. mathematics

Article

Parallel Meta-Heuristics for Solving Dynamic Offloading in

Fog Computing

Samah Ibrahim AlShathri

check for
updates

Citation: AlShathri, S.I.; Chelloug,
S.A.; Hassan, D.S.M. Parallel
Meta-Heuristics for Solving Dynamic
Offloading in Fog Computing.
Mathematics 2022, 10, 1258. https://
doi.org/10.3390/math10081258

Academic Editor: Ioannis G. Tsoulos

Received: 8 February 2022
Accepted: 4 April 2022
Published: 11 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Samia Allaoua Chelloug *

and Dina S. M. Hassan

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh 84428, Saudi Arabia;

sealshathry@pnu.edu.sa (5.I1.A.); dshassan@pnu.edu.sa (D.S.M.H.)

* Correspondence: sachelloug@pnu.edu.sa

Abstract: The internet of things (IoT) concept has been extremely investigated in many modern
smart applications, which enable a set of sensors to either process the collected data locally or
send them to the cloud for remote processing. Unfortunately, cloud datacenters are located far
away from IoT devices, and consequently, the transmission of IoT data may be delayed. In this
paper, we investigate fog computing, which is a new paradigm that overcomes many issues of
cloud computing. More importantly, dynamic task offloading in fog computing is a challenging
problem that requires an optimal decision for processing the tasks that are generated in each time slot.
Thus, exact optimization methods based on Lyapunov function have been widely used for solving
dynamic offloading which represents an NP hard problem. To overcome the scalability issue of exact
optimization techniques, we have explored famous population based meta-heuristics for optimizing
the offloading process of a set of dynamic tasks using Orthogonal Frequency Division Multiplexing
(OFDM) communication. Hence, a parallel multi-threading framework is proposed for generating
the optimal offloading solution while selecting the best sub-carrier for each offloaded task. More
importantly, our contribution associates a thread for each IoT device and generates a population of
random solutions. Next, each population is updated and evaluated according to the proposed fitness
function that considers a tradeoff between the delay and energy consumption. Upon the arrival
of new tasks at each time slot, an evaluation is performed for maintaining some individuals of the
previous population while generating new individuals based on some criteria. Our results have been
compared to the results achieved using Lyapunov optimization. They demonstrate the convergence
of the fitness function, the scalability of the parallel Particle Swarm Optimization (PSO) approach,
and the performance in terms of the offline error and the execution cost.

Keywords: fog computing; dynamic offloading; IoT; cloud computing; meta-heuristics; parallel
genetic algorithm; parallel PSO; multi-threading; offline error

MSC: 65E05; 90B18; 90B22

1. Introduction

The evolution of computing paradigms improves the Information Technology (IT)
practices in terms of design, development, and deployment. From this perspective, cloud
computing has provided IT service models where customers benefit from hardware and
software computing resources on demand through a network [1]. Despite the advantages of
cloud computing, there exist some challenges that need to be considered before embracing
cloud computing as a viable solution. These challenges include security threats along
with the design of the optimal decision rules for moving applications to the cloud [1].
Additionally, the IoT concept allows real world life things to sense, communicate and act
remotely through the Internet [2]. However, most IoT applications incorporate different IoT
sensors, which generate large volumes of data that usually require a swift analysis; today’s

Mathematics 2022, 10, 1258. https:/ /doi.org/10.3390/math10081258

https://www.mdpi.com/journal /mathematics

https://doi.org/10.3390/math10081258
https://doi.org/10.3390/math10081258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8805-7890
https://orcid.org/0000-0002-9711-0235
https://doi.org/10.3390/math10081258
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081258?type=check_update&version=2

Mathematics 2022, 10, 1258

20f17

cloud models do not handle the size, the variety, or the velocity of IoT generated data [3]. As
an example, most critical healthcare applications require the real-time analysis of patients’
vital signs, whereas moving data from IoT devices to the cloud for further analysis increases
the latency. In addition, IoT devices have limited computing, storage, networking, and
energy resources that introduce additional design challenges, which involve an adaptation
of IoT architecture [2]. More specifically, the problem of moving data and applications to
the cloud is known as offloading. Recently, many research efforts have been dedicated
for developing effective mathematical models for deciding on task offloading. One of the
ideas consists of investigating fog computing, which has recently emerged as an efficient
computing model that manages data and applications and performs computation in fog
servers that are close to the end users. In this manner, network latency will be reduced
through the allocation of some tasks to the fog layer. The concept of fog computing
was first proposed by Cisco in 2012 to improve the performance of IoT applications in
terms of a network’s congestion, latency, and quality of service (QoS) [4]. The idea of
fog computing consists of deploying a set of traditional networking components, e.g.,
base stations, routers, proxy servers, etc., at the proximity of IoT devices [4]. As reported
in [2,4], edge computing, micro-cloudlet, mobile cloud computing (MCC), and mobile
edge computing (MEC) are terms related to fog computing that provide services to end
users via an extremely distributed layer [2,4]. Despite the advantages of fog computing,
some potential concerns have been addressed in some research papers. The integration
of Software Defined Networks (SDN) and (Network Functions Virtualization) NFV to fog
computing is appropriate for large-scale IoT applications [5], although the integration of
NFV and SDN to fog computing includes some design challenges along with the re-design
of the south-bound, north-bound, and east-west Application Programming Interfaces
(APIs). Another research topic concerns QoS in fog computing, which can be fixed through
the dynamic selection of fog nodes, check-pointing, re-scheduling, data placement, and the
prediction of future requests [5]. Additionally, fog nodes are vulnerable to potential security
attacks [4]. Therefore, authentication and privacy techniques should be implemented while
maintaining QoS requirements [4]. Furthermore, fog application management is another
research target. Moreover, dynamic offloading that supports the arrival of new requests is a
hard problem. The big difficulty for dynamic optimization is how to track the optimum that
may change over time. As indicated in [6], the information from the previous environment
should be considered after a change has occurred for accelerating the optimization process.
We mention also that the authors of [6,7] have comprehensively explained how to apply
meta-heuristics including genetic algorithms, PSO, and ant colony optimization (ACO) for
dynamic optimization. This paper focuses on designing parallel approaches for dynamic
offloading in fog computing using two famous population based meta-heuristics including
genetic algorithm and PSO. The major motivation behind selecting genetic algorithm and
PSO concerns their utilization for solving many dynamic optimization problems. Compared
to the state of the art, our contributions are summarized as follows:

e The solution presented in this paper investigates parallel meta-heuristics for dynamic
offloading in fog computing. Most papers presented in the literature are based on
Lyapunov optimization. Although this has proved to be an efficient approach, its
application to many large scale IoT problems is challenged by the scalability bottleneck.

e This paper discusses the effectiveness of the proposed parallel meta-heuristics for han-
dling the problem of dynamic offloading in fog computing. Our design initializes a set
of random solutions that are evaluated using a bi-objective function that considers the
delay and energy consumption. The aim of our work is twofold: deciding if the tasks
generated in each time slot will be processed locally or offloaded to the suitable fog node
for further processing and selecting the best channel of communication in case of task
offloading. On one hand, our objective function is appropriate for task offloading in IoT
applications that generate delay-sensitive tasks. On the other hand, our objective function
is appropriate for energy-constrained IoT devices, as it depends on the processing and

Mathematics 2022, 10, 1258

30f17

the transmission energy. Furthermore, upon the generation of new tasks in each time
slot, our contribution replaces the worst solutions by random ones.

e Our results show the performance in terms of the convergence of the fitness function
and the offline error. Additionally, our results demonstrate that the proposed parallel
meta-heuristics are applicable for a network comprised of many IoT devices, and
the fitness function value decreases as the number of IoT devices increases. Another
finding concerns the execution cost of parallel PSO that is lower than the execution
cost of Lyapunov technique.

Thus, this paper is organized as follows. Section 2 introduces the related works.
Section 3 explains the proposed mathematical model as well as the proposed approaches.
Then, Section 4 illustrates our simulation results. Finally, Section 5 concludes this paper
and discusses potential future work.

2. Related Works

The problem of static task offloading in fog computing has been studied in [8-11].
The aim of the proposed model consists of offloading multiple tasks to the fog while
minimizing the delay and considering the deadline requirements. This idea is appropriate
for large-scale applications that are delay-sensitive. Furthermore, the model of [8] assumes
that fog nodes are able to process a part of each task and may offload the remaining
part to one of the neighbouring fog nodes to satisfy the deadline requirements. Thus,
the model presented in [8] aims to find the optimal offloading decision while considering
computational resource allocation. A heuristic solution has been proposed in [8] to solve the
quadratic constraint-programming problem. The simulation results in [8] show a trade-off
between the deadline and the delay violation. The framework presented in [9] incorporates
an IoT, a fog and a cloud layer. It allows a domain of IoT devices to communicate to a
domain of fog nodes, which is associated with a set of cloud servers. In particular, the
framework of [9] supports cooperation between fog nodes of the same domain, such that a
fog node can forward a request to a neighbouring fog node that belongs to the same domain.
Additionally, the model of [9] distinguishes between light and heavy processing tasks for
deciding on local task processing or offloading. More importantly, the authors of [9] have
developed an analytical model that minimizes the delay even if some parameters have
been changed. Paper [10] has introduced a formal model that enables fog collaboration.
Moreover, an algorithm has been developed in [10] to decide on the best opportunity for
offloading as well as the data that should be offloaded. The algorithm in [10] determines the
congestion level of a fog node based on its queue size and its queue service rate. Therefore,
the algorithm in [10] detects the services causing an overload. These latter will be offloaded
to another fog node. The evaluation results in [10] have been compared to two benchmarks
and they show that the proposed algorithm achieves the lowest latency. The authors of [11]
have presented an alternative idea that considers that each fog node includes a set of
homogenous servers. The model of [11] has investigated queuing theory for formulating
the average waiting time of each request. It enables minimizing energy consumption under
the delay constraints. We indicate that the optimization model of [11] is non-convex, and it
has been solved through an alternating method of multipliers. The results obtained in [11]
demonstrate the impact of the offloading probability and the number of mobile devices on
energy consumption. Recent meta-heuristics have been explored for solving challenging
problems in fog computing. An improved version of the whale optimization algorithm
(WOA) called opposition-based chaotic whale optimization algorithm (OppoCWOA) has
been introduced in [12] for task scheduling in fog computing. The proposed meta-heuristic
ensures better convergence than other benchmark techniques. Furthermore, the authors
of [13] have formulated the problem of offloading in fog computing while optimizing the
delay, and they have applied non-dominated sorting genetic algorithm (NSGA-II) and
the bees algorithm. Thus, the applied meta-heuristics allow minimizing the delay as well
as the consumed energy compared to other methods. Additionally, the authors of [14]
have applied PSO and ACO for solving the problem of task offloading in fog computing.

Mathematics 2022, 10, 1258

40f17

The results obtained in [14] demonstrate the effectiveness of the proposed meta-heuristics
for minimizing the delay. Moreover, task scheduling in fog computing has been solved
using Harris Hawks optimization algorithm [15], which outperforms other optimization
techniques. According to the state-of art on recent meta-heuristics, their application has
been limited to static offloading /scheduling in fog computing.

Nevertheless, some research papers [16-27] have tackled the problem of dynamic
offloading, which is more complex compared to static offloading in fog computing. Pa-
per [16] has addressed the problem of dynamic offloading while considering a set of energy
harvesting devices that may execute computational tasks locally or offload them to the
mobile edge-computing server. On one hand, the proposed model in [16] is based on many
variables, including the computation mode, channel gain, task arrival indicators, number
of CPU cycle frequencies, transmit power, harvested energy, and battery energy level that
change over time slots. On the other hand, the objective function of the model in [16]
includes a weighted sum of the execution delay and the task dropping cost. In addition,
the authors of [16] have defined a set of optimization constraints that comprise the battery
discharging, maximum power, and CPU frequency. Moreover, the authors of [16] have
investigated Lyapunov optimization technique for developing a low complexity online op-
timization algorithm that dynamically determines the optimal offloading decision, required
energy, transmit power, and CPU frequency. The obtained results in [16] demonstrate that
the proposed algorithm achieves the minimal execution cost and reduces the computation
failure compared to the benchmark. The contribution presented in [17] is based on multi-
user scenario including a set of MEC servers with N core CPUs. Moreover, the channel gain
between the users and the MEC servers depends on the path loss and the channel fading.
Additionally, the model of [17] assigns a queue to each user and allocates multiple parallel
buffers to each MEC server. Further, the objective function of the model proposed in [17]
consists of minimizing power consumption, and the constraints concern resource allocation
and delay bound violation. We indicate that [17] has explored Lyapunov optimization
for proposing an optimization algorithm that minimizes the computation and transmit
power under the delay and reliability constraints. According to the results obtained in [17],
the proposed method outstands benchmark methods when the task arrival rate is high.
Another study that is related to dynamic offloading in fog computing has been explained
in [18], which assumes a multi-tiered architecture. The main features of Predictive Of-
floading and Resource Allocation (PORA) [18] concern offloading between fog tiers and
error prediction for optimizing task offloading. Additionally, the model formulated in [18]
focuses on minimizing the long-term time average expectation of power consumption
while satisfying the stability of all queues. The simulation results presented in [18] are
significant and show that PORA achieves a significant trade-off between power and latency.
The purpose of the work presented in [19] is to solve the problem of dynamic task offload-
ing for multiple users, while determining the optimal power and radio resources. Thus,
paper [19] assumes that each mobile device has an M/M/1 queue and that each edge node
has an M/G/1 queue. More specifically, the model introduced in [19] is based on batteries
that can collect energy through an energy harvesting technique to power mobile devices.
On one hand, the objective function of the model of [19] consists of optimizing the delay
and energy consumption. On the other hand, the constraints of the model of [19] include
power consumption and channel assignment. The authors of [19] have adopted Lyapunov
optimization and they have proposed an algorithm for dynamically assigning the optimal
power and communication channels. As reported in [19], the number of sub-carries can
affect the cost. As the number of sub-carriers increases, the cost decreases because the
mobile devices will have many opportunities for offloading their tasks. The other finding
in paper [19] concerns the impact of the number of mobile devices on the average cost that
increases if the number of mobile devices increases too. The authors of [20] have proposed
an offloading approach for vehicular networks. The aim of the approach proposed in [20]
is to minimize the delay while maximizing the throughput and dynamically controlling
the offloading threshold. The article [20] has considered delay-sensitive tasks that are

Mathematics 2022, 10, 1258

50f17

generated by vehicle nodes. Hence, the proposed model in [20] is composed of a cloud
server, fog nodes, a fog controller, and moving vehicle nodes. As any vehicle moves, it
needs to be connected to a fog node. The connection process is based on the position of
each vehicle and the communication coverage of each fog node. In addition, each fog node
has a waiting queue for storing the arriving tasks. The aim of the model suggested in [20]
is to minimize the delay and maximize the throughput while dynamically adjusting the
offloading threshold. As reported in [20], the simulation results have been evaluated in
terms of the energy latency and the throughput. A comparison has been made with some
similar offloading techniques to demonstrate the performance of the method proposed
in [20]. The main result obtained in [20] concerns the impact of increasing the number of
vehicles as well as the impact of increasing the number of nodes in the neighbourhood.
Different from the above models, [21] has considered a model including one IoT device
and many fog nodes. Moreover, the IoT device has the ability to perform simultaneous
offloading to fog nodes. In addition, the model of [21] assumes that the IoT device can
offload a portion of its data in each time slot, and the remaining data will be executed
locally. The channel gain remains static in each time slot but may vary in the next time
slot. Thus, the proposed model in [21] enables offloading as much data as possible while
satisfying the power constraints. Indeed, Lyapunov optimization has been investigated to
solve the proposed model using an online optimization algorithm that has been defined.
Moreover, Matlab simulation results show the performance of the proposed model in terms
of the utility and the average execution delay as well as the impact of the frequency and
the length of the task buffer. The model introduced in [22] has considered multiple mobile
devices that may offload their tasks to the MEC server. In each time slot, some bits of
the generated tasks are executed locally, and the MEC server executes the remaining bits.
Similar to Non-orthogonal Multiple Access (NOMA), the model of [22] enables queuing
arriving tasks that are not executed. In addition, the model of [18] is based on a frequency
flat block-fading channel. The aim of the model of [22] is to minimize the energy consump-
tion under the frequency, power, and delay constraints. Therefore, Lyapunov optimization
has been investigated for formulating an online optimization algorithm. The simulation
results of [22] demonstrate the ability of the proposed model to balance energy between
mobile devices. Another contribution that addresses the problem of dynamic offloading
between neighbouring fog nodes that operate using Time Division Duplex (TDD) commu-
nication is proposed in paper [23]. The latter considers two scenarios including single and
multi-user topologies. In the second scenario, collision can occur when more than one user
simultaneously select the same fog node. Moreover, the model of [23] assumes an M/M/K
queue for each fog node. Thus, the proposed algorithm in [23] is based on an exploitation
and exploration process to determine the best fog node that may execute the offloaded
task. The effectiveness of the proposed algorithm proposed in [19] has been verified using
the average latency and regret metric. The results of [23] demonstrate that the proposed
algorithm can reduce the average latency compared to some other algorithms. Paper [24]
has suggested an architecture including the fog and the cloud layers, where vehicles places
in the fog layer can offload their tasks to the cloud layer. The architecture of [24] considers
static and mobile fog nodes that can collaborate for task offloading. It also considers the
impact of mobility on task offloading. Therefore, the mathematical model in [24] represents
the coverage as a dynamic variable and allows minimizing the task service time while
considering the storage, bandwidth, and deadline constraints. Thus, [24] has proposed
a policy for task offloading that rearranges tasks according to their deadline. Then, the
suggested policy decides on task offloading according to the capacity and bandwidth
constraints. The extensive simulation results in [24] have been obtained using realistic
vehicular trajectories. They show the performance of the proposed policy for different
scenarios in terms of task delay, service composition, and task completion ratio. The work
presented in [25] has considered a network involving a set of end users and a set of fog
nodes. The end users generate dynamic tasks that are independent, whereas the CPU cycle
to process one bit is identical for all tasks. Additionally, the scenario model in [25] concerns

Mathematics 2022, 10, 1258

60of 17

binary offloading, where end users may offload the entire task to a neighbouring fog node.
If the selected fog node estimates that its resources will not be available to complete the
task while meeting the deadline constraints, the primary fog node will offload the task
to another selected fog node. Thus, the model of [25] assumes that each fog node has
two types of queues, one for high priority tasks and the other one for low priority tasks.
Depending on the type of the task, the model of [21] has specified the rules for deciding
on the suitable queue for the generated task. Moreover, if a task is offloaded from a fog
node to another fog node, the model of [25] proceeds to send the task to the high-priority
queue. However, if a high-priority task is offloaded from the end user, the queuing delay is
calculated and compared to the delay deadline requirement of the task. In case that the
deadline is satisfied, the task is sent to the high priority queue. Otherwise, the fog node
attempts to offload the task to another fog node. The third rule concerns low-priority tasks
that are offloaded from end users. If the deadline requirements are satisfied, the tasks are
set to the high-priority queue. Otherwise, the low-priority tasks will be offloaded to another
fog node. We mention that the model of [26] has also studied task scheduling and has
investigated Lyapunov optimization. The simulation results obtained in [26] demonstrate
the reliability of the proposed scheme that ensures a high rate of task completion under
the deadline requirements. The system architecture proposed in [27] incorporates three
tiers. The first tier includes IoT regions, and fog nodes at the fog layer are organized as
fog networks. The last tier is composed of cloud data centres. Thus, the objective of the
model suggested in [27] is to minimize the delay while satisfying the stability of the discrete
time varying queues. We mention that the delay expression introduced in [27] considers
the computational, network, and fog-to-cloud delays. Lyapunov optimization has been
adopted in [27], and the simulation results show the performance of the proposed approach
with respect to the service delay.

It is worth mentioning that the authors of [28] have suggested a new technique that
combines Long Short-Term Memory (LSTM) and deep learning for dynamic offloading in
fog computing. Thus, the principal feature of the contribution presented in [28] concerns the
prediction of the load of the fog servers for optimizing the offloading decision. The results
illustrated in [28] reveal that the proposed technique minimizes the average latency. The
literature review on offloading in fog computing shows also that new alternative techniques
including deep learning and multi-agent systems have been suggested in [29-33]. However,
the offloading model presented in [29,30] is static. The works introduced in [31-33] are
related to task scheduling.

Thus, Table 1 shows a comparison between related works that have focused on dy-
namic offloading. Five comments are highlighted:

e The majority of papers indicated in Table 1 are based on Lyapunov optimization that
represents an exact method.

e Most papers indicated in Table 1 did not demonstrate the scalability feature that is
needed for large-scale problems including many IoT devices and fog nodes.
Some papers have only considered one optimization parameter.
Paper [28] has presented an interesting idea for combining LSTM and deep learning.
However, the proposed model is based upon a static channel of communication.

e The number of dynamic variables of some of the models summarized in Table 1 is limited.

Consequently, our contribution consists of solving the problem of optimal offloading
while considering dynamic tasks and dynamic channel of communication using parallel
meta-heuristics that ensure the scalability as opposed to exact optimization techniques.
More specifically, our model determines the best offloading decision and the best sub-
carrier given that the power of transmission, frequency, and channel gain change over time.
Additionally, the originality of our work is related to the proposed fitness function and the
proposed encoding schemes used by the proposed parallel meta-heuristics.

Mathematics 2022, 10, 1258

7 of 17

Table 1. Related works comparison.

Dynamic Optimization Number of Simulation .
Reference Framework Variables Method Topology Fog Nodes Tool Metrics
Freczler;c Average execution time,
qu . ¥ One MEC average execution cost, battery
[16] IoT-Fog ower Lyapunov server and one One NA energy level, ratio of completed
Harvested . . N
enerey. mobile device tasks, completion time, and
Battery level. dropped task.
Average end-to-end delay,
number of required servers per
Frequency. gjﬁ;}})’;;jﬁi 346 s[ifvzl;‘:l UE, delay bound, tail
(7] loT-Fog Power. Lyapunov (UE) 36 and uniformly NA d;strll;:ﬁrcﬁ;:)ef dql(l;l]l)es,
MEC network. distributed. PP .
(Generalized Pareto
Distribution)
Amount
Woaiﬁ):d Hierarchical 80 fog nodes. Backlo
Fog-Fog. d : (two tiers 20 cloud fog s
[18] Backlog. Lyapunov . . Python Power consumption.
Fog-Cloud including the nodes (central
Frequency. Workload.
) fog and cloud). fog nodes).
Gain.
Power.
Frequency
le)?l‘?l’g; dq One edge node.
[19] IoT-Fog computation Lyapunov On;oaiictess ?jgl,(i)?elie NA Average execution cost.
request Mobile devices
generation
Battery level.
Frlefol‘::eerf‘c Mobile devices N mobile
[21] IoT-Fog Ccilain y: Lyapunov and one MEC devices and NA Power consumption.
: server. one MEC.
Power.
FrIe);)tvl\;eri:y One [oT device System utility.
[22] IoT-Fog Gain. Lyapunov and dN fog 5 fog nodes. Matlab Length of task buffer.
Power. Power. nodes.
Reward.
Total number Ill\gzr;z iﬁ% Regret.
[23] IoT-Fog. of selections of ~ Lyapunov many mobile 5 fog nodes. NA Average latency.
fog node. uysers Selection.
Regret. ’
Adaptive 180 mobile
task Mobile vehicles.
(24] Fog-Cloud Coverage. offloading topology 6 static fog NA NA
algorithm nodes
10 fog nodes s
Number of . Reliability.
[25] IoT-Fog tasks queued Lyapunov Static topology an(:l1 5262 Seru:l NA Backlog.
. End users and 10 fog nodes.
[26] IoT-Fog Gain. Laypunov fog niodes. 20 end-users. NA NA
IoT-Fog. Hierarchical
[27] Fog-Cloud. Task. Lyapunov fog 1 cloud 'and CloudSim. Average task delay.
generation. . 3 fog regions.
Fog-Fog. architecture.
Size of the task.
Computational ~LSTM and IoT devices 50 IoT devices Time.
[28] IoT-Fog. resources. deep and edge and 5 edge NA Cost.
Maximum learning servers. servers. Latency.

tolerated delay.

Mathematics 2022, 10, 1258

8 of 17

3. Proposed Method

We consider a system consisting of N IoT devices and M fog nodes such that M < N. We
also assume that TDD communication is adopted. Each IoT device generates computational
tasks at the beginning of every time slot and the generated tasks are stored inan M/M/1 queue.
Further, each IoT device i is characterized by its:

e Frequency f;(t), which depends on CPU cycles for processing the generated tasks. It is
expressed in Megahertz (MHz).

e Power of transmission P;(t), used for offloading a task to a fog node through the
optimal sub-carrier. It is expressed in Watt.

We mention that our system allows each IoT device to generate tasks stochastically
and independently according to a Poisson process with an average arrival rate A;(t). More
importantly, our generic model is useful for several scenarios including dynamic offloading in
5G Vehicular Adhoc Networks (Vanets) and healthcare applications where a set of IoT devices
generate tasks dynamically and accordingly an optimal offloading decision is required.

In this context, each task j is modeled by a tuple {«;, wj}, where «; represents the
data size and wj represents the number of CPU cycles that are required to process task j.
The communication between IoT devices and fog nodes is carried using OFDM with
K channels [15,34]. In particular, our model aims to find the optimal dynamic binary
offloading decision, such that IoT devices have the ability to process tasks locally or to
offload them to the appropriate fog node.

We define x as the task allocation matrix:

xii(t) = 1, if task j is allocated to IoT device i 1)
AT 0, if task j is offloaded

As each IoT device has an M/M/1 queue, the time required for queuing and local

execution of task j at time t is obtained using the Little formula [35]. It depends on the
average service time and the mean arrival rate:

D = xij(t) X 5 v

Given that z{ il((tt)) represents the average service rate at time t. We indicate that we need
j

to ensure that % — Ai(t) > 0 for maintaining the stability of the queue.
j
The energy consumed for local execution at time ¢ is:

EiLjocal =k x f?(t) X xij(t) x T o

where k is defined as the effective switched capacitance, which relies on the chip archi-

tecture [16]. More notably, the matrix p denotes the channel assignment that is defined
as follows:

1, if channel k is allocated to IoT device i

putt) = { @

0, otherwise

Hence, we calculate the uplink rate between the IoT device i on channel k that using
Equation (5), which is derived from the Shannon theorem:

Py (t) x hik(t))

- ©)

Tik = Pik(t) X B x logz <1 =+

Mathematics 2022, 10, 1258

90f17

where B, Ny and & (t) denote the uplink channel bandwidth, white noise, and the uplink
channel gain, respectively. We define the computational latency for offloading a task j on
channel k at time ¢ as follows:

Offloading ,,\ D‘j(t)

D; t) = —= 6

W= (6)
Accordingly, the energy required for offloading a task j on channel k at time ¢ is

described through Equation (7):

a;(t)

rik(t)

The problem of jointly minimizing the delay and energy in dynamic fog computing
while selecting the best channel is formulated as a weighted sum that is described by
Equation (8):

Of floading

EQT1OMS () = Py (1) x

@)

Vt: Mina x (21 Z] xi]-(t) X m +Y Z]k X fls(f) X xij(t)x
wj(t)7 i

®)

Z

ot o (t
,()1) oo (DD T S e Pale) < 1)

w; (1) —Ai(t)

The first weight represented by a is a random number that is generated in each time
slot. The second weight represented by b is calculated as (1 — a). The aim of introducing the
two weights a and b requires a balance between local execution and offloading decisions.
The first term of Equation (8) refers to the time and energy for local processing, whereas
the second term refers to the delay and energy required for offloading. We mention that,
different from some related works that optimize one parameter, our objective function
enables minimizing two parameters including the delay and energy consumption based
upon the queuing theory.

P (t) < Pax
f(t) < fimax
Xjj € {0,1} ©)
oij € {0,1}

Equation (9) indicates the power and frequency constraints.

The problem of optimizing the offloading decision has been identified as an NP-hard
problem [36-38]. Different from the above related works, our contribution investigates
parallel meta-heuristics for solving the proposed model for dynamic offloading in fog com-
puting, which is a complex problem. So far, our solution defines many threads, whereas
each thread runs the specified meta-heuristic for a specific IoT device. In other words, we
will investigate parallel meta-heuristics for solving the problem of dynamic offloading
in fog computing. As stated in the related work section, population-based optimization
techniques including genetic algorithms and PSO have been widely investigated for dy-
namic optimization. The parameters of the suggested algorithms consist of «a(t), w(t), f(¢),
P(t), and h(t). Consequently, our solution runs the proposed genetic algorithm shown
in Figure 1 in each time slot. Starting from the second time slot, our proposed genetic
algorithm conducts an evaluation of all chromosomes and replaces a certain percentage of
the worst chromosomes by new random ones. The remaining chromosomes will be kept for
finding the optimal solution Fy,s; that represents the best fitness value for the current time
slot. This process is repeated in all time slots for ensuring a trade-off between exploitation
and exploration. Notably, our proposed genetic algorithm represents each chromosome as
one-dimensional array. We have adopted an integer encoding, such that:

xjj = 1,if task j is offloaded using sub — carrier x;g (10)

Mathematics 2022, 10, 1258

10 of 17

t=0;
Foest = 0;
No
T<Dslot? < ‘
Yes
t=0;
Evaluation - Evaluation
Update Frest Update Fuest
Crossover
Fitness>Frest and
—20%7
percentage <=20%?7 Mutation

Yes

Re-initialize the worst

chromosome

Figure 1. Flowchart of the proposed parallel genetic algorithm.

According to Equation (10), the first element of each chromosome includes the sub-
carrier that is randomly initialized, although the other elements represent the offloading
decision for the corresponding tasks. At each time slot, the proposed genetic algorithm
consists of a set of sub-populations. Each thread generates a random set of initial solutions
according to the encoding described in Equation (10). Each sub-population will be handled
by a thread and will be generated randomly. The evaluation of the chromosomes of each
sub-population is performed using the objective function defined in equation. Then, our
genetic algorithm applies the tournament selection, crossover, and two-point mutation
operators. The flowchart in Figure 1 depicts the idea of our solution. Assume that the
duration of each time slot is Dslot, and random sub-populations are initiated. More
specifically, our proposed algorithms rely on a time management module that triggers an
event if the duration of a time slot has expired. Next, the chromosomes are evaluated, and
the best solution is updated. Then, the crossover and mutation operators are applied, and
this process is repeated during the same time slot. Upon the reception of a notification
from the time management module, an evaluation of the chromosomes is performed, and
20% of the worst chromosomes are re-initialized before completing the remaining steps
of the genetic algorithm. We also indicate that IoT devices may update their parameters

Mathematics 2022, 10, 1258

11 of 17

at the beginning of each time slot. Assuming that new tasks arrive in the second time
slot, our design extends the solutions manipulated by the considered thread by allocating
random offloading decision variables for them. The second idea investigated in this paper
consists of adapting PSO for solving the problem of dynamic offloading in fog computing.
Following the same solution based on a genetic algorithm, we propose to initialize a set of
swarms. Each swarm of particles corresponds to an IoT device. The swarms are executed
in parallel using a set of threads. More specifically, each particle is represented by a one-
dimensional array where the first position corresponds to the sub-carrier, and the other
elements correspond the probability of task offloading. During each time slot, the fitness
function is used to evaluate the particles based on the probability of offloading of each task.
If the probability is high and exceeds 70%, a task offloading is possible; however, when the
probability is low, local execution is possible, as shown in Figure 2. After conducting the
fitness evaluation, each particle will update its position and velocity based on the following
equations that balance between local and global search [39]:

U;'c+1 =Wx U;; te1 XX (piwst - x;c) +e2 X X (géest - x;c) (11)

Xjpp1 = X+ Uk (12)

Ppest Tepresents the personal best solution of the particle, whereas g;,s; represents the
global best solution. c; and c; are random parameters. The proposed parallel PSO is also
synchronized to the time management module that provokes an event at the beginning
of each time slot. We indicate that we have fixed the problem of boundary exceeding by
re-initializing the particles that violate the allowed boundaries of the search space.

Assume the number of chromosomes/particles is 7, the number of generated tasks is
m, and the number of iterations is g. The complexity of the parallel genetic algorithm that
is executed in each time slotis O(g(n +n x (m+1) +n x (m+ 1) + n)). The first term of
the complexity refers to the evaluation of the solutions, whereas the second and the third
terms refer to the crossover and the mutation, respectively. The last term of the complexity
refers to the re-initialization process. In the worst case, the last solution of the population
represents the best solution, and the mutation may be applied for the last element of
the considered solution. Meanwhile, the complexity of the parallel PSO algorithm that
is executed in each time slotis O(g(n+n x (m+1) +n x (m+1) 4+ n)). The first term
of the complexity refers to the evaluation of the solutions, whereas the second and the
third terms refer to the process of checking the offloading probability and the process of
updating the velocity and the position, respectively. The last term of the complexity refers
to the re-initialization process. It is obvious that the two parallel meta-heuristics have
the same complexity, which is of the order O(n x (m +1)). Hence, the proposed scheme
is appropriate for applications with low rate of task generation, where the IoT devices
switch between active and idle states. Another parameter that impacts the time complexity
concerns the number of time slots.

Mathematics 2022, 10, 1258

12 of 17

No

Yes

Figure 2. Flowchart of the proposed parallel PSO algorithm.

4. Simulation Results

We have performed extensive simulations using Java Eclipse Oxygen [40] to demon-
strate the effectiveness of the proposed meta-heuristics for dynamic offloading in fog
computing. Our simulation enables initializing a random number of IoT devices and fog
nodes. The tasks are generated according to a Poisson distribution. Table 2 illustrates the
parameters of simulation. Most of them are similar to the settings adopted in [16,18,19].
Hence, our aim is to validate the performance of parallel meta-heuristics for dynamic

Mathematics 2022, 10, 1258

13 of 17

offloading in fog computing. The best and average fitness values when varying the number
of IoT devices from three to twelve are obtained by running the proposed approaches under
30 repetitions, and they are listed in Table 3.

It is obvious that the proposed parallel PSO and genetic algorithm generate better results
compared to Lyapunov optimization in terms of the cost that is represented by the fitness
function. In a similar manner, the proposed PSO outperforms the proposed genetic algorithm
as it achieves the smallest best and average fitness value. Another finding concerns the
scalability of the proposed genetic algorithm that is demonstrated by the fitness value, which
decreases as the number of IoT devices increases too. The second metric used for evaluating
dynamic optimization is the offline error that depends on the best fitness value. The results of
the offline error for the proposed parallel PSO and the proposed parallel genetic algorithms are,
respectively, illustrated in Figure 3. The green bars correspond to the offline error generated by
the threads running the proposed parallel PSO algorithm, whereas the blue bars correspond
to the offline error generated by the threads running the proposed parallel genetic algorithm.
It is clear from Figure 3 that the offline error is very low. Therefore, the obtained offline
errors indicate how well the solution meets the objectives of the problem. Additionally, the
performance of the proposed parallel PSO in terms of the offline error is better than the
performance of the proposed parallel genetic algorithm when the number of IoT devices has
been increased to twelve. More specifically, the offline error achieved by all threads of the
proposed parallel genetic algorithm is less than the offline error attained by the threads of
the proposed parallel PSO when the number of IoT devices has been varied from three to
eight. Accordingly, the proposed parallel genetic algorithm has the ability to find the optimal
solution faster than the proposed PSO algorithm when the number of IoT devices varies
from three to eight. However, the proposed parallel PSO algorithm outstands the proposed
parallel genetic algorithm for quickly determining the optimal solution when the number of
IoT devices is twelve.

Table 2. Simulation parameters.

Parameter of Simulation Value

Dysiot 3 min

Number of sub-carriers 128

w 0.72

Number of particles/chromosomes 30

Initial number of chromosomes 30

k 102

Ny —100 dBm

B 2 MHz

() Gaussian normal di.stribu.tion. Average 1000
CPU cycles and variance is 200 CPU cycles

w(®) Gaussian normal d{stribu"cion. Average 0.3
CPU cycles and variance is 1000 CPU cycles

f® Random distribution [1-3] MHz

P(t) Random distribution [5-10] Watts

h(t) Random distribution [0.01-0.03]

Mathematics 2022, 10, 1258 14 of 17
Table 3. Fitness value comparison.
Parallel PSO Algorithm Parallel Genetic Algorithm
Number of IoT Thread Lyapunov
Devices Number Best Fitness AYerage Best Fitness AYerage Optimization
Fitness Fitness
1st thread 0.004 0.005 0.007 0.0075
3 2nd thread 0.0015 0.0016 0.0054 0.0059 0.12
3rd thread 0.004 0.005 0.0008 0.001
1st thread 0.00015 0.00016 0.006 0.0065
2nd thread 0.00015 0.00016 0.0086 0.0090
5 3rd thread 0.0003 0.00004 0.0092 0.0097 0.2
4th thread 0.0004 0.0005 0.0004 0.00042
5th thread 0.0001 0.00015 0.0009 0.002
1st thread 0.00002 0.000015 0.014 0.017
2nd thread 0.000023 0.000024 0.086 0.09
3rd thread 0.00003 0.00004 0.076 0.081
8 4th thread 0.000045 0.000048 0.17 0.18 0.35
5th thread 0.00001 0.0000015 0.16 0.19 ‘
6th thread 0.00002 0.000016 0.024 0.028
7th thread 0.000027 0.000029 0.026 0.029
8th thread 0.000003 0.000033 0.027 0.03
1st thread 0.000006 0.0000062 0.83 0.84
2nd thread 0.0000065 0.0000067 0.94 0.95
3rd thread 0.0000055 0.0000059 0.75 0.76
4th thread 0.000003 0.00000044 0.56 0.58
5th thread 0.0000052 0.0000055 0.07 0.08
1 6th thread 0.0000088 0.000009 0.93 0.95 0.46
7th thread 0.0000078 0.0000079 0.059 0.062)
8th thread 0.0000090 0.0000092 0.12 0.16
9th thread 0.0000067 0.000007 0.94 0.98
10th thread 0.0000045 0.0000049 0.48 0.49
11th thread 0.0000075 0.0000076 0.56 0.59
12th thread 0.0000018 0.000002 0.24 0.29
Offline error
0.000009
0.000008
0.000007
é 0.000006
& 0.000005
£ 0.000004
£
O 0.000003
0.000002
0.000001
sushllnns 1

o

123456 7 8 910111213141516171819202122232425262728293031

B Proposed PSO

Threads

B Proposed genetic algorithm

Figure 3. Offline error comparison.

Mathematics 2022, 10, 1258 15 0f 17

To further analyze the results obtained by the proposed scheme, we studied the impact
of varying the number of sub-channels on the execution cost. The number of IoT devices
has been fixed to five. It can be observed from Figure 4 that increasing the number of sub-
channels increases the probability of offloading and therefore decreases the execution cost
for the three considered methods. However, there is a significant difference between the
proposed parallel PSO and Lyapunov optimization. The former achieves lower execution
cost compared to Laypunov optimization. This indicates that the proposed parallel PSO is
more inclined to generate optimal particles in each time slot and the generated tasks have
more chance to be allocated to the suitable node.

Execution cost versus the number of sub-channels

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Execution cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Sub-channels

=@=Parallel PSO Parallel genetic algorithm Lyapunov

Figure 4. Execution cost comparison.

Despite the advantages of our results, some limitations should be highlighted:

Our results did not depend upon realistic tasks.
Our contribution did not handle the security issues in fog computing.
Our contribution is limited to the offloading process.

5. Conclusions

This paper shows that parallel meta-heuristics are a powerful solution that can be
extended for solving dynamic offloading in fog computing. Mainly, our contribution inves-
tigates the solution obtained at the end of each time slot for optimizing the solution of the
next time slot, while re-initializing a certain percentage of the worst chromosomes/particles
for jointly minimizing the delay and energy consumption. According to the extensive sim-
ulation results, the average and the best fitness functions converge. Additionally, the
proposed parallel PSO approach achieves a minimal offline error, and it is scalable com-
pared to the proposed parallel genetic algorithm. The comparison between the simulation
results of the proposed approaches and Lyapunov optimization demonstrates the effec-
tiveness of the proposed parallel PSO when increasing the number of IoT devices and the
number of sub-channels. This paper is limited to the evaluation of the proposed generic
model. So far, a realistic dataset for a specific application should be used for validating the
proposed model. Another direction consists of deploying the simulation on a fog simulator
and integrating the offloading technique to the fog scheduler. It is also recommended to
consider security issues during task offloading. Potentially, a hybrid recent meta-heuristic
will be developed for improving the obtained results by investigating the power of recent
meta-heuristics in terms of the convergence and the trade-off between exploitation and
exploration process.

Mathematics 2022, 10, 1258 16 of 17

Author Contributions: Conceptualization, S.I.A. and S.A.C.; methodology, D.S.M.H.; software,
S.A.C,; validation, S.I.A.; formal analysis, S.A.C.; investigation, D.5.M.H.; resources, S.A.C.; data
curation, S.I.A.; writing—original draft preparation, S.I.A.; writing—review and editing, S.A.C.;
visualization, D.S.M.H.; supervision, S..A.; project administration, S.I.A.; funding acquisition, S.I.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research project was funded by the Deanship of Scientific Research, Princess Nourah
bint Abdulrahman University, through the Program of Research Project Funding After Publication,
grant No (PRFA-P-42-10).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Marston, S.; Li, Z.; Bandyopadhyay, S.; Zhang, J.; Ghalsasi, A. Cloud computing—The business perspective. Decis. Support Syst.
2011, 51, 176-189. [CrossRef]

2. Negash, B.; Rahmani, A.M.; Liljeberg, P.; Jantsch, A. Fog Computing Fundamentals in the Internet-of-Things. In Fog Computing in
the Internet of Things; Rahmani, A.M., Liljeberg, P., Preden,].-S., Jantsch, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 3-13.

3. Bonomi, F; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile and Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13-15.

4. Mahmud, R.; Kotagiri, R.; Buyya, R. Fog Computing: A Taxonomy, Survey and Future Directions. In Internet of Everything, 1st ed.;
Springer: Berlin, Germany, 2018; pp. 103-130.

5. Yi, S.; Hao, Z,; Qin, Z,; Li, Q. Fog computing: Platform and applications. In Proceedings of the Third IEEE Workshop on Hot
Topics in Web Systems and Technologies, Washington, DC, USA, 12-13 November 2015; pp. 73-78.

6. Alba, E.; Nakib, A.; Siarry, P. Metaheuristics for Dynamic Optimization; Studies in Computational Intelligence 433; Springer:
Berling /Heidelberg, Germany, 2013; ISBN 978-3-642-30664-8.

7. Abdallah, A.FM,; Essam, D.L.; Sarker, R.A. Genetic Algorithms-based Techniques for Solving Dynamic Optimization Problems
with Unknown Active Variables and Boundaries. In Innovative Computing, Optimization and Its Applications; Springer: Cham,
Switzerland, 2018; pp. 151-166.

8. Mukherjee, M.; Kumar, S.; Zhang, Q.; Matam, R.; Mavromoustakis, C.X.; Lv, Y.; Mastorakis, G. Task Data Offloading and Resource
Allocation in Fog Computing with Multi-Task Delay Guarantee. IEEE Access 2019, 7, 152911-152918. [CrossRef]

9. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue,].P. On Reducing IoT Service Delay via Fog Offloading. IEEE Internet Things]. 2018, 5,
998-1010. [CrossRef]

10. Al-Khafajiy, M.; Baker, T.; Al-Libawy, H.; Maamar, Z.; Aloqaily, M.; Jararweh, Y. Improving fog computing performance via
Fog-2-Fog collaboration. Future Gener. Comput. Syst. 2019, 100, 266-280. [CrossRef]

11. Chang, Z.; Zhou, Z.; Ristaniemi, T.; Niu, Z. Energy Efficient Optimization for Computation Offloading in Fog Computing System.
In Proceedings of the IEEE Global Communications Conference, GLOBECOM, Singapore, 4-8 December 2017; pp. 1-6.

12. Movahedi, Z.; Defude, B.; Hosseininia, A.M. An efficient population-based multi-objective task scheduling approach in fog
computing systems. J. Cloud Comput. Adv. Syst. Appl. 2021, 10, 53. [CrossRef]

13. Keshavarznejad, M.; Rezvani, M.H.; Adabi, S. Delay-aware optimization of energy consumption for task offloading in fog
environments using metaheuristic algorithms. Clust. Comput. J. 2021, 24, 1825-1853. [CrossRef]

14. Hussein, M.K.; Mousa, M.H. Efficient Task Offloading for IoT-Based Applications in Fog Computing Using Ant Colony Optimiza-
tion. IEEE Access 2020, 8, 37191-37201. [CrossRef]

15. AL-Amodi, S.; Patra, S.S.; Bhattacharya, S.; Mohanty, J.R.; Kumar, V.; Barik, R.K. Meta-heuristic Algorithm for Energy-Efficient
Task Scheduling in Fog Computing. In Recent Trends in Electronics and Communication; Lecture Notes in Electrical Engineering;
Springer: Singapore, 2022; Volume 777, pp. 905-925.

16. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices.
IEEE]. Sel. Areas Commun. 2016, 34, 3590-3605. [CrossRef]

17. Liu, C.; Bennis, M.; Poor, H.V. Latency and Reliability-Aware Task Offloading and Resource Allocation for Mobile Edge Computing.
In Proceedings of the IEEE Globecom Workshops, Singapore, 4-8 December 2017; pp. 1-7.

18. Gao, X.; Huang, X,; Bian, S.; Shao, Z.; Yang, Y. PORA: Predictive Offloading and Resource Allocation in Dynamic Fog Computing
Systems. In Proceedings of the IEEE International Conference on Communications, Changchun, China, 11-13 August 2019; pp. 1-6.

19. Chang, Z; Liu, L.; Guo, X.; Chen, T,; Ristaniemi, T. Dynamic Resource Allocation and Computation Offloading for Edge
Computing. In Proceedings of the AIAI Workshops, Halkidiki, Greece, 5-7 June 2020; pp. 61-73.

20. Alenizi, F; Rana, O. Dynamically Controlling Offloading Thresholds in Fog Systems. Sensors 2021, 21, 2512. [CrossRef]

http://doi.org/10.1016/j.dss.2010.12.006
http://doi.org/10.1109/ACCESS.2019.2941741
http://doi.org/10.1109/JIOT.2017.2788802
http://doi.org/10.1016/j.future.2019.05.015
http://doi.org/10.1186/s13677-021-00264-4
http://doi.org/10.1007/s10586-020-03230-y
http://doi.org/10.1109/ACCESS.2020.2975741
http://doi.org/10.1109/JSAC.2016.2611964
http://doi.org/10.3390/s21072512

Mathematics 2022, 10, 1258 17 of 17

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

Wei, Z.; Jiang, H. Optimal Offloading in Fog Computing Systems with Non-Orthogonal Multiple Access. IEEE Access 2018, 6,
49767-49778. [CrossRef]

Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Power-Delay Tradeoff in Multi-User Mobile-Edge Computing Systems. In Proceedings
of the IEEE Global Communications Conference, Washington, DC, USA, 4-8 December 2016; pp. 1-6.

Assila, B.; Kobbane, A.; El Koutbi, M. A Many-to-One Matching Game Approach to Achieve Low-Latency Exploiting Fogs and
Caching. In Proceedings of the Ninth IFIP International Conference on New Technologies, Mobility and Security, Paris, France,
26-28 February 2018; pp. 1-2.

Yang, M.; Zhu, H.; Wang, H.; Koucheryavy, Y.; Samouylov, K.; Qian, H. An Online Learning Approach to Computation Offloading
in Dynamic Fog Networks. IEEE Internet Things J. 2021, 8, 1572-1584. [CrossRef]

Liu, C.; Liu, K.; Guo, S.; Xie, R.; Lee, V.C.S.; Son, S.H. Adaptive Offloading for Time-Critical Tasks in Heterogeneous Internet of
Vehicles. IEEE Internet Things J. 2020, 7, 7999-8011. [CrossRef]

Mukherjee, M.; Guo, M.; Lloret, |.; Igbal, R.; Zhang, Q. Deadline-Aware Fair Scheduling for Offloaded Tasks in Fog Computing
with Inter-Fog Dependency. IEEE Commun. Lett. 2020, 24, 307-311. [CrossRef]

Zhao, S.; Yang, Y.; Shao, Z.; Yang, X.; Qian, H.; Wang, C. FEMOS: Fog-Enabled Multitier Operations Scheduling in Dynamic
Wireless Networks. IEEE Internet Things . 2018, 5, 1169-1183. [CrossRef]

Tu, Y.; Chen, H.; Yan, L.; Zhou, X. Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge
computing in IoT. Future Internet 2022, 14, 30. [CrossRef]

Lakhan, A.; Mastoi, Q.; Elhoseny, M.; Memon, M.S.; Abed-Mohammed, M. Deep neural network-based application partitioning
and scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Entrep. Inf. Syst. 2021, 1-23. [CrossRef]
Lakhan, A.; Memon, M.S.; Elhoseny, M.; Abed-Mohammed, M.; Qabulio, M.; Abdel-Basset, M. Cost-efficient mobility offloading
and task scheduling for microservices iovt applications in container-based fog cloud network. Clust. Comput. 2021, 8, 1-23.
[CrossRef]

Lakhan, A.; Mohammed, M.A.; Rashid, A.N.; Kadry, S.; Panityakul, T.; Abdulkareem, K.H.; Thinnukool, O. Smart-Contract
Aware Ethereum and Client-Fog-Cloud Healthcare System. Sensors 2021, 21, 4093. [CrossRef]

Mutlag, A.A.; Ghani, M.K.A.; Mohammed, M.A.; Lakhan, A.; Mohd, O.; Abdulkareem, K.H.; Garcia-Zapirain, B. Multi-Agent
Systems in Fog—Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring. Sensors
2021, 21, 6923. [CrossRef]

Lakhan, A.; Abed-Mohammed, M.; Ibrahim, D.A.; Abdulkareem, K.H. Bio-inspired robotics enabled schemes in blockchain-fog-
cloud assisted IoMT environment.]. King Saud Univ. Comput. Inf. Sci. 2021, 30, 1-12. [CrossRef]

Li, L.; Guo, M.; Ma, L.; Mao, H.; Guan, Q. Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task
Service Delay. Sensors 2019, 19, 3830. [CrossRef] [PubMed]

Fan, Q.; Ansari, N. Workload Allocation in Hierarchical Cloudlet Networks. IEEE Commun. Lett. 2018, 22, 820-823. [CrossRef]
Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation offloading and resource allocation in mixed fog/cloud computing systems with
min-max fairness guarantee. IEEE Trans. Commun. 2018, 66, 1594-1608. [CrossRef]

Wang, D.; Liu, Z.; Wang, X.; Lan, Y. Mobility-aware task offloading and migration Schemes in Fog Computing Networks. IEEE
Access 2019, 7, 43356-43368. [CrossRef]

Swain, C.; Sahoo, M.N.; Satpathy, A. SPATO: A student project allocation based task offloading in IoT-Fog systems. In Proceedings
of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14-23 June 2021; pp. 1-6.

Huang, S.; Tian, N.; Wang, Y.; Ji, Z. Particle swarm optimization using multi-information characteristics of all personal-best
information. SpringerPlus 2016, 5, 1632. [CrossRef]

Eclipse Foundation. Available online: https://www.eclipse.org/oxygen/ (accessed on 21 February 2022).

http://doi.org/10.1109/ACCESS.2018.2868894
http://doi.org/10.1109/JIOT.2020.3015522
http://doi.org/10.1109/JIOT.2020.2997720
http://doi.org/10.1109/LCOMM.2019.2957741
http://doi.org/10.1109/JIOT.2018.2808280
http://doi.org/10.3390/fi14020030
http://doi.org/10.1080/17517575.2021.1883122
http://doi.org/10.1007/s10586-021-03333-0
http://doi.org/10.3390/s21124093
http://doi.org/10.3390/s21206923
http://doi.org/10.1016/j.jksuci.2021.11.009
http://doi.org/10.3390/s19183830
http://www.ncbi.nlm.nih.gov/pubmed/31487947
http://doi.org/10.1109/LCOMM.2018.2801866
http://doi.org/10.1109/TCOMM.2017.2787700
http://doi.org/10.1109/ACCESS.2019.2908263
http://doi.org/10.1186/s40064-016-3244-8
https://www.eclipse.org/oxygen/

	Introduction
	Related Works
	Proposed Method
	Simulation Results
	Conclusions
	References

