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Abstract: A general foundation of fooling a neural network without knowing the details (i.e., black-
box attack) is the attack transferability of adversarial examples across different models. Many works
have been devoted to enhancing the task-specific transferability of adversarial examples, whereas the
cross-task transferability is nearly out of the research scope. In this paper, to enhance the above two
types of transferability of adversarial examples, we are the first to regard the transferability issue
as a heterogeneous domain generalisation problem, which can be addressed by a general pipeline
based on the domain-invariant feature extractor pre-trained on ImageNet. Specifically, we propose
a distance metric attack (DMA) method that aims to increase the latent layer distance between the
adversarial example and the benign example along the opposite direction guided by the cross-entropy
loss. With the help of a simple loss, DMA can effectively enhance the domain-invariant transferability
(for both the task-specific case and the cross-task case) of the adversarial examples. Additionally,
DMA can be used to measure the robustness of the latent layers in a deep model. We empirically
find that the models with similar structures have consistent robustness at depth-similar layers, which
reveals that model robustness is closely related to model structure. Extensive experiments on image
classification, object detection, and semantic segmentation demonstrate that DMA can improve the
success rate of black-box attack by more than 10% on the task-specific attack and by more than 5% on
cross-task attack.

Keywords: deep learning; distance metric; adversarial attack; cross-task; transferability

MSC: 68T07

1. Introduction

The adversarial examples are crafted by adding the maliciously subtle perturbations
to the benign images, which make the deep neural networks being vulnerable [1,2]. It is
possible to employ such examples to interfere with real-world applications, thus raising
concerns about the safety of deep learning [3–5]. While most of the adversarial attacks focus
on a single task, we consider that the current vision-based systems usually consist of an
ensemble of multiple pipelines with each addressing a certain task, such as object detection,
tracking, or classification. Hence, for such a complex vision system, an adversarial example
attacking multi-task or multi-model vulnerability is desired but challenging to be designed.

Generally, adversarial attacks can be divided into the white-box and the black-box
cases [6]. The white-box attacks are known as attacking with the knowledge of the structure
and the parameters of the given model, such as the fast gradient sign method [2], the basic
iterative method [7], and the momentum-boosting iterative method [6]. On the contrary,
the black-box attacks do not know the information of the model except the model outputs,
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which describe a more common situation in real-world applications. The success of a
black-box attack comes from either of two principles, i.e., the assumption of transferability
or the feedback of queries. Hence, we could find two categories of black-box attacks,
including transfer-based [8–11] and query-based [12,13]. While the latter has the problems
such as poor attack effects and low query efficiency [14], in this paper, we focus on the
transfer-based black-box attack, in which transferability is assumed to be an intriguing
property of adversarial examples.

The assumption of transferability comes from the fact that different models are opti-
mised based on similar distributions of training data, which means the adversarial examples
generated by a given model can also fool the other unknown models. In details, transfer-
ability can be divided into the task-specific transferability and the cross-task transferability,
according to the task of the victim model. Specifically, when the victim model and the
given model are interested in the same task (e.g., classification), the assumed transferability
is task-specific. On the other hand, when the victim model and the given model are inter-
ested in different tasks (e.g., classification vs. detection), the cross-task transferability is
considered. To design the adversarial examples for multiple tasks, a natural question is: are
cross-task transferability and task-specific transferability incompatible?

Regarding the task-specific transferability, it is known that the models are optimised
from similar input distributions and similar label distributions, which could be viewed
as in the same domain and hence, the characteristics revealed by the models are similar.
Instead, the cross-task transferability can be regarded as a heterogeneous domain gen-
eralisation problem [15], where the label distributions are quite different although the
input distributions are still similar. The heterogeneous domain generalisation problem is
a typical problem in training neural networks. Learning the domain-invariant features
has been proven as an effective way to solve the above issue [15], which could encourage
good generalisation from the source domain to the unknown target domain. In this regard,
when the feature extractor is aware of the underlying distribution of the source domain,
the adversarial examples are the outliers of the distribution [16,17]. The question is then
how to exploit the distribution of the outliers transferable across the domains. As shown
in Figure 1, if the feature extractor has a good generalisation ability, the target domain
and the source domain are well aligned, which helps to transfer both the benign examples
and the adversarial examples. Hence, to enhance the domain-invariant transferability (i.e.,
both task-specific transferability and cross-task transferability) of the adversarial examples,
a natural choice is to craft the adversarial examples based on a well-generalised feature
extractor, e.g., pre-trained on ImageNet. As shown in Figure 2, the difference between the
adversarial example and the benign image can be reflected in the feature-extraction stage
and in the task-related stage of the model. While the task-specific transferability does not
matter (since both stages have transferability), the cross-task transferability mostly relies on
the transferability on the feature-extraction stage. However, most of the transfer-based at-
tacks developed on image classification rely on the task-specific loss (e.g., the cross-entropy
loss), which limits the cross-task transferability of the adversarial examples [18].

In this paper, we propose a novel cross-task attack method called distance metric
attack (DMA) to enhance the domain-invariant transferability of the adversarial examples.
Different from the normal gradient-based attacks that craft the benign input by maximising
the cross-entropy loss, the goal of distance metric attack is to maximise the distance of
the latent features between the adversarial example and the benign example. To ensure
the basic transferability between different models, we consider the task-specific loss as
the attack direction. To reasonably mitigate the effect of the task-specific loss, we use a
weight factor to control the trade-off between the direction and the distance. We show
that the adversarial examples crafted by distance metric attack can fool the models on
image classification, object detection, and semantic segmentation. This indicates that
distance metric attack can effectively improve the domain-invariant transferability of the
adversarial examples.
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Figure 1. The relationship of the distribution of adversarial examples in different domains.
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Figure 2. Visualisation of the features of adversarial and benign examples on different layers on the
Inception-V3 model. The features are visualised by Grad-Cam [19].

Our main contributions are summarised as follows:

• We proposed a novel adversarial attack method, termed as distance metric attack
(DMA), which enhances the domain-invariant transferability of the adversarial examples.

• We evaluate the robustness of the latent layers of different models by maximising
the feature distance and find that the models with similar structures have consistent
robustness at the same layer.

• Empirical results show that the attack success rate of the adversarial examples crafted
by DMA is significantly improved on the multiple tasks, including image classification,
object detection, and semantic segmentation.

The rest of the paper is arranged as follows: In Section 2, we review the related work
about the adversarial attack on image classification, other vision tasks, and the cross-task
case. In Section 3, we introduce the proposed distance metric attack (DMA) method. In
Section 4, we present the attack results of DMA compared with multiple baselines on a
variety of tasks. Finally, the conclusions are drawn in Section 5.
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2. Related Work

In this section, we briefly review the adversarial attack methods on image classification,
object detection, and semantic segmentation. Then, a brief explanation of the cross-task
attack is given.

2.1. Adversarial Attacks on Image Classification

DNNs have shown vulnerability to the adversarial examples [1,2,20], which has at-
tracted widespread attention. Many effective white-box attacks have been proposed, such
as FGSM [2], BIM [7], C&W [21], DeepFool [22], and MIM [6], which rely on the details
of the victim model. However, in real-world applications, the model details are often
invisible. The transferability of the adversarial example motivates the black-box attacks.
Inspired by data augmentation, many attacks enhance the transferability of adversarial
examples through input transformations. For example, the diverse input method (DIM) [8]
created diverse input patterns by applying random resizing and padding to the input
at each iteration before feeding the image into the model for gradient calculation. The
translation-invariant method (TIM) [9] optimised an adversarial example through an en-
semble of multiple translated images and simplified the complex computation into a single
convolutional operation according to the translation invariance of CNN. The scale-invariant
method (SIM) [10] enhanced the transferability of adversarial examples by optimising the
example with multi-scale copies which, however, yielded a huge cost of computation. In
addition, the ILA method [23] aimed at attacking the latent layers, which also provided
a new direction for improving the transferability of adversarial examples. Nevertheless,
those methods only focused on the image classification task. The transferability of adver-
sarial examples crafted by the above methods was based on the assumption that the victim
model and the given model were trained on the same dataset. However, the real scenarios
tell us that the real data are always changing and complex.

2.2. Adversarial Attacks on Other Vision Tasks

Compared with the image classification task, the adversarial examples for object
detection and semantic segmentation are more challenging to be designed. Xie et al. [24]
proposed DAG to generate adversarial examples for a wide range of segmentation and
detection. Many adversarial patch attacks have been proposed to attack the object detection
systems, such as Dpatch [25], person patch [26], and adversarial T-shirt [27]. However,
those adversarial attacks require a huge cost of training time. Xiao et al. [28] characterised
adversarial examples based on the spatial context information in semantic segmentation.
However, the generated adversarial examples are barely transferred among models even in
the same task.

2.3. Adversarial Defences

Corresponding to adversarial attack, adversarial defence has been developed vig-
orously in recent years. The methods that integrate the adversarial examples into the
training dataset are called adversarial training [1,2], which is a promising adversarial de-
fence scheme. Then, Tramer et al. [29] proposed the ensemble adversarial training, which
generated adversarial examples by assembling multiple models. To improve adversarially
robust generalisation and exploit robust local features, Song et al. [30] proposed a random
block shuffle transformation, which cut up the adversarial example into blocks and then
randomly combined those blocks to reassemble the example for adversarial training. How-
ever, the computational cost of adversarial training is too high, and adversarial training
can only be designed for a single task.

In addition to adversarial training, mitigating the effects of adversarial perturbations
is also an effective defence scheme. A set of image transformation methods were proposed
by Guo et al. [31], which transformed the image before being input into the classifier.
Xie et al. [32] randomly resized and padded the input image to mitigate the adversarial
perturbations. However, all these defence schemes are developed for a specific single task.
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2.4. Adversarial Attacks on Cross-Task

All the above adversarial attacks are designed for a single task, which limits the
practicability of adversarial examples. A detection system based on computer vision (CV)
techniques has been deeply applied in various security scenarios, which generally involves
more than one model. Therefore, it is difficult for the above adversarial attacks for a specific
task to attack the real-world CV systems successfully. Lu et al. [18] was the first to propose
the cross-task attack (DR), which used the model of image classification to generate adver-
sarial examples that could fool the models of object detection and semantic segmentation.
Cross-task attack is a more challenging attack, where the source model is very different
from the target models in the aspects of employed data and model structures. However, the
DR attack has a low success rate in image classification. The main difference of performance
between our proposed DMA and DR is that DMA can achieve a high attack success rate
on image classification, object detection, and semantic segmentation. Namely, DMA can
effectively enhance the domain-invariant transferability of the adversarial examples.

3. Methodology
3.1. Notation

Let x and y be the clean image and the corresponding label, respectively. ` f (x, y)
is the cross-entropy loss of the image classifier f (x). The adversarial example xadv is
indistinguishable from the clean image x but fools the classifier, i.e., f (xadv) 6= y. Following
the previous work, we use the L∞ norm to constrain the adversarial perturbation level as
||xadv − x||∞ ≤ ε. The goal of adversarial attack is to find an adversarial example xadv that
maximises the loss ` f (xadv, y). Regarding the feature space, let the latent feature fl(x) be
the l-th layer of the classifier when the input is x. The distance function D( fl(x), fl(xadv)) is
used to measure the distance (e.g., L2 distance) between the latent layers of those examples.
Thus, the optimisation problem in the normal gradient-based attacks can be written as:

arg max
xadv

` f (xadv, y), s.t.||xadv − x||∞ ≤ ε. (1)

3.2. Motivation

The domain-invariant transferability of adversarial examples includes the task-specific
transferability and the cross-task transferability. Recent advances of adversarial attacks
focus on enhancing the task-specific transferability, where the adversarial examples crafted
by the given model can also fool unknown models on the same task. The task-specific trans-
ferability of the adversarial examples is due to the given model and the unknown models
being trained on the same domain. On the other hand, the cross-task transferability can be
regarded as the heterogeneous domain generalisation problem, where the domains have
different label spaces [15]. To address the heterogeneous domain generalisation problem,
many methods [15,33,34] aim to generate a domain-invariant feature representation. In
this case, the whole network is split into the feature extractor and the classifier. To match
various classifiers, the feature extractor is trained to be as general as much. Fortunately, the
feature extractor pre-trained on ImageNet is a general model.

As can be seen from Figure 2, the difference between the adversarial example and
the original image is reflected from the difference in features, which is eventually evolved
into the difference in the identification regions. Therefore, the feature extractor based on
ImageNet can solve the problem of heterogeneous domain generalisation and can improve
the domain-invariant transferability by expanding the distance of the latent features.

3.3. Distance Metric Attack

Based on the above analyses, by attacking the feature space of the model, the domain-
invariant transferability of the adversarial examples can be enhanced. ILA [23] points out
that the adversarial perturbation is constrained by the norm, but the perturbation in the
latent features of the model is not constrained. So the perturbation on the latent features
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can be maximised to perform attack. Motivated by this, we propose distance metric attack
(DMA), which aims to maximise the distance between the latent features of the benign
image and the adversarial image.

The gradient-based attack algorithms imply that the direction of attack is as important
as the magnitude of the perturbation. ILA crafts the adversarial examples by introducing
external adversarial examples that are used as the direction of attack, so that the latent layer
of the adversarial examples generated by the current algorithm is close to the corresponding
latent layer of the adversarial examples by other algorithms. Different from ILA, DMA does
not need to introduce external adversarial examples. The whole framework is illustrated in
Figure 3. We assume that the pre-trained model can be split into the feature extractor part
and the classifier part. DMA can be directly combined with the other adversarial attacks,
where the resultant loss involves both the cross-entropy loss for image classification and
the distance metric loss on the latent layers. The optimisation makes the latent feature
distance between the benign examples and the adversarial examples farther and farther in
the process of generating adversarial examples iteratively. In this way, DMA can maximise
the distance between the latent features of the benign images and the adversarial images. In
addition, the cross-entropy loss dependent on the gradient-based attack serves as the attack
direction of DMA. Therefore, we define the problem of finding an adversarial example as
an optimisation problem:

max
xadv

D( fl(x), fl(xadv))︸ ︷︷ ︸
maximise distance

+ arg max
xadv

` f (xadv, y)︸ ︷︷ ︸
attack direction

, s.t.||xadv − x||∞ ≤ ε. (2)
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Figure 3. Illustration of the distance metric attack framework.

To solve the problem in Equation (2), we need to calculate both the gradient of the
cross-entropy loss with respect to the input x and the gradient of the distance metric loss
to the input x. However, the cross-entropy loss limits the cross-task transferability of the
adversarial examples. To mitigate the influence of the cross-entropy loss, we set a hyper-
parameter β >= 1 to flexibly increase the weight of the distance loss. Hence, Equation (2)
can be written in detail as:

maximise L(xadv, x, y),

where L(xadv, x, y) = ` f (xadv, y) + β · D( fl(x)− fl(xadv)), s.t.||xadv − x||∞ ≤ ε.
(3)

For fair comparisons, we use the MI-FGSM as the optimisation method to craft the
adversarial example, which is an efficient iterative gradient-based attack. Therefore, when
β = 0, DMA degenerates to the vanilla gradient-based attack (MI-FGSM).
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Specifically, the manufacture of adversarial examples in MI-FGSM be formulated as:

xadv
0 = x,

gt+1 = µ · gt +
∇xL(xadv

t , x, y)
||∇xL(xadv

t , x, y)||1
xadv

t+1 = xadv
t + α · sign(gt+1)

(4)

where gt is the accumulative gradient in the t-th iteration in the attack process, and µ
is a decay factor. The DMA algorithm for crafting adversarial examples iteratively is
summarised in Algorithm 1, where DMA is combined with MI-FGSM.

Algorithm 1 Distance Metric Attack

Input: A deep model f and the loss function ` f ; the latent layer fl of the model f ; a benign
example x and its ground-truth label y.

Input: The maximum perturbation ε, the number of iteration T, the decay factor µ, and
the distance weight β.

Output: An adversarial example xadv.
1: α = ε/T, g0 = 0, xadv

0 = x;
2: for t = 0→ T − 1 do
3: Get the latent feature fl(x) of the model by inputting x; Obtain the latent feature

fl(xadv
t ) of the model by inputting xadv

t ;
4: Calculate the distance between the latent features D( fl(x)− fl(xadv

t )) = || fl(x)−
fl(xadv

t )||2
5: Get the softmax cross-entropy loss ` f (xadv

t , y).
6: Calculate the loss L(xadv

t , x, y) = ` f (xadv
t , y) + β · D( fl(x)− fl(xadv

t )).
7: Calculate the gradient ∇xL(xadv

t , x, y).

8: Update gt+1 by gt+1 = µ · gt +
∇x L(xadv

t ,x,y)
||∇x L(xadv

t ,x,y)||1
.

9: Update xadv
t+1 by xadv

t+1 = xadv
t + α · sign(gt+1)

10: end for
11: return xadv

T ;

Note that DMA generates adversarial examples based on a highly generalised image
classification model, expecting that the adversarial example can fool models that are not
only image classification models but also object detection and semantic segmentation
models. However, for the image on object detection and semantic segmentation, there are
no ground-truth labels for the source model. Before the craft adversarial example, DMA
would give the image an alternative label in the source model labels by y = f (x). Then,
feeding the original image to Algorithm 1, we get the adversarial examples. At the end, we
input the adversarial examples into the target models to get the attack results.

4. Experiments
4.1. Setup
4.1.1. Datasets

In experiments, we evaluate the performance of the proposed method on cross-domain
tasks, including image classification, detection, and segmentation. For the image classifica-
tion task, we randomly choose 1000 images from the ILSVRC 2012 validation set, which are
almost correctly classified by all the image classification victim models. For object detection
and semantic segmentation, we randomly select 1000 images from the COCO2017 and
PASCAL VOC2012 datasets, respectively. All images are resized to the size of 3× 299× 299.
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4.1.2. Models

We use four normally trained image classification models as the target models to
craft the adversarial examples, including Inception-v3 (Inc-v3) [35], Inception-v4 (Inc-
v4) [36], Inception-Resnet-v2 (IncRes-v2) [36], and Resnet-v2-101 (Res-101) [37]. For the
image classification task, we also employ three adversarially trained models as the victims,
including Inc-v3ens3, Inc-v3ens4, and IncRes-v2ens [29]. In addition, we evaluate the attack
performance of object detection on Yolov3-DarkNet53 [38], Faster R-CNN-ResNet101 [39],
RetinaNet-ResNet101 [40], YoloF-ResNet50 [41], and Sparse R-CNN-ResNet101 [42], which
are available on mmdetection [43]. The performance on the semantic segmentation task is
tested on FCN-ResNet50 [44], DeepLabv3-ResNet50 [45], ANN-ResNet50 [46], OCRNet-
HRNetV2p [47], and GCNet-ResNet101 [48], which are available on mmsegmentation [49].

4.1.3. Hyper-Parameters

We consider MI-FGSM [6], DIM [8], TIM, DI-TIM [9], ILA [23], and DR attack [18] as
the baselines. For the settings of hyper-parameters, we set the maximum perturbation to be
ε = 16 in the pixel range of [0, 255]. All the baselines are iterative attack, where we set the
iteration as T = 10 and the step size as α = 1.6. For MI-FGSM, DIM, TIM, and DI-TIM, we
set the decay factor as µ = 1.0. For DIM and DI-TIM, we set the transformation probability
to 0.7. For TIM and DI-TIM, the kernel size is set to 7× 7.

4.2. Ablation Studies
4.2.1. The Effect of the Distance Loss and the Factor β

To further gain insight into the performance of DMA, we conduct the ablation studies
to examine the effect of various factors. We attack the Inc-v3 model by DMA with four
distance losses and different factor values β, which range from 0 to 200. Note that when
β = 0, DMA degenerates to MI-FGSM. As shown in Figure 4, we observe that the MSE loss,
the L1 loss, and the cosine distance loss can improve the transferability of the adversarial
examples compared with MI-FGSM.

It can be found from Figure 4 that in the cases of the MSE loss and the L1 loss, the
transferability of the adversarial examples increases with the factor β, which indicates
that the task-specific loss not only limited the transferability on cross-tasks but also on
cross-models. When the distance loss is the MSE loss and the factor β is 200, DMA exhibits
the best transferability on all models. Specifically, on the first picture in Figure 4, it can be
seen that as β increases, the success rate gradually increases. When β = 200, the increase in
the attack success rate gradually becomes flat. Therefore, we adopt the MSE loss and the
factor β = 200 in the following experiments.
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Figure 4. The success rate of different distance losses with the factor β from 0 to 200. The adversarial
examples are crafted by Inception-v3 where the selected latent layer is the 6th layer.

4.2.2. The Performance on Attacking Different Layers

To evaluate the robustness of the latent layers in various networks, we compare the
transferability of the adversarial examples crafted by DMA on different layers in four
normally trained models. As Figure 5 reports, for the models with similar structures, the
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robustness on the same layer is consistent. This indicates that the robustness of the model
is related to the model structure. Interestingly, Inception-Resnet-v2 performs similarly to
ResNet-v2 on the black-box attack, with the first few layers of attacks working well. For the
white-box attack, layer 6 and layer 7 work better, which is similar to the Inception series.

In the following experiments, for Inc-v3 and Inc-v4, we select the sixth layer as the
latent layer. For Res-101, we adopt the third layer as the latent layer. Since the success rate
of the previous layers of Inc-Res is insufficient in the white-box setting, we use the sixth
layer as the latent layer.
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Figure 5. Evaluation of the robustness of the latent layers in four models.

4.3. Adversarial Attack on Image Classification

In this section, we present the attack results on the image classification task. To verify
the effectiveness of DMA, we use MI-FGSM, TI-DIM, and ILA (where the proxy is crafted
by MI-FGSM and TI-DIM, respectively) as the competitors. For cross-task attack, we first
evaluate the task-specific transferability of DMA and DR. We report the success rates of
MI-FGSM, ILA (where the proxy is crafted by MI-FGSM), and DMA in Table 1, the success
rates of TI-DIM, ILA (proxy crafted by TI-DIM), and DMA in Table 2, and the success rates
of DR and DMA in Table 3.

Table 1. The success rates of MI-FGSM, ILA, and DMA. The proxy of ILA is crafted by MI-FGSM. The
adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively. * indicates
the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
MI-FGSM 99.9 * 43.8 43.6 33.7 12.2 9.9 5.6

ILA 99.9 * 48.4 40.3 33.5 6.3 5.6 3.5
DMA 100.0 * 66.7 63.7 54.3 15.9 13.6 7.2

Inc-v4
MI-FGSM 56.3 99.9 * 46.1 40.5 13.7 11.1 7.1

ILA 58.5 99.6 * 43.2 36.2 8.0 5.6 5.2
DMA 75.4 99.5 * 65.3 58.3 17.6 15.5 7.7

IncRes-v2
MI-FGSM 57.0 50.1 97.3 * 43.0 18.1 15.6 10.5

ILA 71.5 64.3 97.8 * 56.5 21.2 15.1 12.3
DMA 62.1 55.8 97.4 * 48.4 19.8 16.6 11.7

Res-101
MI-FGSM 55.9 50.2 48.5 99.4 * 22.7 19.5 11.5

ILA 66.9 63.3 55.1 99.4 * 18.5 13.3 9.1
DMA 79.5 76.0 70.9 99.2 * 31.9 27.4 15.8

As shown in Table 1, we observe that the proposed DMA outperforms the baseline
attacks in most cases. Compared with the baselines, DMA can significantly improve the
task-specific transferability of the adversarial examples by 2–25%. For IncRes-v2, compared
with MI-FGSM, the transferability of the adversarial examples generated by DMA is
also enhanced.
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TI-DIM is one of the best gradient-based adversarial attack methods, which can also
be combined with DMA to generate adversarial examples. From Table 2, it can be found
that ILA cannot consistently improve the transferability of adversarial examples, while the
proxy examples are generated by TI-DIM. However, TI-DI-DMA outperforms TI-DIM by
2% to 15% in most cases. In particular, in the black-box manner, the adversarial examples
crafted by TI-DI-DMA achieve the success rate of more than 60% on the normally trained
models, with some cases even reaching 80%.

Table 2. The success rates of TI-DIM, ILA, and TI-DI-DMA. The proxy of ILA is crafted by TI-
DIM. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively.
* indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
TI-DIM 98.8 * 65.8 62.1 54.9 35.2 32.2 20.9

ILA 99.7 * 51.0 46.1 36.0 9.2 7.9 4.8
TI-DI-DMA 99.6 * 84.0 79.8 68.0 42.5 38.6 23.9

Inc-v4
TI-DIM 72.9 97.8 * 64.3 55.4 34.9 31.5 23.5

ILA 61.7 99.0 * 49.1 38.3 10.7 9.6 5.3
TI-DI-DMA 83.2 97.7 * 71.0 64.5 41.6 36.5 25.1

IncRes-v2
TI-DIM 68.1 65.6 91.9 * 59.2 43.0 37.3 35.1

ILA 74.5 67.5 95.2 * 59.6 26.8 19.3 18.2
TI-DI-DMA 70.7 70.1 92.0 * 62.5 45.1 39.9 36.8

Res-101
TI-DIM 75.0 70.6 69.3 99.2 * 54.3 50.2 40.0

ILA 72.7 68.4 64.4 99.3 * 22.9 19.2 12.4
TI-DI-DMA 80.6 78.6 76.8 98.5 * 54.1 49.0 41.0

The cross-task attacks should not only focus on other tasks but also the current task.
Therefore, we also present the DR attack result on image classification. As shown in Table 3,
we observe that the adversarial examples crafted by DR yields a low success rate on both
white-box and black-box attacks. However, the attack success rate of DMA is higher than
DR by a large margin on all models. Note that the empirical result of DR is deeply inferior
compared with other adversarial attacks which focus on image classification. DR only
focuses on enhancing the cross-task transferability, which implies that the practicality of
adversarial examples is questionable.

Table 3. The success rates of DR and DMA. The adversarial examples are crafted for Inc-v3, Inc-v4,
IncRes-v2, and Res-101, respectively. * indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 DR 96.3 * 14.1 14.4 16.2 4.9 3.9 3.1
DMA 100.0 * 66.7 63.7 54.3 15.9 13.6 7.2

Inc-v4 DR 21.7 76.0 * 14.8 14.3 5.7 4.9 3.4
DMA 75.4 99.5 * 65.3 58.3 17.6 15.5 7.7

IncRes-v2 DR 32.5 24.3 63.3 * 25.8 12.3 10.4 7.0
DMA 62.1 55.8 97.4 * 48.4 19.8 16.6 11.7

Res-101 DR 35.6 30.0 27.8 98.1 * 8.8 7.6 5.8
DMA 79.5 76.0 70.9 99.2 * 31.9 27.4 15.8
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4.4. Cross-Task Attack on Object Detection

We next evaluate the cross-task transferability of the adversarial examples generated
by DR, MI-FGSM, TI-DIM, and the proposed DMA in the object detection task. For cross-
task attack, all the adversarial examples come from the COCO dataset and are crafted
by the models trained on the ImageNet dataset, including Inc-v3, Inc-v4, IncRes-v2, and
Res-101. The label y required by MI-FGSM, TI-DIM, and DMA is obtained by inferring the
image classification model on the original COCO image, which corresponds to one of the
ImagNet labels.

The results of cross-task attack on object detection are presented in Table 4, which
shows that compared with MI-FGSM, the attack success rate of the adversarial examples
crafted by DMA with different models can lead to an improvement of 0.4–9% in all the
object detection models. Except for IncRes-v2, DMA outperforms DR by 2–5%. Although
TI-DIM can effectively enhance the specific-task transferability of adversarial examples, it
cannot greatly improve the cross-task transferability of adversarial examples. Therefore,
DMA is the first attack method that focuses on the domain-invariant transferability of
adversarial examples.

Table 4. The detect results (mAP) of the adversarial examples crafted by MI-FGSM, TI-DIM, DR, and
DMA on Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively.

Model Attack Faster RCNN Retinanet Yolov3 YoloF Sparse RCNN
ResNet101 ResNet101 DarkNet53 ResNet50 ResNet101

clean 50.5 48.1 46.8 47.1 55.2

Inc-v3

MI-FGSM 33.1 32.3 31.4 30.6 39.2
TI-DIM 31.7 30.9 29.2 26.9 37.3

DR 30.9 30.8 28.1 27.7 37.2
DMA 28.6 28.2 26.0 25.3 34.4

Inc-v4

MI-FGSM 30.6 29.9 28.2 27.0 36.3
TI-DIM 29.1 28.3 26.5 24.8 35.1

DR 30.0 30.2 27.7 27.4 36.0
DMA 25.0 24.6 22.3 22.0 29.4

IncRes-v2

MI-FGSM 29.5 29.8 28.1 28.0 35.3
TI-DIM 28.3 28.5 26.9 24.6 34.4

DR 26.2 26.1 24.6 24.6 30.3
DMA 29.1 28.6 27.9 27.3 34.6

Res-101

MI-FGSM 30.8 30.8 29.2 29.0 35.7
TI-DIM 30.1 30.0 28.2 27.5 35.4

DR 25.7 25.9 23.2 23.1 31.2
DMA 21.8 22.6 19.3 20.2 25.8

4.5. Cross-Task Attack on Semantic Segmentation

In this section, we further investigate the cross-task transferability of the adversarial
examples generated by DR, MI-FGSM, TI-DIM, and the proposed DMA in the semantic
segmentation task. All the adversarial examples are selected from the PASCAL VOC2012
dataset and are crafted by the models trained on the ImageNet dataset, including Inc-v3,
Inc-v4, IncRes-v2, and Res-101. Similar to the object detection task, the label y required by
MI-FGSM TI-DIM, and DMA is obtained by inferring the image classification model on
the original image. The evaluation metric for the semantic segmentation is mIoU, where a
lower value indicates a better attack effect.
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From Table 5, we observe that DMA effectively reduces mIoU compared to MI-FGSM
by 4–19% on the five semantic segmentation networks. With the exception of IncRes-
v2, DMA reduces mIoU by 5–13% compared to DR and 2–20% compared to TI-DIM. In
addition, among the four source models, the adversarial examples crafted by Resnet-V2 can
highly reduce the mIOU of the semantic segmentation model. Meanwhile, four semantic
segmentation models are based on ResNet, which indicates that the more similar the source
model is to the target structure, the higher the attack success rate is.

Table 5. The segmentation results (mIoU) of the adversarial examples crafted by DR and DMA on
Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively.

Model Attack deeplabv3 ANN FCN OCRNet GCNet
ResNet50 ResNet50 ResNet50 HRNetV2p ResNet101

clean 66.8 66.3 58.8 64.6 67.1

Inc-v3

MI-FGSM 53.0 52.0 42.8 52.1 55.2
TI-DIM 51.6 50.5 41.7 50.1 55.8

DR 50.7 50.0 40.9 51.4 53.7
DMA 44.3 43.1 35.2 40.7 47.3

Inc-v4

MI-FGSM 48.8 48.6 39.9 49.9 53.8
TI-DIM 50.4 48.9 39.4 49.8 54.1

DR 44.0 42.4 34.3 45.3 48.0
DMA 39.2 38.8 31.5 38.4 42.8

IncRes-v2

MI-FGSM 49.2 48.6 38.5 48.4 51.3
TI-DIM 47.8 47.1 38.2 47.9 51.5

DR 44.4 43.6 33.3 42.0 47.4
DMA 47.4 47.3 37.9 47.5 50.0

Res-101

MI-FGSM 48.8 48.7 39.1 48.7 52.2
TI-DIM 50.5 48.9 39.5 48.8 53.7

DR 42.2 41.2 32.1 41.6 46.3
DMA 32.0 31.5 26.0 28.0 33.0

4.6. Discussions

The image classification model predicts a classification score on the whole image,
while the object detection and semantic segmentation models focus on the localisation
and classification of the objects in the image. Hence, it is undoubtedly difficult to attack
the object detection and semantic segmentation models using the adversarial examples
generated by the image classification model. However, as we describe in Section 3.2, the
domain-invariant features facilitate the attack by our model. Figure 6 shows the sample
results of object detection and semantic segmentation models. We are surprising to find that
compared to other methods, DMA can interfere with the results of the model by adding
semantics and objects. The addition of semantics and objects, in a real CV system, is enough
to create a barrier to recognition. However, the victim models still have a strong ability to
detect the original semantics and objects, which is a limitation of DMA. Future work can
revolve around how to reduce the detection of benign semantics and object by models.
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Clean Image Original Result MIM DR DMA(ours)

Figure 6. The samples of object detection and semantic segmentation.

5. Conclusions

In this paper, we extend the transferability of adversarial examples to the domain-
invariant transferability (both the task-specific transferability and the cross-task transfer-
ability) of adversarial examples. Relying on the well-generalised features pre-trained on
ImageNet, we propose the distance metric attack (DMA) method, which maximises the
distance of the latent features between the adversarial example and the benign example.
The adversarial examples crafted by DMA are highly transferable to various models on dif-
ferent tasks. Extensive experiments on image classification, object detection, and semantic
segmentation indicate that the model robustness is highly related to the model structure.
In addition, it is demonstrated that DMA can improve the success rate of black-box attack
by more than 10% on specific-tasks and by more than 5% on cross-tasks compared with the
state-of-the-art competitors.
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