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Abstract: Chinese Medical Named Entity Recognition (Chinese-MNER) aims to identify potential
entities and their categories from the unstructured Chinese medical text. Existing methods for this
task mainly incorporate the dictionary knowledge on the basis of traditional BiLSTM-CRF or BERT
architecture. However, the construction of high-quality dictionaries is typically time consuming
and labor-intensive, which may also damage the robustness of NER models. What is more, the
limited amount of annotated Chinese-MNER data can easily lead to the over-fitting problem while
training. With the aim of dealing with the above problems, we put forward a BERT-BiLSTM-
CRF model by integrating the part-of-speech (POS) tagging features and a Regularization method
(BBCPR) for Chinese-MNER. In BBCPR, we first leverage a POS fusion layer to incorporate external
syntax knowledge. Next, we design a novel REgularization mothod with Adversarial training and
Dropout (READ) to improve the model robustness. Specifically, READ focuses on reducing the
difference between the predictions of two sub-models through minimizing the bidirectional KL
divergence between the adversarial output and original output distributions for the same sample.
Comprehensive evaluations on two public data sets, namely, cMedQANER and cEHRNER from the
Chinese Biomedical Language Understanding Evaluation benchmark (ChineseBLUE), demonstrate
the superiority of our proposal in Chinese-MNER. In addition, ablation study shows that READ can
effectively improve the model performance. Our proposal does well in exploring the technical terms
and identifying the word boundary.

Keywords: Chinese-MNER; BERT-BiLSTM-CRF; part-of-speech; regularization

MSC: 68T50

1. Introduction

Named Entity Recognition (NER) is one of the core objectives in natural language
processing (NLP) [1,2], whose purpose is to determine the underlying entities and their
categories from the unstructured text [3]. As an essential component in many downstream
NLP tasks, for instance, the correlation extraction [4], information retrieval [5], sarcasm
detection [6], and so on, NER is always a hot research direction and attracts much attention
in the NLP community. In general, most of the previous works are devoted to the English
NER task and achieve promising performances by integrating word-level features [7].
Compared with English, the East Asian languages (e.g., Chinese) typically lack explicit
word boundaries and have complex composition forms, which brings greater challenges
for these languages for the development of a competitive NER model. For example, the
property of present Chinese state-of-the-art (SOTA) models are much lower than the English
SOTAs, with a gap of nearly 10% in terms of F1 metric [8]. What is more, recent studies pay
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more attention to the domain-specific NER, e.g., medicine, which is much more complicated
and requires external domain expertise [9,10].

In particular, in the current work, we pay attention to the research of Chinese Medical
Named Entity Recognition (Chinese-MNER), which is considered as a character-level se-
quence labeling problem, while it is word level for English [11]. Recently, deep learning
methods have been extensively employed in Chinese-MNER [10,12–15] due to their excel-
lent ability in automatically extracting features from massive data. For instance, previous
works attempt to leverage the Bi-directional Long Short-Term Memory (BiLSTM) network
for acquiring sequence features and achieve comparable results [16]. In addition, on ac-
count of the excellent ability of the pre-trained language models in extracting the contextual
features, transformer-based models (e.g., BERT [17]) are becoming a new paradigm for
Chinese-MNER [15,18–21].

Specially, in the medical domain, the external expertise is beneficial in understanding
the technical terms and identifying the word boundary, which motivates recent research
to incorporate the dictionary knowledge on the basis of traditional BiLSTM-CRF or BERT
architecture [9,10]. However, the construction of high-quality dictionaries is typically time
consuming and labor-intensive, which may also damage the generalization and robustness
of NER models [22]. Compared with the dictionary knowledge, the part-of-speech (POS)
tagging features [23] are now readily available, which does not require additional man-
power and material resources. The POS tagging features [24] can be regarded as supervised
signals to guide the model to explicitly identify the word boundary for the reason that
it contains potential word segmentation information [25]. Therefore, we argue that the
POS tagging features are more suitable to be used for Chines-MNER than the dictionary
knowledge. Last but not least, due to the restrictions of high specialization degree, ethics,
and privacy, the annotated Chinese-MNER data are difficult to obtain and usually small in
scale, which can result in the over-fitting problem easily when training the Chinese-MNER
model [26].

For the sake of alleviating the above issues, we present a BERT-BiLSTM-CRF with POS
and Regularization (BBCPR) model for Chines-MNER, which leverages a POS fusion layer
to incorporate external syntax knowledge as well as introduces a novel REgularization
method with Adversarial training and Dropout (READ) to improve the model robustness.
In general, our proposal is based on a combined MC-BERT [27] and BiLSTM-CRF modeling
framework. We first utilize the MC-BERT to generate the context representation of each
token in the Chinese medical text. Then, we design a POS fusion layer to integrate the part of
speech tagging features and send them into a BiLSTM module as inputs. Finally, a standard
conditional random fields (CRF) [25] layer is employed for decoding the sequence labels.
Particularly, besides the traditional learning objective, we introduce an external Kullback–
Leibler (KL) divergence loss based on READ. In detail, READ can generate the adversarial
word embeddings through a Fast Gradient Method (FGM) as well as a dropout mechanism,
which are subsequently put into a Softmax layer for forecasting the label distributions.
After that, we can regularize the model predictions through minimizing the bidirectional
KL divergence between the adversarial output and original output distributions for the
same sample [28].

For proving the effectiveness of the proposal, we implement comprehensive exper-
iments on two public data sets from the Chinese Biomedical Language Understanding
Evaluation (ChineseBLUE) benchmark [27], i.e., cMedQANER and cEHRNER. The experi-
mental results suggest that our presented BBCPR model is superior to the SOTA baseline,
and the overall improvement for the F1 score on cEHRNER and cMedQANER datasets is
2.48% and 2.87%, respectively. Furthermore, the effectiveness of our designed modules is
verified by the ablation studies.

In summary, the major contributions of this research can be concluded as below:

• We design a POS fusion layer that can explicitly learn the word boundary feature for
the task of Chinese-MNER by incorporating the POS tagging features.
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• We put forward a novel regularization approach READ to alleviate the over-fitting
problem for Chinese-MNER and enhance the robustness of the model on small data.

• We conduct comprehensive experiments on two public datasets. The performance com-
parisons over several competitive baselines indicate the superiority of our proposal.

2. Related Work

In this section, we first summarize prior studies of Chinese-MNER and illustrate the
differences between our proposal and prior works in Section 2.1. Then, we describe the
related regularization and adversarial training methods in Section 2.2.

2.1. Deep Learning-Based Chinese-MNER

Deep learning approaches have been extensively applied in the task of Chinese-
MNER [10,12,14,15] due to their excellent ability in automatically extracting features from
massive data. Before the popularization of the pre-trained language model, most of the
prior works leverage the convolutional neural networks [13,29,30], such as the recur-
rent neural networks [13,31], as well as their variants (i.e., bidirectional long short-term
memory [11,32,33]) to represent the contextual features [15,16,34]. In addition, they usually
adopt the conditional random fields to predict the label sequence. Among these models,
the BiLSTM combined with CRF yields the best performance [16].

In the past several years, on account of the outstanding ability of pre-trained language
models in representation learning, transformer-based models (e.g., BERT [17]) have become
a new paradigm for Chinese-MNER [15,18–21]. BERT can apply prior semantic knowledge
obtained from large unlabeled corpora to the downstream tasks through fine-tuning [17].
For instance, Xu et al. [20] leverage the contextual features learned by BERT to enrich
the word semantics and incorporate them to the model of Bi-LSTM-CRF. Inspired by
BERT, Lee et al. [18] introduce a pre-trained biomedical language representation model
for biomedical text mining. Similarly, as a variant of BERT, RoBERTa [19] is also applied
to learn the medical features, which uses the dynamic masking and eliminates the next
sentence prediction task in pre-training.

Specially, in the medical domain, the external expertise can help the model understand
the technical terms and identify the word boundary, which motivates recent research
to incorporate the extra knowledge on the basis of traditional BiLSTM-CRF or BERT
architecture [9,10]. For example, Li et al. [13] propose to incorporate the pre-trained
medical dictionary as the model input. In addition, Dong et al. [35] adopt a radical-level
LSTM to obtain pictographic root characteristics of Chinese.

However, the construction of high-quality dictionaries is typically time consuming
and labor-intensive, which may also damage the generalization and robustness of NER
models [22]. Compared with the dictionary knowledge, the POS tagging features [23,24] are
now readily available, which does not require additional manpower and material resources.
Therefore, in the present work, the POS fusion layer is designed to incorporate the POS
tagging features, which can act as supervised signals to guide the model to explicitly
identify the word boundary.

2.2. Regularization vs. Adversarial Training

When training the neural network on the small training set, the deep learning-based
models usually perform poor generalization ability on the test data. To prevent the deep
neural networks from suffering from the over-fitting problem, most of recent works intro-
duce the regularization methods in their models, which includes weight penalties of L1
and L2 regularization, dropout, and batch normalization [36], etc.

Dropout is a typical regularization method and has been widely used to regularize
the fully connected neural network due to its simplicity and efficiency [37]. It drops
neurons from each layer of the neural network at random with probability p during the
training process [38]. On this basis, Wan et al. [39] propose a novel type of dropout,
called DropConnect. Different from randomly setting activation units within each layer as
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zero, it randomly sets weights within the network as zero. However, the above methods
typically work on the fully connected layer. However, for the convolution layer, the
activation units are interrelated spatially. Thus, information can also flow in the network
even if some neurons are dropped. To deal with this issue, Ghiasi et al. [40] design
a structured dropout method named DropBlock to regularize the convolutional networks
through dropping the units together in adjacent areas of the feature map. Instead of using
dropout alone, some works combine it with other training frameworks. For instance,
Gao et al. [41] take the standard dropout as noise and integrate it into a comparative
learning framework, which advances the SOTA sentence embedding. Liu et al. [42] use the
dropout to generate the positive sentence samples from the feature space and then train
the encoder by a contrastive learning-based objective. When using the dropout method,
inconsistency between the training samples and the inference samples may arise because
of the randomness introduced by dropout. In response to this problem, Wu et al. [28]
propose a R-Drop method, which regularizes the output distributions of two sub-models
by minimizing the bidirectional KL-divergence for each data sample in the training.

In addition to the over-fitting, the robustness of the model is also a urgent problem
to be solved, since traditional neural networks are easily cheated by slightly disturbed
samples [22]. To address this issue, the adversarial training is recently introduced in
the representation learning; among these methods, FGM [43] is a popular model used
to generate adversarial examples, which makes neural network models robust against
perturbations. The basic principle is to add disturbance to construct adversarial samples
during model training, thus enhancing the model robustness when it meets adversarial
samples. Goodfellow et al. [44] propose a rapid and simple approach for producing adver-
sarial examples, which shows that adversarial training can give an extra regularization
benefit in addition to the benefit of utilizing dropout alone. In addition, the experiments in
this paper demonstrate that adversarial back-propagation, as a stand-alone regularizing
method, performs well in improving the generalization and robustness of the network.

Inspired through the above approaches, in this study, we design a new regularization
method combining R-Drop and FGM to deal with the over-fitting problem and enhance
the model robustness. In accordance with generating adversarial samples, we conduct two
dropouts and shorten the distance between the two sub-models by KL clustering.

3. Approach

In this work, we principally pay attention to the problem of Chinese-MNER. Here, we
first formulaically define the Chinese-MNER problem and introduce the main notations
employed in this study (see Section 3.1). Then, we show the technical specific information
about our presented model of BBCPR (see Section 3.2). Finally, we describe how to integrate
the designed regularization method READ into BBCPR (see Section 3.3).

3.1. Problem Definition and Notations

The Chinese-MNER task is intended to identify and predict entities (such as diseases,
symptoms, drugs, etc.) from the unstructured Chinese medical text. In this paper, following
Chen and Kong [8], Li et al. [15], Xu et al. [20], Zhou et al. [45], and Liang et al. [46],
the Chinese-MNER task is treated as the sequence labeling problem. Given one piece of
Chinese medical text X = {x1, x2, . . . , xn} with n tokens as the input, the objective of a
Chinese-MNER algorithm is to predict each token xi in X with the BIO tag (Begin, Inside,
Outside) and finally obtain a label sequence Y = {y1, y2, . . . , yn} as the output. An instance
in the real world of the labeled entities in the Chinese medical text is presented in Table 1.
For the purpose of clarity, we conclude the major notations applied in this article in Table 2.
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Table 1. An instance of the labeled entities in Chinese medical text. B-s denotes the beginning of
entity symptom, I-s presents the interior of entity symptom, O stands for external entity.

Sentence 重 度 感 冒 患 者 容 易 出 现 高 热 呕 吐

(Patients with severe colds are prone to high fever and vomiting.)
BIO O O B-d I-d B-p I-p O O O O B-s I-s B-s I-s
POS tagging a a n n n n a a v v a a v v
Entity type disease disease person person symptom symptom symptom symptom

Table 2. Major notations applied in this paper.

Variable Description

xi The expression of the i-th token in Chinese medical text
ei The BERT embedding of the i-th token
e′i The adversarial embedding of the i-th token
mi The output embedding of BERT for the i-th token
ti The POS tagging features of the i-th token
pi The POS embedding of the i-th token
vi The output fusion embedding of POS fusion layer
H The final hidden representations produced by BiLSTM
P The input matrix of CRF layer
yi Prediction label of the i-th token in Chinese medical text

P(Y | X) The probability distribution of the original BERT embedding E
P′(Y | X) The probability distribution of the adversarial embedding E′

L,LNER,LR The final, basic NER and regularization method loss
λ The trade-off parameter for balancing LNER and LR

3.2. Model Architecture

The overall architecture of our presented model BBCPR is presented in Figure 1, which
principally contains four layers: namely, the MC-BERT layer (see Section 3.2.1), POS fusion
layer (see Section 3.2.2), BiLSTM layer (see Section 3.2.3) and CRF layer (see Section 3.2.4),
respectively. Since BERT-BiLSTM-CRF is the state-of-the-art workflow in NER [15,16,20],
we follow Li et al. [15] and adopt the same workflow in this work. Differently, on the
basis of this workflow, we replace the BERT with the MC-BERT [27], which is specially
pre-trained and more appropriate in the field of medicine. Moreover, we design a POS
fusion layer and propose a READ strategy to improve model performance in our workflow.
Below, we will present the detailed process of each component in BBCPR.

CRF

layer

BiLSTM

layer

MC-BERT

Input

POS fusion

layer

…

O B I O

…

…

Feed Forward

Multi-Head Attention

 !  "  #

× $

BERT embedding POS embedding concatenation operation

B I

 !  "  #

Figure 1. The architecture of BBCPR model.
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3.2.1. MC-BERT

As is known to all, BERT is pre-trained on the Wikipedia corpus [17]. However,
medical texts typically contain professional terms that seldom appear in general corpus.
To bridge such a semantic gap, Zhang et al. [27] propose a variant of BERT, i.e., MC-BERT,
which is further trained on the Chinese medical corpus and performs well in extracting the
medical contextual features. Thus, MC-BERT is specially adopted in this work.

For the input X = {x1, x2, . . . , xn}, we first adopt MC-BERT to convert them into a se-
quence of BERT embeddings E = {e1, e2, . . . , en} through summing the position embedding,
segment embedding, as well as token embedding.

Generally, MC-BERT retains the same structure as BERT, which is composed of a pile
of L same layers. For convenience, the output of the l-th layer together with input of the
first layer are represented as M0 and Ml , respectively. The output representations Ml−1 of
the previous layer are placed into the Multi-head Self-Attention (MSA) sub-layer to acquire
contextual-level representation M̃l :

M̃l = LayerNorm(MSA(Ml−1) + Ml−1). (1)

Next, we gather the output representation of each encoder layer through feeding the
contextual-level representation through a Feed-Forward Network (FFN) sub-layer. We
formulate these operations as:

Ml = LayerNorm
(

M̃l + FFN(M̃l
)
), (2)

where Ml ∈ Rn×dbert , l ∈ {1, 2, 3, ..., L} and dbert denotes the hidden size of MC-BERT. Then,
the final output embedding ML = {m1, m2, . . . , mn} is fed to the POS fusion layer.

3.2.2. POS Fusion Layer

MC-BERT processes the input Chinese medical text as a collection of token X and
generates token-level embeddings M. However, a word is generally recognized as the
smallest unit of semantic expression in Chinese, which results in the loss of semantic and
increases the difficulty in extracting the entity boundary as well.

To tackle this issue, we design a POS fusion layer to incorporate the POS tagging
features into the BBCPR model. Different from the existing dictionary strategy where labor
costs are invariably high [10], the POS tagging features are simple, straightforward, and
easily accessible. The POS is defined as the features of words that contains verbs, nouns,
modal particles, adjectives, and so on, which can accurately label common words and thus
distinguish medical entities from the edges of common words [25].

Formally, we employ the Baidu LAC toolkit [47] to generate the POS tagging features
for each token in X as:

T = {t1, t2, . . . , tn}, (3)

where T is the collection of POS tags; ti is the corresponding POS tag of the i-th token xi.
Next, with the aim of mapping the dispersed POS tag into the consecutive semantic

space to conduct the model training, we generate the corresponding POS embedding pi for
each POS tag ti as:

pi = Wpti, (4)

where Wp ∈ Rdp is the learnable network parameter; and dp stands for the POS-embedding
dimension.

Subsequently, the concatenation operation is utilized to fuse each MC-BERT output
embedding mi and its corresponding POS embedding pi. The formula is shown as follows:

vi = [mi; pi], (5)

where vi ∈ Rdbert+dp is the concatenated fusion embedding vi of the i-th token xi.
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3.2.3. BiLSTM Layer

Afterwards, for acquiring more comprehensive context features of entities, we further
employ a BiLSTM layer to encode the fusion embeddings, which can make the most of
both past and future input features. Following Huang et al. [16], in our proposed BBCPR
model, the operation inner of an LSTM unit at step t can be expressed as below:

it = σ(Wi[ht−1, vt] + bi), (6)

ft = σ
(

W f [ht−1, vt] + b f

)
, (7)

C̃t = tanh(Wc[ht−1, vt] + bc), (8)

ot = σ(Wo[ht−1, vt] + bo), (9)

Ct = ft � Ct−1 + it � C̃t, (10)

ht = ot � tanh(Ct), (11)

where ot, ft, and it represent the output, forget as well as input gate. vt and ht represent the
input vector and the hidden state at step t. σ means the Sigmoid function and � denotes
dot product function. Wi, W f , Wc, and Wo denote the trainable network weight parameters
of the input [ht−1, vt]. In addition, bi, b f , bc, and bo represent the deviation parameters. Ct

and C̃t stand for the cell state and candidate cell state at t step, respectively. We formulate
the computation of BiLSTM as follows:

−→
ht = LSTM

(
vt,
−−→
ht−1

)
, (12)

←−
ht = LSTM

(
vt,
←−−
ht+1

)
, (13)

ht =
[−→

ht ;
←−
ht

]
, (14)

where
−→
ht and

←−
ht denote the hidden state at step t of the forward LSTM and the backward

LSTM, respectively. After that, the hidden representation of the input Chinese medical text
X produced by BiLSTM module can be denoted as H = {ht}n

t=1 ∈ Rn×2dLSTM , where dLSTM
is the hidden size of the LSTM.

3.2.4. CRF Layer

For a typical NER task, the relationship between adjacent labels is sequential and
should also follow some constraint rules. For example, the label I-Symptom must appear
after the label B-symptom. Due to the fact that BiLSTM only focuses on the long-term
contextual features rather than the dependency between labels, a CRF layer is the preferred
choice for decoding the ultimate sequence labels in the current research [4,15,16,20], as it
can model the sequential relationships between labels by learning the adjacent constraint.

We first convert the output of the BiLSTM H to the input matrix P of the CRF with a
linear function as follows:

P = WpH + bp, (15)

where Wp ∈ Rk×2dLSTM , bp ∈ Rk are learnable parameters, and k is the label types number.
The CRF module is subsequently deployed to count the conditional probability P(Y | X)
of the random label sequence Y = {y1, y2, . . . , yn} under the situation of a given Chinese
medical text X = {x1, x2, . . . , xn}. In form, the probability P(Y | X) of the ultimate optimal
label sequence can be counted as:

p(Y | X) =
es(X,Y)

∑ỹ∈YX
es(X,ỹ)

, (16)

s(X, Y) =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=1

Pi,yi , (17)
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in which ỹ represents the basic-truth label sequence. YX denotes all the probable label
sequences. Ayi ,yi+1 stands for the transition possibility from the label yi to the label yi+1,
with the transition probability matrix A being a learnable model parameter. Pi,yj indicates
the non-normalized probability that the i-th token will be mapped to the named entity
label yi.

During the training process, the below loss of negative log-likelihood (NLL) is mini-
mized for the optimization of the model as:

LNLL = − log p(Y | X). (18)

Moreover, to predict the labels of X, the Viterbi algorithm [48] is applied for decoding
the overall optimal label sequence. The output label sequence Y∗ containing the highest
score will be produced as:

Y∗ = argmax
ỹ∈yX

s(X, ỹ). (19)

3.3. Regularization Method

As a result of the restrictions of high specialization degree, ethics, and privacy, the
annotated Chinese-MNER data are hard to gather and generally small in scale. The models
are more prone to over-fitting problems. The dropout method has been used in most of the
research works to alleviate the over-fitting problem. Dropout is a perturbation addition in
essence [37]. In addition, Goodfellow et al. [44] propose an adversarial training strategy
to increase the diversity of samples by adding noise perturbation and apply it into the
field of computer vision. On the basis of the previous studies, Miyato et al. [49] extend the
adversarial training to the text classification task. However, most of the existing research
works only consider the addition of a single perturbation [42,43].

Focusing on the Chinese-MNER task, we expect to improve the performance of our
proposal in identifying named entities by increasing the diversity of perturbations. As a
result, we put forward a new regularization mechanism to regularize two distributions
of the same sample, i.e., the original distribution and the distribution intervened by the
adversarial perturbation and the dropout perturbation. We name such regularization mech-
anism as READ, that is, REgularization method with Adversarial training and Dropout.
Specially, the READ mechanism regularizes the model predictions from two sub-models
produced by the dropout and the adversarial perturbation. Unlike the previous works that
consider only a single perturbation, READ amplifies the variability of the same sample by
combining different perturbations, thus enhancing the robustness of the model.

The architecture of READ is shown in Figure 2. For the input X = {x1, x2, . . . , xn}
and the output sequence Y = {y1, y2, . . . , yn}, we originally put X into the pre-trained
language model MC-BERT to acquire the embeddings E. In READ, we alternatively apply
an adversarial perturbation on the original embeddings E to generate the adversarial
embeddings E′ as follows:

E′ = E + δ, (20)

where δ is an adversarial perturbation produced by FGM [49]. FGM employs L2-norm to
scale the specific gradients to achieve better perturbation, which is calculated as:

δ = ε
g
‖g‖2

, (21)

g = ∇ELNER(X, θ), (22)

where ε is a constant that presents perturbation degree and g denotes the gradients of loss.
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CRF
CRF

layer

BiLSTM

layer

MC-BERT

Input

POS fusion

layer

… !  "  #

$(%| )

CRF

 !("|#)$%&

Adversarial

Perturbations

dropped unitsBERT embedding  adversarial embedding  ! units

 ×

…!" !# !$

 ×% %

Figure 2. The architecture of the READ.

As shown in Figure 2, after randomly applying different dropout into the neural
network, we can obtain two different sub-models for training. Then, we feed separately the
original BERT embeddings E and adversarial embeddings E′ into the above two sub-models
to produce two different distributions for the output label sequence, that is, P(Y | X) and
P′(Y | X), which generate two losses. So, we take the average of the two losses as the basic
NER learning object LNER:

LNER = −1
2
(
logP(Y | X) + logP ′(Y | X)

)
. (23)

The adversarial perturbation and dropout noise will shift the representation away
from the one of original input. In the training step, READ focuses on reducing the dif-
ference between the predictions of the two sub-models by minimizing the bidirectional
KL-divergence between these two output distributions of the same sample. Formally, we
denote this process as follows:

LR =
1
2
(
DKL

(
P(Y | X)‖P ′(Y | X)

)
+DKL

(
P ′(Y | X)‖P(Y | X)

))
, (24)

where LR denotes the loss function of the regularization method. DKL(P ‖P ′) denotes the
KL divergence between two distributions P and P ′ .

The ultimate training goal is to minimize the joint loss L for data (X, Y), which is
calculated as:

L = LNER + λLR, (25)

in which λ is the trade-off parameter for balancing the LNER and LR. We further provide
the pseudo-codes to detail the major steps of READ in Algorithm 1.
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Algorithm 1: Pseudo Codes of READ.
Input: Dataset D, model f , trade-off parameter λ
Output: model parameters θ
for sampled mini-batch (X, Y) ∈ D do

Obtain the original embedding E of X;
Generate adversarial embedding E′ = E + δ;
Generate model f

′
by applying different dropout on model f ;

Feed embedding E to model f , obtain the distribution P(Y | X) = fθ(E);
Feed embedding E′ to model f

′
, obtain the distribution P ′(Y | X) = f

′
θ(E′);

Calculate negative log-likelihood loss LNER by Equation (23);
Calculate regularization loss LR by Equation (24);
Update parameters θ to minimize total loss L of Equation (25).

end

4. Experiments
4.1. Datasets and Evaluation Metrics

For confirming the effectiveness of our proposal, we evaluate the model performances
on two public datasets, that is, cMedQANER (https://github.com/alibaba-research/
ChineseBLUE/tree/master/data/cMedQANER) together with cEHRNER (https://github.
com/alibaba-research/ChineseBLUE/tree/master/data/cEHRNER) released by the Chi-
neseBLUE benchmark [27]. The cMedQANER and cEHRNER datasets are annotated from
the Chinese community question answering and the Chinese electronic health records,
respectively. In detail, cMedQANER contains 2063 annotated instances altogether with
eleven kinds of the medical named entities, such as Crowd, Body, etc. In addition, cEHRNER
contains 999 annotated samples altogether with seven kinds of the medical named entities,
for instance Operation, Diagnosis, Disease, and so on. The statistics of cMedQANER and
cEHRNER are shown in Table 3. We also list the specific statistics of various kinds of the
entities in cMedQANER and cEHRNER in Table 4 together with Table 5, respectively. The
limited amount of annotated instances and the complex types of medical named entities
make it challenging for Chinese-MNER to achieve a promising performance.

To measure the model performances for Chinese-MNER, we employ the scores of F1,
precision (P), and recall (R) for evaluation, which are widely used metrics for sequence
labeling tasks [34].

Table 3. The statistics for the cMedQANER together with the cEHRNER dataset.

Dataset Training Set Dev Set Test Set

cMedQANER 1673 175 215
cEHRNER 914 44 41

Table 4. The statistics of various kinds of the medical named entities in cMedQANER.

Type Training Set Dev Set Test Set

Body 2443 203 234
Crowd 735 48 78
Department 146 13 8
Disease 3890 332 431
Drug 541 44 61
Feature 311 27 28
Physiology 384 32 45
Symptom 2277 130 229
Test 485 70 49
Time 212 18 32
Treatment 1066 107 145

Total 12,490 1024 1340

https://github.com/alibaba-research/ChineseBLUE/tree/master/data/cMedQANER
https://github.com/alibaba-research/ChineseBLUE/tree/master/data/cMedQANER
https://github.com/alibaba-research/ChineseBLUE/tree/master/data/cEHRNER
https://github.com/alibaba-research/ChineseBLUE/tree/master/data/cEHRNER
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Table 5. The statistics of different types of medical named entities in cEHRNER.

Type Training Set Dev Set Test Set

Disease and diagnosis 3824 173 149
Operation 946 52 43
Anatomical part 5623 252 220
Drug 1646 84 72
Symptom 2095 78 88
Imaging examination 889 55 29
Laboratory test 1113 55 31

Total 16,136 749 632

4.2. Model Summary

We examine the effectiveness of BBCPR by comparing it against several competitive
NER methods. Note that word2vec embeddings are employed for the BiLSTM and the
BiLSTM-CRF model in this work. The baseline models are summarized as follows:

• HMM [50]: A traditional linear statistical model that is proposed to solve the sequence
labeling problem.

• BiLSTM [16]: A BiLSTM model that employs a gated memory cell to capture long-
range and bi-directional semantic dependencies within the sequence information.

• BiLSTM-CRF [16]: It extends the BiLSTM model by combining the BiLSTM network
and a CRF module to decode the final sequence labels.

• MC-BERT [27]: A variant of BERT that is further trained on the Chinese medical
corpus, which performs well in extracting the medical contextual features.

• MC-BERT-CRF [15]: A recent NER model that combines BERT with CRF. For a fair
comparison, we replace BERT with the same MC-BERT used in our method.

• MC-BERT-BiLSTM-CRF [20]: It extends the MC-BERT-CRF model by applying a BiL-
STM module to capture more comprehensive contextual features.

4.3. Research Questions

We comprehensively examine the effectiveness of our proposed BBCPR model by
focusing on the following research questions:
(RQ1) Can BBCPR achieve better performance than the competitive baselines for the

Chinese-MNER task? (See Section 5.1)
(RQ2) How about the contribution of the POS fusion layer and the READ module in

BBCPR? (See Section 5.2)
(RQ3) What is the influence of different pre-trained models on the performance of

BBCPR? (See Section 5.3)
(RQ4) How about the performance of BBCPR under different hyperparameters, i.e., POS

embedding size, trade-off parameter λ? (See Section 5.4)

4.4. Experimental Details

In this paper, all the experiments are conducted in Python with the deep learning
toolkit PyTorch (https://pytorch.org), where we run each experiment on both cMedQANER
and cEHRNER datasets for five times under random seeds and then report the average
results as well as the standard deviation. We employ the Baidu LAC toolkit [47] to obtain
the POS tagging features for cMedQANER and cEHRNER datasets. In addition, the pre-
trained language model MC-BERT [27] is specially selected as the contextual embedding
layer for our model, with 12 layers, 768-dimensional of the hidden size, as well as 12 self-
attention heads. Set the BiLSTM hidden size and feed-forward network dimension as
256 and 1024, respectively. The POS embedding is randomly initialized from the standard
normal distribution, where the size of POS embedding is 512. The model is trained under a
mini-batch strategy, and the maximum sequence length and the batch size are 256 and 32,
respectively. Following Li et al. [15] and Xu et al. [20], we employ the Adam optimizer [51]

https://pytorch.org
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where β1 is 0.9 and β2 is 0.998. For the BiLSTM and MC-BERT, their learning rates are
7× 10−5. The learning rate of CRF is set to 5× 10−3. During training, we adopt a linear
decay schedule to vary the learning rate with the weight decay being 0.01. The dropout rate
and regularization loss weight λ are set to 0.2 and 2.0, respectively. Our model is trained
for 50 epochs at most, and it stops on the optimal model for testing.

5. Results and Discussion

In this section, we first discuss the comparison of overall performance between BBCPR
and the competitive baseline models (see Section 5.1). Next, we analyze the effectiveness
of each component we propose in BBCPR (see Section 5.2). Furthermore, we explore the
influence brought by different pre-trained language models (see Section 5.3) and different
hyper-parameters (see Section 5.4). Finally, we present a case study to clearly demonstrate
the superiority of BBCPR (See Section 5.5).

5.1. Overall Evaluation

To answer RQ1 , we check the overall entity recognition performance of the baselines
and our proposal in terms of all evaluation metrics on the cMedQANER and cEHRNER
datasets. Table 6 shows the detailed outcomes between the models discussed.

First, we focus on the property of the baselines. In accordance with Table 6, compared
to the traditional statistical learning model, i.e., HMM, deep learning based-models report
obvious improvements in terms of all metrics. For example, BiLSTM-CRF beats HMM
by 23.95% and 44.50% for the score of F1 on the cMedQANER and cEHRNER datasets,
respectively, which demonstrates that the capability of learning context features is essential
for the Chinese-MNER task. Specially, we can obverse that those models using MC-BERT
as an encoder show nearly 7.08–8.87% and 4.59–5.31% improvements for the metric F1
against BiLSTM-CRF on the cMedQANER and cEHRNER dataset, respectively, indicating
an impressive superiority of BERT in representation learning. In addition, equipping
the model with additional CRF layer yields better performance than the original ones,
which may be attributed to the CRF being able to well model the dependencies between
tag sequences.

Next, we focus on the comparison between the baselines and our proposal. As revealed
in Table 6, BBCPR achieves the best performance among all discussed models on both
the cMedQANER and cEHRNER datasets. Specially, it can be found that our approach
achieves the SOTA performance with the improvements of 2.44% and 2.87% in terms of
F1 score against the best baseline MC-BERT-BiLSTM-CRF on two datasets, respectively.
There is a similar phenomenon in terms of P and R. For the metric P, our proposal model
beats the best baseline by 2.50% and 4.05% on the cMedQANER and cEHRNER dataset,
respectively. For the metric R, our method shows 2.36% and 1.68% improvements over the
best baseline on the cMedQANER and cEHRNER dataset, respectively. The improvements
acquired from BBCPR can be explained by the fact that using POS tagging features, which
imply potential word segmentation, can provide an extra supervision signal to distinguish
the edges between ordinary words and the medical entities. In addition, the adversarial
samples generated by FGM can enhance the model’s robustness.
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Table 6. Model performance comparison on the cMedQANER and cEHRNER datasets. The subscript
indicates the standard deviation. The results generated by the best performer in each column
are boldfaced.

Model
cMedQANER cEHRNER

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

HMM 61.350.41 63.130.35 61.910.30 51.920.54 56.960.46 53.730.30

BiLSTM 62.190.71 66.250.51 64.000.29 62.580.46 66.040.81 64.260.28

BiLSTM-CRF 79.910.72 73.940.66 76.740.25 79.270.53 76.100.79 77.640.23

MC-BERT 80.150.55 83.020.37 81.560.31 78.320.77 83.220.60 80.690.24

MC-BERT-CRF 81.160.79 83.230.56 82.170.23 78.980.68 83.550.38 81.200.24

MC-BERT-BiLSTM-CRF 83.210.37 83.910.45 83.550.22 80.040.49 83.570.66 81.760.27

BBCPR 85.290.28 85.890.55 85.590.23 83.280.52 84.970.61 84.110.24

5.2. Ablation Study

To answer RQ2 , we conduct comprehensive ablation studies on cMedQANER and
cEHRNER datasets to verify the effectiveness of each key module of BBCPR. The detailed
results of ablation studies are presented in Table 7. It can be observed that when any certain
module is taken out, the model performances decrease obviously in terms of almost all
metrics, which verifies the effectiveness of our proposed modules in BBCPR. Specifically,
for the metric F1 and R, removing the POS fusion layer and the DP mechanism (see Row 6,
Table 7) results in the biggest drop of model performance. Specifically, on both of the
cMedQANER and cEHRNER datasets, model performances show a 1.54% and 2.11%
decrease in terms of F1 and a 1.68% and 1.36% decrease in terms of R. This observation
indicates that incorporating POS tagging features into the neural networks can evidently
enhance the superiority of the Chinese-MNER model, for which POS tagging features
add extra potential entities’ boundary information. At the same time, the DP mechanism
can help alleviate the over-fitting problem of the model and thus reduces the prediction
error. As for the metric P, the removal of the READ (see Row 2, Table 7) declines the model
performance most, with a 1.55% and 3.29% decrease on the cMedQANER and cEHRNER
dataset, respectively. This can be due to the fact that the READ module amplifies the
variability of the original samples, thus enhancing the learning ability of the model.

In addition, we can observe that removing AP (see Row 4, Table 7) or removing DP (see
Row 3, Table 7) leads to a 0.70% and 0.82% decrease for the score of F1 on the cMedQANER
dataset, respectively. Similar results can be found on the cEHRNER dataset, where the
model reveals a 0.58% and 0.96% drop. The reason why DP performs better than AP may
be that it is applied on the whole model, while AP only works on the BERT-embedding
layer. In addition, it is worth mentioning that using either the AP or DP alone is not as
effective as the combination of the two, i.e., the READ. For example, without the READ (see
Row 2, Table 7), the decreases in F1 score are 1.29% and 1.82% on two datasets, respectively.
The reason may be that each of the perturbations is relatively simple; employing only one
mechanism can only introduce a small perturbation. Meanwhile, diverse perturbations can
increase the dissimilarity of the representation from the same sample.

Moreover, in the condition of using DP by default (See Row 7, Table 7), adding AP (see
Row 5, Table 7) results in a 0.32% and 0.70% increase in terms of F1 on the cMedQANER
and cEHRNER datasets, respectively. Similarly, when adding POS (see Row 4, Table 7),
the score of F1 increases by 0.41% and 0.90%, respectively. Compared with AP, POS has
a greater impact on the neural network that has a dropout by default. We attribute this
phenomenon to the fact that POS can directly increase the features of entities and thus
bring useful information to the model. However, AP utilizes an indirect way to enhance
the learning ability of the model by adding perturbations. Under the condition that uses
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DP by default, the F1 score drops by 1.10% and 1.48% on two datasets when removing POS
and AP, which indicates that the diversity added by both POS and AP has a positive impact
on the model performance.

Table 7. Performances in terms of P, R, and F1 without different modules on the cMedQANER and
cEHRNER datasets. AP and DP denote adversarial perturbation and dropout perturbation in READ,
respectively. POS denotes the POS fusion layer. The subscript indicates the standard deviation.

POS AP DP
cMedQANER cEHRNER

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

X X X 85.290.28 85.890.55 85.590.23 83.280.52 84.970.61 84.110.24

X 84.000.34 85.020.40 84.510.23 80.640.79 84.710.91 82.620.24

X X 84.630.80 85.190.54 84.910.22 81.790.48 84.920.18 83.320.19

X X 85.380.59 84.640.27 85.010.18 81.950.51 85.390.66 83.630.17

X X 85.070.63 84.790.49 84.930.17 82.350.66 84.610.70 83.460.16

X 84.120.64 84.490.58 84.300.21 81.010.88 83.830.61 82.390.22

X 84.600.20 84.720.30 84.660.18 81.240.26 84.590.37 82.880.18

5.3. Influence of Pre-Trained Language Models

To answer RQ3, we further conduct comparative experiments to analyze the effect
brought by different pre-trained language models, such as BERT, BERT-WWM, RoBERTa,
MacBERT, and MC-BERT. First, BERT is able to obtain more informative contextual repre-
sentation through employing the masked language model and next sentence to forecast
training targets. Furthermore, BERT-WWM employs a whole word masking strategy for
the Chinese corpus. For the RoBERTa, it robustly optimizes the BERT pre-training method
by four simple and effective modifications. MacBERT masks the words with their similar
words in the Chinese corpus, while MC-BERT is further trained on the Chinese biomedical
corpus based on BERT.

As shown in Figure 3, MC-BERT significantly outperforms other pre-trained models
in terms of all evaluation metrics. In particular, as reflected in Figure 3a, it can be observed
that MC-BERT shows nearly 0.83–1.67%, 0.59–1.65% and 0.74–2.21% improvements in
terms of F1, P, and R score than other pre-trained language models on the cMedQANER
dataset. Figure 3b indicates that MC-BERT increases nearly 0.66–1.17%, 0.12–2.48%, and
−0.16–1.60% of F1, P, and R scores compared to other pre-trained language models on
the cEHRNER dataset. The possible reason may be due to the fact that MC-BERT adapts
the whole entity masking strategy and the whole span masking strategy to inject medical
domain knowledge for Chinese biomedical text, which can help generate better contex-
tual representation for the Chinese-MNER task. Accordingly, we choose the MC-BERT
model [27] as the contextual embedding component in the following experiments.1
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5.4. Analysis on Different Hyperparameters

To answer RQ4, we conduct the experiments on cMedQANER and cEHRNER datasets
to explore the BBCPR property under different hyperparameters, i.e., POS embedding size,
and trade-off parameter λ. For the POS embedding, the size of it is set to 128, 256, 384, 512,
640, and 768 in our experiments, respectively. As displayed in Figure 4a, the property of
our model initially grows when the size of the POS embedding increases and the difference
between the best and worst performance can be as high as 0.97%, 0.82%, and 1.12% in
the terms of F1, P, and R, respectively on the cMedQANER dataset. Figure 4b shows that
there are similar outcomes on the cEHRNER dataset. This is probably explained through
the fact that adding the neural network size can enhance the model complexity to obtain
more powerful representation capability. However, when the size increases further, worse
performance is achieved due to model over-fitting. As shown in Figure 4, when the POS
embedding size is 512, all the metrics achieve their best performance. Therefore, we choose
512 as the POS embedding size in our experiments.

Further, we analyze the effect resulted from the trade-off parameter λ. We vary the
λ in {1, 2, 3, 4, 5, 10} and conduct extensive experiments. According to Figure 5a,b, either
too large or too small λ will make our model perform poorly. When λ = 2, the model
realizes the optimum property, and subsequently, our model performs worse and worse
as λ increases. Specifically, the performances of the model on the cMedQANER dataset
have drops by 0.33–1.45%, as shown in Figure 5a and 0.41–1.80% on the cEHRNER dataset,
as shown in Figure 5b. In terms of P and R, there are floats of 0.15–1.64% and 0.24–1.24%
on the cMedQANER dataset, while they are 0.19–1.99% and 0.53–1.60% on the cEHRNER
dataset. When the λ is at 2, all the metrics achieve their best performance. Therefore, we
select 2 as the regularization loss weight for our proposed BBCPR model.
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5.5. Case Study

In the current section, we conduct a case study to demonstrate the superiority of our
model against baselines. In particular, we compared the predictive results of our proposal
and MC-BERT-BiLSTM-CRF on two cases from the cMedQANER and cEHRNER datasets,
respectively. The detailed input medical text and the corresponding predictive results of
the two cases are presented in Figure 6.

As shown in Figure 6, in Case #1, the baseline model fails to identify “药物治疗 (drug
treatment)” as a whole unit. However, our model could completely and correctly recognize
the entity “药物治疗 (drug treatment)” as the four tokens have the same part-of-speech (i.e.,
noun). Likewise, in Case #2, we can see that the baseline MC-BERT-BiLSTM-CRF identifies
“升结肠恶性肿瘤及肝内外胆管结石 (malignant tumor of ascending colon and intrahepatic and
extrahepatic bile duct stones)” as an independent entity. However, the token “及 (and)” is a
conjunction, while “瘤 (tumor)” and “肝 (liver)” are nouns. On the contrary, our model could
accurately recognize two entities “升结肠恶性肿瘤 (malignant tumor of ascending colon)” and
“肝内外胆管结石 (intrahepatic and extrahepatic bile duct stones)” through identifying obvious
entity boundaries before and after “及 (and)”. Overall, the above cases demonstrate that
BBCPR can explicitly learn word boundary information by introducing the POS tagging
features, which is conducive to enhance the entity recognition accuracy.

Springer Nature 2021 LATEX template

1

C
a
se

#
1 Medical Text

药药药物物物治治治疗疗疗(treatment)是比较低廉的...

Drug treatment (treatment) is relatively cheap ...

Baseline 药物治治治疗疗疗(treatment)是比较低廉的...

BBCPR 药药药物物物治治治疗疗疗(treatment)是比较低廉的...

C
a
se

#
2

Medical Text

患者2-月前因诊断为升升升结结结肠肠肠恶恶恶性性性肿肿肿瘤瘤瘤(disease and diagnosis)及肝肝肝内内内外外外
胆胆胆管管管结结结石石石(disease and diagnosis)。

The patient was diagnosed with malignant tumor of ascending
colon (disease and diagnosis) and intrahepatic and extrahepatic
bile duct stones (disease and diagnosis) 2-months ago.

Baseline
患者2-月前因诊断为升升升结结结肠肠肠恶恶恶性性性肿肿肿瘤瘤瘤及及及肝肝肝内内内外外外胆胆胆管管管结结结石石石(disease and

diagnosis)。

BBCPR
患者2-月前因诊断为升升升结结结肠肠肠恶恶恶性性性肿肿肿瘤瘤瘤(disease and diagnosis)及肝肝肝内内内外外外
胆胆胆管管管结结结石石石(disease and diagnosis)。

Figure 6. Qualitative comparison of Baseline and BBCPR. Case #1 and Case #2 are from the
cMedQANER and cEHRNER test set, respectively. The entities are marked in bold. The ground truth
labels are in orange. The labels of baseline prediction are in red. The labels of BBCPR prediction are
in blue.

6. Conclusions and Future Work

In our work, we propose a model named BBCPR for improving the performance
of the Chinese-MNER task, which leverages a POS fusion layer to explicitly learn word
boundary information by incorporating external syntax knowledge. What is more, we
also design a novel regularization method READ to deal with the over-fitting problem
and improve the model robustness. In detail, READ regularizes the predictions of the two
sub-models through minimizing the bidirectional KL-divergence between the adversarial
output and original output distributions for the same sample. Comprehensive experiments
conducted on two benchmark datasets confirm the advantage of our proposal for the
Chinese-MNER task. In addition, an ablation study proves that the POS fusion layer and
READ can effectively improve the model performance.

For future research, we want to explore how to obtain more features for entities by
introducing the contrastive learning [41], which can pull the same type of entities closer
and push apart different types of entities [52]. Furthermore, we have interests in verifying
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the effectiveness of our proposal in other domains, e.g., financial domain, legal domain.
Finally, mining more potential supervisory signals from the unlabeled samples and then
training the model in an unsupervised setting may also be a promising direction.
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