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Abstract: Technologies have driven big data collection across many fields, such as genomics and
business intelligence. This results in a significant increase in variables and data points (observations)
collected and stored. Although this presents opportunities to better model the relationship between
predictors and the response variables, this also causes serious problems during data analysis, one of
which is the multicollinearity problem. The two main approaches used to mitigate multicollinearity
are variable selection methods and modified estimator methods. However, variable selection methods
may negate efforts to collect more data as new data may eventually be dropped from modeling,
while recent studies suggest that optimization approaches via machine learning handle data with
multicollinearity better than statistical estimators. Therefore, this study details the chronological
developments to mitigate the effects of multicollinearity and up-to-date recommendations to better
mitigate multicollinearity.

Keywords: multicollinearity; variable selection methods; optimization approaches; neural network;
machine learning

MSC: 62M10

1. Introduction

Multicollinearity is a phenomenon that can occur when running a multiple regression
model. In this age of big data, multicollinearity can also be present in the field of artifi-
cial intelligence and machine learning. There is a lack of understanding of the different
methods for mitigating the effects of multicollinearity among people in domains outside of
statistics [1]. This paper will discuss the development of the methods chronologically and
compile the latest methods.

Forecasting in finance deals with a high number of variables, such as macroeconomic
data, microeconomic data, earnings reports, and technical indicators. Multicollinearity is
a common problem in finance as the dependencies between variables can vary over time
and change due to economic events. Past literature tried to remove collinear data to reduce
the effects of multicollinearity. This is done through stepwise regression that eventually
arrives at a model with a low root mean square error (RMSE). The computational difficulty
of this has led to many selection criteria to be developed to choose models. A breakthrough
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method to solve multicollinearity came in the form of ridge regression. Instead of selecting
variables, all the variables are used. The method modifies the estimator by adding a penalty
term to the ordinary least square (OLS) estimators. The goal is to reduce variance by
introducing bias. Papers published since then have built on these two ideas to work on
different functional forms and improve performance. For example, the author of [2] has
provided a review of Poisson regression. Moreover, recent developments in computing
power introduced mathematical optimization to variable selection.

The aim of this paper is to review and propose methods to solve multicollinearity. The
methods can be decided depending on the purpose of the regression, whether forecast-
ing or analysis. Recent developments in machine learning and optimization have shown
better results than conventional statistical methods. The pros and cons of the methods
will be discussed in later sections. The paper is organized as follows. The multicollinear-
ity phenomenon is explained in Section 2, including its effects and ways to measure it.
Section 3 discusses the methods to reduce the effects of multicollinearity, including variable
selection, modified estimators, and machine learning methods. Section 4 presents the
concluding remarks.

2. What Is Multicollinearity?

Multicollinearity is a condition where there is an approximately linear relationship
between two or more independent variables. This is a multiple linear regression model:

y=Bo+x1B1+...+xpp,+e 1)

where y is the dependent variable, x1, ... ,x, represent the explanatory variable, 3 is the
constant term, 34, ..., Bp are the coefficients of the explanatory variable, and ¢ is the error
term. The error term is the difference between the observed and the estimated values. It is
normally distributed with a mean of 0 and variance o. In the presence of multicollinearity,
x1 may be linearly dependent on another explanatory variable such as x,. The resulting
model would be unreliable. The effects and problems are discussed in the following section.

For example, when using technical indicators in stock analysis. There will be a
multicollinearity issue if the indicators measure the same type of information such as
momentum [3]. The different indicators are all derived from the same series of closing
prices in such a case. In the context of the stock market, data are handled differently from
time-series data in other fields. This is due to the following few key reasons, according
to The authors of [4]. The goal of compiling stock market data is to maximize profit and
not reduce prediction error. Stock market data are highly time-variant, which means the
output depends on the moment of the input. They are also dependent on indeterminate
events. This means that the event that causes the response is not fixed.

2.1. Effects of Multicollinearity

According to [5], there are four main symptoms of multicollinearity. The first one is
a large standard error of the coefficients. Next, the sign of a variable coefficient can be
different from the theory. The explanation of the variable’s effect on the output will be
wrong or misleading. In addition, there will be a high correlation between the predictor
variable and outcome, but the corresponding parameter is not statistically significant. The
last symptom is that some correlation coefficients among predictor variables are large in
relation to the explanatory power or R-Squared of the overall equation.

These are merely symptoms and do not guarantee the presence of multicollinearity.
There are two major problems of multicollinearity. Estimates are unstable due to the
interdependence of the variables and standard errors if the regression coefficient is large.
This makes the estimates unreliable and therefore decreases their precision [6]. As two
or more variables have linear relationships, the marginal impact of a variable is hard to
measure. The model will have poor generalization ability and overfit the data. This means
that it will perform poorly on data it has never seen.
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2.2. Ways to Measure Multicollinearity

Previous literature found that there are four measurements of multicollinearity. The
first detector of multicollinearity is a pairwise correlation using a correlation matrix. Ac-
cording to [7], a bivariate correlation of 0.8 or 0.9 is commonly used as a cut-off to indicate
a high correlation between two regressors. However, the problem with this method is that
the correlations do not necessarily mean multicollinearity as they are not the same. The
most widely used indicator of multicollinearity is the Variation Inflation Factor (VIF) or
Tolerance (TOL) [8]. The VIF is defined as

VIFj= ——F—, ()

where R]2 is the coefficient of determination for the regression of x; on the remaining vari-
ables. The VIF is the reciprocal of TOL. There is no formal value of VIF to determine the pres-
ence of multicollinearity, but a value of 10 and above often indicates multicollinearity [9].

Another method of measuring multicollinearity is using eigenvalues, which is from the
Principal Component Approach (PCA). A smaller eigenvalue indicates a larger probability
of the presence of multicollinearity. The fourth method is the Condition Index (CI). It
is based on the eigenvalue. CI is the square root of the ratio between the maximum
eigenvalue and each eigenvalue. According to [10], a CI of between 10 to 30 indicates
moderate multicollinearity, while above 30 indicates severe multicollinearity.

VIF and CI 2 are commonly used treatments to determine the severity of the dataset
before performing the methods to solve multicollinearity. It is important to note that
the effectiveness of the two treatments in reducing multicollinearity is usually deter-
mined by comparing the root mean square error or out-sample forecast before and after
treatments [11].

3. Reducing the Effects of Multicollinearity

Collecting more data is one of the simplest solutions to reduce the effects of multi-
collinearity because collinearity is more of a data problem than model specification problem.
However, this is not always feasible, especially when research is undertaken using conve-
nience sampling [1]. There is a cost associated with collecting more data. Furthermore, the
quality of data collected might be compromised. Methods to eliminate multicollinearity by
reducing the variances of regressor variances can be categorized into two methods: variable
selection and modified estimates. Both methods can be applied at the same time. The detail
of the variable selection and modified estimates methods are explained in the following
sub-topics. Next, the machine learning approaches are also presented.

3.1. Variable Selection Methods

Researchers are mainly concerned about multicollinearity problems when forecasting
with a linear regression model. Generally, researchers try to mitigate the effects of multi-
collinearity by using variable selection techniques so that a more reliable estimate of the
parameter can be obtained [12]. These are commonly heuristic algorithms and rely on using
indicators. The method can be completed by combining or eliminating variables. However,
caution must be taken not to compromise the theoretical model to reduce multicollinearity.
One of the earliest methods was stepwise regression. There are two basic processes, namely
forward selection and backward elimination [13]. The forward selection method starts
with an empty model and adds variables one at a time, while the backward elimination
method starts with the full model with all available variables and drops them one by one.
In each stage, they select the variable with the highest decrease in the residual sum of
squares for forward selection or the lowest increase in the residual sum of squares for
backward elimination.

However, there are some drawbacks to stepwise regression. According to the author
of [14], it does not necessarily yield the best model in terms of the residual sum of squares
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because of the order that these variables are added. This is especially true in the presence
of multicollinearity. It is also not clear which of the two methods of stepwise regression is
better. Furthermore, it also assumes there is a best equation when there can be equations
with different variables that are equally as good. Another problem of the selection criterion
is the computational effort required [15]. There are 2¥ possible combinations for k indepen-
dent variables. The amount of computation needed also increases exponentially with the
total number of independent variables.

To reduce computation time, the authors of [16] therefore developed a more compre-
hensive method to fit the equation to the data. It uses a fractional factorial design with the
statistical criteria, Cp, to avoid computing all the possible equations. It also works better on
data with multicollinearity as the effectiveness of a variable is evaluated by its presence or
absence in an equation. The Cp criterion was developed by the author of [17]. It provides a
way to graphically compare different equations. The selection criterion Cp is as follows:

RSS
Cp= [sz—(n—ZP), 3)

where p is the number of variables, RSS, is the residual sum of squares for the regression
being considered and 02 is an estimate of ¢?; it is frequently the residual mean square from
the complete regression. The model with a lower Cp is better.

Later, the authors of [18] proposed a more general selection criterion, Sp that has
shown to outperform the Cp criterion. Methods that are based on the least square estimator
such as the Cp criterion suffer in the presence of outliers and when the error variable
deviates from normality. The Sp criterion solves this problem and can be used with any
estimator of B without a need for modification. The Sp criterion is defined as follows:

Sp =Y (Ve — Yip)? /02 — (k —2p), @)

where k and p are the parameters of the full and subset model, respectively.

Information criteria provide an attractive way for model selection. Other criterions
that are often used include, Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), etc. [19]. According to [20], the difference between AIC and BIC is that BIC
is consistent in selecting the model when the true model is under consideration. Meanwhile,
AIC aims to minimize risk functions when the true model is not one of the candidates.
The choice of criterion depends on the researcher and both AIC and BIC are suggested
to be used together. Table 1 provides a summary of each stepwise feature selection and
quality criterion.

Table 1. Stepwise feature selection and quality criterions.

Author Year Objective Method Pros Cons
. Develop a method for ~ Forward selection and Simple to Final model affected
Ralston and WIlf [13] 1960 model selection backward elimination =~ understand and use by order
oo Graphically compare . .
Mallows [17] 1964 A criterion f.or subset Cp criterion quality between Suffers with OUtl.l er
selection and non-normality
models
Fractional factorial Fractional factorial . .
Gorman and ; - . Avoid computing all - .
1966 design to model design with the . Heuristic technique
Toman [16] . . . .. possible model
selection statistical criteria, Cp
Kashid and A more general selection o Applicable on an}putatlonally
. 2002  criterion than Cp when Sp criterion . difficult and not
Kulkarni [18] . any estimator .
least square is not best consistent result
Misra and Improve cla§ sification Re.cul.rswg Featgre Does not delete Evaluated on small
2020 accuracy in small Elimination with .
Yadav [21] the records sample size

sample size

Cross-Validation
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The authors of [5] proposed the use of principal component analysis (PCA) as a solu-
tion to multicollinearity among predictor variables in a regression model. It is a statistical
method to transform variables into new uncorrelated variables called principal components
and reduce the number of predictive variables. Regression analysis is done using the
principal components. The principal components are independent and thus satisfy the
OLS assumption. The principal components are ranked according to the magnitude of
the variance. This means that principal component 1 is responsible for a larger amount
of variation than principal component 2. Therefore, PCA is useful for dimensionality
reduction. Principal components with an eigenvalue near zero can be eliminated. This way
the model is sparse while not dropping variables that might contain useful information.

The Partial Least Squares (PLS) method was developed by the author of [22]. It
is a better alternative to multiple linear regression and PCA because it is more robust.
The model parameters do not change by much when new samples are used. PLS is like
PCA as it is also a dimension reduction technique. The difference is that it captures the
characteristics of both X and Y instead of just X as does PCA. The PLS method works by
iteratively extracting factors from X and Y while maximizing the covariance between the
extracted factors. The PLS derives its usefulness from its ability to analyze noisy data with
multicollinearity. This is because its underlying assumptions are much more realistic than
traditional multiple linear regression. The authors of [23,24] compared the PLS method
with the lasso and stepwise method and found it to be performing better.

A few journals have made comparisons among the techniques. The authors of [25]
discussed and compared PCA and PLS as they are both dimension reduction methodologies.
Both methods are used to convert highly correlated variables into independent variables
and variable reduction. The methodology of PCA does not consider the relationship
between the predictor variable and the response variable, while PLS does not. Therefore,
the PCA is a dimension reduction technique that is unsupervised and PLS is a supervised
technique. They also found that the predictive power of the principal components does
not line up with the order. For example, the principal component 1 explains the change in
response variable less than principal component 2. PLS is more efficient than PCA in this
regard as it is a supervised technique. PLS is extracted based on significance and predictive
power. The author of [26] compared partial least square regression (PLSR), ridge regression
(RR), and principal component regression (PCR) using a simulation study. The study used
MSE to compare the methods. They have found that when the number of independent
variables increases, PLSR is the best. If the number of observations and the number of
multicollinearities are large enough while the number of independent variables is small,
RR has the smallest MSE.

Recent application of PLS is seen in the chaos phase modulation technique for un-
derwater acoustic communication. The authors of [27] adopted a PLS regression into the
chaos phase modulation communication to overcome the multicollinearity effect. They
described PLS as a machine learning method that uses the training and testing processes
simultaneously. The study found that this method effectively improves the communication
signals. The authors compared it with two algorithms: the Time Reversal Demodulator
and 3-layer Back Propagation Neural Network that does not perform feature analysis and
relationship analysis. It shows that PLS regression has the best performance.

A multigene genetic programming was first developed by the authors of [28,29], who
used this method to automate predictor selection to alleviate multicollinearity problems.
The authors of [30] described a genetic algorithm-based machine learning approach to
perform variable selection. The genetic algorithm is a general optimization algorithm based
on concepts such as evolution and survival of the fittest. The model is initialized with
creating a population with several individuals. Each individual is a different model. The
genes of the model are features of the model. An objective function is used to determine the
fitness of the models. In the next generation/iteration, the best model will be selected and
have their genes “crossover”. Some features of the parent model are combined. Mutation
may also occur with some determined probability where the feature is reversed. According
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to [30], this machine learning concept should be combined with a derivative based search
algorithm for a hybrid model. This is because genetic algorithms are very good at finding
generally good solutions but not good at finding local minima, such as derivative based
search algorithms. Derivative based search algorithms can be performed after a certain
amount of iteration of the genetic algorithm. Iterations are continued until no improvement
in the fitness of the model is seen.

The authors of [31] proposed a quadratic programming approach to feature selection
because previous methods do not consider the configuration of the dataset and therefore
is not problem dependent. The aim of using quadratic programming is to maximize the
number of relevant variables and reduce similar variables. The criterion Q that represents
the quality of a subset of features a is presented in quadratic form. Q(a) = a’Qa — b'a,
where Q € R™ is a matrix of pairwise predictor similarities, and b € R" is a vector for
relevance of the predictor to the target vector. The author suggested that the similarity
between the features x; and x; and between x; and y can be measured using Pearson’s
correlation coefficient [32] or the concept of mutual information [33]. However, these two
methods do not directly capture feature relevance. The authors utilized a standard ¢-test to
estimate the normalized significance of the features to account for it. This proposed method
outperforms other feature selection methods, such as Stepwise, Ridge, Lasso, Elastic Net,
LARS, and the genetic algorithm.

The authors of [34] presented the maximum relevance-minimum multicollinearity
(MRmMC) method to perform variable selection and ranking. Its approach focusses on
relevancy and redundancy as well. Relevancy refers to the relationship between features
and the target variable, while redundancy is the multicollinearity between features. The
main advantage of this paper over others is that it does not require any parameter tuning
and is relatively easy to implement. Relevant features are measured with a correlation
coefficient and redundancy with squared multiple correlation coefficient. A measure | that
combines relevancy and multicollinearity is developed.

J(F) = max [2,(fi,c) — Yoo se(fi,a0)], 5)

fje F-S

where 72 is the correlation coefficient between feature f and target c. sc is the squared
multiple correlation coefficient between feature f and its orthogonal transformed variable 4.
The first feature is selected using the optimization criteria V and the following are selected
based on criterion | using a forward stepwise method. Although non-exhaustive, it is a
very competent method for feature selection and reducing dimension.

The authors of [35] suggested that the mixed integer optimization (MIO) based ap-
proach to selecting variables has received increased attention with development in algo-
rithms and hardware. They developed mixed integer quadratic optimization (MIQO) to
eliminate multicollinearity in linear regression models. It adopts VIF as an indicator for
detecting multicollinearity. Subset selection is performed subject to an upper bound con-
straint on VIF of each variable. It achieved higher R-Squared than heuristic-based methods
such as stepwise selection. The solution is also computationally tractable and simpler to
implement than cutting plane algorithm.

The authors of [36] proposed a profiled independence screening (PIS) method of screen-
ing for variables with high dimensionality and highly correlated predictors. It is built upon
sure independence screening (SIS) [37]. Many variable selection methods developed before
SIS do not work well in extremely high dimension data where predictors vastly outnumber
the sample size. However, SIS may break down where the predictors are highly correlated,
which resulted in the PIS. A factor profiling operator Q(Z;) = I, — Z;(Z] Z;) 71ZIT is intro-
duced to eliminate the correlation between predictors. The profiled data are applied to the
SIS. Z; € R"™ is the latent factor matrix of X and d is the number of latent factors. Factor
profiling is as follows:

QZny = QZNXPB + Q(Ze, (6)
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Q(Z)y is the profiled response variable and the columns of Q(Z;)X are the profiled
predictors. However, PIS may be misleading in a spiked population model. Preconditioned
profiled independence screening (PPIS) solves this by using preconditioning and factor
profiling. Two real data analyses show that PPIS has good performance.

Outlier detection is also a viable method for variable selection. Recently, projection
pursuit was used to perform an outlier detection-based feature selection [37]. Projection
pursuit aims to look for the most interesting linear projections. The author optimized it
to find outliers. The method was found to be effective in improving classification tasks.
However, it performs poorly when most features are highly correlated or when features are
binary. Table 2 provides a summary of the findings for variable selection approaches.

Table 2. A summary of previous studies on variable selection.

Author Year Obijective Method Pros Cons
Creates new . Cannot exhibit
components using the Partial Least Square Supervised significant
Wold [22] 1982 pone . component .
relationship of predictor (PLS) . non-linear
extraction ..
and response characteristics
. . Does not account for
Lafi and Kanenee [5] 1992 Using PCA tq perform Principal Fomponent Reduce dimensions relationship with
regression analysis (PCA) .
response variable
Genetic algorithm-based . P
Bies et al. [30] 2006 approach to model Genetic algorithm Less subjectivity on - Not good m fmdmg
. model local minima
selection
Investigates the ii?gg:)l?ivr::;ﬁte
Katrutsa and Quadratic programming Quadratic relevance and Y
Strijov [31] 2017 approach rogrammin redundancy of between quantitative
J PP Pros & Y and nominal random
features .
variable.
Maximum
Senawi et al. [34] 2017 Feature sele.ctlon and relevar}ce—r.mnm.mm Wc?rk.s well with Non-exhaustive
ranking multicollinearity classifying problems
(MRmMC)
. . Mixed integer Uses backward .
Tamura et al. [11] 2017 Mlxled.mte.ger semidefinite elimination to Only applies to low
optimization N . number of variables
optimization (MISDO)  reduce computation
. . Mixed integer .
Tamura et al. [35] 2019 Mlxled.mte.ger quadratic optimization =~ Uses VIF as indicator Only applies t.o low
optimization number of variables
(MIQO)
Combines the result of . .
filter, wrapper, and Ensemble feature Overcome local Higher computation
Chen et al. [38] 2020 ’ ppet, . . cost than single
embedded feature selection optima problem .
: solution
selection
Variable screening based Preconditioned Variable screening in Require
Zhao et al. [36] 2020 on sure independence profiled independence high dimensional decorrelation of the
screening (SIS) screening (PPIS) setting predictors
Larabi-Marie- Feature selection based - . Found outhejrs Does not work well
. 2021 . . Projection Pursuit correlated with when features
Sainte [39] on outlier detection . .
irrelevant features are noisy
. Linear combination
Singh and 2021 Creates new variables and ratio of Does not remove Based on

Kumar [40]

independent variables

any variables

trial-and-error

The variable selection methods aim to reduce the number of variables to the few

that are the most relevant. This may reduce the information gain from having more data
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to work with. Furthermore, the modern optimization methods depend on subjectively
determined indicators of relevance and similarity. This can be seen from [11] where the
authors suggested other measures of multicollinearity for future research. It is therefore
difficult to suggest which method is better without directly comparing performance on the
same dataset. Better performance can also be due to the specific problem tested.

3.2. Modified Estimators Methods

Modified Estimators is another approach that use biased and shrunken estimators in
exchange for lower variance and thus reduce overfitting [12]. The advantage is that the
theoretical model is not compromised because of the dropping of variables. Its disadvantage
is that the estimators are now biased. The most known method is the ridge regression
developed by the author of [41]. This method adds a penalty term: the squared magnitude
of the coefficient f to the loss function. The general equation of ridge regression is as follows:

n 2
Y (Y- X X)X B @)

The main issue with ridge regression is how to find ridge parameter Z. If A is equal
to zero, then the estimate will equal to the ordinary least square estimate. However, if the
X is too big, it will lead to an underfitting of the model. 2 is selected by looking for the
least increase in the root mean square error (RMSE) within an appropriate decrease in ridge
variable inflation factors for each variable. A ridge trace is used to assist in this. It is a plot
of coefficient B versus X. It is used to pick the smallest 2 at which the coefficients start to
level off. Alternatively, a validation dataset is used, find A that minimizes validation SSE.
Identify A such that the reduction in the variance term of the slope parameter is larger than
the increment in its squared bias. The authors of [42] reviewed estimation methods for A
and new methods were suggested. A more recent paper proposed a Bayesian approach
to solving the problem of finding the ridge parameter [43]. Simulation result showed
that the approach is more robust and provide more flexibility in handling multicollinear-
ity. Later, the authors of [44] proposed another way of solving the problem of finding
the ridge parameter. Their generalized cross-validation approach to is able to find the
global minimum.

More estimators have been developed from the ridge estimator. The authors of [45]
used a jack-knife procedure to reduce the significant amount of bias of estimators from
ridge regression. The author of [46] proposed a new class of estimator, the Liu estimator,
based on the ridge estimator. It has the added advantage of a simple procedure to find
the parameter A. This is because the estimate is a linear function of A. The author of [47]
proposed the Liu-Type estimator. They found that the shrinkage of ridge regression is not
effective when faced with severe multicollinearity. The Liu-Type estimator has a lower
MSE when compared to ridge regression and fully addresses severe multicollinearity.

Since then, variations on ridge and Liu-type estimators have been created for use in
different types of regression. The authors of [48] proposed a Liu-type estimator for binary
logistic regression that is a generalization of the Liu-type estimator for a linear model.
The authors of [49] stated that not much attention has been given to shrinkage estimators
for generalized linear regression models, such as the Poisson regression model, logistic
regression model, and negative binomial regression model. Therefore, they introduced a
two-parameter shrinkage estimator for negative binomial models. It is a combination of
the ridge estimator and Liu estimator. The authors of [50] modified the Jackknifed ridge
regression estimator to form a Modified Jackknifed Poisson ridge regression estimator.
The author of [2] reviewed the biased estimators in the Poisson regression model in the
presence of multicollinearity. The regular maximum likelihood method in estimating
regression coefficient is not reliable in the presence of multicollinearity. They compared the
performance of four estimators in addition to the widely used ridge estimator and found
that Liu-type estimators have superior performance over other methods in the Poisson
regression model.
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The authors of [51] proposed a partial ridge regression to solve three problem of regular
ridge regression. Bias is applied to all variables regardless of the degree of multicollinearity
in normal ridge regression. Stability is achieved at the cost of MSE and the selection method
of A is arbitrary. The proposed method applies the ridge parameter only to variables with a
high degree of collinearity. This way the precision of the parameter estimator improves
while retaining the MSE close to that of OLS. Estimates are closer to a true OLS estimate, 3
and overall variance is reduced significantly. It outperforms existing method in terms of
bias, MSE, and relative efficiency.

The Lasso regression is a method developed by the author of [52] as a result of the
problems of both stepwise regression and ridge regression. This problem is interpretability.
Stepwise regression is interpretable, but the process is very discrete, as it is not known
why variables are included or dropped from the model. Ridge regression is very good in
multicollinearity due to the stability of the shrank coefficient. However, it does not reduce
the coefficient to zero, therefore resulting in models that are hard to interpret. The Lasso is
known as L1 regularization, while the ridge regression is known as L2 regularization. The
main difference between the two is that Lasso reduces certain parameter estimates to zero.
This serves to select variables as well. The equation is shown below:

Y = X X)) A 1Bl 8)

The penalty term, absolute value of the coefficient j is added to the lost function. In
this equation, Y is a (nx1) vector of response, X is a (nxp) matrix of predictor variables
and S is a (px1) vector of unknown constants. As with ridge regression, as A approaches
zero, the equation becomes closer to the least square estimate. However, if the A value is
very large, the coefficient approaches zero. The Ridge regression shrinks the estimator but
does nothing in variable selection, while Lasso achieves both. Due to this reason, Lasso is
more desirable. It is more parsimonious and therefore better in explaining the relationship
between independent and dependent variables.

When faced with multicollinearity, Ridge and Lasso perform differently. Ridge tends
to spread the effect evenly and shrink the estimators of all the variables. While Lasso
is unstable and tends to retain one of the variables and eliminates all the others. Lasso
performs poorly in the case where the number of variables, p, is more than the number of
observations, n. It selects at most n variables. When n > p, the performance of Lasso is not
as good as Ridge regression. The authors of [53] proposed an elastic net that combines both
Ridge and Lasso regression. It has the advantage of both the regularization methods, and
it also shows grouping effect. The elastic net groups variables that are highly correlated
together. It either drops or retains all of them together. Typically, cross-validation is used to
choose the tuning parameter. It was originally used by [54]. In cross-validation, a subset of
sample is a holdout in order to validate the performance.

The authors of [55] developed the algorithm least angle regression (LARs). It takes
inspiration from Lasso and stagewise regression and aims to be a computationally simpler
method. The LARs begins similarly to forward regression where it starts with all coefficients
equal to zero and then adds the predictor most correlated with the response. The next
variable has as much correlation as the current residuals. LARs proceeds equiangularly
between the predictors, along the “least angle direction”, until the next most correlated
variable. The authors of [56] also improved upon the Lasso regression by using a mixed-
integer programming approach. It eliminates structured noised and thus makes it perform
better in a high dimensional environment where p > n. The authors of [57] further expanded
on the idea and developed several penalized mixed-integer nonlinear programming models.
The models are also solvable by a meta heuristic algorithm.

The authors of [58] introduced a strictly concave penalty function called modified log
penalty. It is contrary to the strictly convex penalty of Elastic net. It is aimed at achieving a
parsimonious model even under the effects of multicollinearity. Methods such as the Elastic
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net tend to focus on the grouping effect which means that collinear variables are included
together. Table 3 provides a summary of the findings for modified estimator approaches.

Table 3. A Summary of previous studies on modified estimators.

Author Year Objective Method Pros Cons
o Introduces
Hoerl [41] 1962 Adds bias in e hange for Ridge regression Reduces overfitting significant amount
lower variance .
of bias
Simple method to
Address significant obtain confidence Lareer variance than
Singh et al. [45] 1986 amount of bias in ridge Jack-knife procedure intervals for the & .
. ) ridge regression
regression regression
parameters.
Simple procedure to find Ridge estimate is a Does not work in
Liu [46] 1993 pep Liu estimator linear function of severe
ridge parameter . oo .
ridge parameter multicollinearity
Address interpretability of Reduces coefficient Worse performance
Tibshirani [52] 1996 stepwise and ridge Lasso regression to zero than Ridge and does
regression not work when p > n
Existing method does not
. . . . Allows large Two parameter
Liu [47] 2003 work in severe Liu-type estimator . - .
L . shrinkage parameter estimation
multicollinearity
. T Least angle Computationally Very sensitive to the
Efron et al. [55] 2004 Computational simplicity regression (LARs) simpler Lasso presence of outliers
Zou and Hastie [53] 2005 Combines Rldg? and Elastic net Achieves grouping No parsimony
Lasso regression effect
Applies Ridge parameters o . —
Chandrasekhar . s Partial ridge More precise Subjective measure
2016  only on variable with high . . . . .
etal. [51] : . regression parameter estimates  of high collinearity
collinearity
A conditionally conjugate ~ Bayesian approach Produce a .margmal Only focus on
. o o posterior of . .
Assaf et al. [43] 2019 prior for the biasing to finding ridge . getting a single
parameter given the
constant parameter d parameter
ata
Strictly concave penalt Parsimony variable
Nguyen and Ng [58] 2019 Y func tionp Y Modified log penalty selection under No grouping effect
multicollinearity
Kibria and Alternative to the ordinary Kibria—Lukman Outp erfo.r ms Ridge Results depends on
2020 least . and Liu-type . o
Lukman [59] . estimator . certain conditions
squares estimator regression
High-dimensional . - .
Arashi et al. [60] 2021  alternative to Ridge and Two—parameter Has asymptotic Lower efficiency in
Liu estimator properties sparse model
Effective with
Tune parameter alpha of Optimized Elastic . Accuracy metric not
Qaraad et al. [61] 2021 Flastic Net Net imbalanced and discussed

multiclass data

Modified estimators aim to improve the efficiency in parameter estimation in the
presence of multicollinearity. This comes with a bias—variance trade-off. Researchers can
select the methods based on their purpose such as grouping effect or parsimony. However,
it can require extensive knowledge to know which one works better on the problem. For
example, some methods are shown to work better in high or low dimensionality, degree
of multicollinearity. Moreover, some methods are for linear regression and modifications
need to be made for other functional form predictions or classification problem.
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3.3. Machine Learning Methods

In this section, we attempt to present the overall state of the multicollinearity problem
in machine learning and introduce interesting algorithms that deal with it implicitly. It is
proven that a neural network is superior to traditional statistical models. The authors of [62]
used a feed forward artificial neural network to model data with multicollinearity and
found that it has much better performance in terms of RMSE compared to the traditional
ordinary least square (OLS). This shows that machine learning methods with more complex
architecture have the potential to produce much better estimates of the parameters than
statistical methods. The authors of [51] provided reasons why a machine learning algorithm
might be better. They have no requirement for assumptions about the function, can uncover
complex patterns, and dynamically learn changing relationships.

Next, it is observed that variable selection methods have been applied in neural
networks. The authors of [63] proposed a hybrid method that combines factor analysis
and artificial neural network to combat multicollinearity. ANN is not able to perform
variable selection, therefore PCA is used to extract components. ANN is then applied to
the components. This method is named FA-ANN (factor analysis—artificial neural network).
It is compared with regression analysis and genetic programming. FA-ANN has the best
accuracy among them. The advantage of FA-ANN and genetic programming is that it is
not based on any statistical assumptions, so it is more reliable and trustworthy. In addition,
they can generalize over new sample data unlike regression analysis. However, they are
considered a black-box model and are hard to interpret. A more recent version of this
approach has been used in quality control research. The authors of [64] proposed a residual
(r) control chart for data with multicollinearity. They suggested a neural network because
a generalized linear model (GLM) may not work best in asymmetrically distributed data.
They concluded that neural network model and functional PCA (FPCA) can deal with the
high dimensional and correlated data.

Furthermore, regularization and penalty mechanisms can also be used to solve mul-
ticollinearity in machine learning models. For example, the Regularized OS-ELM algo-
rithm [65], OS-ELM Time-varying (OS-ELM-TV) [66], Timeliness Online Sequential ELM
algorithm [67], Least Squares Incremental ELM algorithm [68], and Regularized Recursive
least-squares [69]. However, these mechanisms increase the computational complexity. For
this reason, The authors of [70] proposed a method called the Kalman Learning Machine
(KLM). It is an Extreme Learning Machine (ELM) that uses a Kalman filter to update the
output weights of a Single Layer Feedforward Network (SLFN). A Kalman filter is an
equation that can efficiently estimate the state of a process that minimizes mean squared
error. The state is not updated in the learning stage as with the concept of ELM. The
resulting model has shown to outperform basic machine learning models in prediction
error (RMSE) and computing time. However, it requires manual optimization by humans.
A constructive approach to building the model is suggested.

Although deep learning (DL) has emerged as an efficient method to automatically learn
data representation without feature engineering, its discussion in terms of multicollinearity
is very limited. Based on this motivation, our paper discussed the properties of neural
networks, such as the convolutional neural network (CNN), recurrent neural network
(RNN), attention mechanism, and graph neural network, before illustrating the example in
mitigating the multicollinearity issue.

CNN is a neural network which was first introduced by the authors of [71] in the field
of computer vision. It developed the concept of local receptive fields and shared weights to
reduce the number of network parameter. It is very interesting in its way of addressing
relationships between features. Traditional deep neural network suffers from booming
parameter issues. CNN adopted multiple convolutional and pooling (subsampling) layers
to detect the most representative features before connecting to a fully connected network for
prediction. Specifically, the convolutional layer applied multiple feature extractors (filter)
to detect the local features and produce its corresponding feature map to represent each
local feature. The composition of multiple feature maps may represent the entire series. The
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pooling layer is a dimensional reducing method to extract the most representative features
and lower the noise. The generated features maps are likely to be independent of each other
and potentially mitigate the multicollinearity problem. For example, The authors of [72]
proposed the CNNpred framework to model the correlations among different variable to
predict the stock market movement. Two variants of CNNpred, namely 2D-CNNpred and
3D-CNNpred, were introduced in their paper to extract combined features from a diverse
set of input data. It comprises five major US stock market indices, currencies exchange
rate, future contracts, commodities prices, treasury bill rates, etc. Their results showed a
significant predictive improvement as compared to the state-of-the-art baseline. Another
interesting study by the authors of [73] proposed to integrate the features learned from
different representation of the same data to predict the stock market movement. They
employed chart images (e.g., Candle bar, Line bar, and F-line bar) derived from stock prices
as additional input to the prediction the SPDR S&P 500 ETF movement. The proposed
model ensembled Long Short-Term Memory (LSTM) and CNN models to exploit their
advantages in extracting temporal and image features, respectively. Thus, the result showed
that the prediction error can be efficiently reduced by integrating the temporal and image
features from the same data.

Other than feature maps, there is another influential development, namely the atten-
tion mechanism in the Recurrent Neural Network (RNN). RNN was first proposed by
the author of [74] to process sequential information. Based on [75], the term “recurrent”
explained the general architecture idea where a similar function applied on each element of
the sequence and the computed output of the previous element will be aggregately retained
over the internal memory of RNN until the end of sequence. Based on this, RNN enables
compressing the information and producing a fixed-size vector to represent a sequence.
The recurrence operation of RNN is advantageous in series data since the inherent infor-
mation of a sequential can be effectively captured. Unlike CNN, RNN is more flexible to
model a variable length of a sequence that can capture unbounded contextual information.
However, the authors of [76] criticized that the recurrent-based model may be problematic
in handling the long-range dependencies in data due to the memory compression issue in
which the neural network struggles to compress all the necessary information from a long
sequence input into a fixed-length vector. In order words, it is difficult to represent the en-
tire input sequence without any information loss using the fixed-length vector. Despite the
help of the gated activation function, the forgetting issues of RNN-based model becomes
serious as the length of input sequence grows. Based on this, the attention mechanism was
proposed to deal with the long-range dependencies issue by enabling the model to focus on
the relevant part of input sequence when predicting a certain part of the output sequence.

According to [77], the attention mechanism was used to simulate visual attention
where humans usually adjust their focal point over time to perceive a “high resolution”
when focusing on a particular region of an image but perceive a “low resolution” for
the surrounding image. Similarly, the attention mechanism enables the model to learn
to assign different weights according to their contribution and may capture asymmetric
influence between the features to mitigate the multicollinearity problem. For example,
the authors of [78] proposed a CNN based on deep factorization machine and attention
mechanism (FA-CNN) to enhance feature learning. In addition to capturing temporal
influence, the attention mechanism enables modeling of the intraday interaction between
the input features. The result showed a 7.38% improvement over LSTM in predicting
stock movement.

Recently, there is another promising research to apply Graph Convolutional Networks
(GCN) or graph embeddings in series data. Graph neural networks convert series data into
a graph-structured data while enabling the model to capture the interconnectivity between
the nodes. The interconnectivity or correlation modeling is relatively useful in reducing the
multicollinearity effect. For example, the authors of [79] proposed the hierarchical graph
attention network (HATS) to process the relational data for stock market prediction. Their
study defined the stock market graph as a spatial-temporal graph where each individual
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stock (company) is regarded as a node. Each node feature represented the current state of
each company in response to its price movement and the state is dynamic over time. Based
on this, HATS can selectively aggregate important information from various relation data to
represent the company as a node. Thereafter, the model is trained to learn the interrelation
between nodes before feeding into a task-specific layer for prediction. Table 4 provides a
comprehensive summary of the machine learning approaches reviewed.

Table 4. A summary of machine learning approaches on solving multicollinearities.

Author Year Objective Method
Huynh and Won [65] 2011 Multi-obj ectlve. o.pqmlzatlon function to Regularized OS-ELM algorithm
minimize error
. . Factor analysis-artificial neural
Garg and Tai [63] 2012 Hybrid method of PCA and ANN network (FA-ANN)
Ye et al. [66] 2013 Input weight that changes with time OS-ELM Time-varying (OS-ELM-TV)

Gu et al. [67]

Timeliness Online Sequential ELM

2014 Penalty factor in the weight adjustment matrix algorithm

Guo et al. [68]

2014 Smoothing parameter to adjust output weight Least Squares Incremental ELM

algorithm
Hoseinzade and Model the correlation among different features
Haratizadeh [72] 2019 from a diverse set of inputs CNN-pred
Kim and Kim [73] 2019 Using features from cl‘lfferent representation of LSTM-CNN
same data to predicting the stock movement
Nobrega and Oliveira [70] 2019 Kalman filter to adjust output weight Kalman Learning Machine (KLM)
Hua [80] 2020 Decision tree to select features XGBoost
Obite et al. [62] 2020 Compare ANN a.nd QLSR. in presence of Artificial neural network
multicollinearity
Applied attention to capture the intraday CNN-deep factorization machine and
Zhang etal. [78] 2021 interaction between input features attention mechanism (FA-CNN)

Mabhadi et al. [69]

2022  Regularization parameter that varies with time  Regularized Recursive least-squares

4. Conclusions

Most methods of solving for multicollinearity can be categorized as one of two. That
is variable selection and modified estimators. This paper detailed the development of
different methods over the years. Variable selection has the benefit of being simple to
perform and can result in a sparse model. This makes it easy to interpret and does not
overfit. The disadvantage is that the selection is very discretionary. There is also the
underlying assumption that there is a best model when a model with different variables can
be equally good. Recent papers on solving multicollinearity capitalizes on better computing
power. The subset selection problem can be presented as an optimization problem where
they search for the least redundant variable to reduce multicollinearity. In addition, they are
also able optimize on the most relevant variables. They are based on criterions developed
from previous literature that can represent relevance and redundancy. In this way, problems
where there is high dimensionality (more variables than observations) can be handled.

Modifying the estimators is a very broad method and is more complex. There is
different modified estimator for every functional form of the data. One of the main problems
of modifying estimators is interpretability. It is very difficult to explain coefficients that are
close to but not zero. However, it is more robust and performs better in the presence of
multicollinearity. Some modified estimators even can perform variable selection.

The authors of [81] performed a stress test experiment on the following variable
selection methods: Stepwise, Ridge, Lasso, Elastic Net, LARs, and Genetic algorithms.
They compared their performance according to several quality measures on a few synthetic
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datasets. The authors of [82] compared various statistical and machine learning methods. It
is important to note that comparisons between methods have their drawback. For example,
different tuning parameters can affect performances of the methods. The author of [14]
considered domain knowledge in the studied field to be important in selecting variables
as statistics alone is not enough in practice. All the methods are performed at a different
degrees when dealing with different types of data.

Both variable selection and modified estimators can be used together. The number
of features can be rapidly reduced to below the number of samples and then modified
estimators can be applied. This can be seen in machine learning papers. The findings in this
review paper are that variable selection drops variables and reduces information gain, while
the multicollinearity measures to optimize are subjective. In addition, modified estimators
have inconsistent performance depending on the data and are not able to be applied in
every problem. The literature review also showed that machine learning algorithms are
better than the simple OLS estimator in fitting data with multicollinearity. They do not
need to have information on the relationships among the data or the distribution. This
paper suggests that the relevancy and redundancy concept from feature selection can be
adopted when training a machine learning model.
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