution while having comparable computational complexity.

The solutions combination problem was first formulated in our earlier paper [12].
In this work a linear complexity algorithm for optimal combining of a pair of feasible
solutions was constructed. Heuristic algorithms for combining of three and a larger number
of solutions were proposed in [13]. These heuristics are based on successive combination of
pairs of solutions. An efficient algorithm for optimal combining of three and larger number
of solutions was an open problem.

In this work we have proved that the solution combination problem is already NP-
hard in the case of combining four solutions. Which means that there is already no
polynomial algorithm for optimal combination in the case of four solutions, otherwise
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P = NP. An efficient algorithm for optimal combining in the case of three solutions remains
an open problem.

Further the article is organized as follows. In Section 2 we formulate the axial assign-
ment problem and the corresponding solutions combination problem. Section 3 deals with
the results of designing the algorithms for combining feasible solutions. Finally, in Section 4
the NP-hardness of combining four solutions is proved.

2. Solutions Combination Problem

Let I, J, K be the disjoint index sets, I ∩ J = ∅, I ∩ K = ∅, J ∩ K = ∅ and
|I| = |J| = |K| = n; cijk, i ∈ I, j ∈ J, k ∈ K is the three-index cost matrix; and xijk, i ∈ I,
j ∈ J, k ∈ K is the three-index matrix of the variables. Then the three-index axial assignment
problem is formulated as the following integer linear programming problem:

∑
i∈I

∑
j∈J

xijk = 1, k ∈ K, (1)

∑
i∈I

∑
k∈K

xijk = 1, j ∈ J, (2)

∑
j∈J

∑
k∈K

xijk = 1, i ∈ I, (3)

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K, (4)

∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk → min. (5)

Next, let a set W ⊆ I× J×K be given that defines a subset of the allowed assignments:

xijk = 0, (i, j, k) /∈W. (6)

Then we consider an optimization problem with objective (5) subject to constraints
(1)–(4) and denote it by Z(W) for the given subset W. It is obvious that problem (1)–(5)
corresponds to the problem Z(I × J × K).

In the general case problem Z(W) is NP-hard [1]. Moreover, the problem of feasibility
check of system (1)–(4), (6) for an arbitrary set W is NP-complete [1]. We will further
consider subsets W such that correspond to the assignments set of some feasible solutions
of the problem (1)–(5).

We introduce auxiliary notations. Let x be a feasible solution to the system of con-
straints (1)–(4). Then W(x) will be used to denote the following set of allowed assignments:

W(x) = {(i, j, k)| xijk = 1, i ∈ I, j ∈ J, k ∈ K
}

.

Let x1, x2, . . . , xm be some arbitrary feasible solutions of the system (1)–(4). Denote
W
(

x1, x2, . . . , xm) = Um
t=1W

(
xt). Then the problem of optimal combining of m feasible

solutions x1, x2, . . . , xm takes the form Z
(
W
(
x1, x2, . . . , xm)).

A large number of known heuristic and approximate algorithms for solving the axial
assignment problem yield, in the course of their operation, a certain set of feasible solutions
(for convenience denoted by x1, x2, . . . , xm). Denote C(x) = ∑

i∈I
∑
j∈J

∑
k∈K

cijkxijk. The general

approach in the final step of these algorithms is choosing the best solution from the con-
structed feasible solutions, i.e., C′ = mint=1,mC

(
xt). As an improvement on the final step

of such algorithms, i.e., selection of the best solution, we propose building an optimal com-
bination of the found feasible solutions through solving the problem Z

(
W
(
x1, x2, . . . , xm)).

In other words, we propose building a solution by combining the components of the found
feasible solutions rather than only choosing the best one.
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3. Solution Combination Algorithms

Let us consider algorithms for solutions combination problem Z
(
W
(
x1, x2, . . . , xm)).

In our earlier paper [12] we constructed a linear complexity algorithm for solutions combi-
nation problem for the case m = 2.

It was proved in [12] that Algorithm 1 finds solution of the problem Z
(
W
(

x1, x2))
and requires O(n) computational operations. Thus, in accordance with step 5 of Al-
gorithm 1, the optimal value of the criterion for problem Z

(
W
(
x1, x2)) is defined as

q
∑

l=1
min

(
∑(i,j,k)∈D1

l
cijk, ∑(i,j,k)∈D2

l
cijk

)
.

Algorithm 1. Ref. [12]. Solution of problem Z
(
W
(

x1, x2))
Step 1. Construct graph G = (V, A), where

V = {I ∪ J ∪ K}, A =
{
(i, j), (i, k), (j, k)

∣∣(i, j, k) ∈W
(

x1, x2)}.
Step 2. Find the connectivity components Vl , l = 1, q, of graph G and build subgraphs

Gl = (Vl , Al), l = 1, q, induced by the corresponding components of connectivity.
Step 3. Now, we build the following sets:

D1
l =

{
(i, j, k)

∣∣(i, j, k) ∈W
(

x1), (i, j), (i, k), (j, k) ∈ Al
}

,
D2

l =
{
(i, j, k)

∣∣(i, j, k) ∈W
(

x2), (i, j), (i, k), (j, k) ∈ Al
}

.
Step 4. The optimal value of criterion of the problem Z

(
W
(

x1, x2)) is defined as

c∗ = ∑
q
l=1 min

(
∑

(i,j,k)∈D1
l

cijk, ∑
(i,j,k)∈D2

l

cijk

)
.

Step 5. The optimal solution to the problem Z
(
W
(

x1, x2)) is constructed as follows. Initially
let xijk0, i ∈ I, j ∈ J, k ∈ K. Further, for each l = 1, q perform

xijk1, (i, j, k) ∈ Dp∗

l , where p∗ = argmin
p∈{1,2}

∑
(i,j,k)∈Dp

l

cijk.

We have demonstrated in [13] that an algorithm based on successive optimal com-
bination of feasible solutions pairs does not ensure an optimal solution for the problem
Z
(
W
(

x1, x2, . . . , xm))when m = 3. However, such a successive combination technique can
be used as a heuristic algorithm for the problem Z

(
W
(
x1, x2, . . . , xm)) when m ≥ 3. We

provide the results of the computation experiments for a variety of successive combination
strategies, which demonstrate the advantage of the proposed approach over the commonly
used step of choosing the best feasible solution [13].

In [12,13] we presented comprehensive computational experiments for solutions com-
bination algorithm for m = 2 and for solutions combination strategies for m ≥ 3. Below
we will giving a brief description of these computational results. In [5] an approximate
algorithm was constructed for the axial assignment problems satisfying triangle inequality.
This approximate algorithm constructs three feasible solutions and chooses the best among
them. A collection of test problems for n ∈ {33, 66} with the cost matrices satisfying trian-
gle inequality was proposed in [5]. For the collection of the problems presented in [5] the
solution combination algorithm gives 0.148% improvement compared to the original step
of choosing the best solution by the approximate algorithm; for more details please see [12].
For a set of cost matrices whose entries were generated with integer values uniformly
distributed at the interval [0, 300] and for n ∈ {10, 11, . . . , 19} we randomly generated n3

feasible solutions and applied the local optimization algorithm proposed in [6]. Based on
computational results we demonstrated that applying of successive combination strategies
to the locally optimized solution gives approximately 4–8% improvement compared to a
standard approach of choosing the best solution; for more details please see [13].

4. Solutions Combination NP-Hardness

We will now show that the class of problems of the optimal combination of m feasible
solutions is NP-hard even when m = 4. The proof is based on polynomial reduction
of the well-known NP-hard class of 3-CNF problems [4]. Here 3-CNF is the problem of
determining if a Boolean formula is satisfiable, where the Boolean formula is in conjunctive
normal form with three variables per conjunct.
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Theorem 1. The class of 3-CNF problems is polynomially reduced to the class of 3-CNF problems
without repeating variables in each clause.

Proof of Theorem 1. Let us consider an arbitrary 3-CNF and apply the following algorithm
to each clause of 3-CNF:

a. If a clause does not contain any repeating variables, it remains unchanged.
b. If a repeating variable is included into a clause only with or only without negation

then a clause has the form (x ∪ x ∪ y) or (x ∪ x ∪ x), where x, y are the literals.
A clause u(x, y) = (x ∪ x ∪ y) is replaced by u′(x, y, z) = (x ∪ y ∪ z) ∩ (x ∪ y ∪ z),
where z is the new Boolean variable. It is obvious that u(x, y) = u′(x, y, z), ∀z. A
clause u(x) = (x ∪ x ∪ x) is replaced by u′(x, z, w) = (x ∪ z ∪ w) ∩ (x ∪ z ∪ w) ∩
(x ∪ z ∪ w) ∩ (x ∪ z ∪ w), where z, w are the new Boolean variables. It is obvious that
u(x) = u′(x, z, w), ∀z, w.

c. If a repeating variable is included into a clause simultaneously with and without
negation, this clause has the form (x ∪ x ∪ y), where x is the Boolean variable, y is
the literal. Then (x ∪ x ∪ y) ≡ 1, and the clause can be discarded from 3-CNF.

At this point we polynomially reduced the class of 3-CNF problems to the class of
3-CNF problems without repeating variables in each clause. The lemma is proved. �

Theorem 2. The class of optimal combination of four solutions problems is NP-hard.

Proof of Theorem 2. To prove the theorem, we will show that NP-hard class of 3-CNF
problems [4] can be polynomially reduced to a class of optimal combination of four feasible
solutions problems. �

Consider an arbitrary 3-CNF problem with N Boolean variables and M clauses. Let
L = {1, . . . , N} be the set of indices of Boolean variables of the 3-CNF. According to theorem 1,
without loss of generality we assume that there are no repeating variables in each clause.
For convenience, we introduce the following notations:

• l1(s), l2(s), l3(s) are the indices of Boolean variables in the s-th clause;
• L(s) = {l1(s) ∪ l2(s) ∪ l3(s)} is the set of indices of the Boolean variables included

into the s-th clause;
• L+(s) ⊆ L(s) is the set of indices of the Boolean variables included without negation

into the s-th clause;
• L−(s) ⊆ L(s) is the set of indices of the Boolean variables included with negation into

the s-th clause;
• L(s) = {1, . . . , N}\L(s) is the set of indices for the Boolean variables that are not

included into the s-th clause,

s = 1, M.

Then we construct disjoint sets of indices I, J, K as follows; see Figure 1 for visualization
of these sets:

• I =
{

a1
ls

∣∣l = 1, N, s = 1, M
}
∪
{

d1
s , q1

s , w1
s
∣∣s = 1, M

}
∪
{

e1
ls

∣∣l ∈ L(s), s = 1, M
}

,
• J =

{
a2

ls

∣∣l = 1, N, s = 1, M
}
∪
{

d2
s , q2

s , w2
s
∣∣s = 1, M

}
∪
{

e2
ls

∣∣l ∈ L(s), s = 1, M
}

,
• K =

{
b1

ls, b2
ls

∣∣l = 1, N, s = 1, M
}

.
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Figure 1. Scheme demonstrating subsets of indices 𝐼, 𝐽, 𝐾 corresponding to a fixed s. A set of indi-
ces as a subscript of a node on the scheme (e.g., 𝑎௅௦ଵ ) corresponds to a set of nodes. 

Next, build a set 𝑅 ⊆ 𝐼 × 𝐽 × 𝐾 to be used for defining a multi-index cost matrix of 
the axial assignment problem in the following form: 
• 𝑅ଵ = {(𝑎௟௦ଵ , 𝑎௟௦ଶ , 𝑏௟௦ଵ ), (𝑎௟(௦ ୫୭ୢ ெାଵ)ଵ , 𝑎௟௦ ଶ , 𝑏௟௦ଶ )|𝑙 = 1, 𝑁തതതതത, 𝑠 = 1, 𝑀തതതതതത}; 
• 𝑅ଶ = {(𝑑௦ଵ, 𝑑௦ଶ, 𝑏௟௦ଵ )|𝑙 ∈ 𝐿ି(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑑௦ଵ, 𝑑௦ଶ, 𝑏௟௦ଶ )|𝑙 ∈ 𝐿ା(𝑠), 𝑠 = 1, 𝑀തതതതതത}; 
• 𝑅ଷ = {(𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟భ(௦)௦ଵ ), (𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟భ(௦)௦ଶ ), (𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟మ(௦)௦ଵ ), (𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟మ(௦)௦ଶ )|𝑠 = 1, 𝑀തതതതതത}; 
• 𝑅ସ = {(𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟మ(௦)௦ଵ ), (𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟మ(௦)௦ଶ ), (𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟య(௦)௦ଵ ), (𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟య(௦)௦ଶ )|𝑠 = 1, 𝑀തതതതതത};  
• 𝑅ହ = {(𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଵ ), (𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଶ )|𝑙 ∈ 𝐿ത(𝑠), 𝑠 = 1, 𝑀തതതതതത}; 
• 𝑅 = 𝑅ଵ ∪ 𝑅ଶ ∪ 𝑅ଷ ∪ 𝑅ସ ∪ 𝑅ହ. 

Now we can define the three-index cost matrix as  𝑐௜௝௞ = ൜0, (𝑖, 𝑗, 𝑘) ∈ 𝑅1, otherwise , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾. 

The constructed sets 𝐼, 𝐽, 𝐾 and three-index cost matrix ฮ𝑐௜௝௞ฮ define the three-index 
axial assignment problem (1)–(5).  

Further we build four subsets 𝑃ଵ, 𝑃ଶ, 𝑃ଷ, 𝑃ସ ⊆ 𝐼 × 𝐽 × 𝐾, that will determine four fea-
sible solutions to problem (1)–(5); see Figures 2–5 for visualization of the sets 𝑃ଵ–𝑃ସ.: 
• 𝑃ଵ = {(𝑎௟௦ଵ , 𝑎௟௦ଶ , 𝑏௟௦ଵ )|𝑙 = 1, 𝑁തതതതത, 𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑞௦ଵ, 𝑞௦ ଶ , 𝑏௟మ(௦)௦ଶ ), (𝑤௦ଵ, 𝑤௦ ଶ, 𝑏௟య(௦)௦ଶ )|𝑠 = 1, 𝑀തതതതതത} ∪{(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟భ(௦)௦ଶ )|𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଶ )|𝑙 ∈ 𝐿ത(𝑠), 𝑠 = 1, 𝑀തതതതതത}; 
• 𝑃ଶ = ൛(𝑎௟(௦ ୫୭ୢ ெାଵ)ଵ , 𝑎௟௦ଶ , 𝑏௟௦ଶ ൯|𝑙 = 1, 𝑁തതതതത, 𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑞௦ଵ, 𝑞௦ ଶ , 𝑏௟మ(௦)௦ଵ ), (𝑤௦ଵ, 𝑤௦ ଶ, 𝑏௟య(௦)௦ଵ )|𝑠 =1, 𝑀തതതതതത} ∪ {(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟భ(௦)௦ଵ )|𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଵ )|𝑙 ∈ 𝐿ത(𝑠), 𝑠 = 1, 𝑀തതതതതത}; 
• 𝑃ଷ = {(𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟భ(௦)௦ଶ ), (𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟మ(௦)௦ଶ ), (𝑎௟భ(௦)௦ଵ , 𝑎௟భ(௦)௦ଶ , 𝑏௟భ(௦)௦ଵ )|𝑠 = 1, 𝑀തതതതതത} ∪൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟మ(௦)௦ଵ ൯, ൫𝑎௟మ(௦)௦ଵ , 𝑎௟మ(௦)௦ଶ , 𝑏௟య(௦)௦ଵ ൯, (𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଶ )|𝑙ଶ(𝑠) ∈ 𝐿ି(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟య(௦)௦ଵ ൯, (𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଶ )|𝑙ଶ(𝑠) ∈ 𝐿ା(𝑠), 𝑙ଷ(𝑠) ∈ 𝐿ି(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟య(௦)௦ଶ ൯, (𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଵ )|𝑙ଶ(𝑠) ∈ 𝐿ା(𝑠), 𝑙ଷ(𝑠) ∈ 𝐿ା(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪{(𝑎௟మ(௦)௦ଵ , 𝑎௟మ(௦)௦ଶ , 𝑏௟మ(௦)௦ଵ )|𝑙ଶ(𝑠) ∈ 𝐿ା(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪{(𝑎௟௦ଵ , 𝑎௟௦ଶ , 𝑏௟௦ଵ ), (𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଶ )|𝑙 ∈ 𝐿ത(𝑠), 𝑠 = 1, 𝑀തതതതതത};  
• 𝑃ସ = {(𝑞௦ଵ, 𝑞௦ଶ, 𝑏௟భ(௦)௦ଵ ), (𝑤௦ଵ, 𝑤௦ଶ, 𝑏௟మ(௦)௦ଵ ), (𝑎௟భ(௦)௦ଵ , 𝑎௟భ(௦)௦ଶ , 𝑏௟భ(௦)௦ଶ )|𝑠 = 1, 𝑀തതതതതത} ∪ ൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟మ(௦)௦ଶ ൯, ൫𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଵ ൯, (𝑎௟మ(௦)௦ଵ , 𝑎௟మ(௦)௦ଶ , 𝑏௟య(௦)௦ଶ )|𝑙ଶ(𝑠) ∈ 𝐿ା(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟య(௦)௦ଵ ൯, (𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଶ )|𝑙ଶ(𝑠) ∈ 𝐿ି(𝑠), 𝑙ଷ(𝑠) ∈ 𝐿ି(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪൛(𝑑௦ଵ, 𝑑௦ ଶ , 𝑏௟య(௦)௦ଶ ൯, (𝑎௟య(௦)௦ଵ , 𝑎௟య(௦)௦ଶ , 𝑏௟య(௦)௦ଵ )|𝑙ଶ(𝑠) ∈ 𝐿ି(𝑠), 𝑙ଷ(𝑠) ∈ 𝐿ା(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪{(𝑎௟మ(௦)௦ଵ , 𝑎௟మ(௦)௦ଶ , 𝑏௟మ(௦)௦ଶ )|𝑙ଶ(𝑠) ∈ 𝐿ି(𝑠), 𝑠 = 1, 𝑀തതതതതത} ∪ {(𝑎௟௦ଵ , 𝑎௟௦ଶ , 𝑏௟௦ଶ ), (𝑒௟௦ଵ , 𝑒௟௦ଶ , 𝑏௟௦ଵ )|𝑙 ∈𝐿ത(𝑠), 𝑠 = 1, 𝑀തതതതതത}. 

Figure 1. Scheme demonstrating subsets of indices I, J, K corresponding to a fixed s. A set of indices
as a subscript of a node on the scheme (e.g., a1

Ls ) corresponds to a set of nodes.

According to above construction, |I| = |J| = NM + 3M + (N − 3)M = 2NM,
|K| = 2NM. Hence, |I| = |J| = |K| = 2NM.

Next, build a set R ⊆ I × J × K to be used for defining a multi-index cost matrix of the
axial assignment problem in the following form:

• R1 =
{
(a1

ls, a2
ls, b1

ls
)

, (a1
l(s mod M+1), a2

ls , b2
ls)
∣∣∣l = 1, N, s = 1, M

}
;

• R2 =
{
(d1

s , d2
s , b1

ls)|l ∈ L−(s), s = 1, M
}
∪
{
(d1

s , d2
s , b2

ls)|l ∈ L+(s), s = 1, M
}

;

• R3 =
{(

q1
s , q2

s , b1
l1(s)s

)
,
(

q1
s , q2

s , b2
l1(s)s

)
,
(

q1
s , q2

s , b1
l2(s)s

)
,
(

q1
s , q2

s , b2
l2(s)s

)∣∣∣s = 1, M
}

;

• R4 =
{(

w1
s , w2

s , b1
l2(s)s

)
,
(

w1
s , w2

s , b2
l2(s)s

)
,
(

w1
s , w2

s , b1
l3(s)s

)
,
(

w1
s , w2

s , b2
l3(s)s

)∣∣∣s = 1, M
}

;

• R5 =
{
(e1

ls, e2
ls, b1

ls
)

, (e1
ls, e2

ls, b2
ls)
∣∣l ∈ L(s), s = 1, M

}
;

• R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5.

Now we can define the three-index cost matrix as

cijk =

{
0, (i, j, k) ∈ R
1, otherwise

, i ∈ I, j ∈ J, k ∈ K.

The constructed sets I, J, K and three-index cost matrix ‖cijk‖ define the three-index
axial assignment problem (1)–(5).

Further we build four subsets P1, P2, P3, P4 ⊆ I × J × K, that will determine four
feasible solutions to problem (1)–(5); see Figures 2–5 for visualization of the sets P1–P4.:

•
P1 =

{
(a1

ls, a2
ls, b1

ls)|l = 1, N, s = 1, M
}
∪
{
(q1

s , q2
s , b2

l2(s)s
), (w1

s , w2
s , b2

l3(s)s
)
∣∣∣s = 1, M

}
∪{

(d1
s , d2

s , b2
l1(s)s

)
∣∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b2
ls
)∣∣l ∈ L(s), s = 1, M

} ;

•
P2 =

{
(a1

l(s mod M+1), a2
ls, b2

ls

) ∣∣l = 1, N, s = 1, M
}
∪
{
(q1

s , q2
s , b1

l2(s)s
), (w1

s , w2
s , b1

l3(s)s
)
∣∣∣s = 1, M

}
∪
{
(d1

s , d2
s , b1

l1(s)s
)
∣∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b1
ls
)∣∣l ∈ L(s), s = 1, M

} ;

•

P3 =
{
(q1

s , q2
s , b2

l1(s)s
), (w1

s , w2
s , b2

l2(s)s
),
(

a1
l1(s)s

, a2
l1(s)s

, b1
l1(s)s

)∣∣∣s = 1, M
}
∪{

(d1
s , d2

s , b1
l2(s)s

)
,
(

a1
l2(s)s

, a2
l2(s)s

, b1
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b1
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L+(s), l3(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b2
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)∣∣∣l2(s) ∈ L+(s), l3(s) ∈ L+(s), s = 1, M
}
∪{

(a1
l2(s)s

, a2
l2(s)s

, b1
l2(s)s

)
∣∣∣l2(s) ∈ L+(s), s = 1, M

}
∪{(

a1
ls, a2

ls, b1
ls
)
,
(
e1

ls, e2
ls, b2

ls
)∣∣l ∈ L(s), s = 1, M

}
;

•
P4 =

{
(q1

s , q2
s , b1

l1(s)s
), (w1

s , w2
s , b1

l2(s)s
),
(

a1
l1(s)s

, a2
l1(s)s

, b2
l1(s)s

)∣∣∣s = 1, M
}
∪{

(d1
s , d2

s , b2
l2(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)
,
(

a1
l2(s)s

, a2
l2(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L+(s), s = 1, M
}
∪
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{
(d1

s , d2
s , b1

l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L−(s), l3(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b2
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)∣∣∣l2(s) ∈ L−(s), l3(s) ∈ L+(s), s = 1, M
}
∪{(

a1
l2(s)s

, a2
l2(s)s

, b2
l2(s)s

)∣∣∣l2(s) ∈ L−(s), s = 1, M
}
∪
{(

a1
ls, a2

ls, b2
ls
)
,
(
e1

ls, e2
ls, b1

ls
)∣∣l ∈ L(s),

s = 1, M
}

.

The corresponding four feasible solutions x1, x2, x3, x4 will be defined as follows:

xt
ijk =

{
1, if (i, j, k) ∈ Pt

0, otherwise
, i ∈ I, j ∈ J, k ∈ K,

where t ∈ {1, 2, 3, 4}.
It is obvious that the criterion of the constructed solutions combination problem

Z
(
W
(

x1, x2, x3, x4)) is nonnegative. Now we show that the optimal criterion value of
Z
(
W
(

x1, x2, x3, x4)) is 0 if and only if the corresponding 3-CNF is satisfiable.
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Figure 5. Scheme demonstrating the subset of triples of the sets P4, corresponding to a fixed s such
that l2(s) ∈ L−(s), l3(s) ∈ L−(s).

1. Let x∗ be the optimal solution to problem Z
(
W
(
x1, x2, x3, x4)) and C(x∗) = 0. We

build a set
W(x∗) =

{
(i, j, k)

∣∣∣x∗ijk = 1, i ∈ I, j ∈ J, k ∈ K
}

. Since x∗ satisfies the system of constraints
(1)–(4), we get
|W(x∗)| = 2NM.

Now it is easily seen that for each l ∈ {1, 2, . . . , N} one of the following two conditions
holds: (

a1
ls, a2

ls, b1
ls

)
∈ P(x∗), s = 1, M, (7)

or (
a1

l(s mod M+1), a2
ls, b2

ls

)
∈ P(x∗), s = 1, M. (8)
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Indeed, let us assume that for some l ∈ {1, 2, . . . , N} the condition
(
a1

ls, a2
ls, b1

ls
)
∈

W(x∗) holds, but
(

a1
l(s mod M+1), a2

l(s mod M+1), b1
l(s mod M+1)

)
/∈ W(x∗). By construction,

P ∩
{(

a1
(l mod M+1)s, j, k

)∣∣∣j ∈ J, k ∈ K
}

=
{(

a1
l(s mod M+1), a2

l(s mod M+1), b1
l(s mod M+1)

)
,
(

a1
l(s mod M+1), a2

ls, b2
ls

)}
Since

(
a1

ls, a2
ls, b1

ls
)
∈ W(x∗) and x∗ satisfies the system of constraints (1)–(4), then(

a1
l(s mod M+1), a2

ls, b2
ls

)
/∈W(x∗). Given W(x∗) ⊆ P, we finally obtain

W(x∗) ∩
{(

a1
l(s mod M+1), j, k

)∣∣∣j ∈ J, k ∈ K
}
= ∅.

Then, |W(x∗)| < 2NM, which leads to contradiction and the above assumption is wrong.
Hence, if

(
a1

ls, a2
ls, b1

ls
)
∈ P(x∗), we get

(
a1

l(s mod M+1), a2
l(s mod M+1), b1

l(s mod M+1)

)
∈W(x∗).

From here we conclude that, if
(
a1

ls, a2
ls, b1

ls
)
∈W(x∗) for some l, then condition (7) holds for

l. If
(
a1

ls, a2
ls, b1

ls
)

/∈ W(x∗) for some l, then
(

a1
l(s mod M+1), a2

ls, b2
ls

)
∈ W(x∗) and, similarly,

we can prove that condition (8) holds for l.
Now we define vector X of the Boolean variables for the initial 3-CNF:

Xl =

{
true, if condition (7) holds for l
f alse, if condition (8) holds for l

, l = 1, N.

By construction, each s ∈ {1, . . . , M} has a corresponding

l ∈ L−(s) that (d1
s , d2

s , b1
ls) ∈ W(x∗),

or
l ∈ L+(s) that (d1

s , d2
s , b2

ls) ∈ W(x∗).

Hence for each s ∈ {1, . . . , M} there exists

l ∈ L+(s) that Xl = true,

or
l ∈ L−(s) that Xl = f alse.

From this it follows that each clause takes the true value on Boolean vector X. Hence 3-CNF
takes the true value on Boolean vector X and is satisfiable.

2. Let 3-CNF be satisfiable and X be the Boolean variables vector on which 3-CNF
takes the true value. Then we build a set of allowed assignments, P(X), that is to define
the optimal solution to the combination problem Z

(
W
(
x1, x2, x3, x4)). Set P(X) will be

constructed by the following Algorithm 2:
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Algorithm 2. Constructing P(X)

Step 1. Initialize P(X) := ∅.
Step 2. For each l = 1, N :
I f Xl = true, then

P(X) := P(X)∪
{(

a1
ls, a2

ls, b1
ls
)∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b2
ls
)∣∣l ∈ L(s), s = 1, M

}
;

else

P(X) := P(X) ∪
{(

a1
l(s mod M+1), a2

ls, b2
ls

)∣∣∣s = 1, M
}
∪
{(

e1
ls, e2

ls, b1
ls
)∣∣l ∈ L(s), s = 1, M

}
.

Step 3. For each s = 1, M:
If Xl1(s) = true, l1(s) ∈ L+(s) or Xl1(s) = f alse, l1(s) ∈ L−(s), then

P(X)P(X)∪
∪
{(

d1
s , d2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

d1
s , d2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

q1
s , q2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

w1
s , w2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}

;

else if Xl2(s) = true, l2(s) ∈ L+(s) or Xl2(s) = f alse, l2(s) ∈ L−(s), then
P(X)P(X)∪

∪
{(

d1
s , d2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

d1
s , d2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

q1
s , q2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

w1
s , w2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}

;

else if Xl3(s) = true, l3(s) ∈ L+(s) or Xl3(s) = f alse, l3(s) ∈ L−(s), then
P(X)P(X)∪

∪
{(

d1
s , d2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

d1
s , d2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

q1
s , q2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

w1
s , w2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}

.

Next, we define a multi-index matrix of variables x∗ = ‖x∗ijk‖:

x∗ijk =
{

1, if (i, j, k) ∈ P(X)
0, otherwise

, i ∈ I, j ∈ J, k ∈ K.

In step 2 there are NK + (N − 3)K elements included into the set P(X). Since the
3-CNF takes true value on X, in step 3 there are 3K elements included into P(X). Hence,
|P(X)| = 2NK. For any pair p1, p2 ∈ P(x), that p1 6= p2, the following condition holds

p1 = (i1, j1, k1),p2 = (i2, j2, k2), i1 6= i2, j1 6= j2, k1 6= k2.

Therefore, x∗ satisfies the system of constraints (1)–(4).
By construction, P(X) ⊆ P, since in step 2 only elements from the sets P1, P2 may be

included into P(X), then in step 3 only elements from P1, P2, P3, P4 may be included into
P(X). Hence, x∗ is a feasible solution of the combination problem Z

(
W
(

x1, x2, x3, x4)).
Further, by construction, P(X) ⊆ R, since in step 2 only elements from R1, R5 may be
included into set P(X), then in step 3 only elements from R2, R3, R4 may be included into
P(X). From this it follows that C(x∗) = 0. And hence, x∗ is the optimal solution to problem
Z
(
W
(

x1, x2, x3, x4)), and the optimal criterion value for this problem is 0.
Thus, the optimal criterion value of the constructed problem Z

(
W
(
x1, x2, x3, x4)) is

equal to 0 if and only if the 3-CNF is satisfiable. The above procedure of constructing
the problem Z

(
W
(

x1, x2, x3, x4)) requires a polynomial time in the size of the initial 3-
CNF. Therefore, the class of problems of optimal combination of four feasible solutions is
NP-hard. The theorem is proved.

5. Conclusions

Approximate and heuristic algorithms for solving an NP-hard axial assignment prob-
lem are well known in literature. Usually, such algorithms construct a series of feasible
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solutions to the problem and, in the final step, select the best solution among those con-
structed. As an improvement of this commonly used approach of selecting the best solution
in the final step of the algorithm we propose solving the problem of optimal combination
of constructed m solutions. The case m = 2 (i.e., optimal combination of a pair of feasible
solutions) can be handled using a linear complexity algorithm. For m ≥ 3 it is impossible
to find an optimal solution to the combining problem via successive combination of pairs.
Nevertheless, in practice the strategy of sequential combination of pairs proves to produce
better results than are obtainable with the conventional technique of selecting the best
solution. In this paper we demonstrated that the solutions combination problem turns out
to already be NP-hard when m = 4. The combination complexity in the case m = 3 remains
an open problem.
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