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Abstract: It is increasingly difficult to identify complex cyberattacks in a wide range of industries,
such as the Internet of Vehicles (IoV). The IoV is a network of vehicles that consists of sensors,
actuators, network layers, and communication systems between vehicles. Communication plays an
important role as an essential part of the IoV. Vehicles in a network share and deliver information
based on several protocols. Due to wireless communication between vehicles, the whole network
can be sensitive towards cyber-attacks.In these attacks, sensitive information can be shared with a
malicious network or a bogus user, resulting in malicious attacks on the IoV. For the last few years,
detecting attacks in the IoV has been a challenging task. It is becoming increasingly difficult for
traditional Intrusion Detection Systems (IDS) to detect these newer, more sophisticated attacks, which
employ unusual patterns. Attackers disguise themselves as typical users to evade detection. These
problems can be solved using deep learning. Many machine-learning and deep-learning (DL) models
have been implemented to detect malicious attacks; however, feature selection remains a core issue.
Through the use of training empirical data, DL independently defines intrusion features. We built a
DL-based intrusion model that focuses on Denial of Service (DoS) assaults in particular. We used
K-Means clustering for feature scoring and ranking. After extracting the best features for anomaly
detection, we applied a novel model, i.e., an Explainable Neural Network (xNN), to classify attacks
in the CICIDS2019 dataset and UNSW-NB15 dataset separately. The model performed well regarding
the precision, recall, F1 score, and accuracy. Comparatively, it can be seen that our proposed model
xNN performed well after the feature-scoring technique. In dataset 1 (UNSW-NB15), xNN performed
well, with the highest accuracy of 99.7%, while CNN scored 87%, LSTM scored 90%, and the Deep
Neural Network (DNN) scored 92%. xNN achieved the highest accuracy of 99.3% while classifying
attacks in the second dataset (CICIDS2019); the Convolutional Neural Network (CNN) achieved
87%, Long Short-Term Memory (LSTM) achieved 89%, and the DNN achieved 82%. The suggested
solution outperformed the existing systems in terms of the detection and classification accuracy.

Keywords: IoV; xNN; K-MEANS; anomaly detection

MSC: 62T07; 68T05

1. Introduction

The IoV, is an open, convergent network system that encourages collaboration between
people, vehicles, and the environment [1,2]. With the help of vehicular ad hoc networks
(VANET), cloud computing, and multi-agent systems (MAS), this hybrid paradigm plays a
crucial role in developing an intelligent transportation system that is both cooperative and
effective [3]. The presence of an anomaly detection system in the IoV is essential in today’s
uncertain world for the sake of data validity and safety. When it comes to critical safety
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data analysis, the cost of real-time anomaly detection of all data in a data package must be
considered [4].

IoV consists of three layers:

1. Experimental and control layers.
2. Computing layers.
3. Application layers.

In the experimental and control layers, the vehicle is controlled and monitored ac-
cording to sensed data and information from its environment. In the computing layer,
vehicles communicate with the help of WLAN, cellular (4G/5G), and short-range wireless
networks [5]. In the application layer, closed and open service models, or IoVs, are present.
Key components of an IoV system are shown in Figure 1.

Figure 1. Key components and layers of an IoV system.

Unlike the internet’s specific data security preventive techniques, the IoV data security
issues start from internal and external factors [6,7]. The lack of a reliable data verification
mechanism in automobiles, such as the Controller Area Network (CAN) protocol, is one
way that vehicles’ internal safety problems are reflected in existing internet communication
protocols. The open architecture of IoV and widespread use make data breaches more
difficult to defend against cyber-attacks [8]. An autonomous vehicle anomaly detection
system is the subject of this paper. IoVs are unprecedented and vulnerable when backed by
a dynamic and uncertain network [9].

Human safety and property can be jeopardized by malicious assaults and data tamper-
ing as well as system breakdowns [10]. Figure 2 shows the possible security risks in an IoV
system. Vehicle-to-vehicle (V2V) communication is the first risk, where data can be attacked
with an attacker and can cause harm to drivers. At the same time, a second security risk
can be generated in the vehicle-to-infrastructure (V2I) communication scenario.

Numerous concerns have been raised about the privacy and security of intelligent ve-
hicles and intelligent transportation networks due to multiple attack models for intelligent
vehicles [10]. Cyber attackers might jam and spoof the signal of the VANET communi-
cation network, which raises serious security problems [11]. This could cause the entire
V2X system to be impacted by misleading signaling and signal delays to ensure that the
message conveyed is corrupted and does not fulfill its intended aims [12].

The internet or physical access to a linked vehicle’s intelligence system is another
security danger that intelligent automobiles encounter. In 2016, security professionals
Charlie Miller and Chris Valasek, for example, wirelessly hacked the Jeep Cherokee’s intelli-
gence system [13], while the Jeep Cherokee’s driver was still behind the wheel, researchers
Miller and Valasek compromised the entertainment system, steering and brakes, and air
conditioning system to show that the Jeep’s intelligence system had security vulnerabilities.
The Nissan Leaf’s companion app was abused by cybercriminals utilizing the vehicle’s
unique identification number, which is generally displayed on the windows. Hackers were
able to gain control of the HVAC system thanks to this flaw [14].
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Figure 2. Key components and layers of an IoV system.

IoV’s growth has been bolstered by embedded systems, hardware and software en-
hancements, and networking devices. However, there are still several dangers in the IoV,
including security, accuracy, performance, networks, and privacy. Many security and pri-
vacy concerns have arisen due to the rising usage of intelligent services, remote access, and
frequent network modifications. As a result, security vulnerabilities in IoV data transfer
are a significant concern. Therefore, clustering [15,16] and deep-learning algorithms and
approaches [17–19] can be used to handle network and security issues relating to the IoV.
As part of this study, the security standards for IoV applications are outlined to improve
network and user services efficiency. Denial of Service (DoS) assaults are detected using a
novel model, xNN. The motivations of this study are:

• To propose a deep-learning model for detecting an anomaly in a vehicular network.
• To present a comprehensive framework to prepare network traffic data for

IDS development.
• To propose an averaging feature selection method using K-Means clustering to im-

prove the efficiency of the proposed IDS and to perform an analysis of network
attributes and attacks for network monitoring uses.

2. Related Work
2.1. Anomaly Detection Systems

The safety of IoV’s users is a significant concern. In the event of an infiltration
attack on IoV system, hackers could gain direct control of vehicles, resulting in traffic
accidents. Previously, many studies have been conducted on improving security for
vehicular networks. To detect both known and unknown assaults on automotive networks,
a multi-tiered hybrid IDS that integrates IDS with a signature and IDS with an anomaly
was presented by Yang et al. [1]. The suggested system can detect several known assaults
with 99.99% accuracy and 99.88% accuracy on the CICIDS2017 dataset, representing the
CAN-intrusion-dataset’s external vehicular network data.

The suggested system has strong F1 scores of 0.963 and 0.800 on both datasets above
when it comes to zero-day attack detection. Intrusion detection networks, IDS design, and
the limitations and characteristics of an IOV network were explored by Wu et al. [3]. The
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IDS designs for IOV networks were discussed in detail, and a wide range of optimization
targets were investigated and thoroughly analyzed in that study. Vehicular ad hoc networks
(VANETs) provide wireless communication between cars and infrastructures. Connected
vehicles may help intelligent cities and Intelligent Transportation Systems (ITS). VANET’s
primary goals are to reduce travel time and improve driver safety, comfort, and productivity.
VANET is distinct from other ad hoc networks due to its extreme mobility. However, the
lack of centralized infrastructure exposes it to several security flaws.

This poses a serious threat to road traffic safety. CAN is a protocol for reliable and
efficient communication between in-vehicle parts. The CAN bus does not contain source
or destination information; therefore, messages cannot be verified as they transit between
nodes. An attacker can easily insert any message and cause system issues. Alshammari
et al. [4] presented KNN and SVM techniques for grouping and categorizing VANET
intrusions. The offset ratio and time gap between the CAN message request and answer
were examined to detect intrusions.

2.2. Machine-Learning-Based Models

A data-driven IDS was designed by evaluating the link load behavior of the Roadside
Unit (RSU) in the Internet of Things (IoT) against various assaults that cause traffic flow
irregularities. An intrusion targeting RSUs can be detected using a deep-learning archi-
tecture based on a Convolutional Neural Network (CNN). The proposed architecture [5]
uses a standard CNN and a basic error term based on the backpropagation algorithm’s
convergence. In the meantime, the suggested CNN-based deep architecture’s probabilistic
representation provides a theoretical analysis of convergence.

An IoV system must efficiently manage traffic, re-configure, and secure streaming data.
Software-defined networks (SDN) provide network flexibility and control. However, these
can attract hostile agents. The author’s technique uses probabilistic data structures to detect
aberrant IoV behaviour. Count-Min-Sketch is used to find suggestive nodes. Phase II uses
Bloom filter-based control to check questionable nodes’ signatures. Phase 3 uses a Quotient
filter to store risky nodes quickly. To detect super points (malicious hosts connecting to
several destinations), author counted the flows across each switch in phase 4. This was
tested using a computer simulation. The proposed method of Garg et al. [7] outperformed
the current standard in terms of detection ratios and false-positive rates.

In a generic threat model, an attacker can access the CAN bus utilising common access
points. Xiao et al. [8] presented an in-vehicle network anomaly detection framework based
on SIMATT and SECCU symmetry. To obtain state-of-the-art anomaly detection perfor-
mance, SECCU and SIMATT are integrated. The authors want to reduce the computing
overhead in training and detection stages. The SECCU and SIMATT models now have only
one layer of 500 cells each, thus, reducing computing expenses. Numerous SIMATT-SECCU
architectures evaluations have shown near-optimal accuracy and recall rates (with other
traditional algorithms, such as LSTM, GRU, GIDS, RNN, or their derivatives) [20,21].

2.3. Anomaly Detection Based Driving Patterns

The Anomaly Detection Based on the Driver’s Emotional State (EAD) algorithm
was proposed by Ding et al. [9] to achieve the real-time detection of data related to safe
driving in a cooperative vehicular network. A driver’s emotional quantification model was
defined in this research, which was used to characterize the driver’s driving style in the
first place. Second, the data anomaly detection technique was built using the Gaussian
Mixed Model (GMM) based on the emotion quantization model and vehicle driving status
information. Finally, the authors performed extensive experiments on a real data set
(NGSIM) to demonstrate the EAD algorithm’s high performance in combination with the
application scenarios of cooperative vehicular networks.

With the IoV cloud providing a tiny amount of labelled data for a novel assault,
Li et al. [10] suggested two model updating approaches. Cloud-assisted updates from the
IoV can give a tiny quantity of data. Using the local update technique prevents the IoV
cloud from sending labelled data promptly. This research shows that pre-labelled data can
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be leveraged to derive the pseudo label of unlabelled data in new assaults. A vehicle can
update without obtaining labelled data from the IoV cloud. Schemes proposed by Li et al.
improved the detection accuracy by 23% over conventional methods.

Connected vehicle cybersecurity and safety have been addressed using anomaly detection
techniques. Prior research in this field is categorised according to Rajbahadur et al.’s [11]
proposed taxonomy. There are nine main categories and 38 subcategories in the author’s
proposed taxonomy. Researchers found that real-world data is rarely used, and rather most
results are derived from simulations; V2I and in-vehicle communication are not considered
together; proposed techniques seldom compare to a baseline; and the safety of the vehicles
is not given as much attention as cybersecurity.

Maintaining a safe and intelligent transportation system necessitates avoiding routes
that are prone to accidents. With the help of crowd sourcing and historical accident data,
intelligent navigation systems can help drivers avoid dangerous driving conditions (such
as snowy roads and rain-slicked road areas). Using crowd-sourced data, such as images,
sensor readings, and so on, a vehicle cloud can compute such safe routes and react faster
than a centralised service. The security and privacy for each data owner must be ensured in
the intelligent routing. Additionally, crowd sourced data needs to be verified in the vehicle
cloud before being used. Joy et al. [12] investigated ways to ensure that vehicular clouds
are secure, private, and protected against intrusion.

Over the past few years, the complexity and connectivity of today’s automobiles
has steadily increased. There has been a massive increase in the security risks for in-
vehicle networks and the components in the context of this development. In addition to
putting the driver and other road users at risk, these attacks can compromise the vehicle’s
critical safety systems. The detection of anomalies in automobile in-vehicle networks is
discussed by Müter et al. [13]. A set of anomaly detection sensors was introduced based
on the characteristics of typical vehicular networks, such as the CAN. These sensors
allow the detection of attacks during vehicle operation without causing false positives. A
vehicle attack detection system is also described and discussed in terms of its design and
application criteria.

2.4. Distributed Anomaly Detection System

Negi et al. [14] proposed a framework for a distributed anomaly detection system that
incorporates an online new data selection algorithm that directs retraining and modifies
the model parameters as needed for self-driving and connected cars. Offline training of the
LSTM model over many machines in a distributed manner using all available data is part
of the framework’s implementation. Anomaly detection occurs at the vehicle level using
the trained parameters and is then sent to the individual vehicles. A more complex LSTM
anomaly detection model is used, and the proposed distributed framework’s accuracy in
detecting anomalies is improved using the MXnet framework, which is used to test the
framework’s performance.

Sakiyama et al. [22] offered filter banks defined by a sum of sinusoidal waves in
the graph spectral domain. These filter banks have low approximation errors even when
using a lower-order shifted Chebyshev polynomial approximation. Their parameters can
be efficiently obtained from any real-valued linear phase finite impulse response filter
banks regularly. The author’s proposed frequency-domain filter bank design has the
same characteristics as a classical filter bank. The approximation precision determines
the approximation orders. Many spectral graph wavelets and filter banks exist to test the
author’s techniques.

For autonomous and connected automobiles, securing vehicles is a top priority in light
of the Jeep Cherokee incident of 2015, in which the vehicle was illegally controlled remotely
by spoofing messages that were placed on the public mobile network. Security solutions for
each unknown cyberattack involve the timely identification of attacks that occur throughout
time in the vehicles’ lifespan. Sporking communications at the central gateway can be
detected using IDS as described by Hamada et al. [23]. Using communications from a real-
world in-vehicle network, the author also reported on the system’s detection performance.
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2.5. Ad Hoc Vehicle Network Intrusion Detection System

Ad hoc vehicle networks are evolving into the Internet of Automobiles as the Internet
of Things (IoT) takes hold of the IoV. The IoV can attract a large number of businesses and
researchers due to the rapid advancement of computing and communication technologies.
Using an abstract model of the IoTs, Yang et al. [24] provided an overview of the technolo-
gies needed to build the IoV, examined many IoV-related applications, and provided some
open research challenges and descriptions of necessary future research in the IoV field.

Future Automated and Connected Vehicles (CAVs), or ITS, will form a highly inter-
connected network. City traffic flows can only be coordinated if vehicles are connected via
the Internet of Vehicles (herein the Internet of CAVs). It will be possible to monitor and
regulate CAVs using anonymized CAV mobility data. To ensure safe and secure operations,
the early detection of anomalies is crucial. Wang et al. [25] proposed an unsupervised
learning technique based on a deep autoencoder to detect CAV self-reported location ab-
normalities. Quantitative investigations on simulated datasets show that the proposed
approach worked well in detecting self-reported location anomalies.

As real-time anomaly detection on complete data packages is expensive, Ding et al. [26]
concentrated on crucial safety data analysis. The traffic cellular automata model was used
for preprocessing to obtain optimal anomaly detection with minimal computer resources.
An algorithm can discover irregularities in data related to safe driving in real time and
online by modelling the driver’s driving style. Starting with a driving style quantization
model that describes a driver’s driving style as a driving coefficient, then a Gaussian
mixture model is used to detect data anomalies based on the driving style quantization and
vehicle driving state (GMM). Finally, this study evaluated the suggested ADD algorithm’s
performance in IoV applications using real and simulated data.

In our study, authors summarized the research on anomaly detection. Authors cate-
gorised existing techniques into groups based on their core approach. Chandola et al. [27]
created key assumptions for each category to distinguish normal from deviant behaviour.
A few assumptions can be used to recommend testing a technique’s efficacy in a specific
domain. Using a basic anomaly detection technique, the authors showed how the existing
techniques are all variations of the same technique. This template makes categorising and
remembering techniques in each area easier. Each technique’s pros and cons are listed
separately. The authors also looked at the strategies’ computing complexity, which is
important in real-world applications. This study aims to better understand how strategies
developed for one field can be applied to other fields. Authors hope the survey’s results
are useful.

The In-Vehicle Anomaly Detection Engine is a machine-learning-based intrusion
detection technology developed by Araujo et al. [28]. The system monitors vehicle mobility
data using Cooperative Awareness Messages (CAMs), which are delivered between cars
and infrastructure via V2V and V2I networks (such as position, speed, and direction).
The IVADE Lane Keeping Assistance system uses an ECU for signal measurement and
control computations on a CAN bus (LKAS). To implement machine learning in IVADE,
you need CAN message fields, automotive domain-specific knowledge about dynamic
system behaviour, and decision trees. The simulation results suggest that IVADE may
detect irregularities in in-vehicle applications, therefore, aiding safety functions.

2.6. In-Vehicle Network Intrusion Detection

A remote wireless attack on an in-vehicle network is possible with 5G and the Internet
of Vehicles. Anomaly detection systems can be effective as a first line of defence against
security threats. Wang et al. [29] proposed an anomaly detection system that leverages hier-
archical temporal memory (HTM) to secure a vehicle controller area network bus. The HTM
model may predict real-time flow data based on prior learning. The forecast evaluator’s
anomalous scoring algorithm was improved with manually created field modification and
replay attacks. The results revealed that the distributed HTM anomaly detection system
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outperformed recurrent neural networks and hidden Markov model detection systems
regarding the RCC score, precision, and recall.

Khalastchi et al. [30] described an online anomaly detection approach for robots
that was light-weight and capable of considering a large number of sensors and internal
measures with high precision. By selecting online correlated data, the authors presented a
robot-specific version of the well-known Mahalanobis distance. The authors also illustrated
how it may be applied to large dimensions. The authors tested these contributions using
commercial Unmanned Aerial Vehicles (UAVs), a vacuum-cleaning robot, and a high-
fidelity flight simulator. According to their findings, the Online Mahalanobis distance was
superior to previous methods.

For example, autos are CPSs due to their unique sensors, ECUs, and actuators. Ex-
ternal connectivity increases the attack surface, affecting those inside vehicles and those
nearby. The attack surface has grown due to complex systems built on top of older, less
secure common bus frameworks that lack basic authentication methods. In order to make
such systems safer, authors treat this as a data analytic challenge. Narayanan et al. [31]
employed a Hidden Markov Model to detect dangerous behaviour and send alerts when a
vehicle is in motion. To demonstrate the techniques’ ability to detect anomalies in vehicles,
the authors tested them with single and dual parameters. Moreover, this technique worked
on both new and old cars.

2.7. Feature Based Intrusion Detection System

Garg et al. [32] proposed an anomaly detection system with three stages: (a) feature
selection, (b) SVM parameter optimization, and (c) traffic classification. The first two stages
are expressed using the multi-objective optimization problem. The “C-ABC” coupling
increases the optimizer’s local search capabilities and speed. The final stage of data
classification uses SVM with updated parameters. OMNET++ and SUMO were used to
evaluate the proposed model extensively. The detection rate, accuracy, and false positive
rate show the effectiveness.

Marchetti et al. [33] examined information-theoretic anomaly detection methods for
current automotive networks. This study focused on entropy-based anomaly detectors.
The authors simulated in-car network assaults by inserting bogus CAN messages into real
data from a modern licenced vehicle. An experiment found that entropy anomaly detection
applied to all CAN messages could detect a large number of false CAN signals. Forging
CAN signals was only detectable via entropy-based anomaly detection, which requires
many different anomaly detectors for each class of CAN message.

In order to accurately estimate a vehicle’s location and speed, the AEKF must addition-
ally take into account the situation of the traffic surrounding the vehicle. The car-following
model takes into account a communication time delay factor to improve its suitability for
real-world applications. Anomaly detection in [34] suggested that this method is superior
to that of the AEKF with the typical 2-detector. Increasing the time delay had a negative
effect on the overall detection performance.

2.8. Connected and Autonomous Vehicles

Connected and autonomous vehicles (CAV) are expected to revolutionise the auto-
mobile industry. Autonomous decision-making systems process data from external and
on-board sensors. Signal sabotage, hardware degradation, software errors, power instabil-
ity, and cyberattacks are all possible with CAV. Preventing these potentially fatal anomalies
requires real-time detection [35] and identification. Oucheikh et al. [36] proposed a hi-
erarchical model to reliably categorise each signal sequence in real-time using an LSTM
auto-encoder.

The effect of model parameter modification on anomaly detection and the channel
boosting benefits were examined in three cases. The model was 95.5% precise. The below
Table 1 shows the comparative analysis of previous studies conducted to detect anomalies
in the IoV. In the table below, it can be seen that multiple techniques have been used
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previously, i.e., Hybrid Models, Random Forests, Gaussian Mixture Models, MXNet, HTM
Models, Support Vector Machines and various other machine and deep-learning models.

Table 1. Comparative analysis of previous studies.

Reference Technique Dataset Accuracy

Yang et al. [1] Hybrid Models CICIDS2017 96.3%
Wu et al. [3] Random Forests CICIDS2017 95%

Ding et al. [9] Gaussian Mixture Model CICIDS2017 97%
Negi et al. [14] MXNet Offline Dataset 98.5%
Wang et al. [29] HTM Model UNSW-NB15 97.45%
Garg et al. [32] Support Vector Machine CICIDS2019 91%

2.9. Research Gap

The capacity of anomaly detection systems to detect unexpected assaults has garnered
a great deal of interest, and this has led to its widespread use in fields, including artifi-
cial detection, pattern recognition, and machine learning. Traditional machine-learning
techniques commonly employed in IDS rely on time-consuming feature extraction and
feature selection processes. Additionally, the classification algorithm currently in use uses
shallow machine learning. In a real-world network application, shallow machine-learning
techniques can analyse high-dimensional inputs, resulting in a lower detection rate.

Last but not least, the data that IDS systems must deal with mostly consist of network
traffic or host call sequences, and there are significant distinctions between the two. Host
call sequences are more like a sequence problem than network traffic data. Although
earlier methods are generally geared toward a specific case, the detection algorithms are
not adaptive, especially to hybrid data source detection systems or advanced detection
systems. Consequently, the previous detection algorithms are ineffective. For the purpose
of feature selection, we used K-MEANS clustering to extract and select the best features.
For classification of attack, we used an Explainable Neural Network (xNN).

The main research gaps are:

• For multi-class classification problems, to accurately identify or detect all the classes
of data, classes may be imbalanced, and we tackle this problem.

• Sometimes, we deal with high dimensional data and features are sparse, and thus
efficient feature selection is the point of concern.

• Detection and prediction are efficient in deep learning than traditional machine-
learning techniques.

2.10. Contributions

In this article, a xNN model for anomaly detection in the IoV is proposed for the
classification of attacks in two different data sets separately. Comparing with existing
comparative literature, the commitments of this paper are bi-fold.

The contributions of this study are summarized as:

1. To the best of our knowledge, xNN has never been implemented in an IDS specially
in the IoV.

2. K-Means-based feature scoring and ranking also contributed in this study to the best
feature selection and ranking techniques based on weights.

The remainder of this paper is arranged as follows: Section 3 depicts the proposed
xNN for anomaly detection in the IoV, in Section 4, the training method of xNN for IoV,
and Sections 5 and 6 present our results and conclusions, respectively.

3. Proposed xNN for Anomaly Detection in the IoV

Data with sequential features is difficult for standard neural networks to deal with.
The system call order is followed by host calls in the UNSWNB and CICIDS data [37,38].
An unusual behaviour may contain call sequence and sub sequences that are normal. As of



Mathematics 2022, 10, 1267 9 of 23

this, the sequential properties of the system call must be taken into account while doing
intrusion detection in the IoV. This means that the input data classification must take into
account the current data as well as prior data and its shifted and scaled attributes. Thus, for
the detection of intrusion designed to take the input instances with normal and abnormal
sequences, we shift and scale the K-Means-clustered data features in order to meet the
above requirements for the xNN. xNN works on the Additive Index Model as:

f (x) = g1βT
1 x + g2βT

2 x + [. . . ] + gKβT
Kx (1)

f (x) is the function for classification of output variable, i.e., attacks. γ is the input feature.
All of the features are arranged according to the K-based value from K-Means clustering,
while x is the value of each instance from the feature. T is the scaling coefficient, which is
directly related to β. From Equation (1), we added scaling parameters in the neural network,
while in Equation (2), we added a shifting parameter of gamma with the coefficient of
shifting, i.e., σ, and h is the hyper-parameter transfer function for over and under-fitting of
the model. The alternative formulation for xNN is:

f (x) = σ + γ1h1βT
1 x + γ2h2βT

2 x + [. . . ] + γKhKβT
Kx (2)

When data is fed into the network, it is multiplied by the weights assigned to each
number before being sent to the second layer of neurons as shown in Figure 3. The
sigmoid activation function is constructed by summing the weighted sums of the activation
functions of each of the neurons. Now, the weights of the connections between layers two
and three are divided by these values. The process is then repeated until the final layer.

The architectural diagram of xNN can be seen below:

Figure 3. The proposed architecture of xNN.

If we let

• al
j denote the activation of the jth neuron in layer l;

• wl
j,k denote the value of the weight connecting the jth neuron in layer l and the kth

neuron in layer l − 1;
• bl

j denote the bias of the jth neuron in layer l; and

• nl denote the number of neurons in layer l,
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then, we can define a universal equation to find the activation of any neuron in an Explain-
able Neural Network (xNN)

al
j = σ

([
nl−1

∑
k=1

wl
j,kal−1

k

]
+ bl

j

)
(3)

A weighted directed graph can be used to conceptualise xNN, in which neurons are
nodes and directed edges with weights connect the nodes. Information from the outside
world is encoded as vectors and received by the neural network model. For d inputs, the
notation x(d) is used to designate these inputs.

The weights of each input are multiplied. The neural network relies on weights to help
it solve a problem. Weight is typically used to represent the strength of the connections
between neurons in a neural network.

The computing unit sums together all of the inputs that have been weighted (artificial
neuron). In the event that the weighted total is zero, a bias is added to make the result
non-zero or to increase the system’s responsiveness. Weight and input are both equal to “1”
in bias.

Any number from 0 to infinity can be added to the sum. The threshold value is used
to limit the response to the desired value. An activation function f(x) is used to move the
sum ahead.

To obtain the desired result, the activation function is set to the transfer function. The
activation function might be linear or nonlinear.

4. Training Method of xNN for IoV

This section explains a detailed description of the dataset, methodology, and per-
formance metrics. We used two recent datasets of autonomous vehicular networks, i.e.,
UNSW-NB15 and CICIDS2017, which contain a mix of common and modern attacks. The
complete flow of the current methodology is shown in Figure 4 below.

Figure 4. The proposed workflow.
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4.1. Dataset Description
4.1.1. UNSW-NB15

Network intrusions are tracked in the UNSW-NB15 dataset. DoS, worms, Backdoors,
and Fuzzers are only some of the nine various types of assaults included in this malicious
software. Packets from the network are included in the dataset. There are 175,341 records
in the training set and 82,332 records in the testing set of attack and normal records. The
following table shows the dataset attributes, i.e., the ID, duration, protocols, state, flags,
source and destination bytes, and packets. Attack is the output variable with multiple
classes, i.e., DDoS, Backdoor attacks, Worms, and others. The description of UNSW-NB15
dataset is given below in Table 2:

The figure below shows the repartition and total counts of protocols, i.e., HTTP, FTP,
FTP Data, SMTP, Pop3, DNS, SNMP, SSL, DHCP, IRC, Radius, and SSH.

Figure 5 shows the number of total categories of attacks present in the UNSW-NB15
dataset, i.e., Generic, Shell Code, DOS, Reconnaissance, Backdoor, Exploits, Analysis,
Fuzzers, and Worms, while total 3500 instances were considered as Normal.

Figure 5. Repartition of services in UNSW-NB15.

4.1.2. CICIDS2019

The Table 3 shows the second dataset attributes used in this study from CICIDS2019.
There are numbers of malicious attacks that can be found in vehicular networks in this
dataset, which are related to real-world anomalies. A time stamp, source and destination
IPs, source and destination ports, protocols, and attacks are included in the results of
the network traffic analysis using Cyclometers. The extracted feature definition is also
accessible. The data collection period lasted 5 days, from 9 a.m. on Monday, 3 July 2019,
to 5 p.m. on Friday, 7 July 2019. Monday was a regular day with light traffic. Infiltration,
Botnet and DDoS assaults were implemented Tuesday, Wednesday, Thursday, and Friday
mornings and afternoons.

Figure 5 is showing repartition of services in UNSW-NB15 and Figure 6 is exhibting
repartition of attack types. Figure 7 below shows the distribution of target variable, i.e.,
Attacks.

There has been a long-term interest in anomaly detection in several research com-
munities. In some cases, advanced approaches are still needed to deal with complicated
problems and obstacles. An important new path in anomaly detection has developed
in recent years: deep-learning-enabled anomaly detection (sometimes known as “deep
anomaly detection”). Using these two recent datasets, the suggested method is tested. The
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data sets are preprocessed so that deep-learning techniques may be applied to them. The
homogeneity measure (k-means clustering) is a strategy for selecting relevant features from
both sets of data in an unsupervised manner to improve the performance of classifiers. The
performance of deep-learning models can be estimated and improved via five-fold cross
validation. We used Explainable Neural Network (xNN) to classify attacks.

Table 2. UNSW-NB15 dataset description.

Feature/Attribute Description Value Variable Type

ID Vehicle ID Any positive integer Input Variable

Duration Total time at which the vehicle is
connected to network Hours/minutes/seconds Input Variable

Proto
Basic data-transmission mecha-
nisms are included in communi-
cation protocols.

TCP/IP, HTTP Input Variable

State State of Vehicle (Connectivity) 0 (disconnected) or 1 (connected) Input Variable

Spkts Source Packets (Sent to destina-
tion) Any positive integer Input Variable

Dpkts Destination Packets (Received at
destination) Any positive integer Input Variable

Sbytes Source Bytes (Sent from Source) Any positive integer Input Variable

Dbytes Destination Bytes (Received from
Source) Any positive integer Input Variable

AttackCat Category of an Attack
There are a total of nine attacks
in UNSW-NB15, i.e., DDoS, Back-
doors, Worms, and others.

Output/Target Variable
with Nine Classes

Figure 6. Repartition of attack types.
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Figure 7. Target variable distribution in CICIDS2019.

Table 3. CICIDS2019 dataset description.

Feature/Attribute Description Value Variable Type

ID Vehicle ID Any positive integer Input Variable

Flow Duration Total time at which the vehicle is
connected to network Hours/ minutes/ seconds Input Variable

Destination Ports Counts of data-transmission ports 2.0, 3.0 Input Variable

Total Forwarded Packets Source Packets (Sent
to destination) 0 (disconnected) or 1 (connected) Input Variable

Total Backward Packets Destination Packets (Received at
destination) Any positive integer Input Variable

Length of Packets Length of Forwarded and Back-
ward Packets Any positive integer Input Variable

Sbytes Source Bytes (Sent from Source) Any positive integer Input Variable

Dbytes Destination Bytes (Received
from Source) Any positive integer Input Variable

Attacks Category of an Attack
There are two total anomalies,
i.e., Benign and Botnet in the
CICIDS2019 dataset

Output/Target
Variable with
2 Classes

4.2. Data Preprocessing

The dataset is preprocessed to make it more appropriate for a neural network classifier.

4.2.1. Removal of Socket Information

For impartial identification, it is necessary to delete the IP address of the source and
destination hosts in the network from the original dataset, since this information may result
in overfitting training toward this socket information. Rather than relying on the socket
information, the classifier should be taught by the packet’s characteristics, so that any host
with similar packet information will be excluded.
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4.2.2. Remove White Spaces

When creating multi-class labels, white spaces may be included. As the actual value
differs from the labels of other tuples in the same class, these white spaces result in
separate classes.

4.2.3. Label Encoding

A string value is used to label the multi-class labels in the dataset, which include
the names of attacks. In order to teach the classifier whose class each tuple belongs to, it
is necessary to encode these values numerically. The multi-class labels are used for this
operation, as the binary labels are already in the zero-one formation for this operation.

4.2.4. Data Normalization

The dataset contains a wide variety of numerical values, which presents a challenge
to the classifier during training. This means that the minimum and maximum values for
each characteristic should be set to zero and one, respectively. This gives the classifier more
uniform values while still maintaining the relevancy of each attribute’s values.

4.2.5. Removal of Null and Missing Values

The CICIDS2017 dataset contains 2867 tuples as missing and infinity values. This
has been addressed in two ways, resulting in two datasets. In the second dataset, infinite
values are replaced by maximum values, and missing values are replaced by averages.
The proposed method was tested on both datasets. Only the attack information packets
were used to evaluate the proposed approach with the data packets representing normal
network traffic from both sets being ignored.

4.2.6. Feature Ranking

Preprocessed datasets are fed into the K-Means-clustering algorithm, which uses each
attribute individually to rank them in terms of importance before applying it to cluster the
entire dataset. For multi-class classification, k = the number of attacks in datasets, which
means that the data point of feature is clustered into two groups: normal and anomalous. To
rank the attributes, the clusters’ homogeneity score is computed, with higher homogeneity
denoting higher class similarity across the objects inside each cluster. Having a high score
indicates that this attribute is important in the classification, while a low score indicates
that this attribute is not important. For calculating the highest score similarity between the
features, we first calculated the distance and then created an objective function

distance(Cj, p) =
√
(

d

∑
i
= 1[(C(ji) − pi)]

2) (4)

From Equation (4), we computed the distance of the jth cluster from c centroid to check
the jth feature’s similarity at instance i with the data point p at instance i. After this, we
created an objective function to minimize the distance between the cluster centroid and to
check the homogeneity between selected features.

Obj(Cj) =
p

∑
m
[distance(Cj, p)]2 (5)

For feature ranking, we derived the objective function for the jth features in Equation (5).
This will calculate the minimal distance of Center C from p taking m as the starting point to
rank the best features.

5. Results

This section shows the implementation and results of the xNN model on the selected
datasets. We applied the xNN model on both datasets separately. Both datasets are publicly
available on [37,38]. In experimental setup, we used python as a language source and a
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GPU-based system consisting of Jupyter as a compiler with more than 3.2 GHz processor,
which is the minimal simulation requirement for the experimental setup. In the first phase,
we evaluated our model based on the accuracy, precision, recall, and F1 score for the
classification of nine attacks in UNSW-NB15 dataset. Furthermore, in the second phase, the
model was evaluated on the CICIDS2019 dataset.

5.1. Performance of xNN on UNSW-NB15

Figure 8 shows the performance of the xNN model on UNSW-NB15 after applying
the K-Means-clustering-based feature scoring method. In the figure, the y axis shows the
percentage of accuracy, and the x axis shows the accuracy, precision, recall, and F1 score of
xNN. It shows that the model is 99.7% accurate in classifying the attacks in the IoV-based
dataset.

Figure 8. The performance of xNN on UNSW-NB15.

It can be seen from Figure 9 that, without feature scoring, the accuracy of xNN is
91.5%, which is less than the accuracy with feature scoring. In the figure, the y axis shows
the percentage of accuracy, and the x axis shows the accuracy, precision, recall, and F1 score
of xNN.

Figure 10 shows the confusion matrix with feature scoring, while Figure 11 shows the
confusion matrix without feature scoring. It can be seen from Figure 10 that the true positive
rate with feature scoring is much higher than without the feature scoring confusion matrix.

We also applied a Convolutional Neural Network and Long Short-Term Memory for
the classification of attacks in order to compare our model with previous state-of-the-art
models. xNN demonstrated promising accuracy and was the highest among the other
deep-learning models. The comparison of deep-learning models for the classification of
attacks in UNSW-NB15 is shown in Figure 12. In the figure, the y axis shows the percentage
of accuracy, and the x axis shows the model’s accuracy histogram.

5.2. Performance of xNN on CICIDS2019

Figure 13 shows the performance of the xNN model on CICIDS2019 after applying the
K-Means-clustering-based feature scoring method. This shows that the model was 99.3%
accurate in classifying the attacks in the IoV-based dataset. In the Figures 13 and 14, the y
axis shows the percentage of accuracy, and x axis shows the model’s accuracy histogram.
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Figure 9. The performance of xNN on UNSW-NB15 without feature scoring.

Figure 10. Confusion matrix of xNN for UNSW-NB15 with feature scoring.

It can be seen from Figure 13 that, without feature scoring, the accuracy of xNN is
87.3%, which is less than the accuracy with feature scoring. We also applied a Convolutional
Neural Network and Long Short-Term Memory for the classification of attacks in order to
compare our model with previous state-of-the-art models. xNN demonstrated promising
accuracy and was the highest among the other deep-learning models. The comparison of
deep-learning models for the classification of attacks in CICIDS2019 is shown in the figure
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below. In the figure, the y axis shows the percentage of accuracy, and the x axis shows the
model’s accuracy histogram.

Figure 11. Confusion matrix of xNN for UNSW-NB15 without feature scoring.

Figure 12. Comparison of deep-learning models for the classification of attacks in UNSW-NB15.

Comparatively, it can be seen that our proposed model xNN performed well after
the feature-scoring technique. In Dataset 1 (UNSW-NB15), xNN performed well with the
highest accuracy of 99.7%, while CNN scored 87%, LSTM scored 90%, and DNN scored
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92%, while in the classification of attacks in the second dataset (CICIDS2019) xNN scored
the highest accuracy of 99.3%, CNN scored 87%, LSTM scored 89%, and DNN scored 82%.
Tables 4 and 5 shows the comparative analysis of deep-learning models proposed in this
study to justify that xNN scored the highest accuracy and was a persistent model for the
detection of intrusions on both datasets. Figures 15–17 show confusion matrix of xNN
for CICIDS2019 with feature scoring, Confusion matrix of xNN for CICIDS2019 without
feature scoring and comparison of the deep-learning model on the CICIDS2019 dataset,
respectively.

Figure 13. The performance of xNN on CICIDS2019.

Figure 14. The performance of xNN on CICIDS2019 without feature scoring.

We compared our model with previous research. In a comparative analysis, we found
that our proposed model scored the highest accuracy with respect to some of the recent
previous research techniques.
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Figure 15. Confusion matrix of xNN for CICIDS2019 with feature scoring.

Figure 16. Confusion matrix of xNN for CICIDS2019 without feature scoring.
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Figure 17. Comparison of the deep-learning model on the CICIDS2019 dataset.

Table 4. Comparative analysis of the deep-learning models.

Model Feature Scoring Accuracy Dataset

xNN Default 87.3 % CICIDS 2019
xNN K-MEANS 99.3% CICIDS 2019
xNN Default 91.5% UNSW-NB15
xNN K-MEANS 99.7% UNSW-NB15
LSTM Default 89.7% CICIDS 2019
LSTM K-MEANS 90% CICIDS 2019
LSTM Default 78.65% UNSW-NB15
LSTM K-MEANS 83% UNSW-NB15
CNN Default 85.4% CICIDS 2019
CNN K-MEANS 87% CICIDS 2019
CNN Default 79.67% UNSW-NB15
CNN K-MEANS 84% UNSW-NB15
DNN Default 83.2% CICIDS 2019
DNN K-MEANS 92% CICIDS 2019
DNN Default 85% UNSW-NB15
DNN K-MEANS 87.89% UNSW-NB15

Table 5. Comparative analysis of previous studies.

Reference Technique Dataset Accuracy

Yang et al. [1] Hybrid Models CICIDS2017 96.3%
Wu et al. [3] Random Forests CICIDS2017 95%
Ding et al. [9] Gaussian Mixture Model CICIDS2017 97%
Negi et al. [14] MXNet Offline Dataset 98.5%
Wang et al. [29] HTM Model UNSW-NB15 97.45%
Garg et al. [32] Support Vector Machine CICIDS2019 91%

Our proposed Explainable Neural
Network (xNN)

CICIDS2019
UNSWNB15

99.3% and 99.7%, re-
spectively
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6. Conclusions

One of the most difficult challenges is in developing systems that can detect CAN
message attacks as early as possible. Vehicle networks can be protected from cyber threats
through the use of artificial-intelligence-based technology. When an intruder attempts to en-
ter the autonomous vehicle, deep learning safeguards it. The CICIDS2019 and UNSW-NB15
security systems were utilized to evaluate our proposed security system. Preprocessing is
the process of converting category data into numerical data. K-Means clustering was used
to determine which features were the most important.

Detecting attack types in this dataset was accomplished through the use of an Ex-
plainable Neural Network (xNN). The precision, recall, F1 score, and accuracy were all
high for the model, which were encouraging results. Following the application of the
feature-scoring technique, it can be seen that our suggested model xNN outperformed
the competition. In Dataset 1 (UNSW-NB15), xNN outperformed the competition, scoring
99.7% accuracy, while CNN scored 87% accuracy, LSTM scored 90% accuracy, and DNN
scored 92% accuracy. In the classification of attacks in the second dataset (CICIDS2019),
xNN achieved the highest accuracy of 99.3%, followed by CNN with 87% accuracy, LSTM
with 89% accuracy, and DNN with 82% accuracy.

With regard to accuracy in detection and classification, as well as real-time CAN
bus security, the proposed approach outperformed the existing solutions in the study.
Furthermore, this work can be extended to real-world scenarios and real-time controlled
vehicles as well as on autonomous systems to protect against malicious attacks. The
data package in the protocol analysed with the maximum values by applying the high-
performance xNN model would be preferable for use in the future to reduce and eliminate
security attacks, such as for the IoV.
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CICIDS Canadian Institute for Obscurity Intrusion Detection System
CNN Convolutional Neural Network
DT Decision Trees
DFEL Deep Feature Embedding Learning
DL Deep Learning
DeeRaI Deep Radial Intelligence
DoS Denial of Service
DNS Domain Name System
FTP File Transfer Protocol
GNB Gaussian Naive Bayes
GBT Gradient Boosting Tree
HTTP Hyper Text Transfer Protocol
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IoT Internet of Things
IP Internet Protocol
IG Information Gain
ID Intrusion Detection
IDS Intrusion Detection System
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
ML Machine Learning
MQTT Message Queuing Telemetry Transport
MADAMID Mining Audit Data for ID Automated Models
MLP Multi-Layer Perceptron
NB Naive Bayes
NIDS Network Intrusion Detection System
NIMS Network Information Management and Security Group
PCA Principle Component Analysis
RBF Radial Basis Function
RF Random Forest
R2L Remote to Local
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SOM Self-Organizing Maps
SNN Shared Nearest Neighbor
SVM Support Vector Machine
TCP Transmission Control Protocol
U2R User to Root
UNSW University of New South Wales
VANETS Vehicular Ad hoc Networks
xNN Explainable Neural Network
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