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Abstract: The aim of the present research work is to design a control law for a quadcopter drone
based on the Virtual Attractive-Repulsive Potentials (VARP) theory. VARP theory, originally designed
to enable path following by a small wheeled robot, will be tailored to control a quadcopter drone,
hence allowing such device to learn flight planning. The proposed strategy combines an instance
of VARP method to control a drone’s attitude (SO(3)-VARP) and an instance of VARP method to
control a drone’s spatial location (R3-VARP). The resulting control strategy will be referred to as
double-VARP method, which aims at making a drone follow a predefined path in space. Since
the model of the drone as well as the devised control theory are formulated on a Lie group, their
simulation on a computing platform is performed through a numerical analysis method specifically
designed for these kinds of numerical simulations. A numerical simulation analysis is used to assess
the salient features of the proposed regulation theory. In particular, resilience against shock-type
disturbances are assessed numerically.

Keywords: VARP control theory; feedback control; Lie group; autonomous quadcopter control; path
following; virtual potentials; resilience against shock-type disturbance

1. Introduction

Quadcopters represent a prominent class of UAVs (Unmanned Aerial Vehicles), that are
aircrafts piloted by remote control or onboard computers. In particular, quadcopters represent
aerial robots whose control is based on the variation of the speed of their four propellers
through the use of an appropriate algorithm, which manages to keep a drone’s flight as
stable and independent from any external factor as possible. Quadcopters are widely used
for professional purposes such as photography, filming, and rescue operations [1–3]. Since
quadcopters are easy to build and inexpensive, such aircrafts may also be found on the
market for non-professional or semi-professional purposes. As quadcopters are becoming
increasingly popular, a noteworthy amount of scientific and technological research has been
carried out in order to design methods and algorithms to control their attitude and position.

Most control problems of interest in applied sciences and engineering concern po-
sitioning, path planning and obstacles avoidance. Virtual potentials proved effective in
solving non-linear control problems. In order to control a particular dynamical system
by a virtual-potential-based paradigm, it is necessary to build a virtual potential field,
which may be constructed by borrowing ideas from the theory of harmonic functions
and Laplace’s equations [4,5], artificial gyroscopic forces [6] and stream functions from
fluid dynamics [7]. Potential fields have been widely used to control different sorts of
vehicles such as cylindrical robots [8], helicopters [9], road vehicles [10], unmanned ground
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vehicles [11], and autonomous underwater vehicles [12]. Seminal research works on po-
tential fields theory applied to robot navigation were published by Koditschek and Rimon
in the 1990s [13,14]. Their works were based on the observation that the freespace, goal
and obstacles may be encoded through a potential function, called navigation function,
and that a gradient-based controlled system would naturally be able to navigate through
the freespace.

The use of potential fields is affected by known drawbacks, as illustrated in several
research outputs, such as [15–19]. The aim of the present paper is to design a novel control
scheme based on a theory known as Virtual Attractive-Repulsive Potentials (VARP) [20,21]. The
versatility of such a theory makes it profitable in several different fields, such as biology [20]
and vehicle coordination [22]. The idea of using artificial potential functions for robot
coordination is well established. Even in the manifold of special orthogonal rotations SO(3),
artificial potential functions were employed for synchronization and control at least as early
as 2007 in [23]. Several papers have employed a variation of the Riemannian metric in
SO(3) or other manifolds as a potential function/error function/navigation function for
constructing control schemes, see, e.g., [24–27].

The main contribution of the present paper is to propose an extension of the original
VARP method to control dynamical systems whose state-space equations are formulated
on Lie groups. In particular, in order to control a quadcopter drone, we shall make use of
the VARP method twice for two different purposes, namely, for regulating both attitude
and location of a quadcopter.

Section 2 of the present paper recalls relevant notations about Lie groups and their
prominent properties. This section explains how the VARP control method may be ex-
tended to regulate a second-order dynamical system formulated on a Lie group, with special
reference to the SO(3) manifold of three-dimensional rotations, in order to control a quad-
copter [28–31]. A mathematical model of a quadcopter drone is recalled from the paper [32].
This section explains in detail the mathematical techniques utilized to design a control
field, based on the notions of ‘dynamics replacement’ and error feedback control. All
mathematical steps required to design a VARP-based control equations for a quadcopter
drone are reported in details for the benefit of the reader. A particular attention will be
dedicated to evaluating the ‘control effort’ and rotors’ speed dynamics, which are essential
in analyzing the physical realizability of the proposed control method. A further part of
this section will also explain how the devised control law may be time-discretized and
numerically integrated by means of a tailored forward Euler-type numerical method to
perform numerical simulations.

Section 3 introduces a novel non-linear regulation method based the VARP theory
extended to Lie groups. In particular, the introduced regulation method is based on two
instances of a VARP-based control field. An instance, termed VARP1, will serve to stabilize
the attitude of a drone during flight. Such instance proves of prime importance to maintain
a drone in a proper attitude and to disallow the quadcopter to tip over. A further instance,
termed VARP2, will fix the drone attitude to steer its body toward a pre-defined spatial
target. In addition, within this section, it is defined an evolution law to control the vertical
positioning of a drone during target approaching.

Section 4 completes the present document, focusing on conclusions and future works.

2. VARP Control Theory on SO(3) Manifold

The present section explains how to extend the VARP principle to control dynamical
systems whose state-space possesses the structure of the special orthogonal group SO(3).
The manifold SO(3) has been chosen because its elements, the special orthogonal matrices,
could represent quadcopters attitude.

2.1. Lie Groups, Lie Algebras, Definitions and Properties

Let us recapitulate the following definitions and properties from manifold calculus
and matrix Lie group theory from [33]:
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Matrix Lie group: A smooth matrix manifold G that also enjoys the properties of an
algebraic group is termed a matrix Lie group. A matrix group is a matrix set endowed with:

1. an associative binary operation, termed group multiplication that, for any two elements
g, h ∈ G, returns an element denoted as gh ∈ G,

2. an identity element with respect to the group multiplication, denoted by e, such that
eg = ge = g for any element g ∈ G,

3. an inversion operation with respect to group multiplication, denoted by g−1, such that
g−1g = gg−1 = e for any element g ∈ G,

4. a left translation L : G×G→ G defined by the relationship Lg(h) := g−1h.

An instance of matrix Lie group is SO(3) := {R ∈ R3×3 | R>R = RR> = I3,
det(R) = +1}, where the symbol > denotes matrix transposition and the quantity I3 repre-
sents a 3× 3 identity matrix. Such group-manifold is termed special orthogonal group and its
elements represent rigid rotations in a three-dimensional space.

Tangent bundle and its metrization: Given a point g ∈ G, the tangent space to G
at g will be denoted as TgG. The tangent bundle associated with a manifold-group G
is denoted by TG and plays the role of phase-space. The scalar product of two vectors
u, v ∈ TgG is denoted by 〈u, v〉g. A smooth function F : G → G induces a linear map
dFg : TgG → TF(g)G termed pushforward map. For a matrix Lie group, the pushforward
map d(Lg)h : ThG→ Tg−1hG associated with a left translation is d(Lg)h(u) := g−1u, where
u ∈ ThG. The symbol d : G2 → R+ denotes the Riemannian distance over the manifold G
associated to the scalar product 〈·, ·〉· : (TG)2 → R.

Lie algebra: The tangent space g := TeG to a Lie group at the identity is termed Lie
algebra. Any Lie algebra is endowed with Lie brackets, denoted as [·, ·] : g× g→ g, and an
adjoint endomorphism aduv := [u, v]. (It interesting to notice that the Lie-bracket operator
may be seen as a generalization of vector product.) The Lie algebra associated to the group
SO(3) is so(3) := {ξ ∈ R3×3 | ξ + ξ> = 0}. On a matrix Lie algebra, Lie brackets coincide
with matrix commutator, namely [u, v] := uv− vu. In particular, the matrix commutator in
so(3) is anti-symmetric, namely [ξ, η] + [η, ξ] = 0 for every ξ, η ∈ so(3). A pushforward
map d(Lg)g : TgG → g is denoted as dLg for brevity. It is convenient to define a basis of
so(3) = span(χx, χy, χz) as follows:

χx :=

0 0 0
0 0 −1
0 1 0

, χy :=

 0 0 1
0 0 0
−1 0 0

, χz :=

0 −1 0
1 0 0
0 0 0

. (1)

Additionally, it pays to define the operator J·K : R3 → so(3) as:

x :=

x1
x2
x3

 7→ JxK :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

. (2)

Canonical operators and the Riemannian distance for the Lie group SO(3) endowed
with the inner product 〈U, V〉X := tr(U>V) take the following expressions:

Exponential map: expX(V) := X Exp(X>V),
Logarithmic map: logX Y := X Log(X>Y),
Riemannian distance: d(X, Y) := ‖Log(X>Y)‖F,
Orthogonal projection to TRSO(3): ΠR(V) := 1

2 R(R>V −V>R),
Left translation: LR(V) := R>V,

(3)

where ‘Exp’ denotes matrix exponential, ‘Log’ denotes principal matrix logarithm and
‖ · ‖F denotes a Frobenius matrix norm (‖U‖F :=

√
tr(U>U)).
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The Lie group SO(3) denotes the (continuous) set of all rotations in the three-dimensional
Euclidean space R3, which models the spatial arena where physical objects move. Any spa-
tial rotation may be described either through a set of three angles (termed Euler angles),
or through an axis–angle representation [34]. The axis–angle representation will be con-
sidered since it parametrizes a rotation in a three-dimensional Euclidean space by two
quantities: a unit vector n̂ (sometimes referred to as the Euler axis), which indicates the axis
of rotation, and an angle ϕ, which describes the magnitude of the rotation about the chosen
axis. Notice that only two parameters (not three) are needed to define the direction of a
unit vector n̂ rooted at the origin, because its magnitude is constrained to 1. By Rodrigues’
rotation formula [35,36], it is possible to determine a rotation matrix as:

Rn̂(ϕ) := n̂n̂> + cos ϕ (I3 − n̂n̂>)− sin ϕ Jn̂K, (4)

with a desired angle ϕ and a desired rotation axis n̂ = [n1 n2 n3]
> (which needs to be a unit

vector). Rodrigues’ rotation formula returns a rotation matrix Rn̂(ϕ) whose columns and
rows are orthogonal unit vectors and whose transpose matrix is equal to its inverse so that
R> = R−1 and whose determinant is equal to 1.

2.2. VARP Extension to the SO(3) Manifold

The VARP principle may be summarized as follows. Given N particles labeled
i = 1, 2, . . . , N, that form an aggregate, the model proposed in [20] that governs the
motion of each particle in R3 reads:{

d~xi
dt = ~vi,

mi
d~vi
dt = α f̂i − β~vi − ~gradV,

(5)

where the constants mi > 0 denote the mass of each particle, while vectors ~xi ∈ R3 and
~vi ∈ R3 denote their location and velocity, respectively. The function V is a virtual attractive-
repulsive potential that determines the external forces acting on each particle. Each particle
experiences a self-propelling force ~fi ∈ R3 with fixed magnitude α > 0. A friction force
with coefficient β > 0 prevents particles from reaching large speeds. Levine et al. verified
experimentally that the qualitative behavior of the aggregate is independent of the explicit
expression of the interaction potential. As a matter of fact, Levine’s model is based on
virtual potentials of the kind:

V := ∑
j, j 6=i

Cr exp

(
−
∥∥~xi −~xj

∥∥
`r

)
− ∑

j, j 6=i
Ca exp

(
−
∥∥~xi −~xj

∥∥
`a

)
, (6)

where the constants Ca > 0, Cr > 0 determine the strength of the attractive and repulsive
forces, respectively. Each particle in a Levine’s model is subjected to an attraction force that
depends only on the distance from the others, characterized by an interaction range `a > 0.
Such force is responsible for the aggregation of the particles. A shorter-range repulsive
force, characterized by an interaction range `r > 0, prevents the aggregate from collapsing.

The structure of the virtual potential field depends on the application at hand, which
spans different areas, such as identification of traffic congestion situation in cold-climate
cities [37] and collision avoidance in quadcopter group formation [38].

On the basis of the above-recalled VARP theory, Nguyen et al. in [21] proposed a
control method to drive a small wheeled robot. We propose an extension to the Lie group
SO(3) of the system of equations describing the VARP theory and subsequently a control
method to regulate systems evolving on the Lie group SO(3).

The proposed extension to Levine’s model (5) is laid out as follows:{
Ṙ = Rχ,
∇ṘṘ = αRχ̂− µṘ− gradRV,

(7)
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where R ∈ SO(3) denotes the attitude of a rotating body, Ṙ denotes its rotational velocity,
χ ∈ so(3) denotes its angular velocity, ∇ṘṘ denotes its acceleration (indeed, the symbol ∇
denotes covariant derivation), the symbol χ̂ denotes normalized angular velocity (exhibit-
ing unitary norm) and gradRV denotes the Riemannian gradient of the potential function
V : SO(3)→ R. (The covariant derivative of a vector field with respect to a given tangent
direction represents a generalization of directional derivative of a vector field and returns a
further tangent direction).

The above extension to Levine’s model may be written in a more explicit fashion by
means of the following mathematical result.

Lemma 1. On the Lie group SO(3), it holds that ∇ṘṘ = Rχ̇.

Proof. Recalling that R>R = I3, deriving both sides with respect to time yields:

Ṙ>R + R>Ṙ = 0, (8)

which gives χ> + χ = 0 with Ṙ = Rχ. Deriving again the Equation (8) with respect to
time yields:

R̈>R + Ṙ>Ṙ + Ṙ>Ṙ + R>R̈ = 0,

namely:
R̈>R + 2Ṙ>Ṙ + R>R̈ = 0. (9)

From the property Ṙ = Rχ, it follows that

2Ṙ>Ṙ = −2χ2. (10)

The covariant derivative ∇ṘṘ may be computed as the orthogonal projection of
the naïve derivative R̈ onto the tangent space TRSO(3). (The quantity R̈ is termed naïve
derivative. Such matrix function may be decomposed into a normal component to the
tangent space and a tangent component. Through the orthogonal projector operator defined
in (3), the tangent component is retained.) Applying the projection defined in (3) gives:

∇ṘṘ =
1
2

R(R>R̈− R̈>R). (11)

Plugging in Equations (9) and (10) leads to:

∇ṘṘ =
R
2
(R>R̈− 2χ2 + R>R̈) = −Rχ2 + R̈. (12)

Recalling that R̈ = Rχ̇ + Ṙχ = R(χ2 + χ̇) gives:

∇ṘṘ = R(χ2 + χ̇− χ2) = Rχ̇, (13)

which proves the assertion.

On the basis of the above lemma and on the fact that Ṙ = Rχ, the second equation
in (7) may be rewritten as:

Rχ̇ = αRχ̂− µRχ− gradRV. (14)

Applying the left translation operator to both sides allows one to write explicitly an
equation for the angular acceleration, namely:

χ̇ = αχ̂− µχ− LR(gradRV), (15)
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therefore the system (7) may be recast as:{
Ṙ(t) = R(t)χ(t),
χ̇(t) = αχ̂(t)− µχ(t)− LR(t)

(
gradR(t)V(R(t))

)
,

(16)

where:

• the matrix function R(t) ∈ SO(3) denotes a rotation matrix;
• the matrix function Ṙ(t) ∈ TR(t)SO(3) denotes the derivative of the matrix R with

respect to time, hence velocity;
• the matrix function χ(t) ∈ so(3) denotes angular velocity;
• the matrix function χ̇(t) ∈ so(3) denotes the rate at which the angular velocity χ

changes, therefore it represents angular acceleration;
• the term µχ(t) ∈ so(3) represents the friction term that opposes to rotation; the

constant µ denotes a friction coefficient;
• the term αχ̂(t) ∈ so(3) denotes a self-propelling term; such forcing term is parallel

to χ, while its magnitude coincides with a constant α > 0, in fact, whenever χ 6= 0
it holds that χ̂ := χ/‖χ‖F, otherwise χ̂ = 0. The self-propelling term might cause
severe oscillations around the attraction point; notice that, in the absence of any
potentials (namely V = 0), the self-propelling term causes a velocity drift of amplitude
‖χdrift‖F = α

µ ;

• LR(t)
(
gradR(t)V(R(t))

)
∈ so(3) denotes the gradient of the potential function trans-

lated to the algebra.

The potential function that generalizes the original Levine’s function has been chosen as

V(R) :=
N

∑
j=1

(
Vr

j (d
2(R, Rj))−Va

j (d
2(R, Rj))

)
, (17)

where each Rj ∈ SO(3) represents either an unwanted attitude to disallow, or a desired
attitude to reach. The left-translated Riemannian gradient of such potential function reads:

LR

(
gradRV(R)

)
= LR

[
gradR

N

∑
j=1

(
Vr

j (d
2(R, Rj))−Va

j (d
2(R, Rj))

)]

= LR

[
N

∑
j=1

(
V̇r

j (d
2(R, Rj))− V̇a

j (d
2(R, Rj))

)
gradRd2(R, Rj)

]
. (18)

Notice that each element exhibits both characteristics: in case of an attractive location,
the attractive characteristic will be predominant over the repulsive one, or vice versa.

In analogy to the original VARP principle, exponential-type attractive and repulsive
potential functions have been chosen as:

Va
j (φ) := Ca

j e−
√

y/`a
j , Vr

j (φ) := Cr
j e−
√

y/`r
j , (19)

where the constants Ca
j and Cr

j denote the ‘magnitude of the potentials’, `a
j and `r

j their
‘characteristic lengths’ and the symbol y denotes a real, positive variable.

A purely repulsive point with index j is characterized by a coefficient Ca
j = 0, while

a purely attractive point with index j is characterized by a coefficient Cr
j = 0. In [21], it is

set Cr
j = 0 if a point represents a target while the obstacles are usually characterized by

Cr
j � Ca

j . An explanation could lie in the fact that by setting obstacles, it is possible to
build a path to guide a moving agent, hence they should attract an agent but, at the same
time, the agent must avoid obstacles. In the case of a target, it is advisable to set Cr

j 6= 0 if
an agent should approach that particular target without actually reaching it. (To explain
such a choice by a practical example, one may consider the case of a small robot whose
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goal is to approach a tree while keeping at a reasonable distance from its roots.) In this
instance, it is advisable to set Ca

j � Cr
j 6= 0. On the other hand, in the case of a quadcopter

drone, it is generally allowed to set Cr
j = 0 since a desired attitude does not represent a

physical object to avoid. For different kinds of aircrafts, placing a purely repulsive potential
at a certain (disallowed) attitude might prove instrumental to allow maneuvering while
avoiding bright objects [39].

From the known property gradRd2(R, Q) = −2 logR Q, for every R, Q ∈ SO(3), it
immediately follows that:

LR

(
gradRV(R)

)
= LR

[
2

N

∑
j=1

(
V̇a

j (d
2(R, Rj))− V̇r

j (d
2(R, Rj))

)
logR(Rj)

]
. (20)

Computing the derivatives of the sub-potentials with respect to the distance function
leads to the detailed expression:

LR

(
gradRV(R)

)
= LR

[
N

∑
j=1

(
Cr

j

`r
j

e−d(R,Rj)/`r
j

d(R, Rj)
−

Ca
j

`a
j

e−d(R,Rj)/`a
j

d(R, Rj)

)
logR(Rj)

]
. (21)

Furthermore, upon recalling the definition given in (3) about the Riemannian distance
between two points in the manifold SO(3), the Equation (21) becomes:

LR

(
gradRV(R)

)
= LR

[
N

∑
j=1

Cr
j

`r
j

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−

Ca
j

`a
j

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

 logR(Rj)

]
. (22)

Applying the left translation operator as defined in (3) to transport the potential term
into the Lie algebra so(3) yields:

LR

(
gradRV(R)

)
=

N

∑
j=1

Cr
j

`r
j

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−

Ca
j

`a
j

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

R> logR(Rj). (23)

Plugging in the expression of the logarithmic map for the manifold SO(3) (as recalled
in (3)) gives:

R> logR(Rj) = R>RLog(R>Rj) = Log(R>Rj). (24)

The final expression for the potential gradient hence reads:

LR

(
gradRV(R)

)
=

N

∑
j=1

Cr
j

`r
j

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−

Ca
j

`a
j

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

Log(R>Rj). (25)

2.3. Quadcopter Model

Since the aim of this paper is to develop a Lie-group based control method to reg-
ulate the flight of a quadcopter drone, we deemed it appropriate to recall the following
quadcopter drone Lie-group type mathematical model from [32]:
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Ṙ = Rχ,
χ̇ = D−1([ Ĵq, χ2] + [β, χ]− β̇ + τ)D−1,
β := (−ω1 + ω2 −ω3 + ω4)JRχz,
τ := br(ω2

4 −ω2
2)χx + br(ω2

3 −ω2
1)χy + γ(−ω2

1 + ω2
2 −ω2

3 + ω2
4)χz,

q̇ = v,
v̇ = 1

2
b

Mq
(ω2

1 + ω2
2 + ω2

3 + ω2
4)Rez − ḡez − 1

Mq
Γv.

(26)

The constant matrix D is defined as:

D := diag

(√
Jy Jz

Jx
,

√
Jx Jz

Jy
,

√
Jx Jy

Jz

)
, (27)

which contains the principal moments of inertia of the drone. In the above equations, R
denotes the attitude of the drone with respect to an inertial reference frame, χ denotes
its angular velocity, the quantities ωi, i = 1, 2, 3, 4, denote the angular velocities of the
four propellers, the function q denotes the position of the center of mass of the drone,
the vector ez denotes the unit vector ez := [0 0 1]>, the function τ denotes the mechanical
torque exerted by the thrusters on the drone’s body and several constants represent the
physical features of the drone, such as mass, inertial coefficients and propeller efficiency
parameters. A graphical rendering of a small drone modeled by Equation (26) is displayed
in the Figure 1.

Figure 1. A small quadcopter drone simulated numerically by the UnivPM team. A reference system
attached to the drone has its x-y axes parallel to the plane of the drone and the z axis normal to such
a plane.

In order to perform numerical simulations, an OS4-Mini-VTOL quadrotor has been
taken as reference model, as reported in [40]. In particular, the parameters values summa-
rized in Table 1 were made use of in the computer codes.

The recalled mathematical model consists of a series of Lie-group type differential
equations that need to be solved numerically on a computing platform. Such important
aspect will be discussed in Section 2.8.
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Table 1. Summary table of the OS4 Mini-VTOL quadcopter parameters (SI units).

Parameter Symbol Value

Overall quadrotor mass Mq 0.650 kg

Inertia on x axis Jx 7.5× 10−3 kg ·m2

Inertia on y axis Jy 7.5× 10−3 kg ·m2

Inertia on z axis Jz 1.3× 10−2 kg ·m2

Thrust coefficient b 3.13× 10−5 N · s2

Drag coefficient γ 7.5× 10−7 N ·m · s2

Rotor inertia JR 6× 10−5 kg ·m2

Arm length r 0.23 m

Gravitational acceleration ḡ 9.81 m · s−2

2.4. Control Field Design by Dynamics Replacement and Error Feedback

The present subsection explains how to design a control field by dynamics replacement
and error feedback control through a direct transposition of the VARP theory.

A second-order physical system on a Lie group G may be formulated as{
Ṙs = Rsχs,
χ̇s = σs(χs) + u,

(28)

where σs : g→ g denotes a state-transition function and u ∈ g a Lie-algebra control field.
The initial conditions for the initial value problem (28) are Rs(0) = Rs,0 and χs(0) = χs,0.
A control method aims at making the dynamics of the system (28) conform to the desired
dynamics of the reference system: {

Ṙm = Rmχm,
χ̇m = σm(χm),

(29)

where σm : g→ g denotes a further state-transition function. The initial conditions of this
system are denoted by Rm(0) = Rm,0 and χm(0) = χm,0. The initial state of the reference
system (29) would likely differ from the initial state of the system (28). A way to achieve
synchronization of the dynamical system (28) to the reference system (29) is to set the
control field as

u := σm(χm)− σs(χs) + κ LRs(logRs
Rm), (30)

where κ > 0 is a control parameter. The term σm(χm)− σs(χs) represents an instance of the
principle of dynamics replacement, namely, it has the purpose of canceling the dynamics of the
real-world system and to replace it with the dynamics of the reference system. The term
logRs

Rm represents a feedback error on the Lie-group variables and has the purpose to
align such states to one another. In fact, notice that dynamics replacement aligns the
angular velocities, which per se, does not align the states. In addition, the term logRs

Rm
compensates for possible mismatches in the system model.

2.5. Design of a VARP-Based Control Law for a Quadcopter Drone

The above general-purpose control-design theory may be tailored to the case of interest
in the present research work as follows.

In the present setting, the second-order physical system (28) represents a quadcopter
drone, namely:

σs(χs) := D−1([ Ĵq, χ2
s ] + [β, χs]− β̇)D−1, (31)
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while the system model (29) represents the dynamic prescribed by the VARP theory, namely:

σm(χm) := α χ̂m − µ χm − LRm(∇Rm V). (32)

The only term that can be acted upon to control a drone is the external mechanical
torque τ ∈ so(3), hence, in the present setting, the control field u introduced in (28) reads

u := D−1τD−1 ∈ so(3). (33)

According to dynamics replacement principle and error feedback control, we shall set
the control field to

u = α χ̂m − µ χm − LRm(∇Rm V)− D−1[ Ĵq, χ2
s ]D

−1 − D−1[β, χs]D−1

+ D−1 β̇D−1 + κ LRs(logRs
Rm).

(34)

Henceforth, the VARP control method entails a particular structure of the mechanical
torque given by

τVARP := DuD = α Dχ̂mD− µ DχmD− DLRm(∇Rm V)D− [ Ĵq, χ2
s ]− [β, χs]

+ β̇ + κ DLRs(logRs
Rm)D,

(35)

which needs to be generated by the thrusters in order to drive the quadcopter drone along
a desired trajectory. Ultimately, the system of equations that describes a VARP-controlled
drone is:

Ṙm(t) = Rm(t)χm(t),
χ̇m(t) = α χ̂m(t)− µ χm(t)− LRm(t)(∇Rm V),

LR(∇RV) = ∑N
j=1

Cr
j

`r
j

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−

Ca
j

`a
j

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R(t)>Rj)‖F

Log(R>Rj),

Ṙs(t) = Rs(t)χs(t),
χ̇s(t) = D−1([ Ĵq, χ2

s(t)] + [β, χs(t)]− β̇(t) + τVARP(t))D−1,
τVARP = α Dχ̂mD− µ DχmD− DLRm(∇Rm V)D− [ Ĵq, χ2

s ]− [β, χs]

+ β̇ + κ DLog(R>s Rm)D.

(36)

We now notice that a simplified control scheme would arise from the following
two hypotheses:

• It is not necessary to synchronize the attitudes of the two systems perfectly, which
implies that the constant κ may be set to zero; in addition, since the reference system
is purely abstract, it may be initialized identically to the drone system;

• The rotational speeds of the two systems are close to each other, namely χm ≈ χs,
hence their values may be taken as equal to a common value χ.

Under the above hypotheses, the control scheme (36) would simplify to
Ṙ = Rχ,
χ̇ = D−1([ Ĵq, χ2] + [β, χ]− β̇ + τVARP)D−1,
τVARP := α Dχ̂D− µ DχD− DLR(∇RV)D− [ Ĵq, χ2]− [β, χ] + β̇,

(37)

where the footers dropped since all descriptive variables pertain to the quadcopter drone
(namely, the ‘s’ system). The mathematical model of a controlled drone (37) will be analyzed
in the remainder of this paper. The above equations will be referred to as SO(3)-VARP
control method in the following developments.
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2.6. Physical Realizability and Control Effort Analysis

The control field prescribed by the VARP theory needs to be consistent with the
mechanical torque generated by the four thrusters, namely:

• The speed of rotation χ cannot be too large and its component along the vertical axis z
needs to stay close to zero (to prevent the quadcopter to yaw along its vertical axis);

• The mechanical torque τ is generated by the fans, which can spin up to a maximum
speed (the thrusters are small DC-brushless electrical motors, hence they cannot
generate a large thrust); moreover, the velocities ω1, ω2, ω3, ω4 need not to depart
excessively from the hovering velocity, which is denoted as ωss in [32] and satisfies

ω2
ss =

Mq ḡ
2b

. (38)

In order to verify that the designed control strategy fulfills the physical realizability of
the devised control action, it is advisable to evaluate the three components Ωx := 〈χ, χx〉,
Ωy := 〈χ, χy〉 and Ωz := 〈χ, χz〉 of the angular velocity of the drone as well as the three
components of the control torque field τVARP, namely τV

x := 〈τVARP, χx〉, τV
y := 〈τVARP, χy〉

and τV
z := 〈τVARP, χz〉. The components of the control torque are bound to the values

generated by the four fans, as described in (26), namely
τx := br(ω2

4 −ω2
2),

τy := br(ω2
3 −ω2

1),
τz := γ(ω2

2 −ω2
1 + ω2

4 −ω2
3).

(39)

Notice that such three equations bind four rotation speeds, hence the propeller rotation
speeds corresponding to a desired mechanical torque may not be determined uniquely
from (39). (More efficient drones in their maneuvering may employ all four rotors for
each of the three rotations, although these models might consume more power for the roll
and pitch rotations.) To complete the equations set, it is customary to complement the
Equation (39) with the hovering condition [32]

b(ω2
1 + ω2

2 + ω2
3 + ω2

4) = 2Mq ḡ. (40)

A fundamental step in the analysis of the physical realizability of the VARP control
action is the computation of the propellers speed corresponding to the control field. In order
to compute the rotors angular velocities corresponding to the control field τVARP, it is
possible to derive three conditions from the Equation (39):

br(ω2
4 −ω2

2) = τV
x ,

br(ω2
3 −ω2

1) = τV
y ,

γ(−ω2
1 + ω2

2 −ω2
3 + ω2

4) = τV
z .

(41)

The system (41) is under-determined, since it totals three equations in four unknowns,
therefore it gets complemented by the hovering condition (40). The system of algebraic
Equation (41) hence takes the form:

ω2
2 + ω2

4 −ω2
1 −ω2

3 = 1
γ τV

z ,

ω2
4 −ω2

2 = 1
br τV

x ,
ω2

3 −ω2
1 = 1

br τV
y ,

ω2
1 + ω2

2 + ω2
3 + ω2

4 =
2Mq ḡ

b .

(42)

The above system of equations is linear in the squared unknowns ω2
1, ω2

2, ω2
3 and ω2

4
and admits solutions
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ω2
1 =

−2γτV
y −brτV

z +2rγMq ḡ
4brγ ,

ω2
2 =

brτV
z −2γτV

x +2rγMq ḡ
4brγ ,

ω2
3 =

2γτV
y −brτV

z +2rγMq ḡ
4brγ ,

ω2
4 =

2γτV
x +brτV

z +2rγMq ḡ
4brγ .

(43)

The solutions (43) are real-valued, hence physically realizable, in principle, whenever
the values taken by the components of the control field do not differ too largely from one
another and are absolutely bounded. Furthermore, the more massive a drone, the lighter
the effect of the control field components on the propellers velocities. Introducing the
expression (38), the above solutions may be rewritten equivalently as

ω2
1 = ω2

ss − 1
2br τV

y − 1
4γ τV

z ,

ω2
2 = ω2

ss − 1
2br τV

x + 1
4γ τV

z ,

ω2
3 = ω2

ss +
1

2br τV
y − 1

4γ τV
z ,

ω2
4 = ω2

ss +
1

2br τV
x + 1

4γ τV
z .

(44)

From the above expressions, it is apparent how the control actions cause a deviation
of the rotors velocities from the hovering velocity proportional to the control torques. Such
deviations need not be large in order to guarantee the physical realizability of a control
action. It is worth noticing how the τV

z component of the control torque field influences
all rotors velocities, as it is responsible for the yawing of the quadcopter drone, while the
τV

x component only affects the rotors placed along the y-axis and the τV
y component only

affects the rotors along the x-axis.
A further observation of interest is that the hovering condition (40) is valid only when

a quadcopter is almost horizontal with respect to the inertial reference frame: whenever
a drone is tilted, the normal component of the thrust decreases, hence, to balance the
gravitational pull, a controller will slightly increase the speed of all rotors. For a tilted
quadcopter (namely, whenever R 6= I3), the simple hovering condition (40) generalizes to:

b
2 (ω

2
1 + ω2

2 + ω2
3 + ω2

4)Rez = Mq ḡez. (45)

This is a vector equation with only a scalar unknown ω2
1 + ω2

2 + ω2
3 + ω2

4, hence it
may be solved by pre-multiplying both sides by e>z , which leads to

b
2 (ω

2
1 + ω2

2 + ω2
3 + ω2

4) =
Mq ḡ

e>z Rez
. (46)

Notice that |R(3,3)| = |e>z Rez| ≤ 1, hence the right-hand side of the condition (46) is
larger than (or equal to) Mq ḡ. In the case that R 6= I3, the system of Equation (41) takes
the form: 

ω2
4 −ω2

2 = 1
br τV

x ,
ω2

3 −ω2
1 = 1

br τV
y ,

−ω2
1 + ω2

2 −ω2
3 + ω2

4 = 1
γ τV

z ,

ω2
1 + ω2

2 + ω2
3 + ω2

4 =
2Mq ḡ

be>z Rez
.

(47)

Again, the system of equations that relate the desired torques, as calculated by the
VARP control method, to the propellers rotation speeds, is linear in the squared unknowns
ω2

1 , ω2
2 , ω2

3 and ω2
4 and admits solutions
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ω2
1 =

Mq ḡ
2bR(3,3)

− τV
y

2br −
τV

z
4γ ,

ω2
2 =

Mq ḡ
2bR(3,3)

− τV
x

2br + f racτV
z 4γ,

ω2
3 =

Mq ḡ
2bR(3,3)

+
τV

y
2br −

τV
z

4γ ,

ω2
4 =

Mq ḡ
2bR(3,3)

+ τV
x

2br +
τV

z
4γ .

(48)

By the relation (38), the above solutions may be rewritten equivalently as

ω2
1 = ω2

ss
R(3,3)

− τV
y

2br −
τV

z
4γ ,

ω2
2 = ω2

ss
R(3,3)

− τV
x

2br +
τV

z
4γ ,

ω2
3 = ω2

ss
R(3,3)

+
τV

y
2br −

τV
z

4γ ,

ω2
4 = ω2

ss
R(3,3)

+ τV
x

2br +
τV

z
4γ .

(49)

Such relationship quantifies the amount of deviation from the hovering speed due to
inclination and to desired torque values. The steady-state velocity of the OS4-Mini-VTOL

quadcopter is ωss =
√

Mq ḡ
2b ≈ 319 rad/s. The constants that appear in the expressions (44)

take values 2br ≈ 1.44× 10−5 N ·m · s2 and 4γ = 3× 10−6 N ·m · s2. The relations (49) will
be made use of in the course of numerical simulations to quantify the physical realizability
of the devised control action.

In addition to the above discussion, it is worth surveying the value of the control effort
defined as

ε := 1
2

√
〈u, u〉, (50)

where u := D−1τVARPD−1 and 〈·, ·〉 denotes the inner product in the algebra so(3). Notice
that the measurement unit of the control efforts results to be the same of an angular
acceleration, namely rad/s2. The control effort quantifies the effort required to the actuators
to achieve a desired control action. Since, ultimately, all control actions amount at making
a drone take an appropriate attitude, including translational control, the control effort is
defined only in terms of (scaled) mechanical torque.

2.7. Case-Study: Single Attractive/Repulsive Point

As a case-study to clarify the subsequent development of a full attitudinal/positional
control, let us consider a VARP-controlled drone bound to approach a single target, realized
by an attractive point potential. The equations of motion of the controlled quadcopter may
be summarized as follows:

Ṙ = Rχ,

χ̇ = α χ̂− µ χ−
[

Cr

`r exp
(
−‖Log(R>Ra)‖F

`r

)
− Ca

`a exp
(
−‖Log(R>Ra)‖F

`a

)]
Log(R>Ra)
‖Log(R>Ra)‖F

,

q̇ = v,

v̇ = b
2Mq

(
∑4

i=1 ω2
i

)
Rez − ḡez − 1

Mq
Γv,

(51)

where Ra ∈ SO(3) denotes a desired/undesired attitude. It is important to emphasize that
the translational component of motion depends on the attitude R as well as on the sum
of squared velocities of the propellers, which is an independent variable, as discussed in
Section 2.6.

Since the propeller speeds are almost-unitary fractions of the hovering speed, we set

4

∑
i=1

ω2
i = η

2Mq ḡ
b e>z Rez

, (52)
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where the parameter η represents a sort of ‘throttle’ coefficient, namely η < 1 causes a
drone to descend, η > 1 causes vertical ascent, while η = 1 corresponds to hovering in
midair. As a consequence, the equations describing a controlled drone may be rewritten as:

Ṙ = Rχ,

χ̇ =

(
α

‖χ‖F
− µ

)
χ

−
[

Cr

`r exp

(
−‖Log(R>Ra)‖F

`r

)
− Ca

`a exp

(
−‖Log(R>Ra)‖F

`a

)]
Log(R>Ra)

‖Log(R>Ra)‖F
,

q̇ = v,

v̇ = ḡ
(

η R
e>z Rez

− I3

)
ez −

1
Mq

Γv.

(53)

Apparently, the term ḡMq

(
η R

e>z Rez
− I3

)
ez denotes the net mechanical force that the

thrusters are able to exert on the (center of mass of the) drone. Notice that when R = I3,
such net force equals (η − 1)Mq ḡez, coherently with the role taken by the coefficient η.

2.8. Numerical Integration of the Equations of Motion

In order to simulate numerically the flight of a controlled quadcopter, the simplest numer-
ical integration method has been employed, namely, the forward Euler (fEul) method [32,41].
In order to make such methods effective in solving Lie-groups equations, it has been
customized coherently with the mathematical structure of the rotation group SO(3).

Recasting the equations of the controlled system (36) in a compact way, we have:
Ṙ(t) = ν(χ(t), R(t)), t ≥ 0,
χ̇(t) = σ(χ(t), R(t)),
ξ(0) = χ0, R(0) = R0,

(54)

where ν : so(3)× SO(3) → TSO(3) and σ : so(3)× SO(3) → so(3) represent the right-
hand sides of the first and of the second equation in (36), respectively. According to the
fEul method, the value of the first-order derivative can be approximated by means of the
right-sided incremental ratio, namely it may be written as:

χ̇(t) =
χ(t + h)− χ(t)

h
+ approximation error, (55)

where h > 0 denotes a step size. Ignoring the approximation error term and introducing a
uniform time discretization, we obtain:

χk+1 − χk
h

= σ(χk, Rk), k = 0, 1, 2, 3, . . . , (56)

which gives rise to the iteration:

χk+1 = χk + hσ(χk, Rk), k = 0, 1, 2, 3, . . . . (57)

Notice that the above iterations is based on the fundamental observation that the
second equation in (54) involves terms in the vector space so(3) only.

In addition, it is necessary to consider the numerical integration of the first equation
in (54). The solution of the first equation in (54) may be approximated by a fEul method
(upon uniform time discretization) as

Ṙ(t) =
R(t + h)− R(t)

h
+ approximation error ⇒ Rk+1 = Rk + hν(χk, Rk), (58)
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however, such iteration will quickly drive the rotation matrix sequence Rk out of the
rotation group, which is not a vector space. The reason for such difficulty is that it is not
legitimate to treat a curved manifold as a linear space and, in particular, summation is not
allowed. Simple summation must be replaced by the exponential map, which takes a pair
(R, V) ∈ TSO(3) into a point in the SO(3) manifold. Ultimately, the Equation (58) should
be written as:

Rk+1 = expRk
(hν(χk, Rk)) = RkExp(h R>k ν(χk, Rk)). (59)

The complete set of equations used in the numerical simulations thus reads:

Rk+1 = RkExp(hχk),

χk+1 = χk + αhχ̂k − µhχk − hLRk

(
∇Rk V(Rk)

)
,

LR
(
∇RV(R)

)
= ∑N

j=1

Cr
j

`r
j

exp
(
−‖Log(R>Rj )‖F

`r
j

)
‖Log(R>Rj)‖F

− Ca
j

`a
j

exp
(
−‖Log(R>Rj )‖F

`a
j

)
‖Log(R>Rj)‖F

Log(R>Rj),

k = 0, 1, 2, 3, . . . .

(60)

We mention that there exist a number of possible approaches to integrate numerically
differential equations formulated on manifold tangent bundles or Lie-groups tangent bundles.

3. Double-VARP Control of a Quadcopter

The SO(3)-VARP control method has been designed specifically to regulate a quad-
copter’s attitude, namely, given a set of desired/undesired attitudes, the SO(3)-VARP
method ultimately provides an expression τVARP for the torque that the propellers need to
produce in order to steer a quadcopter. In fact, from the quadcopter model (26), it is readily
noticed that the SO(3)-VARP control field will affect only the evolution of the attitude R
and of the angular velocity χ of the quadcopter. The devised SO(3)-VARP method does
not influence directly the position and the linear velocity of a drone (although the control
method developed so far influences indirectly the spatial trajectory of a drone through
its attitude). In order to steer a quadcopter over a desired spatial trajectory, it is hence
necessary to regulate its translational dynamics, represented by the variables q and v,
by influencing directly its linear acceleration.

The aim of the present section is to illustrate how to exploit the notion of VARP
regulation to achieve position control applied to quadcopter guidance.

3.1. Double VARP Control Theory

The main proposal is to use two instances of the VARP regulation theory, namely, two
controllers that act concurrently to achieve two goals:

• A first instance (referred to as VARP1) will serve to stabilize the attitude of a drone
during flight; the purpose of this instance of VARP controller is to make sure the tilt
of the drone keeps limited, namely that the body of the drone will always keep in an
almost-horizontal orientation, hence stabilizing its flight mode;

• A second instance (referred to as VARP2) will regulate the tilting of the drone in such a
way that it is steered toward a predefined target-point in space, regardless of its initial
position, orientation and overall rotation speed.

To what concern positional regulation, from the last equation in the quadcopter
model (26), it is possible to notice that the thrust exerted by the thrusters on the drone’s
body is always normal to its x-y plane, therefore, in order to steer the quadcopter toward
a desired direction, the total thrust must be directed toward the target and, consequently,
the drone’s body must be tilted (i.e., rolled and pitched) along an appropriate direction. In
other terms, the z axis of the drone must be heading to a desired direction.

To summarize the following development, a VARP controller is used to induce an
appropriate tilting of a drone’s body at every instant, and a mechanical torque is calculated
that tends to align the z axis of the drone to a steering direction. The mechanical torque
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is, in fact, computed by a cross product between the steering direction provided by the
controller and the direction of the z axis of the drone. In addition, special attention should
be paid to fill up the vertical gap between the drone’s actual position and the target. Such
goal may be achieved independently by setting the throttle coefficient proportional to
such a gap.

The equations of controlled motion inspired by the SO(3)-VARP principle may be laid
out as follows: 

Ṙ = Rχ,
χ̇ = −µ χ + τV

1 + τV
2 ,

q̇ = v,

v̇ = ḡ
(

η R
e>z Rez

− I3

)
ez −

1
Mq

Γv,

(61)

where the self-propelling term has been eliminated, as it was deemed to be detrimental
(namely, we set α = 0), and τV

1 ∈ so(3) and τV
2 ∈ so(3) denote the mechanical torques

corresponding to two concurring VARP controllers. In order to complete the equations, we
need to specify the mathematical laws to iteratively compute the quantities η, τV

1 , τV
2 .

In the following, we shall denote by qt ∈ R3 the set point representing the desired
positional target. The displacement ε ∈ R3 between the current location of the (center of
mass of the) drone and the set point is defined as

ε := qt − q. (62)

The z component of the displacement will be denoted as εz := ε>ez.
Vertical positioning: In order to achieve vertical positioning, it is necessary to establish

an evolution law for the coefficient η. The following law was exploited:

η = exp(Cη εz), (63)

where Cη > 0 is a coefficient that determines the sensitivity of vertical control action to
the vertical displacement. When εz > 0, the drone is located below the set point, hence it
must ascend, therefore η > 1; when εz < 0, the drone is located above the set point, hence
it must descend, therefore η < 1.

Attitude stabilization (VARP1): The controller VARP1 must output a control pseudo-
torque τV

1 that tends to keep the drone as horizontal as possible (notice that DτV
1 D denotes

indeed a mechanical torque). Therefore, it may be set up as a SO(3)-VARP controller
without repulsive attitudes and with an attractive attitude set to the identity matrix I3.
Since a stabilization control action needs not be excessively stringent at target attitude, it is
not necessary to choose a sharp potential as in Nguyen et al. [21], hence we relaxed the
potential function to a Gaussian one, namely, we have defined

V1(R) :=
1
2

C1`1 exp
(
−d2(R, I3)

`1

)
, (64)

where d : SO(3)× SO(3)→ R denotes a Riemannian distance function. Notice that the in-
tensity and action-range coefficients have been written in a slightly different way compared
to Section 2, which facilitates the implementation of the control action. The corresponding
torque term hence reads:

τV
1 := LR(gradRV1) = −C1 exp

(
−‖Log(R)‖2

F
`1

)
Log(R), (65)

where we have used the fact that Log(R>) = −Log(R).
Positional control (VARP2): The main idea carried out in this section consists in

defining a mechanical torque to steer a drone toward a set point. The controller VARP2
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must output a control pseudo-torque. Therefore, it may be set up as a R3-VARP without
repulsion points and with an attraction point set to the desired location qt. Again, we relaxed
the sharp Laplacian potential function to a rounder Gaussian one, namely, we defined

V2(ε) :=
1
2

C2`2 exp
(
−‖ε‖2

`2

)
. (66)

The corresponding pseudo-torque is defined as

τV
2 := J(R ez) ∧ (−gradεV2)K = C2 exp

(
−‖ε‖2

`2

)
J(R ez) ∧ εK, (67)

where∧ denotes cross vector product. The analytic form of the torque J(R ez)∧ (−gradεV2)K
has the effect of orientating the z axis of the drone toward the positional displacement ε.

The complete set of equations describing the controlled drone read:

Ṙ = Rχ,

χ̇ = −µ χ− C1 exp

(
−‖Log(R)‖2

F
`1

)
Log(R)

+C2 exp
(
−‖qt − q‖2

`2

)
J(R ez) ∧ (qt − q)K,

q̇ = v,

v̇ = ḡ

(
eCη (qt−q)>ez

e>z Rez
R− I3

)
ez −

1
Mq

Γv,

(68)

which may be implemented by a numerical method (see Section 2.8) once initial conditions
R(0) = R0, χ(0) = χ0, q(0) = q0 and v(0) = v0 and a target position qt are provided.
Notice that the initial conditions may be arbitrarily given as long as they are compatible
with the physics of the drone (for instance, the axis R0ez may not be excessively tilted
away from vertical, and the initial rotational speed χ0 may not exceed the drone’s maximal
acceptable rotation speed).

It is worth underlining that, unlike previous works on artificial potentials, the pseudo-
torque τV

2 , as defined in Equation (67), is not derived directly from the gradient of a
potential, hence its expression is more involved. This fact alone makes a Lyapunov-type
analysis of convergence more involved than in previous research studies.

3.2. Rotors’ Speed, Real-Time Guidance and GPS Aid

As it was discussed in Section 2.6, it is important to make sure that the control field
resulting from the devised application of the VARP theory be consistent with the mechanical
torque that can effectively be generated by the propellers.

As a first step in this analysis, it is necessary to define the torque control law that will
identify the system (37) to the system of equations (61). This torque control law, which
results in an expression of the function τVARP, is as follows:

τVARP := −µDχD + DτV
1 D + DτV

2 D− [ Ĵq, χ2]− [β, χ] + β̇. (69)

On the basis of the control torque expression and on the physical realizability dis-
cussion carried out in Section 2.6, it is possible to calculate the rotors’ speed through
Equation (48). Rooting the squared values of the rotors’ speed from (48) results in rotors’
angular speeds that make a drone follow a desired trajectory according to the proposed
double VARP control method. The obtained rotors’ speeds are expressed in radians per
second, although it is more common to express them in RPM (revolutions per minute).
In order to convert radians per second to RPM we will use the relation:
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ωRPM =
30
π

ωrad, (70)

where ωRPM denotes the value of angular speed in RPM while ωrad denotes the value in
radians per second.

To what concern the feasibility of real-time control, we quote Lopez and McInnes [42]:
“Since the guidance is entirely analytical, it is believed that this methodology may be
suitable for the real-time, autonomous guidance [...] using a minimum of onboard compu-
tational power”.

Further to the discussion on physical realizability, we would like to underline that
the control algorithm presupposes full access to system’s state, including position and
orientation. For indoor applications such information may be accessed by vision-based
methods combined with inertial sensing, such as visual odometry or SLAM using 2D/3D
cameras, laser range finders or tether’s sensory feedback [43]. For outdoor applications,
GPS (combined with other localization methodologies through information fusion) may be
take advantage of [44].

3.3. Numerical Simulation Results

Comprehensive numerical simulations based on the controlled mathematical model (68)
were performed by taking ideal initial conditions (namely, linear and angular velocities close to
zero and initial attitude R0 equal to the identity matrix I3) as well as random initial conditions.

The features of the devised control theory will be displayed through the following
graphical illustrations:

• Target approaching panels: Two 3D graphs that show the same simulation result
from two different perspectives; the blue line represents the trajectory followed by
the center of mass of the quadcopter, while the black dashed line denotes the ideal
trajectory, which directly links the initial location to the target location; the start and
arrival points of the quadcopter have been marked with an open red circle, while the
target has been marked by a magenta cross mark; the start and target point have been
labeled to distinguish a point from another;

• Control effort panel: In order to analyze the effort required to the thrusters by the
control law, control effort values collected during a simulation are represented in a
dedicated panel;

• Torque components panel: This panel summarizes the values taken by the torque
components that the quadcopter rotors exert on its frame in order to tilt the drone as
prescribed by the double VARP control method, namely, the components of the array
τVARP defined in Equation (69);

• Distance-to-target panel: In order to verify that the devised control method is able to
take a drone to the target, values of the Euclidean distance between the center of mass
of a drone and the location of the target have been collected and displayed;

• Inclination-to-vertical panel: In order to visualize the inclination of the drone (com-
bined pitching and rolling), a numerical index, which we shall refer to as ‘inclination
to vertical θ(t)’, has been defined as the angle between the inertial vertical axis ez and
the drone’s body vertical axis which, in the inertial reference frame, is represented by
Rez; such angle is thus calculated as θ := arccos(e>z Rez);

• Rotors’ speed panels: Two rotors speed panels serve to display the RPM values of the
propeller’s speed taken during a simulation. The panel on the left-hand side shows
the values recorded during the whole simulation (although occasionally it will be
truncated for a better visualization) while the panel on the right-hand side displays
the values of rotors’ speeds within specific time-windows in order to emphasize the
difference between the speeds at which different rotors spin on a drone’s frame.

The total time-span of the simulation is [0, t f ], where the value of t f in each simulation
is specified in the figures.
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3.4. Target Point above a Drone’s Initial Location

Figure 2 shows the dynamics of a controlled quadcopter starting from favorable conditions.

(a)

(b)

Figure 2. Experiment: Target point above the start point, favorable initial conditions. In the RPM panel,
the yellow dashed line represents the steady-state hovering speed value (RPMss = 3048 from [32]).
Below the panels are reported the values of VARP parameters used in the simulation. Notice that
different panels present different time-spans in order to better illustrate the trend of the curves during
the simulation. (a) Target approaching trajectory; (b) Control figures.

As it may be readily seen from the panel about angle of inclination, at the beginning of
the simulation, the drone tilts toward the desired direction and starts to orientate towards
the target point. Such behavior may also be noticed from the RPM panel on the right-hand
side of the figure, which displays the values of propellers’ speed during the first 3 s of the
simulation. The speeds of the four propellers take slightly different values in order to tilt
the drone’s frame. As soon as the drone reaches the target, it tilts back to the hovering
attitude, namely the inclination angle θ tends to zero.
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Since the target point is initially located over the start point, overall rotors’ speed
is initially larger than the hovering value, in order to overcome the gravitational pull,
as the RPM panel on the left-hand side shows. As the drone approaches the target, speed’s
values will progressively decrease to the hovering speed. It is interesting also to notice that,
from the RPM panel on the left-hand side, it is difficult to distinguish the curves pertaining
to different thrusters since the speed of rotation of propellers needs to be almost equal to
one another, otherwise the drone will change its attitude.

From the panels that display the values taken by the control effort index and by the
torque components, it is readily seen that only in the first 15 s of simulation large values of
such indexes are observed since the control algorithm increases propellers’ speed in order
to change the quadcopter attitude and steer its body toward the target. From the panels
that display the values of the distance from target, as expected, it is possible to see that the
drone get progressively closer to the target until reaching it.

Results displayed in Figure 3 were obtained on an experiment that is similar to the
previous one, although initial conditions were generated at random.

(a)

(b)

Figure 3. Experiment: Target point above the start point, random initial conditions. (a) Target
approaching trajectory; (b) Control figures.

In this case, from the RPM graphs, it is readily seen that the drone was not initially
directed towards the target since, in the first part of the simulation, the propellers’ speeds
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look considerably different from one another. As a consequence, the quadcopter drone
varied its attitude to perform a more complex trajectory. Notice that the RPM graph
on the right side was truncated to illustrate the values of the indexes over the first 10 s
of simulation.

The above-discussed observations are confirmed by the results showed in the inclination-
to-vertical panel: The drone was initially tilted in one direction, then it reduces its inclination
and finally tilts back to the correct attitude in order to fly towards the target point. As soon as
the drone has assumed the correct attitude, propellers’ speeds become approximately equal to
each other in order to make the drone move upward.

The unfavorable initial attitude could also be noticed from the target approaching
panel on the right-hand side, where the quadcopter trajectory is not perfectly superimposed
to the ideal one, but it exhibits a small ‘hump’ to the left and to the right.

Even in this case, the curves displayed in the panels about control effort and torque
components show larger values only during the first part of the simulation, when the
drone needs to vary the speed of propellers and to modify its attitude. From the RPM
graph on the right-hand side, it can be noticed that, with respect to the previous simulation,
the rotors’ speed curves look considerably different since the drone needs to adapt from a
random attitude to the correct one.

3.5. Target Point below a Drone’s Initial Location

The following two simulations, whose results are illustrated in the Figures 4 and 5,
were obtained by placing a quadcopter below the target. As in the previous subsection,
a favorable as well as a random initial attitude were simulated.

In one such case, a drone needs to move downward to approach the target hence,
at the beginning of the simulation, the RPMs of the propellers take lower values than the
hovering speed. As the quadcopter approaches the target, the propellers’ speed tends to
approach the hovering speed.

Even in this case, the trajectory followed by the quadcopter shows a small ‘hump’ on
the left side since the initial attitude of the quadcopter is not favorable to move toward
the target. Such a phenomenon may be noticed even from the RPM panel on the right
side: In the simulation with favorable conditions, the speeds slightly differ from each other,
while in the simulation results corresponding to random initial conditions, the RPMs look
considerably different from one another during the first segment of the simulation.

(a)
Figure 4. Cont.
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(b)

Figure 4. Experiment: Target point below the start point, favorable initial conditions. (a) Target
approaching trajectory; (b) Control figures.

(a)

Figure 5. Cont.
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(b)

Figure 5. Experiment: Target point below the start point, random initial conditions. (a) Target
approaching trajectory; (b) Control figures.

3.6. Target Point at Same Quota as Drone’s Initial Location

In the simulation results illustrated in Figure 6, the starting point and target are located
at the same altitude, therefore the quadcopter needs only to slide horizontally to reach
the target.

When favorable initial conditions are set, the drone follows the expected trajectory.
In particular, it is possible to see from the target approaching graph on the right side that the
drone moves slightly along the vertical direction, although such displacement is negligible
(of the order of a few centimeters). Control effort and torque components panels show
definitely low values, which corresponds to the fact that the quadcopter only needs to tilt
slightly in order to fly toward the target. In order to tilt the drone’s body, the propellers’
RPM values reported in the panels are slightly different from one another during the first
5 s of the simulation, then the RPMs approach the hovering value. It is also interesting to
notice that the rotors’ speeds do not equate the hovering speed, but they differ from it for
less than a half revolution per minute.

From Figure 7, the behavior of the quadcopter when starting off with random ini-
tial conditions is readily inspected.

It is indeed interesting to see that, in this case, the quadcopter slightly moves backward
since it was clearly tilted in an unfavorable direction and then, as soon as it reaches a
favorable attitude, it starts to fly towards the target point.

It may also be noticed from the RPM panel that, in order to vary the attitude of the
quadcopter, propellers’ speeds need to significantly differ from one another during the
first part of the simulation, then approaching the hovering speed. Compared to the results
obtained in the previous simulation, control effort and torque components panels show
larger values during the first part of the simulation due to the initial necessary change
of direction.
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(a)

(b)

Figure 6. Experiment: Horizontal displacement, favorable initial conditions. (a) Target approach-
ing trajectory; (b) Control figures.

The inclination-to-vertical panels tell that, in the simulation obtained with favorable
initial conditions, the drone will tilt directly toward the right attitude (from θ = 0) in order
to fly toward the target and then, as soon as the drone approaches the target location,
inclination goes back to zero. In the simulation pertaining to random initial conditions,
the panel about angle of inclination shows that the controlled drone needs to take a
countermeasure in order to reach the right attitude starting from an unfavorable one,
after that it can navigate seamlessly towards the target.

The plots that report the distance from target show that in both simulations the
drone manages to reach the target even in the case that it just needs to cover a purely
horizontal displacement.
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(a)

(b)

Figure 7. Experiment: Horizontal displacement, random initial conditions. (a) Target approaching tra-
jectory; (b) Control figures.

3.7. Target and Drone’s Initial Location Separated by a Vertical Displacement

In the simulation results illustrated by Figures 8 and 9, the start point locates above
the target (with no horizontal displacement), hence the quadcopter just needs to descend
vertically, which ideally may be achieved by decreasing the speed of rotors for a short
period of time.

In the simulation corresponding to favorable initial conditions, whose results are
illustrated in Figure 8, it can be seen from the inclination graph that the tilting of the
quadcopter takes an almost null value, since no tilting is necessary to move vertically.
For this reason, at the beginning of the simulation the RPMs of the propellers take close
values to one another and such common value is lower than the hovering speed. As the
quadcopter approaches the target, spinning velocities come closer to the hovering speed.

Even in this case (as in Section 3.6), the trajectory generated by the controller only
slightly differs from the ideal trajectory. This effect may be noticed from the panel on the
right side where a larger scale for the y axis has been utilized (the particular shape of such
trajectory may only be appreciated using a larger scale for the axes since the discrepancy to
the ideal trajectory is of the order of millimeters).
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A further interesting aspect emerging from the discussed simulation result is that the
control effort takes quite low values as opposed to the simulation results displayed so far.
This effect may be explained by noticing that the drone does not need to vary its attitude,
but only to slow down or speed up rotors’ spinning. The same observation holds about the
torque components that take quite low values compared to the previous simulations.

(a)

(b)

Figure 8. Experiment: Vertical ascension, favorable initial conditions. (a) Target approaching trajec-
tory.; (b) Control figures.

Figure 9 displays numerical results on the same control endeavor obtained with
random initial conditions.

In such case, it emerges from the RPMs plot that in the first fragment of simulation the
controlled drone needs to vary its attitude, hence rotors’ speeds take considerably different
values from one propeller to another. After the first 10 s, such speeds become almost equal
to one another and, as the drone gets closer to the target, the spinning velocities increase
until the hovering speed is reached.

The inclination plot shows that the drone starts off its flight from an unfavorable initial
attitude, therefore at first it tilts to the hovering attitude in order to move downward.

In this case, the control effort and torque components reach higher values with respect
to the previous simulation. From this consideration, it is readily inferred how a change of
attitude requires a significant effort to the propelling rotors.
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(a)

(b)

Figure 9. Experiment: Vertical ascension, random initial conditions. (a) Target approaching trajectory;
(b) Control figures.

The distance-from-target plot shows that the drone manages to correctly reach the
target in both simulations.

3.8. Flight under Impulsive Disturbance

Figures 10–12 show results of simulations performed to experiment with quadcopter
navigation disturbed by impulsive forces. In order to effect such simulations, the accelera-
tion equation from the quadcopter model (26) has been modified as follows:

v̇ =
1
2

b
Mq

(ω2
1 + ω2

2 + ω2
3 + ω2

4)Rez − ḡez −
1

Mq
Γv +

Fimp

Mq
, (71)

where Fimp is a three-dimensional vector that represents an impulsive force acting on the
drone. Denoting by U(t) a unit-step function, an impulsive disturbance is represented by

Fimp(t) :=

 fx
fy
fz

(U(t− Thit)−U(t− Thit − ∆Thit)), (72)
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where fx, fy and fz denote three force components randomly drawn from the interval
[−3.25, +3.25] (N), Thit denotes the inception time of such disturbance and ∆Thit denotes
its duration. Notice that the values of the force components are chosen so that the entries

of
Fimp
Mq

range approximately in [−5, +5] (m/s2), which is approximately half of gravita-
tional acceleration.

(a)

(b)

Figure 10. Experiment: Single impulsive hit. On the target approaching plot, a red asterisk denotes
the point on the trajectory where the disturbance hits. (a) Target approaching trajectory; (b) Con-
trol figures.

In the numerical implementation, the duration of a disturbance has been set as
∆Thit := h, namely the sampling interval (as well as the shortest interval of time allowable
in a time-sampled setting). In addition, all simulations described in the present subsection
have been performed by choosing favorable initial conditions.

In the simulation whose outcomes are summarized in Figure 10, only one impulsive
force acts on the drone. From the target approaching plots it is readily witnessed how,
despite the drone has been pushed away by the impulsive force, the controller manages to
get the drone on track to a viable journey to the target. At time Thit, when the disturbance
happens, the plots show a sudden change in the trend: the distance-to-target panel shows a
sudden rise since the drone has been pushed away from its undisturbed trajectory, from the
inclination values it is readily noticed that, due to the action of the forcing nuisance,
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the drone varies its attitude, and from the control effort plot and torque components panel,
it is inferred that the controller requests a supplementary effort to the rotors in order to
stabilize the drone and steer it back toward the target.

(a)

(b)

Figure 11. Experiment: Two impulsive forces. The red asterisks on the quadcopter trajectory represent
the impact points. (a) Target approaching trajectory; (b) Control figures.

In the simulation whose outcomes are summarized in Figure 11, two impulsive forces
act upon a quadcopter at two distinct instants. According to the obtained results, even in
this case the drone is able to reach the target, as illustrated by the distance plot. In this case,
since the drone is pushed away from its planned trajectory two times, all the plots exhibit
two peaks that occur precisely when the forcing nuisance happens. Nonetheless, rotors’
spinning velocity seems to be only slightly influenced by the disturbances, as, in general,
small deviations in their values suffice to compensate a drone’s attitude.

In a further interesting simulation, whose results are displayed in Figure 12, an impul-
sive disturbance hits after a drone has already reached the target. The displayed graphs
show that the drone gets indeed pushed away from the target, but it eventually manages to
make a comeback. The panel showing the values of the torques exerted by the thrusters on
the body of the drone illustrates how such quantities are only slightly influenced by the
disturbances (as well as the control effort). Indeed, a slight variation of the torques suffices
to compensate the trajectory of a drone under the action of impulsive disturbances.
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(a)

(b)

Figure 12. Experiment: Single impulsive force acting after the drone has reached the target. The hit
point on the target-approaching panel is marked by a red asterisk. (a) Target approaching trajectory;
(b) Control figures.

3.9. Chasing Shifting Targets

The final simulations in the present comprehensive series of experiments concern
chasing a moving target. Two kinds of test have been performed: in the first kind of test,
the target shifts after a drone gets sufficiently close to it, while in the second kind of test,
the target shifts randomly in time even if the drone has not yet reached it. Both kinds of
experiments have been repeated by varying the VARP parameters values. Initial conditions
are favorable, namely initial angular speed and linear speed close to zero and initial attitude
equal to the identity matrix.

In the simulations whose results are illustrated in Figures 13 and 14, the target shifts
as soon as the quadcopter comes to a distance less than 30 cm from its current location.
With the first set of VARP parameters, the quadcopter better follows the ideal trajectory,
but it takes a long time to reach each target, as shown in Figure 13. Figure 14 shows the
results of a simulation obtained with a second set of parameters. It is worth noting that the
control figures present several peaks that occur as soon as a new target position manifests.
In this case, the drone follows a wider trajectory compared to the ideal one, but it needs
considerably lesser time to reach each target compared to the previous simulation.
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(a)

(b)

Figure 13. Experiment: Multiple shifting targets, first set of VARP parameters. In the target
approaching plots, the dashed black lines represent the ideal trajectory which directly links the
start point (current target) to the next target and all the targets have been labeled and marked by a
magenta-colored cross. (a) Target approaching trajectory; (b) Control figures.

(a)

Figure 14. Cont.
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(b)

Figure 14. Experiment: Multiple shifting targets, second set of VARP parameters. (a) Target
approaching trajectory; (b) Control figures.

The Figures 15 and 16 report the results of the second kind of test in which the target
changes randomly through time. It is particularly interesting to analyze the behavior of
the control algorithm between the start point and the target T1. It is readily noticed that
as the quadcopter drone was heading toward the target T1, the latter suddenly shifted
to a new location T2. Such an event causes the quadcopter to change its heading toward
the new target. The peaks in the torque components (and hence in the control effort) are
considerably higher than the average values of such figures, although very short in duration.

(a)

Figure 15. Cont.
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(b)

Figure 15. Experiment: Targets shifting randomly in time, first set of VARP parameters. (a) Target
approaching trajectory; (b) Control figures.

As opposed to the previous tests, where a target shifted only after the quadcopter got
sufficiently close to it, in this case the drone does not necessarily reach all the targets, but it
strives to approach the one that is currently plugged into the virtual potential field. Such
interesting simulation shows that even in the case of a shifting target the control method is
effective. Such feature looks profitable in those applications where a drone is commanded
to suddenly shift its destination.

(a)

Figure 16. Cont.
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(b)

Figure 16. Experiment: Targets shifting randomly in time, second set of VARP parameters. (a) Target
approaching trajectory; (b) Control figures.

4. Conclusions and Future Work

The VARP control theory that was taken as a reference in the present work, developed
in [21], was originally designed to control a dynamical system representing a real-world
wheeled robot. As we have seen in the present work, this theory may be extended to control
dynamical systems evolving on larger-dimensional, possibly curved, state spaces.

The purpose of the present endeavor was to apply the VARP principle in the design of a
novel quadcopter’s attitude control law. Since the attitude of a quadcopter may be described
by means of elements of the SO(3) manifold, we have generalized the VARP principle
equations to control a second-order dynamical system whose state-space representation
insists on the Riemannian manifold SO(3).

On the basis of a quadcopter model drawn from [32], the devised SO(3)-VARP control
theory has been used to control the attitude of a quadcopter: given a desired attitude,
the control law will provide a Lie-algebra-type control field to make a drone tilt toward the
desired attitude. In particular, since the only term that can be acted upon to control a drone
is the external mechanical torque, the VARP control method yields a particular value of
the mechanical torque that the thrusters must produce in order to tilt the drone toward the
desired attitude.

In order to achieve complete rotational and positional control of a quadcopter to make
it fly from a start point to a desired target point, we have developed a double VARP control
method. This contribution to the theory of Lie-group control class has been scrutinized
through a comprehensive series of numerical experiments performed through specifically-
tailored numerical algorithms.

The results of numerical tests have confirmed that the double VARP control method is
able to efficiently steer a drone toward a desired target point in space enabling autonomous
movement control. Indeed, results of simulations showed that the devised control law is
able to drive a drone toward a target even in the event that it gets hit impulsively or if there
happens a sudden shift of the target. This latter aspect looks interesting and promising
in view of future developments since it could make it possible to drive a drone toward a
pre-planned path defined by declaring successive target points in the virtual potential field.
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The VARP control method is characterized by a set of parameters (Ca, Cr, `a, `r), whose
values influence its performance. From the commented simulations, it emerged that the
used set of parameters are suitable in a wide range of situations.

The double VARP control method introduced in the present paper only utilizes target-
points both in the SO(3)-VARP subsystem and in the R3-VARP subsystem. Future develop-
ments could provide a more involved virtual potential field which could include repulsive
points, in order to represent obstacles in the space of maneuver and to make the devised
control strategy capable of obstacle avoidance.

Building a more involved and informed virtual potential field could also lead to
making the double VARP method cooperative, namely capable of controlling a fleet of two
or more quadcopters flying coordinately.

A further important aspect to be developed in future endeavors concerns a formal
proof of convergence of the devised control algorithm, perhaps based on Lyapunov-
type analysis.
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