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Abstract: Pile–anchor structures are widely used in foundation excavation and slope reinforcement
due to their safety and reliability. However, the pile–anchor structures have the common problem of
the prestress loss of anchor cables, which may reduce the stability of the structures. To accurately
predict the prestress loss of anchor cables, a new prestress loss calculation model was established,
and the availability of the prestress loss calculation model was verified through engineering cases.
Meanwhile, aiming at the long-term prestress loss of anchor cables, the coupled creep behavior of
anchor cable–rock and soil was studied and an anchor cable–rock and soil coupled creep model
suitable for pile–anchor structures is proposed. The model test confirms that the coupled creep model
could accurately describe the coupled creep behavior of the anchor cable and the rock and soil mass.
The models provide a theoretical basis for the study of the prestress of anchor cables in pile–anchor
structures, and have a guiding significance for the design and construction in foundation excavation
and slope engineering.

Keywords: pile–anchor structure; coupled creep model; prestress loss; prestressed anchor cable;
model test; field test

MSC: 74F99

1. Introduction

In recent years, pile–anchor structures have been widely used in foundation excavation,
slope reinforcement, and other support engineering, which have the characteristics of high
reliability, short period, and low cost. The principle of the pile–anchor support system is to
maintain the stability of the slope through the anchoring force provided by anchor cables
and the anti-sliding force provided by anti-sliding piles. Nowadays, the research on pile–
anchor structures has mainly focused on the soil characteristics, seismic effects, and pile
length effects [1–5]. Scholars have mostly focused on the special problem of the structures
and ignored the common problem, that is, the prestress loss of anchor cables. Therefore, it
is extremely important to establish a calculation model for pile–anchor structures that can
predict the prestress loss of anchor cables in actual projects.

The prestress loss of anchor cables can be divided into instantaneous loss and long-
term loss. Many scholars have conducted long-term prestress monitoring of anchor cables
through field and model tests, confirming the objective existence of the long-term loss and
proposed prediction models [6–8]. Nowadays, most of the prediction models are empirical
models that can accurately predict the prestress loss of anchor cables in similar projects,
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but they are not suitable for every project [9–13]. Based on this, mechanical creep models
have been proposed, whose constituent elements have clear physical meaning, and model
parameters can be obtained from creep tests [14–18]. However, the current coupled creep
models only consider the mechanical properties of the anchor cable and the rock and soil
mass, and ignore the influence of external factors. Due to the existence of anti-slide piles in
pile–anchor structures, the coupling mode of the anchor cable and the rock and soil mass
changes. Therefore, an anchor cable–rock and soil coupled creep model and a prestress loss
calculation model suitable for pile–anchor structures were established.

Nowadays, in the study of material creep properties, the fractional derivative methods
and the integer derivative methods have evolved as the two most effective methods of de-
scribing the characteristics of viscoelastic materials. The advantage of fractional derivative
methods is that the viscoelastic behavior can be accurately described by fewer parame-
ters [19–21]. However, the fractional derivative methods have certain drawbacks, and the
computational cost and memory requirements need to be considered in the numerical
solution process [22]. Many efficient numerical techniques for solving fractional differential
equations have been presented in the last decades such as the fractional finite volume
method [23], neural network methods [24], Fourier spectral methods [25,26], radial basis
functions [27], Adomian decomposition method [28], Haar wavelet method [29], opera-
tional matrix methods [30], and so forth. In the study on the anchor cable–rock and soil
coupled creep model, the integer derivative method was widely used to solve this kind
of problem in the field of geotechnical engineering [15,16,31,32]. The integer derivative
method could accurately describe the coupled creep behavior of the anchor cable and
the rock and soil mass and fully satisfy the accuracy requirements for practical engineer-
ing [31,33,34]. Therefore, the integer derivative method was used to establish the anchor
cable–rock and soil coupled creep model of the pile–anchor structure in this paper.

The main structure of our study can be described in the following steps. We started
by analyzing the instantaneous prestress loss caused by the deformation of the anchorage
device and the waist beam. Then, we proposed a new anchor cable–rock and soil coupled
creep model for pile–anchor structures, and verified the accuracy of the model through
Chen’s test. Additionally, we analyzed the prestress loss caused by the deformation of
the anchorage device and the waist beam and proposed a calculation model to predict
the prestress loss of anchor cables. Then, a prestress calculation model considering instan-
taneous prestress loss and long-term prestress loss was proposed. Finally, the accuracy
and practicability of the anchor cable–rock and soil coupled creep model and the pre-
stress loss calculation model were verified through an engineering example of Xingtai
foundation excavation.

2. Factors of the Prestress Loss of Anchor Cables

The loss of the prestress has been throughout the entire life of the anchor cable work
since the anchor cable was locked. There are many reasons for the loss of the prestress of
the anchor cable, mainly including the following.

(1) The rebound deformation of the anchorage device [35–37]. The anchor clip is not
stressed during the steel strand tension. When the jack is unloaded, the load acts on the clip,
and the clip slips slightly with the shrinkage of the steel strand, resulting in prestress loss.

(2) The deflection deformation of the waist beam [38]. The prestress of anchor cables
acts on the waist beam, which transfers the load to the anti-slide pile to stabilize the pile–
anchor structure. Under the action of the prestress, the deflection deformation of the waist
beam is generally calculated by the simply supported beam model.

(3) The creep deformation of the rock and soil mass [39–45]. As a composite of elastic,
viscous, and plastics, the rock and soil mass has extremely complex mechanical properties
and exhibits creep characteristics under deviatoric stress. The creep properties of the rock
and soil mass with different mechanical properties are different.

(4) The creep deformation of the anchor cable [46]. The anchor cable is mainly com-
posed of two parts: a free segment and an anchorage segment. The creep characteristic of
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the free segment of the anchor cable is an instantaneous creep, and its deformation can be
restored. The creep characteristic of the anchorage segment of the anchor cable is similar to
that of the rock and soil mass.

It can be seen that the anchor cable–rock and soil coupled creep model of the pile-
anchor structure must consider not only the mechanical properties of the rock and soil
mass, but also the mechanical properties of the free segment and anchorage segment of the
anchor cable [47–50]. In the calculation of the prestress loss of anchor cables, in addition
to the long-term creep deformation, the prestress loss caused by the deformations of the
anchorage device and the waist beam cannot be ignored.

3. Instantaneous Prestress Loss of Anchor Cable

In the pile–anchor structure, the prestress of the anchor cable often causes great
deformations of the anchorage device and the waist beam. The instantaneous prestress loss
caused by the deformations cannot be ignored, and the deformations are shown in Figure 1.
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3.1. The Prestress Caused by the Anchorage Device

After the anchor cable is tensioned and locked, the anchorage device will deform
elastically and the clip will slip under the axial force. This process is bound to cause the
prestress loss, and the equation for calculating the prestress loss of the anchor cable is
as follows:

Fa = Asσa (1)

σa =
la
lf

Ea (2)

3.2. The Prestress Loss Caused by the Waist Beam

The waist beam is the force transmission member between the anchor cable and the
anti-slide pile. The deflection deformation of the waist beam under the anchor cable axial
force causes the prestress loss. To calculate the waist beam deflection, it is generally required
to adopt the mechanical model of the simply supported beam subjected to concentrated
load in the middle of the span (Figure 1). The prestress loss caused by the waist beam
deformation can be obtained as follows:

Fb = Asσb (3)
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σb =
lb
lf

Ea (4)

lb =
Flp3

48Eb Ib
(5)

4. The Anchor Cable–Rock and Soil Coupled Creep Model for the
Pile–Anchor Structure
4.1. Anchor Cable–Rock and Soil Coupled Creep Model

The rock and soil mass creep model and the anchor cable creep model are composed
of several elastoviscoplastic elements. The deformation of the rock and soil mass presents
obvious characteristics of elasticity (instantaneous creep stage), viscoelasticity (decay creep
stage), and viscoplasticity (steady creep stage). Anchor cables exhibit elastic (instantaneous
creep stage) and viscoelastic (decay creep stage) deformation characteristics. The consti-
tutive relationship of the anchor cable–rock and soil coupled creep model is composed of
series and parallel connections of different mechanical elements.

At present, the coupled creep models of the anchor cable and the rock and soil mass
include the following [31,32].

4.1.1. General Kelvin and Spring Element Parallel Coupled Creep Model

The model (Figure 2) reflects the instantaneous creep and decay creep state of the rock
and soil mass, but the anchor cable creep model is simplified as a spring element, which
cannot specifically reflect the creep characteristics of the free segment and the anchorage
segment section of the anchor cable. According to the mechanical characteristics of the
coupled creep model, its constitutive equation can be written as:

σ +
ηk

Ek + Eh

.
σ =

EkEh + EhEs + EkEs

Ek + Eh
ε +

ηk(Eh + Es)

Ek + Eh

.
ε (6)
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4.1.2. General Kelvin and Maxwell Parallel Coupled Creep Model

Based on the general Kelvin and spring element parallel coupled creep model, an
optimized coupled creep model (Figure 3) was proposed. The model fully considers the
viscosity property of the anchor cable, and can describe the anchor cable–rock and soil
coupled creep process more realistically. However, it defaults to a direct transition from
instantaneous creep to steady state creep, and it ignores the decay creep stage of anchor
cables, which is inconsistent with the actual creep of anchor cables. According to the stress–
strain combination principle of the coupled creep model, the constitutive relationship is
determined as:

σ + ηkEm+ηmEh+ηmEk
Em(Ek+Eh)

.
σ + ηmηk

Em(Ek+Eh)

..
σ = EhEk

Ek+Eh
ε+

ηkEhEm+ηmEhEk+ηmEhEm+ηmEmEk
Em(Ek+Eh)

.
ε + ηkηm(Ek+Eh)

Em(Ek+Eh)

..
ε

(7)
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Figure 3. General Kelvin and Maxwell parallel coupled creep model.

4.2. The Anchor Cable–Rock and Soil Coupled Creep Model of the Pile–Anchor Structure

The coupled creep model of the anchor cable and the rock and soil mass of the pile–
anchor structure is different from that of the traditional roadway support. In roadway
support, the prestress of anchor cables is applied to the surface of the rock and soil mass
through the plate. In this process, the sum of deformations of the free segment and the
anchorage segment of the anchor cable is equal to the deformation of the rock and soil mass.
The anchor cable creep model and the rock and soil creep model are parallel relationships.
In the pile–anchor structure (Figure 4), the anti-slide pile makes the anchor cable prestress
directly act on the rigid pile instead of the rock and soil mass through the waist beam. At
this time, the anchorage segment of the anchor cable and the rock and soil mass contact
and interact with each other, and the deformations are coordinated. The stress of the free
segment is equal to the coupled stress between the anchorage segment and the rock and
soil mass. In the coupled creep model of the pile–anchor structure, the creep model of the
anchorage segment and the creep model of the rock and soil mass are parallel relationships,
and they are connected in series with the creep model of the free segment. Since the rigidity
of the anchorage segment of the anchor cable is much greater than that of the rock and
soil mass, when the rock and soil mass is in the instantaneous creep stage, the anchorage
segment can be regarded as a rigid body and does not enter the instantaneous creep stage.
Therefore, the coupled creep model of the anchor cable and the rock and soil mass of the
pile–anchor structure is proposed as shown in Figure 5.
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B =
ηa[Es1(Ea1 + Es2) + Ef(Ea1 + Es1 + Es2)] + ηs(Ea1 + Ea2)(Ef + Es1)

Ea1[Ef(Ea2Es1Es2) + Es1(Ea2 + Es2)] + Ea2[Es1(Ef + Es2) + Ea2Es2]

C =
ηsηaEs1Ef

Ea1[Ef(Ea2Es1Es2) + Es1(Ea2 + Es2)] + Ea2[Es1(Ef + Es2) + Ea2Es2]

D =
Es1Ef[ηa(Ea1 + Es1) + ηs(Ea1 + Ea2)]

Ea1[Ef(Ea2Es1Es2) + Es1(Ea2 + Es2)] + Ea2[Es1(Ef + Es2) + Ea2Es2]

E =
Es1Ef[Ea1Ea2 + Ea2Es2 + Ea1Es1]

Ea1[Ef(Ea2Es1Es2) + Es1(Ea2 + Es2)] + Ea2[Es1(Ef + Es2) + Ea2Es2]

4.2.1. Creep Equation of the Coupled Creep Model

A constant load is applied to the anchor cable where, σ = σc = σconst. According to
Equation (8), the following creep equation is obtained:

σc = C
..
ε + D

.
ε + Eε (9)

The creep equation is a quadratic non-homogeneous differential equation of one
variable. According to the differential equation solving rule, the following can be obtained:

εc(t) = C1e(r1t) + C2e(r2t) +
σc

E
(10)

The initial condition of differential equations: When a constant load is applied instan-
taneously, the free segment of the anchor cable and the rock and soil mass will only produce
instantaneous creep, namely, εt=0 = σc/H, there, H = Es1Ef/(Ef + Es1). The assumption:
Under a constant load, there must be a certain moment at which the strain tends to stabilize
and no longer increases with time. At this time, the strain derivative is 0, namely,

.
εt=ts = 0.

The initial condition and the assumption are substituted into differential Equation (10), and
C1 and C2 are deduced as:

C1 =
σcr2(H − E)er2ts

EH(r1er1ts − r2er2ts)
(11)
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C2 =
σcr1(E − H)er1ts

EH(r1er1ts − r2er2ts)
(12)

4.2.2. Relaxation Equation of the Coupled Creep Model

When the anchor cable is locked, the strain of the coupled creep system is constant
and the stress gradually relaxes. Defining ε = εc = εconst, the constitutive Equation (8) can
be expressed as:

A
..
σ + B

.
σ + σ = Eεc (13)

Solving the differential Equation (13), the following can be obtained:

σ(t) = C3er3t + C4er4t + Eεc (14)

The initial condition of differential equations: At the moment when the initial strain is
applied, the elastic deformation of the free segment of the anchor cable and the rock and
soil mass is completed instantly, and the strain is εc, namely, σt=0 = Hεc. The assumption:
In the stress relaxation stage of the coupled creep model, there must be a certain moment
at which the stress no longer decreases and remains constant. At this time, the stress
derivative is 0, that is,

.
σt=tv = 0.

According to the initial condition and assumption, C3 and C4 can be expressed as:

C3 =
εcr4(E − H)er4tv

r3er3tv − r4er4tv
(15)

C4 =
εcr4(E − H)er4tv

r3er3tv − r4er4tv
(16)

In the pile–anchor structure, the anchor cable should meet the following assumptions:
1. The total axial force of the steel strands in the free segment is equal to the locked

prestress;
2. The total axial force of the anchor cable is evenly distributed to each steel strand;
3. No loss of the prestress during the transmission of the free segment of the anchor

cable; and
4. The group anchor effect does not occur in the support system.
The prestress of the anchor cable can be expressed as:

C4 =
εcr4(E − H)er4tv

r3er3tv − r4er4tv
(17)

4.3. Model Test Verification

To verify the feasibility of the coupled creep model, we used Chen’s classic soft rock
model test [51] to test the prediction ability of the creep equation and the relaxation equation.
The model box and anchor rod size parameters used in the test are shown in Figure 6. The
simulated material of the anchor rod was a copper tube with a size of ϕ6 × 2 mm and an
elastic modulus of 1.32 × 105 Mpa. The cement grade of anchor rod grouting material was
#425, and the weight ratio of cement, water, and accelerator was 1 to 0.64 to 0.2. The model
medium material was yellow clay sand, and its physical and mechanical parameters are
shown in Table 1.

Table 1. Physical and mechanical parameters of yellow clay sand.

Soil Layer Moisture
Content/%

Density
/(kN/m3)

Uniaxial
Compressive
Strength/MPa

Uniaxial
Tensile

Strength
/MPa

Elastic
Modulus

/MPa

Cohesion
/kPa

Internal
Friction

Angle/(◦)

Yellow clay sand 16.5 20 0.15 0.04 20.66 11 19
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Figure 6. Soft rock test model.

Figure 7 is the comparison diagram of the data curves of the #2–#4 anchor rods’ creep
test and the model prediction curves, in which the #1 anchor rod failed to extract the
monitoring data of the whole test due to equipment failure. As shown in Table 2, the #2–#4
anchor rod test data were highly close to the model calculation data, and the correlation
coefficients of prediction results were 0.9954, 0.9962, and 0.9989, respectively. The model
showed an excellent prediction effect. During the test, the constant pressure load directly
acts on the top of the copper pipe, and the copper pipe transmits the pressure to the
grouting section. The interaction between the grouting section and the yellow clay sand
forms a coupled creep system. The principle is the same as that of the coupled creep model
in the pile–anchor structure, so the prediction results of the model are highly consistent
with the test data.
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Table 2. Correlation coefficient between model test and prediction.

Types of Tests Anchor Rods: Creep Test Anchor Rods: Relaxation Test

Anchor rod numbers #2 #3 #4 #1 #2 #3 #4
Correlation
coefficients 0.9954 0.9962 0.9989 0.9744 0.9847 0.9710 0.9709
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The data curves of the prestress relaxation test of the #1–#4 anchor rods and model
prediction curves are shown in Figure 8. Regardless of the test curves or the prediction
curves, the decay law of the anchor rod axial force with time was consistent, and the
prediction results were close to the test data. As shown in Table 2, the correlation coefficients
of the prediction results of #1–#4 anchor rods were 0.9744, 0.9847, 0.9710, and 0.9709,
respectively, and the prestress relaxation prediction effect was good. Comparing Figure 7
with Figure 8, it was not difficult to find that the accuracy of the prestress relaxation
prediction curves was lower than that of the creep prediction curves. The reason is that the
coupled creep system of the test was similar to the coupled creep system of the pile–anchor
structure, and the coupled creep model was completely applicable. In the anchor rod
prestress relaxation test, the prestress acts on the soil medium through the plate, which
was slightly different from the mechanical behavior of the coupled creep model, so the
prediction accuracy decreased.
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5. The Anchor Cable Prestress Loss Calculation Model for the Pile–Anchor Structure

After the anchor cable is locked, it will inevitably produce prestress loss due to the
rebound deformation of the anchorage device, the deflection deformation of the waist
beam, and the coupled creep of the anchor cable and the rock and soil mass. Meanwhile,
the prestress loss equation is a function of time. The prestress loss calculation model can be
expressed as follows:

T(t) = Fa + Fb + Fc(0)− Fc(t) (18)

The calculation model of the prestress loss can be obtained by substituting
Equations (1)–(5) and Equations (14)–(17) into Equation (18) as follows:

T(t) =
AslaEs

lf
+

Aslp3EsF
48Eb Iblf

+ As
[(

C3
(
1 − er3t)+ C4

(
1 − er4t))] (19)

The ratio of prestress loss value and initial prestress value is denoted as the prestress
loss ratio, which is used to indicate the degree of prestress loss of the anchor cable. The
prestress loss ratio can be obtained as follows:

ω(t) =
T(t)

F
(20)

6. Calculation and Analysis of Engineering Cases
6.1. Project Overview

The foundation pit was located in Xingtai City, Hebei Province. According to the
results of drilling identification, geotechnical test, and in situ test, the soil layer can be
divided into five geological exploration layers from bottom to top, which are miscellaneous
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fill, silt 1©, silt 2©, clay 1©, and clay 2©. During the field survey, it was discovered that the
groundwater level was about 2.5 m deep, and the groundwater was pore phreatic water.
Soil samples were tested in the laboratory, and the physical and mechanical parameters of
the soil layers are shown in Table 3.

Table 3. Physical and mechanical parameters of soil layers.

Layer
Number Soil Layer Thickness/m Density

/(kN/m3)
Buoyancy

Density/(kN/md)
Cohesion

/kPa

Internal
Friction

Angle/(◦)

Ultimate
Bond

Strength/kPa

1 Miscellaneous fill 1.70 15.0 — 3.00 8.00 28
2 Silt 1© 4.20 19.0 9.0 15.30 22.60 64
3 Silt 2© 5.20 19.2 9.2 14.50 25.30 65
4 clay 1© 8.00 19.1 9.1 22.30 11.40 60
5 clay 2© 10.00 19.3 9.3 — — 61

The foundation pit had a length of 94.6 m from north to south and a width of 84.4 m
from east to west. The maximum excavation depth of the foundation pit was 10.5 m. As
shown in Figure 9, the support structure for the foundation pit was anti-slide piles, top
beams, waist beams, and prestressed anchor cables. The cross-section size of the top beam
was 1000 mm × 800 mm. The anti-slide pile was 1200 mm in diameter and was poured
with C30 reinforced concrete. The longitudinal reinforcement was HRB400, and the spiral
stirrup was HPB300. The waist beam was welded by two 20a channel steels in parallel. The
geometric and material parameters of the anchor cables are shown in Table 4.
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Table 4. The geometric and material parameters of the anchor cables.

Serial
Number Position Elevation/m Total

Length/m
Length of

Anchorage
Section/m

Diameter
of Hole/mm

Mortar
Grade

Grade of
Reinforcement Standard Locked

Value/kN

1 North side
middle −2.0 22.0 13.0 150 C20 HRB400 1s21.6 210

2 North side
middle −5.5 20.0 12.0 150 C20 HRB400 1s21.6 200

3 West side
middle −2.0 18.0 11.0 150 C20 HRB400 1s21.6 180

4 West side
middle −5.5 17.0 11.0 150 C20 HRB400 1s21.6 170

5 East side
middle −2.0 18.0 11.0 150 C20 HRB400 1s21.6 180

6 East side
middle −5.5 17.0 11.0 150 C20 HRB400 1s21.6 170

7 South side
middle −2.0 16.0 10.0 150 C20 HRB400 1s21.6 120

8 South side
middle −5.5 15.0 10.0 150 C20 HRB400 1s21.6 110

To study the prestress loss of anchor cables, eight anchor cables in the middle of the
foundation pit were randomly selected. Before the anchor cables were tensioned, an axial
force sensor was installed under the anchorage device of each anchor cable. The sensors
used for monitoring prestress were HF-201 vibrating wire heart-piercing sensors, and the
609 vibrating wire reader was used to collect the prestress data of the anchor cables. The
prestress data were collected and recorded manually at 9:00 am every morning. Because
the tensioning times of the anchor cables at different positions were different, the initial
monitoring times of the anchor cables were different. All anchor cables ended prestress
monitoring on 30 July 2017.

6.2. Comparative Analysis of the Monitoring and Model Calculation Results

As shown in Figure 10, it can be seen from the anchor cable monitoring date that
the prestress of the anchor cables experiences varying degrees of loss after the cables are
locked. The #3 anchor cable had the lowest prestress loss, which was only 10 kN. Since
the #1 anchor cable was applied with the largest prestress, its prestress loss was the most
serious, and the prestress attenuated to the stable stage for the longest time. Although the
#2–#8 anchor cables were tensioned at different times, the prestressing attenuation tended
to be stable within 10 days after each anchor cable was tensioned. Due to the influence of
objective factors such as precipitation, temperature, and dynamic and static load around
the foundation pit, there will be a small range of fluctuations in the attenuation process
of prestress.
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The calculation model of the prestress loss of the anchor cable of the pile–anchor
structure is mainly composed of two parts. One part is composed of instantaneous defor-
mations such as the anchorage device rebound deformation and the waist beam deflection
deformation. This part of the prestress loss is eliminated by measures such as overtension.
Comparing the actually locked load with the model calculated locked load, the values of
the two were similar. The results in Table 5 indicate that the maximum calculation error of
the instantaneous prestress loss was 7.47%, and the minimum error was only 1.27%.

Table 5. Comparison of the monitoring and model calculation results for the prestress of the cables.

Anchor
Cable

Instantaneous Deformation Creep Deformation

Implement
Tension

Load
/kN

Actual
Locked

Load
/kN

Calculate
Locked

Load
/kN

Error
Initial Creep

Actual
Prestress/kN

Initial Creep
Calculation

Prestress/kN

Final Creep
Actual

Prestress/kN

Final Creep
Calculation

Prestress/kN
Correlation
Coefficient

#1 300 210 194.32 7.47% 210 215.03 164 164.32 0.9709
#2 295 202 188.51 6.68% 202 200.35 157 158.58 0.9654
#3 280 170 160.17 5.78% 170 171.72 155 154.56 0.9414
#4 285 183 169.83 7.19% 183 181.51 159 159.87 0.9481
#5 280 171 160.17 6.33% 171 171.90 160 159.88 0.9539
#6 285 183 169.83 7.19% 183 181.94 164 163.95 0.9672
#7 260 118 122.16 3.53% 118 118.16 83 83.91 0.9797
#8 250 111 112.41 1.27% 111 110.51 86 85.2 0.9781

The other part is the coupled creep of the anchor cable and the rock and soil mass
under long-term load, and the prestress loss can be calculated by the coupled creep model.
The curves in Figure 11 indicate that the minimum correlation coefficient of the prediction
curves was 0.9414, and the maximum was 0.9781. The time for the prestress of the #1–#8
anchor cables to reach a stable stage was also approximately the same in the monitoring
and model predicted curves. The coupled creep model could effectively describe the creep
behavior of the anchor cable and the rock and soil mass. However, affected by precipitation,
temperature, and dynamic and static loads on the surrounding roads, the monitoring
curves appeared as transient fluctuations. The creep coupled model can well reveal the
development law of the actual prestress of the anchor cable, but it cannot be used to predict
the time and amplitude of the prestress fluctuation caused by external factors.

The comparative data between the actual loss ratio and the calculated loss ratio caused
by deformations of the anchorage device and the waist beam are shown in Figure 12. The
actual prestress loss ratios of the #1~#6 anchor cables were less than the calculated prestress
loss ratios, and the model calculation tended to be conservative. The calculated value of the
#7–#8 anchor cable prestress loss ratios were the same as the actual monitoring values. The
reason is that when the anchor cables are tensioned and locked, the operation of workers
is not standard, which causes the actual loss ratios of the #7–#8 anchor cables to increase.
The instantaneous prestress loss ratios calculated by the model of the #1–#8 anchor cables
were 35.2%, 36.1%, 42.8%, 40.4%, 42.8%, 40.4%, 53.0%, and 55.0%, respectively, which are
consistent with the research conclusion of Tang [52]. Tang indicated that when the anchor
cable was tensioned to locked, the maximum loss ratio of prestress caused by the anchor
device and the waist beam was 53.4%, and the minimum loss ratio was 24.5%.

The relationship curve between creep loss ratio and time is shown in Figure 13. The
prestress loss ratio increased rapidly first, and then remained basically unchanged over
time. It shows that the creep effect will end at a certain moment, and after that, with the
further delay of time, the prestress loss of the anchor cable disappears.
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between anti-sliding pile, anchor cable, and rock and soil mass was clarified, and the
coupled creep characteristics of the anchor cable and rock and soil mass under the action of
anti-sliding pile were defined. Based on this, a new coupled creep model was proposed,
and a prestress loss calculation model of anchor cable in the pile–anchor structure was
established. The calculation results are consistent with the monitoring data, and the model
has important engineering application value. However, whether it is the instantaneous
prestress loss caused by the anchorage device and the waist beam or the long-term prestress
loss caused by the anchor cable–rock and soil coupled creep, the calculation results of the
model had certain errors. The error of the instantaneous prestress loss calculation model
has the following two aspects. (1) When calculating the deflection of the waist beam in
the instantaneous prestress loss model, it is assumed that the mid-span load of the waist
beam is the implementation tension load. However, in actual engineering, due to the
rebound deformation of the anchorage device and the deflection deformation of the waist
beam, the mid-span tensile load continues to decrease, so the actual deflection of the waist
beam is less than the calculated deflection. The calculation of the instantaneous loss of
prestress tends to be conservative. (2) The deflection calculation model of the waist beam is
simplified to a simply supported beam model. The actual mechanical model of the waist
beam is similar to the continuous beam model. Therefore, the calculated deformation of the
waist beam is greater than the actual deformation, which causes the calculated prestress
loss to be large.

In this paper, the integer derivative method was used to establish the coupled creep
model. However, the fractional derivative method was applied to creep research in other
fields and achieved some results. Therefore, the fractional derivative method can be used
as a new method for the coupled creep study of anchor cable and rock and soil mass in
the follow-up research. In addition, the coupled creep model was established based on
certain assumptions. For example, the anti-slide pile is completely rigid, and the rock and
soil mass is homogeneous and isotropic, which is not the case in actual engineering.

8. Conclusions

In light of the interaction between the waist beam, the anti-slide pile, the anchor
cable, and the rock and soil mass, the anchor cable prestress loss calculation model of the
pile–anchor structure was established, and its accuracy was verified by engineering cases.
In the calculation model, the instantaneous prestress loss caused by the deformations of the
waist beam and the anchor cable was considered, and the long-term prestress loss caused
by the coupled creep of the anchor cable and the rock and soil mass was considered.

According to the characteristics of the pile–anchor structure, a new coupled creep
model of the anchor cable and the rock and soil mass was proposed, and the creep equation
and relaxation equation of the model were deduced. The new coupled creep model is not
only suitable for predicting the prestress loss value of the anchor cable, but can also be
used to predict the time required for the prestress value to reach the stable stage. However,
the coupled creep model cannot be used to describe the time and amplitude of the weak
fluctuation of the long-term prestress of anchor cables caused by precipitation, temperature,
and surrounding dynamic and static loads.

Comparing the prestress loss model calculation results with the monitoring data, it
was found that the maximum calculation error of the instantaneous prestress loss was
7.47%, and the minimum correlation coefficient of the long-term prestress loss was 0.9481.
Although there are certain errors in the model calculation results, it could fully meet the
engineering needs and conform to the actual situation, and the prestress loss calculation
model has significant engineering application value.
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Notation

σa Axial stress loss due to deformation of anchorage device
σb Axial stress loss due to deformation of waist beam
σs Axial stress of free segment of anchor cable
F Prestress of anchor cable
As Equivalent cross-sectional area of free segment of anchor cable
la Sum of rebound value of anchorage device and slip value of clip
lf Length of free segment of anchor cable
lb Deflection deformation of waist beam
lp Distance between adjacent piles
Ib Moment of inertia of waist beam
Ea Elastic modulus of anchor cable
Eb Elastic modulus of waist beam
Es Young’s moduli of spring element of anchor cable in Figure 2
Eh Young’s moduli of spring element of rock and soil mass in Figures 2 and 3
Ek Young’s moduli of another spring element of rock and soil mass in Figures 2 and 3
ηk Coefficient of viscosity of dashpot element of rock and soil mass in Figures 2 and 3
Em Young’s moduli of spring element of anchor cable in Figure 3
ηm coefficient of viscosity of dashpot element of anchor cable in Figure 3
Ef Young’s moduli of spring element of free segment of anchor cable in Figure 5
Ea1 Young’s moduli of spring element of anchorage segment of anchor cable in Figure 5
Ea2 Young’s moduli of another spring element of anchorage segment of anchor cable in Figure 5
Es1 Young’s moduli of spring element of rock and soil mass in Figure 5
Es2 Young’s moduli of another spring element of rock and soil mass in Figure 5
ηa Coefficient of viscosity of the dashpot element of anchorage segment of anchor cable in Figure 5
ηs Coefficient of viscosity of the dashpot element of rock and soil mass in Figure 5
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