
Citation: Lin, Q.; Yu, S.; Sun, K.;

Zhao, W.; Alfarraj, O.; Tolba, A.; Xia,

F. Robust Graph Neural Networks

via Ensemble Learning. Mathematics

2022, 10, 1300. https://doi.org/

10.3390/math10081300

Academic Editors: Zhao Kang and

Xiao Wang

Received: 21 March 2022

Accepted: 11 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Robust Graph Neural Networks via Ensemble Learning
Qi Lin 1, Shuo Yu 1, Ke Sun 1, Wenhong Zhao 2,*, Osama Alfarraj 3 , Amr Tolba 3 and Feng Xia 4

1 School of Software, Dalian University of Technology, Dalian 116620, China; lq@mail.dlut.edu.cn (Q.L.);
yushuo@dlut.edu.cn (S.Y.); sunke@mail.dlut.edu.cn (K.S.)

2 Ultraprecision Machining Center, Zhejiang University of Technology, Hangzhou 310014, China
3 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia;

oalfarraj@ksu.edu.sa (O.A.); atolba@ksu.edu.sa (A.T.)
4 School of Engineering, IT and Physical Sciences, Federation University Australia,

Ballarat, VIC 3353, Australia; f.xia@ieee.org
* Correspondence: zhaowh@zjut.edu.cn or whzhao6666@outlook.com

Abstract: Graph neural networks (GNNs) have demonstrated a remarkable ability in the task of
semi-supervised node classification. However, most existing GNNs suffer from the nonrobustness
issues, which poses a great challenge for applying GNNs into sensitive scenarios. Some researchers
concentrate on constructing an ensemble model to mitigate the nonrobustness issues. Nevertheless,
these methods ignore the interaction among base models, leading to similar graph representations.
Moreover, due to the deterministic propagation applied in most existing GNNs, each node highly
relies on its neighbors, leaving the nodes to be sensitive to perturbations. Therefore, in this paper, we
propose a novel framework of graph ensemble learning based on knowledge passing (called GEL) to
address the above issues. In order to achieve interaction, we consider the predictions of prior models
as knowledge to obtain more reliable predictions. Moreover, we design a multilayer DropNode
propagation strategy to reduce each node’s dependence on particular neighbors. This strategy also
empowers each node to aggregate information from diverse neighbors, alleviating oversmoothing
issues. We conduct experiments on three benchmark datasets, including Cora, Citeseer, and Pubmed.
GEL outperforms GCN by more than 5% in terms of accuracy across all three datasets and also
performs better than other state-of-the-art baselines. Extensive experimental results also show that
the GEL alleviates the nonrobustness and oversmoothing issues.

Keywords: graph neural networks; graph learning; ensemble learning; multilayer DropNode propagation;
knowledge passing

MSC: 68T07; 05C62

1. Introduction

Graphs serve as structural data to describe complex relationships between entities
among numerous networks, such as social networks [1,2], academic networks [3], cita-
tion networks [4,5], and traffic networks [6]. There is evidence that mining graphs can
be beneficial for solving many real-world applications, such as node classification and
clustering. Many studies have shown that graph neural networks (GNNs) [7–10] are a pow-
erful approach to exploring graph data and can achieve promising results on graph-based
semi-supervised learning tasks.

Despite the remarkable ability of most existing GNNs, recent studies have demon-
strated that GNNs suffer from nonrobustness issues [11,12], i.e., GNNs are vulnerable to a
small perturbation in the graph structures. By adding fake edges randomly to change the
graph structures, the performance of GNNs can degrade dramatically, which poses a great
challenge for employing GNNs in sensitive scenarios, such as finance networks [13].

To mitigate the nonrobustness issues faced by most GNNs, one strategy is to incorpo-
rate an ensemble learning mechanism into GNNs to obtain a stronger robustness. Based

Mathematics 2022, 10, 1300. https://doi.org/10.3390/math10081300 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081300
https://doi.org/10.3390/math10081300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6111-8617
https://orcid.org/0000-0003-3439-6413
https://doi.org/10.3390/math10081300
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081300?type=check_update&version=1

Mathematics 2022, 10, 1300 2 of 14

on ensemble learning, several strategies have focused on enhancing the ability of base
models and then constructing an ensemble directly [14–18], e.g., average the predictions
of enhanced base models. Their experimental results show that the nonrobustness issues
can be improved by applying an ensemble mechanism. However, these approaches have
some major shortcomings: (1) They ignore the interactions among multiple models when
constructing an ensemble framework, which may lead to obtaining similar graph rep-
resentations [19]. As a result, the whole ensemble models may be affected by the same
perturbation due to the transferability of perturbations among models [14]. (2) In most
GNNs models, they still apply deterministic propagation for each node to extract informa-
tion. This propagation rule makes each node highly dependent on its neighbors, leaving
each node to be easily sensitive to perturbations in the graph structures.

To address the two challenges, in this paper, we propose a framework, i.e., graph
ensemble learning based on knowledge passing (GEL), to alleviate the nonrobustness of
GNNs and improve performance in the task of node classification. Specifically, we first
present a knowledge-passing strategy to construct an ensemble model with interactions
among base models. The motivation is that we hope the knowledge (predictions of prior
models) can be passed to the next model, so that the next model can avoid degrading the
performance caused by the same perturbations as in prior models, improving the robustness
of the whole framework. Second, we design a multilayer DropNode propagation strategy,
which is achieved by randomly dropping the entire feature matrix of each node during each
propagation, with a different probability among base models. By doing this, each node
aggregates information from diverse subsets of its neighbors rather than neighbors from
a deterministic propagation, which reduces its dependence and sensitivity on particular
neighbors and benefit from diverse neighborhoods, increasing the robustness of GEL. For
instance, when some nodes are perturbed, in the deterministic propagation, the negative
effect propagates to its neighbors. With our propagation rule, the effects are greatly reduced
or even eliminated because the perturbed node may be excluded in the various subsets
of neighbors depending on the different probability of DropNode. Furthermore, this
propagation rule empowers each node to incorporate broader higher-hops information,
mitigating the oversmoothing for GEL.

Finally, we conduct experiments on three public datasets with several popular GNNs
models. Experimental results demonstrate that GEL outperforms GCN in terms of accuracy.
We also show that the variants without the multilayer DropNode propagation or ensemble
learning based on knowledge passing still gain improvements compared to GCN, which
means that each strategy makes a difference to our framework. More importantly, we
observe that GEL can mitigate nonrobustness and oversmoothing issues.

In summary, the contributions of this work are as follows:

• We propose a novel framework of graph ensemble learning based on knowledge
passing (i.e., GEL) to address the robustness challenge of GNNs and improve the
performance on semi-supervised learning tasks.

• We design a multilayer DropNode propagation strategy to reduce each node’s depen-
dence on particular neighbors, which can strengthen the robustness of GEL. Moreover,
this propagation rule enables each node to extract knowledge from diverse subsets of
neighbors, alleviating the oversmoothing issues.

• Experimental results on three public datasets show that our framework performs
better than baseline methods in terms of classification accuracy and robustness.

The remainder of this paper is structured as follows. In Section 2, we outline the semi-
supervised learning task on graphs and review related work. In Section 3, we elaborate on
the proposed framework. Next, we conduct experiments to evaluate the performance of
our framework in Section 4. Finally, we conclude the paper in Section 5.

2. Task Definition and Related Work

In this section, we describe the semi-supervised node classification tasks on graphs
and introduce some notations in Table 1. Then, we review the related work.

Mathematics 2022, 10, 1300 3 of 14

Table 1. Description of key notations.

Symbols Definitions

N Number of base models
n Number of nodes
m Number of labeled nodes
p Multilayer DropNode probability
K Propagation Step
λ KP loss coefficient
Θ Set of model parameters
η Learning rate
X Feature matrix
A Adjacency matrix
Y All possible labels

H(l) Hidden node representations in the lth layer
W(l) Weight matrix in the lth layer

X̃ Perturbed matrix
X′ Matrix after propagation
Z Predicted possibilities of matrix X′

2.1. Semi-Supervised Node Classification

We describe a connected graph G = (V, E), where V = {V1, V2, · · · , Vn} is a node set
including n nodes, and E =

{
eij
}

16i,j6n is an edge set indicating the connections between

nodes. A ∈ {0, 1}n×n denotes the adjacency matrix of graph G. For an undirected graph,
Aij = 1 indicates that there is an edge eij between node Vi and Vj, otherwise Aij = 0. We
use X ∈ Rn×d to denote the feature matrix of graph G, wherein Xi denotes the node Vi’s
features and d is the dimension of the feature matrix.

We formalize the semi-supervised node classification tasks on graphs. In a graph,
each vertex Vi is associated with its label Yi ∈ Y, where Y denotes all possible labels.
For a semi-supervised node classification, m nodes have known labels YL ⊂ Y and the
labels YU = Y \ YL of the remaining n−m nodes are unknown. The target is to design a
function F to predict the labels YU of unlabeled nodes via its corresponding feature matrix
X. Therefore, the predictive function can be detailed as follows:

F : G, X, YL → YU . (1)

Traditional methods to solve this problem are mostly based on graph Laplacian
regularization [20,21]. Recently, GNNs have emerged as promising approaches for semi-
supervised node classification [22–25], which are briefly introduced below.

2.2. Graph Neural Networks

In this part, we introduce some representative GNNs methods and GNN models’
propagation rule. In GNNs, each node propagates information to its neighbors with
some deterministic propagation rules. For instance, in the graph convolutional network
(GCN) [7] for semi-supervised learning on graphs, the graph propagation rule is formulated
as follows:

H(l+1) = ReLU
(

ÂH(l)W(l)
)

, (2)

where Â denotes a symmetric normalized adjacency matrix, W(l) denotes the weight matrix
in the lth layer, H(l) is the hidden node representation in the lth layer, i.e., H(0) = X and
ReLU is the activation function.

Some methods have been proposed to advance this architecture. For example, Hamil-
ton et al. [26] defined the graph convolution as aggregating information from neighbors.
Petar Veličković et al. [27] applied an attention mechanism to assign different weights in the
aggregation of neighbors’ features. Xu et al. [28] added residual and jumping connections
to adapt neighbors’ properties. Wu et al. [29] removed the nonlinear activation function

Mathematics 2022, 10, 1300 4 of 14

to simplify GCN. Abu-El-Haija et al. [30] studied a class of neighborhood-mixing relation-
ships. Tu et al. [31] chose hyperparameters automatically to improve the effectiveness and
efficiency. However, all the above works do not consider the robustness of GNNs models.

2.3. Ensemble Learning

Ensemble learning was proposed to combine the predictions of base learners into
more accurate predictions [32]. Ensemble learning has shown its effectiveness in many
real-world scenarios. It is also widely used in semi-supervised node classification tasks.

There are a few studies applying ensemble learning to graphs. For example, Hou et al. [33]
leveraged a graph ensemble technique to help dependency-based approaches alleviate
the influence of parsing errors in the sentiment analysis area. Zhang et al. [34] trained
many GCN models and then created an ensemble of them in a way similar to BAN. Further
works have adopted ensemble learning to improve the robustness issues [14,15,17,35,36].
Liu et al. [18] used a voting ensemble for generating a high accuracy output. Mun et al. [37]
trained an ensemble of GNN classifiers with dependent codes to improve the robustness of
the networks.

However, these works ignore the interaction among base models, which refers to the
sharing of information, such as knowledge and experience, among base models. In other
words, each model outputs its predictions independently, without taking the predictions
of prior models as their own knowledge or experience. Compared with these works, the
goal of our framework is to utilize the predictions from prior models as knowledge to
train a new one, so that the new model can avoid degrading the performance caused by
the same perturbations as in prior models and thus gain a more precise accuracy in node
embeddings.

3. The Design of GEL

We designed a graph ensemble learning based on knowledge passing (GEL) frame-
work for semi-supervised node classification tasks and mitigating nonrobustness issues. As
illustrated in Figure 1, a connected graph G with its adjacent matrix A and feature matrix X
are given. In order to empower each node to extract information from diverse subsets of its
neighbors, we utilized a multilayer DropNode propagation strategy to achieve this for each
model. Afterwards, the matrix after propagation was put into a classification model MLP.
Finally, we leveraged ensemble learning for better performance under a semi-supervised
setting. Each step of our framework is explained in detail below.

Graph Data

...

...

..
.

Multi-layer DropNode Propagation

Drop_rate=0.5

Drop_rate=0.2

..
.

MLP1MODEL1

MODELN

Lsup

Lkp

..
.

Ensemble

MLPN

sup kpL L L

Figure 1. Illustration of GEL with multilayer DropNode propagation. GEL consists of multilayer
DropNode propagation and graph ensemble learning based on knowledge passing.

3.1. MultiLayer DropNode Propagation

Multilayer DropNode Propagation. There were two steps in the multilayer DropN-
ode propagation. First, before propagation, the feature matrix of each node was removed
with probability p to gain a perturbed matrix X̃. Second, during propagation, we performed

Mathematics 2022, 10, 1300 5 of 14

label propagation to generate matrix X′. Note that the above process was only implemented
during training. During inference, we directly used the original feature matrix X.

Formally, in the first step, we assigned a mask pi ∼ Bernoulli(1− ε) for each node
vi. Then, we gained the perturbed matrix X̃ by multiplying each node’s feature matrix
with its mask, i.e., X̃i = p · Xi, where Xi denotes the ith row of feature matrix X. In
doing so, we changed the graph structure before each propagation. Specifically, each node
extracted information from its diverse subsets of neighbors rather than the same subsets of
neighbor nodes, reducing its dependence on specific neighbors. Note that the probability
p of removing node features was different for each model. Generally, the probability p is
decreasing gradually from the first model to the last model. Thus, we obtained different
node representations and ensured the diversity of the models.

In the second step, we adopted a multilayer label propagation, i.e., X′ = 1
K+1 ∑K

k=0 Â
k
X̃,

where Â
k
= (Âk−1 · X̃) · p, Ā = 1

K+1 ∑K
k=0 Â

k
is the average of Â0 to ÂK. Compared to

directly using ÂK, this propagation rule empowered each node to aggregate more local
information, mitigating the risk of oversmoothing.

Compared with GRAND [38], we performed a DropNode strategy in each layer
propagation, rather than only once before propagation. By doing so, we obtained stochas-
tic subsets of neighbors for each node. Consequently, each node extracted information
randomly from its diverse neighbors and thus its features could be affected by more re-
mote neighbors. Moreover, we guaranteed the reduction of the distraction from noise
nodes’ information, enhancing the robustness of the model and meanwhile alleviating the
oversmoothing problem.

Prediction. For each model, the matrix X′ were generated after performing the multi-
layer random DropNode propagation. Then, each matrix was fed into an MLP model to
obtain the corresponding classification results:

Z = fmlp
(
X′, Θ

)
, (3)

where Z ∈ (0, 1) denotes the predicted possibilities of the matrix X′ and Θ is a set of
model parameters.

3.2. Graph Ensemble Learning Based on Knowledge Passing

We designed a graph ensemble learning method based on knowledge passing. The
main idea was to consider not just the performance of a single model, but the interactions
among base models. Our goal was for the model to learn the knowledge of prior models,
which could make the model perform well.

Ensemble learning. We adopted an ensemble learning strategy, which was to use
multiple MLPs to complete the classification task. For each model, we obtained the matrix
X′ from the multilayer DropNode propagation. Afterwards, it was fed into an MLP model
to output its corresponding predictions. Except for the first model, each base model used
the classification results of the prior models as knowledge.

Specifically, we designed the serialization ensemble learning method as shown in
Figure 2. First, the classifier MLP1 outputted the classification result Z(1), and Z(1) was
delivered to the next model MLP2. When the classifier MLP2 performed classification, it
received the result delivered by the first model and gave its own predictions. It is not
difficult to conclude that each ith model received knowledge from the (i− 1)th model. The
optimization objective which aligned the predictions between the ith model and (i− 1)th
model can be formulated as

min
Θ

∑
v∈V

distance(fmlpi
(v), fmlp(i−1)

(v)), (4)

Mathematics 2022, 10, 1300 6 of 14

where distance(·, ·) denotes the distance between the predictions of two models. In doing
so, the ith model received the prior knowledge transferred from the (i− 1)th model and
thus the ith model performed better.

MLP 1

Model 1

...

Predicted
label 1

MLP 2

Model 2

Predicted
label 2

MLP n

Model n

Predicted
label n

Figure 2. Serialization ensemble learning. Each ith base model receives knowledge from (i− 1)th
base model.

Meanwhile, we also designed a parallel ensemble learning method entitled P-GEL as
one of the comparison algorithms shown in Figure 3. Different from the serialized ensemble
learning method, the first N − 1 models were trained independently and outputted classi-
fication results Z(1) to Z(N−1), respectively. When the ith model was trained, it received
classification results from the first model up to the (i− 1)th model and outputted its own
classification result.

MLP 1

Model 1

...

Predicted
label 1

MLP 2

Model 2

Predicted
label 2

MLP n

Model n

Predicted
label n

Figure 3. Parallel ensemble learning. The first N − 1 models are trained independently. The Nth
model receives classification results from the first model up to the (N − 1)th model.

It can be seen from Section 4.2 that the classification results of the serialized ensemble
learning algorithm are better than that of the parallel ensemble learning algorithm, which
indicates that knowledge passing strategy among base models is significant. When a single
model encounters perturbation and outputs poor classification results, the knowledge
from prior models can improve the poor performance. Consequently, the robustness of the
models is greatly strengthened.

Training and Inference. In the whole algorithm, the loss function was mainly divided
into two parts: the loss in a model and the loss between models. The loss in a model
referred to the supervised loss. With m labeled nodes among n nodes, the supervised loss
in every epoch was formulated as the cross-entropy loss:

Lsup =
m−1

∑
i=0

YT
i logZi. (5)

The loss between modes was knowledge passing loss. Concretely, when the (i− 1)th
model passed knowledge to the ith model, we minimized the distance between Z(i)

and Z(i−1):

Lkp =
1
N

N−1

∑
i=0

n−1

∑
j=0

∥∥∥Z(i)
j − Z(i−1)

j

∥∥∥2

2
. (6)

The final loss of our algorithm was:

L = Lsup + λLkp, (7)

where λ is a hyperparameter to control the balance between the two losses. Algorithm 1
summarizes the training process of GEL.

Mathematics 2022, 10, 1300 7 of 14

Algorithm 1 GEL.

Require: Graph G, adjacent matrix A, feature matrix X ∈ Rn×d, the number of models N, DropNode
probability p, learning rate η, an MLP model: fmlp(X′, Θ).

Ensure: Prediction results Z.
1: while not convergence do
2: for n = 1 : N do
3: Perturb the feature matrix: X̃ ∼ DropNode(X, p)

4: Perform multilayer DropNode propagation: X′ = 1
K+1 ∑K

k=0 Â
k
X̃

5: Predict the distribution of class using an MLP: Z = fmlp(X′, Θ)
6: end for
7: Calculate supervised classification loss Lsup via Equation (5) and knowledge passing loss via

Equation (6).
8: Update the parameters Θ by gradient descending: Θ = Θ− η5Θ (Lsup + λLkp).
9: end while

10: Output prediction Z via Equation (3).

3.3. Computational Complexity

For a model, the time complexity of the multilayer DropNode propagation isO(Kd(n+
|E|)), where K represents propagation step, d is the dimension of node feature, n is the
number of nodes and |E| is the count of edges. The next step is the prediction module and
it can be accomplished in O(ndh(d + C)), where dh represents its hidden size and C is the
number of classes. The total computational complexity of GEL is O(N((Kd(n + |E|)) +
(ndh(d + C)))), where N denotes the number of models.

4. Experiments

In this section, we begin with introducing the details of the datasets, comparative
baselines, variants, and experimental settings. Then, we present the overall experimental
results on the semi-supervised node classification task and compare the performance on
network visualization. Afterwards, we give an experiment comparing between GEL and
GCN [7], GAT [27], and GRAND [38] to validate the advantage of GEL in robustness and
oversmoothing issues. Finally, we conduct experiments to study the effects of different
hyperparameters.

4.1. Experimental Setup
4.1.1. Datasets

To evaluate the performance of GEL on semi-supervised node classification tasks, we
used three benchmark datasets: Cora [39], Citeseer [39], and Pubmed [40]. The statistics of
the three datasets are summarized in Table 2.

Table 2. Benchmark dataset statistics.

Dataset Nodes Edges Classes Features

Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19,717 44,338 3 500

The details for Cora, Citeseer, and Pubmed are as follows:

• Cora [39] is a benchmark dataset related to citations between machine learning papers.
It is widely used in the field of graph learning. Each node represents a paper and the
edges represent citations between papers. The label of a node indicates the research
field of a paper.

• Similar to Cora, Citeseer [39] is another benchmark dataset which represents the
citations between computer science papers, keeping a similar configuration to Cora.

Mathematics 2022, 10, 1300 8 of 14

• Pubmed [40] is also a citation dataset which is relevant to articles about diabetes. The
node features are weighted frequency–inverse document frequencies (TF-IDF). The
label of a node denotes the type of diabetes.

4.1.2. Baselines and Variants

We conducted experiments with other comparative algorithms to evaluate the perfor-
mance of GEL. The details of the comparative baselines are listed as follows:

• GCN [7] is a semi-supervised learning approach which employs novel convolution
operators on graph-structured data to learn node representations.

• GAT [27] performs better than GCN by combining an attention mechanism which
specifies different weight to a neighbor node.

• DGI [41] is an unsupervised learning approach to study node representations. Maxi-
mizing mutual information between patch representations and corresponding high-
level summaries were proposed in DGI.

• APPNP [42] improved GCN by connecting GCN with PageRank. A new propaga-
tion procedure based on personalized PageRank was proposed to make full use of
neighbor information.

• MixHop [30] was proposed to study neighborhood mixing relationships, such as
difference operators. Sparsity regularization lets us visualize which neighborhood
information will be chosen in priority by the network.

• GraphSAGE [26] was proposed to study node embeddings by sampling and aggregat-
ing information which comes from a node’s local neighborhood.

• GRAND [38] first designed random propagation to achieve data augmentation and
then proposed consistency loss to optimize the prediction loss of unlabeled nodes
through data augmentation.

• RDD [34] was proposed to define node reliability and edge reliability to ensure the
quality of a model. Moreover, a new ensemble learning method was proposed to
combine the above optimization.

For each dataset, we tested the following variants of our method:

• M-GEL: The variant without the multilayer DropNode propagation mechanism.
• K-GEL: The variant without graph ensemble learning based on knowledge passing

mechanism.
• P-GEL: The variant with the multilayer DropNode propagation and graph ensemble

learning based on parallel knowledge passing.

4.1.3. Settings

We used PyTorch to conduct our experiments. The preprocessing for the three datasets
was accomplished with the reference of Planetoid [43]. The experimental settings of the
three basic datasets were exactly the same as works on semi-supervised learning tasks [7].
For Cora, the values of train nodes, valid nodes, and test nodes were, respectively, 140,
500, and 1000. For Citeseer, the values of train nodes, valid nodes, and test nodes were,
respectively, 120, 500, and 1000. For Pubmed, the values of train nodes, valid nodes, and
test nodes were, respectively, 60, 500, and 1000. In addition, we employed early stopping
with a patience of 200 as an indicator of termination in the training process. To evaluate
the performance of GEL, the metric for the classification task used in our experiment
was accuracy. All experiments were conducted on PyCharm 2020. As for other software
versions, we used Python 3.7.3, PyTorch 1.2.0, Numpy 1.16.4, and CUDA 11.2.

4.2. Node Classification Results

The accuracy of node classification predicted by GEL is shown in Table 3. The results
of other baselines are all conducted with the same settings as our algorithm.

From Table 3, we can clearly observe that GEL consistently achieves stable improve-
ments across the three datasets in contrast to other baselines. Specifically, GEL improves
upon GCN by a margin of 5%, 5.7%, and 5.2% on Cora, Citeseer, Pubmed. Compared

Mathematics 2022, 10, 1300 9 of 14

to GAT, we gain 3.5%, 3.4%, and 5.2% improvements, respectively. When compared to
GRAND, GEL achieves 1.1%, 0.4%, and 1.5% improvements, respectively.

Table 3. Overall classification accuracy (%).

Method Cora Citeseer Pubmed

GCN 81.5 70.3 79.0
GAT 83.7 73.2 79.3
DGI 82.9 72.5 77.4

APPNP 84.1 72.1 80.0
MixHop 82.3 72.2 81.4

GraphSAGE 79.7 68.1 78.4
GRAND 85.8 75.8 83.3

RDD 86.1 74.2 81.5

GEL 86.5 76.0 84.2
M-GEL 84.6 74.7 81.1
K-GEL 85.4 74.8 82.9
P-GEL 85.7 75.5 84.2

We observe that P-GEL also outperforms most of the baselines, though still lower
than GEL. This indicates serialization ensemble learning method is better than the parallel
ensemble learning method. This also suggests that knowledge passing between models
is significant. We then conducted an ablation experiment to study the contributions of
different components in GEL. From the experimental results of two variants named M-
GEL and K-GEL, we have two observations. Firstly, the performance of all GEL variants
with some components removed is significantly reduced compared to the full model,
demonstrating that every component of the design contributes to GEL’s success. Second,
GEL without the multilayer DropNode propagation outperforms almost all baselines across
the three datasets, illustrating the positive effect of the proposed ensemble learning based
on knowledge passing for semi-supervised graph learning.

4.3. Network Visualization

We can explore the network structure in two-dimensional space by network visualiza-
tion. In this experiment, we visualized the Cora network using GCN, GAT, GRAND, and
the proposed method GEL and its variants. Seven visualized networks are illustrated in
Figure 4, where each color denotes a class. We summarize the observations as follows:

• GCN tightly confuses red, purple, and green, as well as blue and lake blue. GAT
poorly separates the boundary of green and peak green, and strongly confuses red,
orange, and purple. GRAND fails to separate purple and red and cannot develop the
boundary of green and peak green.

• GEL shows a remarkable ability to visualize the Cora network. It can separate points
of different colors and cluster points of the same color, though tightly confuse red
and purple. We can also observe that the variants of GEL also show a significant
performance in the network visualization compared to GCN, GAT, and GRAND. These
results indicate that the multilayer DropNode propagation and ensemble learning on
graphs are useful in network visualization.

Mathematics 2022, 10, 1300 10 of 14

(a) (b) (c) (d)

(e) (f) (g)
Figure 4. Network visualization on the Cora network using t-SNE. Each color denotes one class.
(a) GCN; (b) GAT; (c) GRAND; (d) GEL; (e) P-GEL; (f) K-GEL; (g) M-GEL.

4.4. Robustness Analysis

In this part, we examine the robustness of GEL by perturbing graphs with a random
attack method by adding fake edges randomly.

Figure 5 shows the classification accuracy of different methods when perturbing the
Cora dataset with different perturbation rates. We can see that GEL outperforms GCN
and GAT across all perturbation rates. When compared to the very recent GRAND model,
we can observe that although the accuracy of the proposed method is slightly lower than
that of GRAND when the perturbing probability is less than 100%, when the perturbing
probability is greater than 100%, GEL shows obvious advantages. When adding 200% new
random edges into the Cora dataset, we can observe that the classification accuracy for
GEL decreases only 17.6%, while it decreases by 26.5% for GRAND, 28.4% for GAT, and
70.8% for GCN. This study indicates the robustness advantage of the GEL model with the
increase of the perturbation rate.

0 5 0 1 0 0 1 5 0 2 0 0
0

2 0

4 0

6 0

8 0

Ac
cu

rac
y

P e r t u r b a t i o n R a t e (e d g e %)

 G C N
 G A T
 G R A N D
 K P - G E L

Figure 5. Robustness analysis on the Cora network with random attack edge.

4.5. Oversmoothing Analysis

Many GNNs suffer from oversmoothing problems. When deepening the propagation
step, GNNs may make nodes with different labels indistinguishable. In this experiment,
we studied how vulnerable GEL was to this problem on the Cora and Citeseer networks by

Mathematics 2022, 10, 1300 11 of 14

deepening the propagation step. Higher classification accuracy with a deeper propagation
step indicates a less severe oversmoothing issue.

Figure 6 presents the classification accuracy with different propagation steps on the
Cora and Citeseer networks. In GEL and GRAND, the propagation step is adjusted with the
hyperparameter K, while in GCN and GAT, it is controlled by different hidden layers. As
shown in Figure 6, with the propagation step increasing, the classification accuracy of GCN
and GAT drops dramatically on both networks because of the oversmoothing problem.
However, GEL and GRAND perform completely different. Both GEL and GRAND are not
affected by the propagation step. Meanwhile, the performance of GEL is always better than
GRAND as the propagation step increases on both networks. This suggests that GEL is
much more powerful to alleviate the oversmoothing issue.

4 6 8 1 0
0

2 0

4 0

6 0

8 0

Ac
cu

rac
y

P r o p a g a t i o n S t e p

 G C N
 G A T
 G R A N D
 K P - G E L

(a)

4 6 8 1 0
0

2 0

4 0

6 0

8 0

Ac
cu

rac
y

P r o p a g a t i o n S t e p

 G C N
 G A T
 G R A N D
 K P - G E L

(b)

Figure 6. Oversmoothing analysis. (a) Cora Network; (b) Citeseer Network.

4.6. Parameter Analysis

In this subsection, we investigate the parameter sensitivity. For GEL, one of the most
crucial parameters is the number of models. As a result, we first studied how it affected
the performance of GEL on the three datasets. We set N ∈ {2, 3, 4, 5, 6, 7, 8, 9} with a fixed
DropNode probability p and propagation step for each dataset. For the Cora and Citeseer
networks, GEL behaved best with six to eight models. For the Pubmed dataset, the GEL
performed best with two models.

We also studied some extra additional parameters, that are the propagation step
K, DropNode probability p, and KP loss coefficient λ. We performed hyperparameter
searching for each dataset. Concretely, we first searched K among {2, 3, 4, 5, 6, 7, 8, 9} for
each dataset. With the best choice of K, we then searched the DropNode probability of each
model, considering that each ensemble learning model should have diversities, and we
set the DropNode probability of each model to be different. Afterwards, we studied the
number of models for Citeseer and Cora again from six to eight models. Finally, we fixed
λ ∈ {0.5, 0.7, 1.0}. Other parameters included the early stopping patience, hidden layer
size, L2 weight decay rate, dropout rate in the input layer, and dropout rate in the hidden
layer. These parameters did not cost much time, because the GEL was not sensitive to them.
The optimal hyperparameters we used in our experiments are shown in Table 4.

Mathematics 2022, 10, 1300 12 of 14

Table 4. Hyperparameters Settings of GEL

Hyperparameter Cora Citeseer Pubmed

Model number N 6 6 2
Propagation step K 8 2 5

DropNode probability p [0.7, 0.6, 0.5, [0.7, 0.6, 0.5, [0.7,
0.3, 0.2, 0.15] 0.4, 0.3, 0.2] 0.6]

KP loss coefficient λ 1.0 0.7 1.0
Learning rate η 0.01 0.01 0.2
Early stopping

patience 200 200 200

Hidden layer size 32 32 32
L2 weight decay rate 5× 10−4 5× 10−4 5× 10−4

Dropout rate in input
layer 0.5 0.0 0.6

Dropout rate in
hidden layer 0.5 0.2 0.8

5. Conclusions

In this paper, we studied the semi-supervised learning tasks on graphs and presented
the graph ensemble learning based on knowledge passing (i.e., GEL) to mitigate the
nonrobustness issues faced by most existing GNNs. We proposed the multilayer DropNode
propagation, a strategy empowering each node to extract information from diverse subsets
of its neighbors. Thus, each node’s information depended not only on a single node,
but also on multiple subsets of neighbors, alleviating oversmoothing issues. Then, we
leveraged ensemble learning based on knowledge passing for considering the interaction
among base models to avoid degrading the performance caused by the same perturbations
as in prior models, alleviating nonrobustness issues. Experimental results on three datasets
demonstrated that GEL outperformed other state-of-the-art baselines on semi-supervised
node classification tasks, illustrating the importance of the ensemble learning and multilayer
DropNode propagation used in our framework. Additional experiments on random attacks
and different numbers of propagation layers showed the advantage of our algorithm with
respect to robustness and oversmoothing issues.

In future work, we will improve the adaptability of various attacks, e.g., metattack
attacks and adversarial attacks. We will also explore whether our framework is applicable to
other graph-based tasks, such as unsupervised learning tasks and some anomaly detection
tasks. Another line of research would be to refine our framework by encouraging fewer
models (e.g., a distillation model) for better performance.

Author Contributions: Conceptualization, Q.L., W.Z. and F.X.; investigation, Q.L. and K.S.; methodol-
ogy, Q.L., S.Y. and K.S.; supervision, W.Z. and F.X.; validation, K.S., W.Z., O.A. and A.T.; writing—original
draft, Q.L. and S.Y.; writing—review and editing, W.Z., O.A., A.T. and F.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the Researchers Supporting Project No. RSP-2021/102 at King
Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The three datasets used in this paper are publicly available.

Acknowledgments: This work was funded by the Researchers Supporting Project No. RSP-2021/102
at King Saud University, Riyadh, Saudi Arabia. The authors would like to thank Lei Wang and Liuwei
Fu for their help with the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1300 13 of 14

References
1. Stadtfeld, C.; Vörös, A.; Elmer, T.; Boda, Z.; Raabe, I.J. Integration in emerging social networks explains academic failure and

success. Proc. Natl. Acad. Sci. USA 2019, 116, 792–797. [CrossRef] [PubMed]
2. Xu, J.; Yu, S.; Sun, K.; Ren, J.; Lee, I.; Pan, S.; Xia, F. Multivariate relations aggregation learning in social networks. In Proceedings

of the ACM/IEEE Joint Conference on Digital Libraries, Virtual Event, China, 1–5 August 2020; pp. 77–86.
3. Xia, F.; Wang, W.; Bekele, T.M.; Liu, H. Big scholarly data: A survey. IEEE Trans. Big Data 2017, 3, 18–35. [CrossRef]
4. Ebesu, T.; Fang, Y. Neural citation network for context-aware citation recommendation. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 1093–1096.
5. Xia, F.; Wang, L.; Tang, T.; Chen, X.; Kong, X.; Oatley, G.; King, I. CenGCN: Centralized Convolutional Networks with Vertex

Imbalance for Scale-Free Graphs. IEEE Trans. Knowl. Data Eng. 2022. [CrossRef]
6. Lee, K.; Eo, M.; Jung, E.; Yoon, Y.; Rhee, W. Short-term traffic prediction with deep neural networks: A survey. IEEE Access 2021,

9, 54739–54756. [CrossRef]
7. Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International

Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.
8. Xiao, Y.; Li, C.; Liu, V. DFM-GCN: A Multi-Task Learning Recommendation Based on a Deep Graph Neural Network. Mathematics

2022, 10, 721. [CrossRef]
9. Xia, F.; Sun, K.; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph Learning: A Survey. IEEE Trans. Artif. Intell. 2021, 2, 109–127.

[CrossRef]
10. Yu, S.; Xia, F.; Sun, Y.; Tang, T.; Yan, X.; Lee, I. Detecting outlier patterns with query-based artificially generated searching

conditions. IEEE Trans. Comput. Soc. Syst. 2020, 8, 134–147. [CrossRef]
11. Zügner, D.; Akbarnejad, A.; Günnemann, S. Adversarial attacks on neural networks for graph data. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 2847–2856.

12. Zhu, D.; Zhang, Z.; Cui, P.; Zhu, W. Robust graph convolutional networks against adversarial attacks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 1399–1407.

13. Nagurney, A. Networks in economics and finance in Networks and beyond: A half century retrospective. Networks 2021,
77, 50–65. [CrossRef]

14. Kurakin, A.; Goodfellow, I.; Bengio, S.; Dong, Y.; Liao, F.; Liang, M.; Pang, T.; Zhu, J.; Hu, X.; Xie, C.; et al. Adversarial attacks
and defences competition. In The NIPS’17 Competition: Building Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 195–231.

15. Kannan, H.; Kurakin, A.; Goodfellow, I. Adversarial logit pairing. arXiv 2018, arXiv:1803.06373.
16. Croce, F.; Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In Proceed-

ings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 2206–2216.
17. Bui, A.; Le, T.; Zhao, H.; Montague, P.; deVel, O.; Abraham, T.; Phung, D. Improving Ensemble Robustness by Collaboratively

Promoting and Demoting Adversarial Robustness. In Proceedings of the National Conference on Artificial Intelligence, New York,
NY, USA, 7 February 2020.

18. Liu, L.; Wei, W.; Chow, K.H.; Loper, M.; Gursoy, E.; Truex, S.; Wu, Y. Deep Neural Network Ensembles Against Deception:
Ensemble Diversity, Accuracy and Robustness. In Proceedings of the Mobile Adhoc and Sensor Systems, Monterey, CA, USA,
4–7 November 2019.

19. Li, Y.; Yosinski, J.; Clune, J.; Lipson, H.; Hopcroft, J.E. Convergent Learning: Do different neural networks learn the same
representations? In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4
May 2016.

20. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the
Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 639–655.

21. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 912–919.

22. Sun, K.; Liu, J.; Yu, S.; Xu, B.; Xia, F. Graph force learning. In Proceedings of the 2020 IEEE International Conference on Big Data
(Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 2987–2994.

23. Sun, K.; Wang, L.; Xu, B.; Zhao, W.; Teng, S.W.; Xia, F. Network representation learning: From traditional feature learning to deep
learning. IEEE Access 2020, 8, 205600–205617. [CrossRef]

24. Yu, S.; Feng, Y.; Zhang, D.; Bedru, H.D.; Xu, B.; Xia, F. Motif discovery in networks: A survey. Comput. Sci. Rev. 2020, 37, 100267.
[CrossRef]

25. Berrone, S.; Della Santa, F.; Mastropietro, A.; Pieraccini, S.; Vaccarino, F. Graph-Informed Neural Networks for Regressions on
Graph-Structured Data. Mathematics 2022, 10, 786. [CrossRef]

26. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.

27. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

http://doi.org/10.1073/pnas.1811388115
http://www.ncbi.nlm.nih.gov/pubmed/30584099
http://dx.doi.org/10.1109/TBDATA.2016.2641460
http://dx.doi.org/10.1109/TKDE.2022.3149888
http://dx.doi.org/10.1109/ACCESS.2021.3071174
http://dx.doi.org/10.3390/math10050721
http://dx.doi.org/10.1109/TAI.2021.3076021
http://dx.doi.org/10.1109/TCSS.2020.2977958
http://dx.doi.org/10.1002/net.21920
http://dx.doi.org/10.1109/ACCESS.2020.3037118
http://dx.doi.org/10.1016/j.cosrev.2020.100267
http://dx.doi.org/10.3390/math10050786

Mathematics 2022, 10, 1300 14 of 14

28. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.i.; Jegelka, S. Representation learning on graphs with jumping knowl-
edge networks. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 5453–5462.

29. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.

30. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; Galstyan, A. Mixhop:
Higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 21–29.

31. Tu, K.; Ma, J.; Cui, P.; Pei, J.; Zhu, W. Autone: Hyperparameter optimization for massive network embedding. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 216–225.

32. Dietterich, T.G. Ensemble learning. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 2002;
Volume 2, pp. 110–125.

33. Hou, X.; Qi, P.; Wang, G.; Ying, R.; Huang, J.; He, X.; Zhou, B. Graph Ensemble Learning over Multiple Dependency Trees for
Aspect-level Sentiment Classification. arXiv 2021, arXiv:2103.11794.

34. Zhang, W.; Miao, X.; Shao, Y.; Jiang, J.; Chen, L.; Ruas, O.; Cui, B. Reliable data distillation on graph convolutional network.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June
2020; pp. 1399–1414.

35. Zou, J.; Fu, L.; Zheng, J.; Yang, S.; Yu, G.; Hu, Y. A many-objective evolutionary algorithm based on rotated grid. Appl. Soft
Comput. 2018, 67, 596–609. [CrossRef]

36. Zou, J.; Fu, L.; Yang, S.; Zheng, J.; Ruan, G.; Pei, T.; Wang, L. An adaptation reference-point-based multiobjective evolutionary
algorithm. Inf. Sci. 2019, 488, 41–57. [CrossRef]

37. Mun, Y.J.; Kang, J.W. Ensemble of random binary output encoding for adversarial robustness. IEEE Access 2019, 7, 124632–124640.
[CrossRef]

38. Feng, W.; Zhang, J.; Dong, Y.; Han, Y.; Luan, H.; Xu, Q.; Yang, Q.; Kharlamov, E.; Tang, J. Graph Random Neural Networks for
Semi-Supervised Learning on Graphs. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada,
6–12 December 2020.

39. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008,
29, 93–93. [CrossRef]

40. Namata, G.; London, B.; Getoor, L.; Huang, B.; EDU, U. Query-driven active surveying for collective classification. In Proceedings
of the 10th International Workshop on Mining and Learning with Graphs, Washington, DC, USA, 24–25 July 2012; Volume 8.

41. Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR (Poster) 2019, 2, 4.
42. Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then Propagate: Graph Neural Networks meet Personalized PageRank.

In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
43. Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the

International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 40–48.

http://dx.doi.org/10.1016/j.asoc.2018.02.031
http://dx.doi.org/10.1016/j.ins.2019.03.020
http://dx.doi.org/10.1109/ACCESS.2019.2937604
http://dx.doi.org/10.1609/aimag.v29i3.2157

	Introduction
	Task Definition and Related Work
	Semi-Supervised Node Classification
	Graph Neural Networks
	Ensemble Learning

	The Design of GEL
	MultiLayer DropNode Propagation
	Graph Ensemble Learning Based on Knowledge Passing
	Computational Complexity

	Experiments
	Experimental Setup
	Datasets
	Baselines and Variants
	Settings

	Node Classification Results
	Network Visualization
	Robustness Analysis
	Oversmoothing Analysis
	Parameter Analysis

	Conclusions
	References

