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Abstract: The term “Frequently asked questions” (FAQ) refers to a query that is asked repeatedly
and produces a manually constructed response. It is one of the most important factors influencing
customer repurchase and brand loyalty; thus, most industry domains invest heavily in it. This has
led to deep-learning-based retrieval models being studied. However, training a model and creating
a database specializing in each industry domain comes at a high cost, especially when using a
chatbot-based conversation system, as a large amount of resources must be continuously input for the
FAQ system’s maintenance. It is also difficult for small- and medium-sized companies and national
institutions to build individualized training data and databases and obtain satisfactory results. As a
result, based on the deep learning information retrieval module, we propose a method of returning
responses to customer inquiries using only data that can be easily obtained from companies. We
hybridize dense embedding and sparse embedding in this work to make it more robust in professional
terms, and we propose new functions to adjust the weight ratio and scale the results returned by the
two modules.

Keywords: deep learning; artificial intelligence; natural language processing; frequently asked
questions; dense and sparse embedding; industrial system; information retrieval

MSC: 68T50

1. Introduction

The traditional frequently asked questions (FAQ) system is used in the industrial field
and provides accurate answers to pre-determined user queries and keywords [1–4]. These
techniques rely significantly on the database structure that has been set in advance and
demonstrate poor response performance without a clear understanding of the concept of
free speech.

After the advent of the transformer [5], the FAQ system faced a significant paradigm
shift based on pre-trained language models (PLMs). In solving various natural language
processing downstream tasks, PLMs outperform existing machine learning models based
on context and meaningful information. They also lead to significant progress in semantic
research, which returns results based on the context and relationship inference of input
queries [6–8]. This advancement significantly alters the FAQ paradigm, allowing the FAQ
system to handle spontaneous speech in a conversational format [2,9,10].

Recently, a few domestic conglomerates developed a chatbot-based FAQ model that re-
quired massive resources by utilizing the ability to model human-like sentence expressions
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and the ability to understand context. As a result, many domestic companies have begun
investing significant resources to replace customer service, including FAQ, with PLM-based
dialogue systems such as chatbots.

However, most small and medium enterprises and national institutions find it dif-
ficult to build training data at high costs or to maintain chatbot-based FAQ systems on
a continuous basis without investing significant resources. Furthermore, due to its low
generalization, it is difficult to involve the learned model outside of the same industrial
domain despite their significant investment.

Moreover, to ensure the higher performance of deep-learning-based retriever models
and chatbot-based FAQ systems, additional training datasets and architecture modifications
are required to acquire knowledge of specific domains [10]. This is because most languages
used in industrial domains require proficient knowledge or appear at extremely low
probabilities in the general corpus. In addition, a domain gap occurs in the commonsense
knowledge of the language and the knowledge of the language required in a specific
industrial domain. Furthermore, for a language model to understand a given context
within an industrial domain and return the required results, the ability to retrieve or
comprehend prior knowledge is more important than inferring commonsense knowledge.

To address these problems, we propose a specialized FAQ system for industrial do-
mains that combines the advantages of traditional approaches and current study. The pro-
posed FAQ system returns an optimal response to a given query based on a PLM and
information retrieval. Our system has three advantages, which are as follows. (i) It out-
performs spontaneous speech in terms of semantic similarity by combining dense and
sparse embedding for a given query. (ii) To reduce model production costs, raw textual
strings, such as previous conversion records and response manuals, are used as databases
for small- and medium-sized enterprises and national institutions, and training strategies
are organized with published benchmark datasets. (iii) Two additional score functions are
proposed to optimize the retrieved results and disentangle the gap of embedding spaces
while maintaining high performance.

This paper is organized as follows. Section 2 explains related FAQ retrieval systems.
Section 3 shows the proposed methods, the dense embedding retriever, the sparse emboss-
ing retriever, and the score function. Section 4 describes specific experimental settings and
comparative experimental results. Section 5 discusses the limitations of the paper and its
further considerations. Finally, Section 6 concludes the proposed method and plans for
future research.

2. Related Work

FAQFinder [1] and Auto-FAQ [11] are early FAQ studies based on representative
information retrieval. FAQFinder drives appropriate responses from the frequency of
words using a heuristic statistical-based natural language processing technique. Auto-
FAQ proposes a natural language processing system based on statistics and rules that
makes use of features from the shallow language understanding and question answering
(QA) domains.

Rule- and statistics-based FAQ retrieval research introduced reducing the lexical
gap [3], template-based word matching systems [4,12], and automated template-based
FAQ systems [13] using regular expressions. Subsequently, semantic-similarity-based FAQ
systems and methods of evaluating models in dialogue are suggested in [2,14].

In the advent of deep learning, convolutional neural networks (CNN) [7,15], long
short-term memory (LSTM) [16], and PLMs are used to measure similarities between
input queries and target databases [6,8]. Sakata et al. [6] calculate the similarity between
the user’s query and the question of the target FAQ set using BM25 and compute the
similarity between the user’s query and the answer with BERT. BERT trains with FAQ
datasets labeled with binary classification. In addition, the retrieval ranking is rearranged
based on the BM25 score, and the values of the two modules are heuristically combined
into one scalar. Mass et al. [8] also match the user’s query to the FAQ dataset’s question
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and answer. However, Mass et al. [8] use BM25 to re-rank the retrieved candidates and
search for questions and answers with high scores in two BERT models. In addition, the
GPT-2 model generates a paraphrase for the answer, allowing BERT to learn similarities
for weak unlabeled FAQ datasets. Furthermore, as with the dialogue system and the
massive corpus-based QA system, the FAQ system, as one of the subtasks, uses the same
approach [9,10,17].

In this paper, we concentrate on integrating two distinct methods for application to
a real-world industrial problem. We use information retrieval systems with PLMs in a
manner similar to that of [6,8], but we train a model using a published benchmark dataset.
However, our proposed system differs in that it trains a model using a non-FAQ published
benchmark dataset. Furthermore, in contrast to previous studies, the BERT model was used
to compute similarities between queries and questions, enhancing the robustness of the
language model for free speech. We concentrate on the role of a contextual language model
rather than using the BERT model as a classifier. Our approach uses spontaneous speech
as an input query, similar to a conversation-based FAQ system, and significantly reduces
the cost of data construction. Furthermore, we propose two score functions to disentangle
the gap problem between dense and sparse embedding, which has not been considered in
previous research.

3. Proposed Method

We combine the dense embedding retriever and the sparse embedding retriever to
construct an FAQ system that retrieves the optimal response from a database built from
previous conversation records. In addition, we propose two scoring functions that adjust
the scalar values returned by two retriever modules with different embedding spaces.

3.1. FAQ Database

The FAQ system aims to resolve customer complaints and difficulties by providing
appropriate answers to frequently asked questions. This serves the same purpose as re-
sponding to customers through a counselor, but there is a difference in lowering the cost
of human resources and promptly resolving customer complaints before responding to
a counselor.

We use the conversation history and summaries with customers as our database,
inspired by the fact that the FAQ system serves the same purpose as dealing with cus-
tomers through counselors. Because most domestic companies that employ counselors
are required by law to record conversations between counselors and customers, re-using
pre-existing data significantly reduces the cost of developing one’s database. In contrast,
the customer consultation record data contain unnecessary greeting phrases, incorrect
information delivery, specific personal information, and inaccurate answers that do not fit
the context.

As a result, we manually refine the counselors’ conversation contents based on the
FAQ manual that has been built in advance by five or more human annotators working
in the same industry domain. In addition, we create a rule-based manual to eliminate
unethical issues and specificity. Finally, we collect the information in the form of a single
turn, which includes a consumer query and a counselor response.

3.2. Question Matching: Dense Embedding Retriever

Dense-embedding-based information retrieval compares the semantic similarity be-
tween a query and a search target database in a latent space expressed as a continuous
real value. Since this method exploits high-density expression in a small dimension, it
can provide a fast retrieval speed and yield a result that is not excessively biased to a
specific term. In other words, the meaning of the given input is interpreted according to the
dynamically comprehended contextualized representation and the linguistic knowledge
learned by the model during the pre-training process.
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For constructing a dense embedding retriever, we adopt the KoBERT (https://github.
com/SKTBrain/KoBERT, accessed on 20 March 2022) model that is pre-trained with the
Korean corpus. The embedding size of the dense vector is set to 768, which is the same as
the embedding size of the model. In addition, we use a sentence transformer structure that
connects two KoBERT autoencoders as a pair of bi-encoders [18]. The value returned by
each encoder represents structural and contextual information for a given query and the
target customer’s question.

We use the open KorSTS dataset for training the information retrieval model [19].
KorSTS is a natural language understanding downstream task consisting of a D training
dataset for calculating semantic similarity between two sentences. Unlike previous studies,
we use open datasets to reduce the burden of building datasets to train information retrieval
models and ensure versatility within industrial domains.

Specifically, KoBERT takes two input sequences composed of the query sh and the
target question sp. We add a pooling layer P to the output of the KoBERT for converting
variable-length vectors sh and sp into fixed-length embedding vectors with size n. σ denotes
activation unit and W, b are trainable parameters of a pooling layer P. Subsequently, as in
Equation (1), the values of all output vectors of the pooling function P(·) are averaged to
obtain a fixed-size query embedding vector mq and a search target embedding vector mc.
y in Equation (2) corresponds to the existing correct label representing the relationship
between two sentences as a real number. We additionally define y′ as a min-max normalized
vector of y for comparison with results ŷ in Equation (3). As in Equation (4), the difference
between two values is optimized using mean-squared-errorMSE loss, which is a loss
function that meets the regression objective.

msh, msp = P(σ(W(sh) + b)), P(σ(W(sp) + b)) (1)

y′ =
y− ymin

ymax − ymin
(2)

ŷ = cos(msh, msp) =
∑n

i=1(mshimspi)√
∑n

i=1 (mshi)
2
√

∑n
i=1 (mspi)

2
(3)

Ldense =MSE(y′, ŷ) =
1
D

D

∑
j=1

(y′j − ŷj)
2 (4)

The trained dense embedding retriever calculates the semantic similarity as a compar-
ison group of the contents corresponding to the customer questions in the FAQ database
built in Section 3.1. Considering that the KorSTS dataset used for fine-tuning consists of
a pair of short dialogues, we set the history of the customer question as a target sentence
(input-query-to-customer question). The semantic similarity value converges to 1 point if
the input query and the customer question in the database have a similar context and 0 point
if the relevance is low.

The retrieved questions are arranged in descending order based on the similarity score,
including the result of the counselor’s response. The PLM-based information retrieval
method has the advantage of retrieving a list that can respond to spontaneous speech
as well as strictly pre-designed queries. Furthermore, the bi-encoder provides superior
efficiency by calculating performance in linear time even when the retrieval target is
asymmetric or the database is too large.

3.3. Answer Matching: Sparse Embedding Retriever

Even a retrieved question with a high degree of similarity does not always yield an
optimal response. For example, if a user query intends to block adult content, similar
customer questions, such as removing adult content or blocking entertainment content, can
have high scores despite returning incorrect responses.

https://github.com/SKTBrain/KoBERT
https://github.com/SKTBrain/KoBERT
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To address these issues, we do not rely solely on the semantic similarity calculated by
averaging the sentence-embedding values using the sparse embedding retriever, but we also
include the inclusion of a specific keyword in the score. The ranking function BM25 is used
as the sparse embedding retriever [20]. We use mecab-ko (https://github.com/hephaex/
mecab-ko, accessed on 20 March 2022) to segment the given input query and the counselor
response corresponding to the database into morpheme units [21]. We then extract retrieval
target tokens having practical meanings, such as nouns and verbs, among these segmented
tokens. The remaining morphemes that play a grammatical role are removed.

We suppose the content morphemes are {q1, . . . , qn} in a user query Q and a counselor
response R, where n is the number of tokens. The average response length of all indexed
responses is avgRL and length of the given response is |R|. k and b are free hyper-parameters
which are initialized by the default values 1.2 and 0.75, respectively. In particular, k is
adopted for refining the effect that a single query token can have on the document score,
and b is utilized for penalizing the long documents. We rank highly relevant responses
by computing the term frequency f (qi, R) and the inverse document frequency IDF(qi).
The ranking function BM25 is denoted as follows:

ssparse(R, Q) =
n

∑
i=1

IDF(qi) ·
f (qi, R) · (k + 1)

f (qi, R) + k · (1− b + b · |R|avgRL )
(5)

Similarly, the counselor response is organized in descending order, beginning with the
customer’s question and ending with the corresponding response. Because the counselor
response is longer than the customer’s question, we use BM25, which has a regularization
method based on the length of the search document. Furthermore, we compensate for the
dense embedding method’s shortcomings, in which the token embedding value varies with
context by retrieving keywords that must be included in the counselor response with a
fixed token embedding value.

3.4. Score Function

Dense embedding retriever and sparse embedding retriever return output vectors from
different embedding spaces. Accordingly, to calculate the score considering the two values,
it is necessary to map these vectors to an integrated space. Thus, we adopt the arctangent
function for re-ranging the output of each architecture. In particular, for adjusting the
mapped value to −1 < y < 1, we multiply 2

π and the function output. Specifically, we
utilize the scaling function g as shown in Equation (6).

g(x) =
2× tan−1(x)

π
=

i× log(1− i× x)
π

− i× log(1 + i× x)
π

(6)

The scaling function sets a significant increment for the scores returned by the retriever,
making the distinction between each score clear within the range −1 < y < 1. Furthermore,
when the response contains the same keyword but has a completely different meaning, we
can impose a significant penalty by allowing the dense retriever’s output to be a negative
value. This scaling method is critical in addressing the shortcomings of a method that
returns a similar response and is traditionally appropriate for approaches such as simple
n-gram overlapping.

Furthermore, as it approaches 1.0, the increase is significantly reduced, preventing one
retriever from receiving an excessively high score and ranking regardless of the score of the
other retriever.

However, summing the scaled scores in equal proportions does not guarantee optimal
results. In addition, each retriever must calculate a score based on other retrieval targets and
adjust the reflected ratio in the final score. We apply the qblending(·) function that calculates
the weight for each score to adjust the reflection degree of the scores returned by the dense

https://github.com/hephaex/mecab-ko
https://github.com/hephaex/mecab-ko
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embedding retriever and the sparse embedding retriever. The weight adjustment function
formula is as follows.

qblending(sdense, ssparse) = (λ× g(sdense)) + ((1− λ)× g(ssparse)) (7)

The λ value determines the weight ratio. λ is set to 0.75 by applying grid search
using Optuna [22]. Grid search sets the optimal ratio by initializing the ratio to 0.5 and
increasing or decreasing it by 0.05. We empirically learn that a higher performance can be
obtained by imposing a high weight on the result sdense of the dense embedding retriever
and minimizing the weights of the results derived by the sparse embedding retriever ssparse.

4. Experimental Results

This section presents an open training dataset and database setting. We demonstrate
the effectiveness of each retriever and score function through comparative experiments.

4.1. Data Details

We leverage released KorSTS to train the dense embedding retriever and present
the number of train, validation, and test datasets in Table 1. The FAQ database shown in
Table 2 is provided by O2O (http://www.o2o.kr/, accessed on 20 March 2022), a company
to develop customized conversational AI solutions, and consists of transcription and
processing results of customer–counselor inquiries collected through various consulting
organizations. We filter out inadequate pairs containing more than 15% of special characters,
overly short answers, unnecessary tags that hinder the natural language context, and no
mapping of response from the counselor. Subsequently, 9687 refined pairs of customer
questions and counselor responses out of 70,000 raw descriptions remain.

Table 1. Statistics for KorSTS. We use the open Korean sentence textual similarity dataset KorSTS to
train a highly generalized model in industry domain.

KorSTS Train Validation Test

# Examples 5749 1500 1379
Average # words 7.5 8.7 7.6

Table 2. Statistics for FAQ database. We construct the FAQ database to retrieve dialogue history of
customers and counselors based on sentence textual similarity.

FAQ Database Customer Question Counselor Answer

# Examples 9687 9687
Average # words 7.89 30.95
Average # sentences 1.21 3.58

4.2. Training Details

We conduct all training and testing based on pytorch-lightning (https://github.com/
PyTorchLightning/pytorch-lightning, accessed on 20 March 2022). We use KoBERT, a lan-
guage model trained on the BERT [23] model in Korean, as a language model in a dense
embedding retriever. We experiment with consultation records and training datasets orga-
nized in Korean, so a PLM specialized in Korean encoding is appropriate. The model is a
transformer architecture with 12 encoder layers, with a hidden size of 768 and a vocab size
of 8002.

We train the KoBERT model by dividing the encoding strategy into a cross-encoder and
a bi-encoder for the KorSTS dataset [24]. The cross-encoder is an approach to fine-tuning a
single encoder according to the training objective of the downstream task. This method
jointly encodes two input sequences and computes a single concatenated vector using a
special token such as [CLS]. On the other hand, a bi-encoder is a method of fine-tuning
the two encoders. This approach converts the embedding vector values returned by the

http://www.o2o.kr/
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
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two encoders into a fixed-size vector by averaging them and then calculates the cosine
similarity. We also adopt the BM25 algorithm for the sparse embedding retriever, as no
additional training step is required.

Considering the characteristics of Korean, we segment sentences into morpheme units
using mecab-ko for the sparse embedding retriever. The input query and the retrieval
target database are guided to return results based on segmented frequencies. For dense
embedding retriever training, we exploit hydra’s Optuna to perform grid research on batch
size {32, 64, 96, 128}, sequence maximum length {76, 96, 128}, learning rate {10−5, 10−4, 10−3},
drop rate {0.1, 0.2, 0.3, 0.4}, and warm-up ratio {0, 0.1, 0.2, 0.3}.

4.3. Implementation Details

The user query sequence is fed into the dense and sparse embedding retrievers. Firstly,
the dense embedding retriever stores the histories of the previous customer queries in
the database as fixed-size embedding vectors. Subsequently, the cosine similarity with the
user query sequence converted into the embedding vector through the dense embedding
retriever is calculated, as shown in Equation (3). Secondly, the counselor responses in the
database are expressed discretely through morpheme segmentation, and a score based on
the keyword frequency is calculated through a BM25, as indicated in Equation (5). The two
scores obtained through the two different retrievers are scaled and expressed as a single
scalar, as described in Equations (6) and (7). The detailed flowchart is described in the
Appendix A Figure A1.

4.4. Evaluation Details

As the evaluation metrics of the retriever model, we use the Pearson and Spearman
correlations. The Pearson correlation is an indicator of the linear relationship strength
between two variables by calculating the normalized cosine similarity. Based on the two
variables moving to each other, we induce variables to converge to 1.0 in strong positive
correlations and 0 in negative correlations.

The Spearman correlation is a measure for assessing monotonicity by ranking values
between two variables. We return the correlation coefficient in the same range as the
Pearson correlation because two variables increase or decrease with a constant magnitude.

In addition, to verify the retrieval performance in the FAQ database, we exploit a
hit at k and the mean reciprocal rank (MRR). In accordance with the scaled score of two
retrieval module values, the hit at k returns “True” if there is a correct answer among
k candidates ranked in descending order. The MRR is an information retrieval metric
considering priority and is obtained by taking the correct answer position as a reciprocal in
descending order. This method considers the relative ranking and can be applied as a key
performance criterion when only the top rank results are shown to the user, such as in the
FAQ system.

4.5. Main Results

We compare the inference speed and performance of the dense embedding retriever,
which is part of the proposed retrieval system, on the KorSTS test dataset. The performance
of the information retrieval in the FAQ database is also measured in order to compare the
performance of the industrial FAQ retriever for arbitrarily given queries. To evaluate the
performance, we parse the FAQ database’s customer questions and reconstruct 200 new
question–response pairs. To demonstrate the significance of the scaling effect of the two
score functions, we apply them to the retriever module with the best performance.

In general, the cross-encoder method performs better in most natural language under-
standing downstream tasks than the bi-encoder method but shows relatively slow inference
speed. As shown in Table 3, we attempt to maintain a performance close to the cross-
encoder’s performance while gaining the benefit of the speed of the bi-encoder. To maintain
the model’s performance, we proceed with normalization between 0 and 1 point, consid-
ering the cosine similarity calculation of the scores labeled between 0 and 5, as shown
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in Equation (2). In addition, we operate the optimal hyper-parameter search framework
Optuna (https://github.com/optuna/optuna, accessed on 20 March 2022) to make the
bi-encoder model have a performance similar to that of the cross-encoder model, even if it
is more than 100 times faster in inference. Moreover, unlike other encoding methods, our
bi-encoder approach has a significant advantage from commercialization employing only
CPU resources.

Table 3. Experimental results of dense embedding retrievers on the KorSTS test dataset.

Model Encoding Method Runtime (Pearson + Spearman)/2

KoBERT Cross-encoder 3533 ms 77.76

KoBERT Bi-encoder 24 ms 77.77

As shown in Table 4, we perform a comparative analysis using various settings for the
dense and sparse embedding retrievers. Overall, the context-based information retrieval
with the dense embedding retriever outperforms the simple keyword mapping retrieval
method with the sparse embedding retriever. Figure 1 clearly depicts the performance gap
between the single information retriever model and the hybrid information retriever model.
As demonstrated, increasing the number of retrieved answers (from one to five) consistently
improves retrieval accuracy. The single information retrieval model shows a rate of 0.65
or less in Hit @ 1. However, combining dense and sparse embedding retrievers shows a
rate of at least 0.8 or more when deducing the optimal answer. The information retrieval
system using solely one model shows a relatively low score in Hit @ 1. However, in Hit
@ 5, the performance gap between solely one model and combining the two information
retrieval models gradually decreases. The proposed model has a robust performance in
retrieval of the correct answer, natural language understanding narrowing the gap between
Hit @ 1 and Hit @ 5 to 0.07. These findings show that the single model extracts comparable
responses as candidate groups for input queries, but it still struggles to determine which is
the most reasonable response to the input query.

Figure 1. Top-K accuracy with different models used in sparse embedding retriever, dense embedding
retriever, and score function. The results are measured on the paraphrased new question–response
pairs. Our proposed hybrid retriever FAQ system with score function outperforms other models. Bi,
Arc, and Q indicate bi-encoder, arctangent, and Q-blending, respectively.

In addition, we run the experiments proposed in Section 3.4’s score functions. The high-
est performance is obtained by scaling with arctangent and setting a weight λ in Q-blending
for the influence rate on the results of each model. Arctangent scaling and Q-blending
have been shown to improve performance. Closer examination of the experimental results
reveals that arctangent scaling has an advantage in selecting the most optimal answer and

https://github.com/optuna/optuna
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Q-blending has an advantage in determining high-rank candidates. Finally, it can be seen
that the retriever model performs best when hybridizing dense and sparse embedding and
two scaling and weighting functions are combined.

Table 4. Performance of dense and sparse embedding retrievers for FAQ database.

Dense Embedding Retriever Sparse Embedding Retriever Score Function Hit @ 1 Hit @ 2 Hit @ 5 MRR

- BM25 - 0.61 0.71 0.84 0.72

Bi-encoder - - 0.65 0.73 0.86 0.75

Bi-encoder BM25 - 0.81 0.84 0.91 0.85

Bi-encoder BM25 Arctangent 0.85 0.90 0.94 0.91

Bi-encoder BM25 Q-blending 0.83 0.93 0.94 0.92

Bi-encoder BM25 Arctangent + Q-blending 0.89 0.93 0.96 0.93

4.6. Qualitative Results

Table 5 depicts the results of a qualitative analysis of the FAQ retrieval system. The ex-
periment is carried out with the paraphrased question mapped to the counselor’s response
as an input query, resulting in sentence compositions that differ but have the same contex-
tual meaning. Based on the context, the FAQ system proposed in this paper retrieves the
most optimal response. All three cases have adj. scores close to 1.0 and return the correct
answers as intended by the original questions. The first is an input query that corresponds
to available content regardless of industry domain and returns an appropriate response
based on the stored database’s domain. This is the result of learning from the KorSTS
data and has a significant advantage for queries that are similar to natural conversations.
The second case is an input query that is limited to a single industrial domain and produces
a response with a similar contextual meaning even when a different sentence structure is
used. Finally, the third case is an input query that has the most transformation in the sen-
tence and uses a completely different vocabulary. Despite the high degree of transformation
in the sentence, the proposed model compensates for the shortcomings of each retriever
module and returns a stable answer with a high score.

Table 5. Actual example sentences of the FAQ database and paraphrased query. Paraphrased Sent.
refers to the reconstructed input query sentence, and Adj. score means the sum of the scores of the
two retriever models with arctangent and Q-blending function.

Original Sent. Paraphrased Sent. Hit @ 1 Result Adj. Score

I want to know about to-
day’s weather.

Tell me about the
weather.

Click the [MIC] button on the remote control and
say it as follows: “Tell us about today’s weather”.
We are informing you of the weather information
within 10 days including today.

0.875

Please tell me how to ap-
ply to number change
service.

I would like to change
my number, so let me
know how to apply.

If the area you signed up for and the area you
are currently using are the same, you can apply
for a number change service. Once this service is
completed, the previous agency will be automat-
ically terminated, and if it is terminated within
one year of subscription, a number transfer fee
may be charged.

0.812

What gifts or benefits
can I get when I sign up?

Do I get a gift if I sign up
for a new one?

If you sign up, you can get various benefits de-
pending on the plan and service. For more infor-
mation, please contact the website or customer
service center.

0.792
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5. Discussion

The proposed FAQ retriever is an effective system that combines the benefits of existing
information retrieval systems and can be implemented with limited resources. We discover
that if we design the system with the attributes of the textual input and the passages to
be retrieved in mind, we can maximize performance in information retrieval. Previous
studies concentrated on calculating the similarity between answer candidates and input
queries using language-model-based dense embedding retrievers. However, we believe
that contextualized representation is more effective in understanding the intent of user
queries, and we present the dense-to-question and sparse-to-answer systems. We also
attempt to train with an open dataset that can be used universally rather than the FAQ
system’s narrow-domain dataset.

Since a published training dataset is used, it is a domain-agnostic method if only exist-
ing FAQ history remains. However, there are limitations to conducting experiments solely
in the IT and mobile domains in this paper. Although KorSTS training data demonstrate
some domain-agnostic characteristics, further testing is required. Furthermore, we present
a computational approach for bridging the gap between the dense embedding retriever
and the sparse embedding retriever. This results in the robustness of our proposed system
even at top-1 accuracy. On the other hand, λ in Q-blending is a hyper-parameter that needs
to be searched anew according to the domain to be changed. Therefore, in future studies, λ
should be automatically set as a trainable parameter.

6. Conclusions and Future Works

This paper addresses the shortcomings of traditional rule- and statistics-based FAQ
system approaches while lowering data construction costs for the most recent deep-learning-
based FAQ system. To demonstrate robust performance on specialized domain terms as well
as free-conversation-based utterances commonly used in the industrial domain, we propose
a hybrid model that combines the strengths of dense and sparse embedding retrievers.
In addition, the scaling and weight ratios are adjusted to optimize the score value returned
by the hybrid retrieval system via the arctangent and Q-blending score functions. We
demonstrate the validity of the proposed model through comparative experiments and
qualitative analysis. We intend to diversify the types of databases that can be used within
the industry domain in the future as well as conduct improvement research. In addition,
we will apply methods such as cumulative probability sampling to the candidate group
returned by the model as a retrieval result in order to find more appropriate responses from
the user’s perspective.
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Appendix A

Table A1. Technical details of proposed FAQ retriever system. GPU resource is used only for training
the KoBERT model, not required in the inference process.

Operating System (OS) Ubuntu 18.04 (Linux x64)

Programming language Python 3.7

Rest API flask 1.1.4, Swagger UI

Deep learning framework Pytorch-lightning 1.4.2, hydra 1.1.0, optuna 2.4.0

Dense embedding retriever KoBERT (Bi-encoder)

Sparse embedding retriever BM25

CPU 18-core Intel Xeon Gold 6230 CPU

GPU (optional, only train) Nvidia A6000

CUDA version (optional) 11.1

User Query

Dense Retriever

Q-blending
Arctangent

KoBERT
KorSTS

Question 
Matching?

Yes

Sparse Retriever
BM25

No

Database

Customer Question

Counselor Response

Score Function
Scaled Score Top Rank Answer

Figure A1. Flowchart of proposed FAQ retriever system. The proposed system uses a different model
of whether to retrieve the counselor response or the customer question in the database.
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