
����������
�������

Citation: Liu, H.; Yang, T.; Zhu, L.

Yetter–Drinfeld Modules for

Group-Cograded Hopf Quasigroups.

Mathematics 2022, 10, 1388. https://

doi.org/10.3390/math10091388

Academic Editor: Shuanhong Wang

Received: 23 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Yetter–Drinfeld Modules for Group-Cograded
Hopf Quasigroups
Huili Liu, Tao Yang * and Lingli Zhu

College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2020111006@stu.njau.edu.cn (H.L.);
2021111005@stu.njau.edu.cn (L.Z.)
* Correspondence: tao.yang@njau.edu.cn

Abstract: Let H be a crossed group-cograded Hopf quasigroup. We first introduce the notion of
p-Yetter–Drinfeld quasimodule over H. If the antipode of H is bijective, we show that the category
YDQ(H) of Yetter–Drinfeld quasimodules over H is a crossed category, and the subcategory YD(H)

of Yetter–Drinfeld modules is a braided crossed category.

Keywords: Hopf quasigroup; crossed group-cograded Hopf quasigroup; p-Yetter–Drinfeld quasi-
module; braided crossed category

MSC: 16T05; 17A01; 18M15

1. Introduction

In order to understand the structure and relevant properties of the algebraic 7-sphere,
Klim and Majid in [1] proposed the notion of Hopf quasigroups. They are non-associative
generalizations of Hopf algebras; however, there are certain conditions about antipode that
can compensate for their lack of associativity. Hopf quasigroups are no longer associative
algebras, so their compatibility conditions are quite different from those of Hopf algebras.

Turaev introduced the notion of braided crossed categories, which is based on a group
G, and showed that such a category gives rise to a 3-dimensional homotopy quantum field
theory with target space K(G, 1). In fact, braided crossed categories are braided monoidal
categories in Freyd–Yetter categories of crossed G-sets (see [2]), and play a key role in the
construction of these homotopy invariants.

Zunino introduced a kind of Yetter–Drinfeld module over crossed group coalgebra
in [3], and constructed a braided crossed category for this kind of Yetter–Drinfeld module.
This idea was generalized to multiplier Hopf T-coalgebras by Yang in [4]. It is natural to
ask the question: Does this method also hold for some other algebraic structures?

Motivated by this question, the main purpose of this paper is to construct a braided
crossed category by p-Yetter–Drinfeld modules over crossed group-cograded Hopf quasigroups.

This paper is organized as follows: In Section 2, we recall some notions, such as
braided crossed categories, Turaev’s left index notation, and Hopf quasigroups. These are
the most important building blocks on which this article is founded.

In Section 3, we introduce crossed group-cograded Hopf quasigroups and then provide
some examples of this algebraic structure. Moreover, we give a method to construct crossed
group-cograded Hopf quasigroups, which relies on a fixed crossed group-cograded Hopf
quasigroup. At the end of this section, we show that a group-cograded Hopf quasigroup
with the group G is indeed a Hopf quasigroup in the Turaev category.

In Section 4, we first give the definition of p-Yetter–Drinfeld quasimodules over a
crossed group-cograded Hopf quasigroup H. We then show the category YDQ(H) of
Yetter–Drinfeld quasimodules over H is a crossed category, and the subcategory YD(H) of
Yetter–Drinfeld modules is a braided crossed category.
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2. Preliminaries
2.1. Crossed Categories and Turaev Category

Recall the following definitions from [5–7]. Let G be a group. A category C over G is
called a crossed category if it satisfies the following:

(1) C is a monoidal category;
(2) C is a disjoint union of a family of subcategories (Cα)α∈G , and for any U ∈ Cα,

V ∈ Cβ, U ⊗V ∈ Cαβ. The subcategory Cα is called the αth component of C;
(3) Consider a group homomorphism φ : G → Aut(C), β → φβ, and assume that

φβ(Cα) = Cβαβ−1 , where Aut(C) is the group of invertible strict tensor functors from
C to itself, for all α, β ∈ G. The functors φβ are called conjugation isomorphisms.

We will use Turaev’s left index notation from [7,8] for functors φβ: Given β ∈ G

and an object V ∈ C, the functor φβ will be denoted by β(·) or V(·) and β−1
(·) will be

denoted by V̄(·). Since V(·) is a functor, for any object U ∈ C and any composition of
morphism g ◦ f in C, we obtain V idU = idVU and V(g ◦ f ) = V g ◦ V f . Since the conjugation
ϕ : G → Aut(C) is a group homomorphism, for any V, W ∈ C, we have V⊗W(·) = V(W(·))
and 1(·) = V(V̄(·)) = V̄(V(·)) = idC. Since for any V ∈ C, the functor V(·) is strict, we
have V(g⊗ f ) = V g⊗ V f for any morphism f and g in C, and V(1) = 1.

Recall that a braiding of a crossed category C is a family of isomorphisms (C = CU,V)U,V∈C,
where CU,V : U ⊗V → UV ⊗U satisfies the following conditions:

(1) For any arrow f ∈ Cp(U, U′) and g ∈ C(V, V′),

((pg)⊗ f )CU,V = CU′ ,V′ ( f ⊗ g); (1)

(2) For all U, V, W ∈ C, we have

CU⊗V,W = aU⊗VW,U,V (CU,VW ⊗ idV) a−1
U,VW,V (ιU ⊗ CV,W) aU,V,W , (2)

CU,V⊗W = a−1
UV,UW,U (ιUV ⊗ CU,W) aUV,U,W (CU,V ⊗ ιW) a−1

U,V,W , (3)

where a is the natural isomorphisms in the tensor category C.
(3) For all U, V ∈ C and q ∈ G,

φq(CU,V) = Cφq(U),φq(V). (4)

A crossed category endowed with a braiding is called a braided crossed category.
For more details, see [9].

A Turaev category as a special symmetric monoidal category is introduced by Caenepeel
from [10]. We recall the notion of Turaev category TR: Let R be a commutative ring. A Tu-
raev R-module is a couple M = (X, M), where X is a set, and M = (Mx)x∈X is a family of
R-modules indexed by X. A morphisms between two T-modules (X, M) and (Y, N) is a
couple φ = ( f , φ), where f : Y → X is a function, and φ = (φy : M fy → Ny)y∈Y is a family
of linear maps indexed by Y. The composition of φ : M → N and ψ : N → P = (Z, P) is
defined as follows:

ψ φ = ( f g, (ψzφg(z))z∈Z).

The category of Turaev R-modules is called the Turaev category and denoted by TR.

2.2. Hopf Quasigroups

Throughout this article, all spaces we consider are over a fixed field k.
Recall from [1] that a Hopf quasigroup H is a unital (not necessarily associative) algebra

(H, µH , ηH) and a counital and coassociative coalgebra (H, δH , εH) with the morphisms δH
and εH are algebra morphisms. There exists a linear map S : H → H such that
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µ(id⊗ µ)(S⊗ id⊗ id)(∆⊗ id) = ε⊗ id = µ(id⊗ µ)(id⊗ S⊗ id)(∆⊗ id), (5)

µ(µ⊗ id)(id⊗ id⊗ S)(id⊗ ∆) = id⊗ ε = µ(µ⊗ id)(id⊗ S⊗ id)(id⊗ ∆). (6)

In this paper, we use Sweelder notation for the coproduct: ∆(h) = ∑
h

h(1)⊗ h(2), for any

h ∈ H. As in [11], in the following, we write ∆(h) = h(1) ⊗ h(2) for simplicity. Using this
notation, we can rewrite the conditions (5) and (6) of a Hopf quasigroup as

S(h(1))(h(2)g) = ε(h)g = h(1)(S(h(2))g), (7)

(gh(1))S(h(2)) = gε(h) = (gS(h(1)))h(2), (8)

for all h, g ∈ H.
If the antipode S of H is bijective, then for all h, g ∈ H, we have

S−1(h2)(h1g) = ε(h)g = h2(S−1(h1)g), (9)

(gS−1(h2))h1 = gε(h) = g(h2S−1(h1)). (10)

A morphism between Hopf quasigroups H and B is a map f : H → B which is both
an algebra and a coalgebra morphism. A Hopf quasigroup is associative if, and only if, it is
a Hopf algebra. For more details, see [1,11].

3. Crossed Group-Cograded Hopf Quasigroup

In this section, we first introduce the notion of crossed group-cograded Hopf quasi-
groups, generalizing crossed Hopf group-coalgebra introduced in [7]. Then we prove that
a group-cograded Hopf quasigroup is indeed a Hopf quasigroup in the Turaev category,
and provide a method to construct crossed group-cograded Hopf quasigroups.

Definition 1. Let G be a group. (H =
⊕

p∈G Hp, ∆, ε) is called a group-cograded Hopf quasigroup
over k, where each Hp is a unital k-algebra with multiplication µp and unit ηp, comultiplication ∆
is a family of homomorphisms (∆p,q : Hpq → Hp ⊗ Hq)p,q∈G, and counit ε is a homomorphism
defined by ε : He → k, such that the following conditions:

(1) Hp Hq = 0 whenever p, q ∈ G and p 6= q, and ηp(1k) = 1p;
(2) ∆ is coassociative, in the sense that for any p, q, r ∈ G,

(∆p,q ⊗ idHr )∆pq,r = (idHp ⊗ ∆q,r)∆p,qr, (11)

and for all p, q ∈ G the ∆p,q is an algebra homomorphism and ∆p,q(Hpq) ⊆ Hp ⊗ Hq.
(3) ε is counitary in the sense that for any p ∈ G,

(idHp ⊗ ε)∆p,e = (ε⊗ idHp)∆e,p = idHp , (12)

and ε is an algebra homomorphism and ε(1e) = 1k;
(4) endowed H with algebra anti-homomorphisms S = (Sp : Hp → Hp−1)p∈G, then for any

p ∈ G,

ε⊗ idHp = µp(idHp ⊗ µp)(Sp−1 ⊗ idHp ⊗ idHp)(∆p−1,p ⊗ idHp)

= µp(idHp ⊗ µp)(idHp ⊗ Sp−1 ⊗ idHp)(∆p,p−1 ⊗ idHp), (13)

idHp ⊗ ε = µp(µp ⊗ idHp)(idHp ⊗ idHp ⊗ Sp−1)(idHp ⊗ ∆p,p−1)

= µp(µp ⊗ idHp)(idHp ⊗ Sp−1 ⊗ idHp)(idHp ⊗ ∆p−1,p). (14)

We extend the Sweedler notation for a comultiplication in the following way: For any
p, q ∈ G, hpq ∈ Hpq,

∆p,q(hpq) = h(1,p) ⊗ h(2,q).
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Then, we can rewrite the conditions (13) and (14) as: for all p ∈ G and he ∈ He, g ∈ Hp,

Sp−1(h(1,p−1))(h(2,p)g) = ε(he)g = h(1,p)(Sp−1(h(2,p−1))g), (15)

(gh(1,p))Sp−1(h(1,p−1)) = gε(he) = (gSp−1(h(1,p−1)))h(2,p). (16)

As in the Hopf group-coalgebra (or group-cograded Hopf algebra) case, we show
group-cograded Hopf quasigroups are Hopf quasigroups in a special category as follows.

Proposition 1. If H =
⊕

p∈G Hp is a group-cograded Hopf quasigroup, then (G, H) is a Hopf
quasigroup in the Turaev category Tk.

Proof. As H is a group-cograded Hopf quasigroup and G is a group with the multiplication
m, we can give H = (G, H) a unital algebra structure (H, µ, η) by

k
η
−→ H

(∗) α←− G

k
ηp−→ Hp,

and

H ⊗ H
µ
−→ H

G× G δ←− G

Hp ⊗ Hp
µp−→ Hp,

such that

H
id⊗η
−−−→ H ⊗ H

µ
−−−→ H

G
(1,α)←−−− G× G δ←−−− G

Hp
id⊗ηp−−−→ Hp ⊗ Hp

ηp−−−→ Hp,

and

H
η⊗id
−−−→ H ⊗ H

µ
−−−→ H

G
(α,1)←−−− G× G δ←−−− G

Hp
ηp⊗id
−−−→ Hp ⊗ Hp

ηp−−−→ Hp.

We can also give (G, H) a coalgebra structure (H, ∆, ε) by

H
ε−→ k

G i←− (∗)

H1 = Hi(e)
ε−→ k,

and

H
∆−→ H ⊗ H

G m←− G× G

Hgh = Hm(g×h)
∆g,h−→ Hg ⊗ Hh,

such that (∆, ε) are algebra maps.
Let s : G → G, s(g) = g−1, then we can consider a map S = (s, S) in the Turaev

category as the antipode of H, where S is the antipode of the group-cograded Hopf quasi-
group H. Next, we will only check that S satisfy the condition (7), the condition (8) is
similar. Indeed,

H ⊗ H
∆⊗id−−−−→ H ⊗ H ⊗ H

S⊗id⊗id−−−−−−→ H ⊗ H ⊗ H
id⊗µ
−−−−→ H ⊗ H

µ
−−→ H

G× G
(m,1)←−−−− G× G× G

(s,1,1)←−−−−−− G× G× G
(1,δ)←−−−− G× G δ←−− G

He ⊗ Hp
∆⊗id−−−−→ Hp−1 ⊗ Hp ⊗ Hp

Sp−1⊗id⊗id
−−−−−−−→ Hp ⊗ Hp ⊗ Hp

id⊗µp−−−−→ Hp ⊗ Hp
µp−−→ Hp,

and

H ⊗ H
ε⊗id−−−−−−→ k⊗ H

G× G i⊗1←−−−−−− (∗)× G

Hi(e) ⊗ H ε⊗id−−−−−−→ k⊗ H.

Since H is a group-cograded Hopf quasigroup, we have (∆⊗ id)(S⊗ id⊗ id)(id⊗
µ)µ = ε⊗ id. Thus, the left hand of Equation (7) holds, and the right hand is similar.
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Definition 2. A group-cograded Hopf quasigroup (H =
⊕

p∈G Hp, ∆, ε, S) is said to be a crossed
group-cograded Hopf quasigroup provided it is endowed with a crossing π : G → Aut(H) such that

(1) each πp satisfies πp(Hq) = Hpqp−1 , and preserves the counit, the antipode, and the comulti-
plication, i.e., for all p, q, r ∈ G,

επp|He = ε, (17)

πpSq = Spqp−1 πp, (18)

(πp ⊗ πp)∆q,r = ∆pqp−1,prp−1 πp, (19)

(2) π is multiplicative in the sense that for all p, q ∈ G, πpq = πpπq.

If all of its subalgebras (Hp)p∈G are associative, then H is a crossed Hopf group-coalgebra in-
troduced in [7]. In the following, we give two examples of crossed group-cograded Hopf quasigroups;
both examples are derived from an action of G on a Hopf quasigroup over k by Hopf quasigroup
endomorphisms.

Example 1. Let (H, ∆, ε, S) be a Hopf quasigroup. Set HG =
(

Hp)p∈G and G is the homomorphism
group of H, where for each p ∈ G, the algebra Hp is a copy of H. Fix an identification isomorphism of
algebras ip : H → Hp. For p, q ∈ G, we define a comultiplication ∆p,q : Hpq → Hp ⊗ Hq by

∆p,q(ipq(h)) = ∑
(h)

ip(h(1))⊗ iq(h(2)),

where h ∈ H. The counit ε : He → k is defined by ε(ie(h)) = ε(h) ∈ k for h ∈ H. For p ∈ G,
the antipode Sp : Hp → Hp−1 is given by

Sp(ip(h)) = ip−1(S(h)),

where h ∈ H. For p, q ∈ G, the homomorphism πp : Hq → Hpqp−1 is defined by πp(iq(h)) =
ipqp−1(p(h)). It is easy to check that HG is a crossed group-cograded Hopf quasigroup.

Using the mirror reflection technique introduced in Turaev [7], we can give a construc-
tion of crossed group-cograded Hopf quasigroups from a fixed crossed group-cograded
Hopf quasigroup as follows.

Theorem 1. Let (H =
⊕

p∈G Hp, ∆, ε, S, π) be a crossed group-cograded Hopf quasigroup, then
we can define its mirror (H̃ =

⊕
p∈G H̃p, ∆̃, ε̃, S̃, π̃) in the following way:

(1) as an algebra, H̃p = Hp−1 , for all p ∈ G;

(2) define the comultiplication ∆̃p,q : H̃pq → H̃p ⊗ H̃q by : for hq−1 p−1 ∈ H̃pq,

∆̃p,q(hq−1 p−1) = (πq ⊗ idHq−1 )∆q−1 p−1q,q−1(hq−1 p−1); (20)

(3) the counit ε̃ of H̃ is the original counit ε;
(4) the antipode S̃p = πpSp−1 : H̃p = Hp−1 → Hp = H̃p−1 ;
(5) for all p ∈ G, define the cross action π̃p = πp.

Then (H̃ =
⊕

p∈G H̃p, ∆̃, ε̃, S̃, π̃) is also a crossed group-cograded Hopf quasigroup.

Proof. It is easy to check that ∆̃ is coassociative, and ε is a counit of H̃. By the definition of
H̃, hr−1q−1 p−1 ∈ H̃pqr, for all p, q, r ∈ G, naturally holds.
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We will only prove Equation (13) of H̃ holds; the Equation (14) of H̃ is similar. Indeed,

µp−1(idH̃p
⊗ µp−1)(S̃p−1 ⊗ idH̃p

⊗ idH̃p
)(∆̃p−1,p ⊗ idH̃p

)

= µp−1(idHp−1 ⊗ µp−1)(πp−1 Sp ⊗ idHp−1 ⊗ idHp−1 )
(
(πp ⊗ idHp−1 )∆p,p−1 ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)

(
(πp−1 Spπp ⊗ idHp−1 )∆p,p−1 ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)

(
(Sp ⊗ idHp−1 )∆p,p−1 ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)(Sp ⊗ idHp−1 ⊗ idHp−1 )(∆p,p−1 ⊗ idHp−1 )

= ε⊗ idH̃p
,

and

µp−1(idH̃p
⊗ µp−1)(idH̃p

⊗ S̃p−1 ⊗ idH̃p
)(∆̃p,p−1 ⊗ idH̃p

)

= µp−1(idHp−1 ⊗ µp−1)(idHp−1 ⊗ πp−1 Sp−1 ⊗ idHp−1 )
(
(πp−1 ⊗ idHp)∆pp−1 p−1,p ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)

(
(πp−1 ⊗ Sp−1 ppπp−1)∆p−1,p ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)

(
(idHp−1 ⊗ Sp)(πp−1 ⊗ πp−1)∆p−1,p ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)

(
(idHp−1 ⊗ Sp)∆p−1,pπp−1 ⊗ idHp−1

)
= µp−1(idHp−1 ⊗ µp−1)(idHp−1 ⊗ Sp ⊗ idHp−1 )(∆p−1,p ⊗ idHp−1 )(πp−1 ⊗ idHp−1 )

= (ε⊗ idHp−1 )(πp−1 ⊗ idHp−1 )

= ε⊗ idH̃p
,

so the Equation (13) of H̃ holds.
It is obvious that π̃ = π is multiplicative, and each πp preserves the counit, so if

each πp preserves the antipode and comultiplication, the mirror H̃ of H is also a crossed
group-cograded Hopf quasigroup. Indeed, for all p, q ∈ G,

S̃pqp−1 πp = πpqp−1 Spqp−1 πp = πpqp−1 πpSq = πpqSq = πpπqSq = πpS̃q,

thus πp preserves the antipode. We finally consider comultiplication, for all p, q, r ∈ G,

(πp ⊗ πp)∆̃q,r = (πp ⊗ πp)(πr ⊗ idHr−1 )∆r−1q−1r,r−1

= (πpr ⊗ πp)∆r−1q−1r,r−1 ,

and

∆̃pqp−1,prp−1 πp = (πprp−1 ⊗ idHpr−1 p−1 )∆pr−1q−1rp−1,pr−1 p−1 πp

= (πprp−1 ⊗ idHpr−1 p−1 )(πp ⊗ πp)∆r−1q−1r,r−1

= (πpr ⊗ πp)∆r−1q−1r,r−1 ,

hence πp preserves comultiplication. Then we conclude H̃ is a crossed group-cograded
Hopf quasigroup.

Remark 1. Let H be a crossed group-cograded Hopf quasigroup. If H̃ is the mirror of H, then the

mirror of H̃ is ˜̃H = H.

Example 2. Let HG be a crossed group-cograded Hopf quasigroup introduced in Example 1.
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Set H̃G to be the same family of algebras (Hp = H)p∈G with the same counit, the same action
π of G, the comultiplication ∆̃p,q : Hpq → Hp ⊗ Hq, and the antipode S̃p : Hp → Hp−1 defined by

∆̃p,q(ipq(h)) = ∑
(h)

ip(q(h(1)))⊗ iq(h(2)),

S̃p(ip(h)) = ip−1(p(S(h))) = ip−1(S(p(h))),

where h ∈ H. By Theorem 1, H̃G becomes a crossed group-cograded Hopf quasigroup.

Note that the crossed group-cograded Hopf quasigroups HG and H̃G, which are
defined in Examples 1 and 2, respectively, are mirrors of each other.

4. Construction of Braided Crossed Categories

Let H =
⊕

r∈G Hr be a crossed group-cograded Hopf quasigroup with a bijective
antipode S. We introduce the definition of p-Yetter–Drinfeld quasimodules over H, then
show the category YDQ(H) of Yetter–Drinfeld quasimodules is a crossed category, and the
subcategory YD(H) of Yetter–Drinfeld modules over H is a braided crossed category.

Recall the definition of left H-quasimodule in [11]; we give the following definition.

Definition 3. Let V be a vector space, (V, ϕ) is called a left Hp-quasimodule if there exists an
action ϕ : Hp ⊗V → V, hp ⊗ v→ hp · v satisfying

ϕ(ηp ⊗ idV) = idV , (21)

ϕ(Sp−1 ⊗ ϕ)(∆p−1,p ⊗ idV) = ε⊗ idV

= ϕ(idHp ⊗ ϕ)(idHp ⊗ Sp−1 ⊗ idV)(∆p,p−1 ⊗ idV). (22)

Using Sweelder notation, for all h ∈ He, v ∈ V, (21) and (22) is equivalent to

1p · v = v, (23)

Sp−1(h(1,p−1)) · (h(2,p) · v) = ε(h)v

= h(1,p) ·
(
Sp−1(h2,p−1) · v

)
. (24)

Moreover, if the condition (22) is instead by h · (g · v) = (hg) · v, where h, g ∈ Hp, then the
left Hp-quasimodule is a left Hp-module.

Definition 4. Let V be a vector space and p a fixed element in group G. A couple (V, ρV = (ρV
r )r∈G)

is said to be a left-right p-Yetter–Drinfeld quasimodule, where V is a unital Hp-quasimodule,
and for any r ∈ G, ρV

r : V → V ⊗ Hr is a k-linear morphism, denoted by Sweedler notation
ρV

r (v) = ∑
v

v(0) ⊗ v(1,r) (write ρV
r (v) = v(0) ⊗ v(1,r) for short) such that the following conditions

are satisfied:

(1) V is coassociative in the sense that, for any r1, r2 ∈ G, we have

(ρV
r1
⊗ idHr2

)ρV
r2
= (idV ⊗ ∆r1,r2)ρ

V
r1r2

;

(2) V is counitary, in the sense that

(idV ⊗ ε)ρV
e = idV ;

(3) V is crossed, in the sense that for all v ∈ V, r ∈ G and h, g ∈ H(r),

h(1,p) · v(0) ⊗ h(2,r)v(1,r) = (h(2,p) · v)(0) ⊗ (h(2,p) · v)(1,r)πp−1(h(1,prp−1)), (25)

v(0) ⊗ v(1,r)(hg) = v(0) ⊗ (v(1,r)h)g, (26)

v(0) ⊗ (hv(1,r))g = v(0) ⊗ h(v(1,r)g). (27)
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Remark 2. The conditions (26) and (27) follow the definition of a Yetter–Drinfeld quasimodule in
Alonso’s paper.

Given two p-Yetter–Drinfeld quasimodules (V, ρV) and (W, ρW), a morphism of these
two p-Yetter–Drinfeld quasimodules f : (V, ρV)→ (W, ρW) is an Hp-linear map f : V →W
and satisfies the following diagram: for any r ∈ G,

V

ρV
r
��

f // W

ρW
r
��

V ⊗ Hr f⊗idHr

// W ⊗ Hr

that is, for all v ∈ V,

f (v)(0) ⊗ f (v)(1,r) = f (v(0))⊗ v(1,r).

Then we have the category YDQ(H)p of p-Yetter–Drinfeld quasimodules; the com-
position of morphisms of p-Yetter–Drinfeld quasimodules is the standard composition of
the underlying linear maps. Moreover, if we assume that V is a left Hp-module, then we
say that is a left-right p-Yetter–Drinfeld module. Obviously, left-right p-Yetter–Drinfeld
modules with the obvious morphisms is a subcategory of YDQ(H)p, denoted by YD(H)p.

Proposition 2. The Equation (25) is equivalent to

(hp · v)(0) ⊗ (hp · v)(1,r) = h(2,p) · v(0) ⊗
(
h(3,r)v(1,r)

)
S−1πp−1(h(1,pr−1 p−1)), (28)

for all hp ∈ Hp and v ∈ V.

Proof. Suppose the condition (25) holds, then we have

h(2,p) · v(0) ⊗
(
h(3,r)v(1,r)

)
S−1πp−1(h(1,pr−1 p−1))

= (h(3,p) · v)(0) ⊗
(
(h(3,p) · v)(1,r)πp−1(h(2,prp−1))

)
S−1πp−1(h(1,pr−1 p−1))

= (h(3,p) · v)(0) ⊗ (h(3,p) · v)(1,r)

(
πp−1

(
h(2,prp−1)S

−1(h(1,pr−1 p−1))
))

= (h(2,p) · v)(0) ⊗ (h(2,p) · v)(1,r)πp−1 ε(he)

= (h(2,p) · v)(0) ⊗ (h(2,p) · v)(1,r)ε(he)

= (hp · v)(0) ⊗ (hp · v)(1,r)

where the first equality follows by (25), the others rely on the properties of the crossed
group-cograded Hopf quasigroup.

Conversely, if the Equation (28) holds, then

(h(2,p) · v)(0) ⊗ (h(2,p) · v)(1,r)πp−1(h(1,prp−1))

= h(3,p) · v(0) ⊗
(
h(4,r)v(1,r)

)
S−1πp−1(h(2,prp−1))πp−1(h(1,prp−1))

= h(3,p) · v(0) ⊗
(
h(4,r)v(1,r)

)
πp−1(S−1(h(2,prp−1))h(1,prp−1))

= h(1,p) · v(0) ⊗
(
h(2,r)v(1,r)

)
πp−1 ε(he)

= h(1,p) · v(0) ⊗ h(2,r)v(1,r)

where the first equality follows by (28), the rest follows by the properties of the crossed
group-cograded Hopf quasigroup.
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Remark 3. According to the Equation (27), the condition (28) is equivalent to

(hp · v)(0) ⊗ (hp · v)(1,r) = h(2,p) · v(0) ⊗ h(3,r)
(
v(1,r)S

−1πp−1(h(1,pr−1 p−1))
)
. (29)

Proposition 3. If (V, ρV) ∈ YDQ(H)p and (W, ρW) ∈ YDQ(H)q, then V⊗W ∈ YDQ(H)pq
with the module and comodule structures, as follows:

hpq · (v⊗ w) = h(1,p) · v⊗ h(2,q) · w, (30)

ρV⊗W
r (v⊗ w) = v(0) ⊗ w(0) ⊗ w(1,r)πq−1(v(1,qrq−1)), (31)

where v ∈ V, w ∈W and hpq ∈ Hpq.

Proof. We first check that V ⊗W is a left Hpq-quasimodule, and the unital property is
obvious. We only check the left hand side of Equation (22); the right hand is similar. For all
v ∈ V, w ∈W,

h(1,pq) ·
(
S−1(h(2,(pq)−1)) · (v⊗ w)

)
= h(1,pq) ·

(
S−1(h(2,p−1)) · v⊗ S−1(h(2,q−1)) · w

)
=

(
h(1,p) ·

(
S−1(h(2,p−1)) · v

))
⊗
(

h(2,q) ·
(
S−1(h(2,q−1)) · w

))
=

(
ε(h(1,e)) · v

)
⊗
(
ε(h(2,e)) · w

)
= ε(he) · (v⊗ w)

where the first and second equalities rely on (30), the third equality follows by (22). Then
V ⊗W is a left Hpq-quasimodule.

In the following equations, we check that the coassociative condition holds:

(idV⊗W ⊗ ∆r1,r2)ρr1r2(v⊗ w)

= (idV⊗W ⊗ ∆r1,r2)
(
v(0) ⊗ w(0) ⊗ w(1,r1r2)

πq−1(v(1,qr1r2q−1))
)

= v(0) ⊗ w(0) ⊗ w(1,r1)
πq−1 v(1,qr1q−1) ⊗ w(2,r2)

πq−1(v(2,qr2q−1)),

and

(ρr1 ⊗ idr2)ρr2(v⊗ w)

= (ρr1 ⊗ idr2)(v(0) ⊗ w(0) ⊗ w(1,r2)
πq−1(v1,qr2q−1))

= v(0)(0) ⊗ w(0)(0) ⊗ w(0)(1,r1)
πq−1(v(0)(1,qr1q−1))⊗ w(1,r2)

πq−1(v1,qr2q−1)

= v(0) ⊗ w(0) ⊗ w(1,r1)
πq−1(v(1,qr1q−1))⊗ w(2,r2)

πq−1(v(2,qr2q−1)).

This shows that (idV⊗W ⊗ ∆r1,r2)ρr1r2 = (ρr1 ⊗ idr2)ρr2 .
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The counitary condition is easy to show. Then we check the crossed condition,
as follows:

h(1,pq) · (v⊗ w)(0) ⊗ h(2,r)(v⊗ w)(1,r)

(31)
= h(1,pq) · (v(0) ⊗ w(0))⊗ h(2,r)

(
w(1,r)πq−1(v(1,qrq−1))

)
(26)
= h(1,pq) · (v(0) ⊗ w(0))⊗

(
h(2,r)w(1,r)

)
πq−1(v(1,qrq−1))

(30)
= h(1,p) · v(0) ⊗ h(2,q) · w(0) ⊗

(
h(3,r)w(1,r)

)
πq−1(v1,qrq−1)

(25)
= h(1,p) · v(0) ⊗ (h(3,q) · w)(0) ⊗ (h(3,q) · w)(1,r)πq−1(h(2,qrq−1))πq−1(v(1,qrq−1))

= h(1,p) · v(0) ⊗ (h(3,q) · w)(0) ⊗ (h(3,q) · w)(1,r)πq−1(h(2,qrq−1)v(1,qrq−1))

(25)
= (h(2,p) · v)(0) ⊗ (h(3,q) · w)(0)

⊗(h(3,q) · w)(1,r)πq−1
(
(h(2,q) · v)(1,qrq−1)πp−1(h(1,pqrq−1 p−1))

)
= (h(2,p) · v)(0) ⊗ (h(3,q) · w)(0)

⊗(h(3,q) · w)(1,r)πq−1
(
(h(2,q) · v)(1,qrq−1)

)
πq−1 p−1(h(1,pqrq−1 p−1))

(31)
= (h(2,p) · v⊗ h(3,q) · w)(0) ⊗ (h(2,p) · v⊗ h(3,q) · w)(1,r)πq−1 p−1(h(1,pqrq−1 p−1))

(30)
= h(2,pq) · (v⊗ w)(0) ⊗

(
h(2,pq) · (v⊗ w)

)
(1,r)πq−1 p−1(h(1,pqrq−1 p−1)).

Finally, we check the Equation (26), and the Equation (27) is similar.

(v⊗ w)(0) ⊗ (v⊗ w)(1,r)(hg) = v(0) ⊗ w(0) ⊗
(
w(1,r)πq−1(v(1,qrq−1))

)
(hg)

= v(0) ⊗ w(0) ⊗ w(1,r)
(
πq−1(v(1,qrq−1))(hg)

)
= v(0) ⊗ w(0) ⊗ w(1,r)

((
πq−1(v(1,qrq−1))h

)
g
)

= v(0) ⊗ w(0) ⊗
(

w(1,r)
(
πq−1(v(1,qrq−1))h

))
g

= v(0) ⊗ w(0) ⊗
((

w(1,r)πq−1(v(1,qrq−1))
)
h
)

g

= (v⊗ w)(0) ⊗
(
(v⊗ w)(1,r)h

)
g.

Hence V ⊗W ∈ YDQ(H)pq.

Following Turaev’s left index notation, let V ∈ YDQ(H)p, the object qV have the same
underlying vector space as V. Given v ∈ V, we denote qv the corresponding element in qV.

Proposition 4. Let (V, ρV) ∈ YDQ(H)p and q ∈ G. Set qV = V as a vector space with
structures

hqpq−1 · qv = q(πq−1(hqpq−1) · v) (32)

ρ
qV
r (qv) = q(v(0))⊗ πq(v(1,q−1rq)) (33)

for any v ∈ V and hqpq−1 ∈ Hqpq−1 . Then qV ∈ YDQ(H)qpq−1 .
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Proof. We first check that qV is a left Hqpq−1-quasimodule. The condition (21) is easy to
check. Next, we prove the condition (22).

h(1,qpq−1) · (S−1(h(2,qp−1q−1)) · qv) = h(1,qpq−1) ·
(

q(πq−1
(
S−1(h(2,qp−1q−1))

)
· v
))

= q
(

πq−1(h(1,qpq−1)) ·
(
πq−1

(
S−1(h(2,qp−1q−1))

)
· v
))

= q
(

ε
(
πq−1(he)

)
· v
)

= ε
(
πq−1(he)

)
· qv

= ε(he)
qv.

The proof of the other side is similar to the above, so qV is a left Hqpq−1 -quasimodule,
and the coassociative and counitary are also satisfied.

In the following, we show that the crossing condition holds:

(hqpq−1 · qv)(0) ⊗ (hqpq−1 · qv)(1,r)

(32)
=

(
q(πq−1(hqpq−1) · v

))
(0)
⊗
(

q(πq−1(hqpq−1) · v
))

(1,r)

(33)
= q

((
πq−1(hqpq−1) · v

)
(0)

)
⊗ πq

((
πq−1(hqpq−1)

)
(1,r)

)
(28)
= q

(
πq−1(hqpq−1)(2,p) · v(0)

)
⊗πq

((
πq−1(hqpq−1)(3,q−1rq)v(1,q−1rq)

)
S−1πp−1

(
πq−1(hqpq−1)(1,pq−1r−1qp−1)

))
= q

(
πq−1(h(2,qpq−1)) · v(0)

)
⊗πq

((
πq−1(h(3,r))v(1,q−1rq)

)
S−1πp−1

(
πq−1(h(1,qpq−1r−1qp−1q−1))

))
= q

(
πq−1(h(2,qpq−1)) · v(0)

)
⊗
(
h(3,r)πq(v(1,q−1rq))

)
S−1πqpq−1(h(1,qpq−1r−1qp−1q−1))

(32)
= h(2,qpq−1) · q(v(0))⊗

(
h(3,r)πq(v(1,q−1rq))

)
S−1πqpq−1(h(1,qpq−1r−1qp−1q−1))

(33)
= h(2,qpq−1) · (qv)(0) ⊗

(
h(3,r)(

qv)(1,r)
)
S−1πqpq−1(h(1,qpq−1r−1qp−1q−1)).

Finally, we will check that the quasimodule coassociative conditions hold. We just
compute the Equation (26); the Equation (27) is similar. For all qv ∈ qV, h, g ∈ Hr,

(qv)(0) ⊗ (qv)(1,r)(hg) = q(v(0))⊗ πq(v(1,q−1rq))(hg)

= q(v(0))⊗
(
πq(v(1,q−1rq))h

)
g

= (qv)(0) ⊗
(
(qv)(1,r)h

)
g,

where the first and third equalities rely on (33); the second one follows by (26). This
completes the proof.

Proposition 5. Let (V, ρV) ∈ YDQ(H)p and (W, ρW) ∈ YDQ(H)q. Then stV = s(tV) is an
object in YDQ(H)stpt−1s−1 , and s(V ⊗W) = sV ⊗ sW is an object in YDQ(H)spqs−1 .

Proof. We first check that stV = s(tV) is an object in YDQ(H)stpt−1s−1 . It is obvious that
both stV and s(tV) are in the category YDQ(H)stpt−1s−1 . Then we show that the action and
coaction of these two stpt−1s−1-Yetter–Drinfeld quasimodules are exactly equivalent.
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As stV is a stpt−1s−1-Yetter–Drinfeld quasimodule with the structures

hstpt−1s−1 · stv = st(πt−1s−1(hstpt−1s−1) · v
)
,

ρ
stV
r (stv) = st(v(0))⊗ πst(v(1,t−1s−1rst)).

Then, we show s(tV) is a stpt−1s−1-Yetter–Drinfeld quasimodule with the same struc-
tures of stV. Indeed, the action of s(tV) is

hstpt−1s−1 · s(tv) = s(πs−1(hstpt−1s−1) · tv
)

= s
(

t(πt−1 πs−1(hstpt−1s−1) · v
))

= st(πt−1s−1(hstpt−1s−1) · v
)
.

Hence s(tV) has the same cation with stV.
And the coaction of s(tV) is

ρ
s(tV)

(s(tv)
)

= s((tv)(0)
)
⊗ πs

(
(tv)(1,s−1rs)

)
= s(t(v(0))

)
⊗ πs

(
πt(v(1,t−1s−1rst))

)
= st(v(0))⊗ πst(v(1,t−1s−1rst)).

Hence, stV = s(tV) as an object in YDQ(H)stpt−1s−1 .
As s(V ⊗W) is a spqs−1-Yetter–Drinfeld quasimodule with the structures

hspqs−1 · s(v⊗ w) = s(πs−1(hspqs−1) · (v⊗ w)
)

= s(πs−1(h(1,sps−1)) · v⊗ πs−1(h(2,sqs−1)) · w),

ρ
s(V⊗W)
r

(s(v⊗ w)
)

= s((v⊗ w)(0)
)
⊗ πs

(
(v⊗ w)(1,s−1rs)

)
= s(v(0) ⊗ w(0))⊗ πs

(
w(1,s−1rs)πq−1(v(1,qs−1rsq−1))

)
= s(v(0) ⊗ w(0))⊗ πs(w(1,s−1rs))πsq−1(v(1,qs−1rsq−1)).

Then we show sV ⊗ sW is a spqs−1-Yetter–Drinfeld quasimodule with the same struc-
tures of s(V ⊗W). Indeed, the action of sV ⊗ sW is

hspqs−1 · (sv⊗ sw) = h(1,sps−1) · sv⊗ h(2,sqs−1) · sw

= s(πs−1(h(1,sps−1)) · v)⊗ s(πs−1(h(2,sqs−1)) · w)

= s(πs−1(h(1,sps−1)) · v⊗ πs−1(h(2,sqs−1)) · w)

Hence sV ⊗ sW has the same cation with s(V ⊗W).
And the coaction of sV ⊗ sW is

ρ
sV⊗sW
r (sv⊗ sw) = (sv)(0) ⊗ (sw)(0) ⊗ (sw)(1,r)πsq−1s−1

(
(sv)(1,sqs−1rsq−1s−1)

)
= (sv)(0) ⊗ s(w(0))⊗ πs(w(1,s−1rs))πsq−1s−1

(
πs(v(1,qs−1rsq−1))

)
= s(v(0))⊗ s(w(0))⊗ πs(w(1,s−1rs))πsq−1(v(1,qs−1rsq−1))

= s(v(0) ⊗ w(0))⊗ πs(w(1,s−1rs))πsq−1(v(1,qs−1rsq−1)).

Thus, s(V ⊗W) = sV ⊗ sW as an object in YDQ(H)spqs−1 .

For a crossed group-cograded Hopf quasigroup H, we define YDQ(H) as the disjoint
union of all YDQ(H)p with p ∈ G. If we endow YDQ(H) with tensor product as in
Proposition 3, then we obtain the following result.
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Theorem 2. The Yetter–Drinfeld quasimodules category YDQ(H) is a crossed category.

Proof. By Proposition 4, we can give a group homomorphism φ : G → Aut(YDQ(H)),
p 7−→ φp by

φp : YDQ(H)q → YDQ(H)pqp−1 , φp(W) = pW,

where the functor φp acts as follows: given a morphism f : (V, ρV) → (W, ρW), for any
v ∈ V, we set (p f )(pv) = p( f (v)).

Then it is easy to prove YDQ(H) is a crossed category.

Following the ideas by Álonso in [12], we will consider YD(H)p the category of
left-right p-Yetter–Drinfeld modules over H, which is a subcategory of YDQ(H)p.

Proposition 6. Let (V, ρV) ∈ YD(H)p and (W, ρW) ∈ YD(H)q. Set VW = pW as an object in
YD(H)pqp−1 . Define the map

CV,W : V ⊗W → VW ⊗V

CV,W(v⊗ w) = p(Sq−1(v(1,q−1)) · w
)
⊗ v(0) (34)

Then CV,W is H-linear, H-colinear and satisfies the conditions:

CV⊗W,X = (CV,W X ⊗ idW)(idV ⊗ CW,X) (35)

CV,W⊗X = (idVW ⊗ CV,X)(CV,W ⊗ idX) (36)

for X ∈ YD(H)s. Moreover, CsV,sW = s(·)CV,W .

Proof. We first show that CV,W is H-linear. First, compute

CV,W
(
hpq · (v⊗ w)

)
(30)
= CV,W(h(1,p) · v⊗ h(2,q) · w)

(34)
= p

(
Sq−1

(
(h(1,p) · v)(1,q−1)

)
· (h(2,q) · w)

)
⊗ (h(1,p) · v)(0)

(28)
= p

(
Sq−1

(
h(3,q−1)v(1,q−1)S

−1πp−1(h(1,pqp−1))
)
· (h(4,q) · w)

)
⊗
(
h(2,p) · v(0)

)
= p

((
πp−1(h(1,pqp−1))Sq−1(v(1,q−1))S

−1(h3,q−1)
)
· (h(4,q) · w)

)
⊗
(
h(2,p) · v(0)

)
= p

((
πp−1(h(1,pqp−1))Sq−1(v(1,q−1))

)
·
(
S−1(h(3,q−1))h(4,q) · w

))
⊗
(
h(2,p) · v(0)

)
= p

(
πp−1(h(1,pqp−1))

(
Sq−1(v(1,q−1)) · w

))
⊗
(
h(2,p) · v(0)

)
(32)
=

(
h(1,pqp−1) · p(Sq−1(v(1,q−1)) · w

))
⊗
(
h(2,p) · v(0)

)
(30)
= hpq ·

(p(
Sq−1(v(1,q−1)) · w

)
⊗ v(0)

)
(34)
= hpq · CV,W(v⊗ w),

so we have CV,W
(
hpq · (v⊗ w)

)
= hpq · CV,W(v⊗ w), that is, CV,W is H-linear.
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Secondly, we prove that CV,W is H-colinear. In fact,

ρ
VW⊗V
r CV,W(v⊗ w)

= ρ
VW⊗V
r

(p(
Sq−1(v(1,q−1)) · w

)
⊗ v(0)

)
(31)
= p(Sq−1(v(1,q−1)) · w

)
(0) ⊗ v(0)(0) ⊗ v(0)(1,r)πp−1

(p(
Sq−1(v(1,q−1)) · w

)
(1,prp−1)

)
(33)
= p

((
Sq−1(v(1,q−1)) · w

)
(0)

)
⊗ v(0)(0)

⊗v(0)(1,r)πp−1

(
πp
(
Sq−1(v(1,q−1)) · w

)
(1,p−1 prp−1 p)

)
= p

((
Sq−1(v(1,q−1)) · w

)
(0)

)
⊗ v(0)(0) ⊗ v(0)(1,r)

(
Sq−1(v(1,q−1)) · w

)
(1,r)

(28)
= p(Sq−1(v(1,q−1))(2,q) · w(0)

)
⊗ v(0)(0)

⊗v(0)(1,r)
(
Sq−1(v(1,q−1))(3,r)w(1,r)

)
S−1πq−1

(
Sq−1(v(1,q−1))(1,qr−1q−1)

)
= p(Sq−1(v(3,q−1)) · w(0)

)
⊗ v(0) ⊗ v(1,r)

(
Sr(v(2,r))w(1,r)

)
πq−1(v(4,qr−1q−1))

= p(Sq−1(v(1,q−1)) · w(0)
)
⊗ v(0) ⊗ w(1,r))πq−1(v(2,qr−1q−1))

= CV,W(v(0) ⊗ w(0))⊗ w(1,r)πq−1(v(1,qrq−1))

= (CV,W ⊗ id)
(
v(0) ⊗ w(0) ⊗ w(1,r)πq−1(v(1,qrq−1))

)
= (CV,W ⊗ id)ρV⊗W

r (v⊗ w).

Thirdly, we can find CV,W satisfies the conditions (35) and (36). However, here we only
check the first condition, and the other is similar.

(CV,W X ⊗ idW)(idV ⊗ CW,X)(v⊗ w⊗ x)
(34)
= (CV,W X ⊗ idW)(v⊗ q(Ss−1(w(1,s−1)) · x)⊗ w(0))

= CV,W X

(
v⊗ q(Ss−1(w(1,s−1)) · x

))
⊗ w(0)

(34)
= p

(
Sqs−1q−1(v(1,qs−1q−1)) · q(Ss−1(w1,s−1) · x

))
⊗ v(0) ⊗ w(0)

(30)
= pq

(
πq−1

(
Sqs−1q−1(v(1,qs−1q−1))

)
·
(
Ss−1(w1,s−1) · x

))
⊗ v(0) ⊗ w(0)

= pq
(

πq−1
(
Sqs−1q−1(v(1,qs−1q−1))

)
Ss−1(w1,s−1) · x

)
⊗ v(0) ⊗ w(0)

= pq(Ss−1 πq−1(v(1,qs−1q−1))Ss−1(w1,s−1) · x
)
⊗ v(0) ⊗ w(0)

= pq
(

Ss−1
(
w(1,s−1)πq−1(v(1,qs−1q−1))

)
· x
)
⊗ v(0) ⊗ w(0)

(31)
= pq(Ss−1(v⊗ w)(1,s−1) · x

)
⊗ (v⊗ w)(0)

= CV⊗W,X(v⊗ w, x).
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Finally, we check the condition CsV,sW = s(·)CV,W . Indeed,

CsV,sW(sv⊗ sw) = sps−1
(

Ssqs−1
(
(sv)(1,sqs−1)

)
· sw

)
⊗ (sv)(0)

(31)
= sps−1

(
Ssqs−1

(
πs(v(1,s−1sq−1s−1s))

)
· sw

)
⊗ s(v(0))

= sps−1(
πsSq−1(v(1,q−1)) · sw

)
⊗ s(v(0))

(30)
= sps−1

(s(
πs−1

(
πsSq−1(v(1,q−1))

)
· w
))
⊗ s(v(0))

= sps−1
(s(

Sq−1(v(1,q−1)) · w
))
⊗ s(v(0))

= sp(Sq−1(v(1,q−1)) · w
)
⊗ s(v(0))

= s(·)
(p
(Sq−1(v(1,q−1)) · w)⊗ v(0)

)
(34)
= s(·)CV,W(v⊗ w).

This completes the proof.

Similar to [12], we can give the braided CV,W an inverse in the following way.

Proposition 7. Let (V, ρV) ∈ YD(H)p and (W, ρW) ∈ YD(H)q. Then this can give the braided
CV,W an inverse C−1

V,W , which is defined by

C−1
V,W : VW ⊗V → V ⊗W,

C−1
V,W(pw⊗ v) = v(0) ⊗ v(1,q) · w,

where p, q ∈ G.

Proof. For any v ∈ V, w ∈W, we have

C−1
V,WCV,W(v⊗ w) = C−1

V,W(p(Sq−1(v(1,q−1) · w))⊗ v(0))

= v(0) ⊗ v(1,q) · ((Sq−1(v(2,q−1))) · w)

= v(0) ⊗ (v(1,q)Sq−1(v(2,q−1))) · w

= v(0) ⊗ ε(ve) · w

= v⊗ w.

Conversely, for any pw ∈ VW, v ∈ V,

CV,WC−1
V,W(pw⊗ v) = CV,W(v(0) ⊗ v(1,q) · w)

= p(Sq−1(v(1,q−1)) · (v(2,q) · w))⊗ v(0)
= p(Sq−1(v(1,q−1)) · v(2,q)) · w)⊗ v(0)
= pw⊗ v.

Since CV,W is an isomorphism with inverse C−1
V,W .

As a consequence of the above results, we obtain another main result of this paper.

Theorem 3. Denote YD(H) as the disjoint union of all YD(H)p with p ∈ G, where H is a crossed
group-cograded Hopf quasigroup. Then YD(H) is a braided crossed category over group G.

Proof. As YD(H) is a subcategory of the category YDQ(H), so it is a crossed category.
Then we only need prove YD(H) is braided.
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The braiding in YD(H) can be given by Proposition 6, and the braiding is invertible;
its inverse is the family C−1

V,W , which is defined in Proposition 7. Hence, it is obvious that
YD(H) is a braided crossed category.

Example 3. Let us consider the crossed group-cograded Hopf quasigroup HG in Example 1.
Moreover, G is the isomorphism group of Hopf quasigroup H. If V is a Yetter–Drinfeld module of
H, then we can endow V with a p-Yetter–Drinfeld module structure of HG, as follows:

(1) The left Hp-module structure of V is a copy of the left H-module structure of V, because ip is
an identification isomorphism of algebras;

(2) Define a new coaction ρ′r : V → V ⊗ Hr by ρ′r = (idV ⊗ ir)ρ.

Then we can show that V is a p-Yetter–Drinfeld module over HG, and it is easy to check
that YD(HG) is a braided crossed category; the braided structure is given by CV,W : V ⊗W →
VW ⊗V, CV,W(v⊗W) = p(Sq−1

(
iq−1(v(1))

)
· w
)
⊗ v(0).

5. Conclusions

For a group-cograded Hopf quasigroup H =
⊕

p∈G Hp, we first discovered that H with
the group G is a Hopf quasigroup in the Turaev category Tk. Moreover, if H =

⊕
p∈G Hp is

a crossed group-cograded Hopf quasigroup, then the mirror H̃p is also a crossed group-
cograded Hopf quasigroup. Following Alonso’s idea, we prove that the category YDQ(H)
of Yetter–Drinfeld quasimodules is a crossed category. Furthermore, the subcategory
YD(H) is a braided crossed category, which is relevant to the construction of some homo-
topy invariants. A possible topic for further research is a braid structure of the category
YDQ(H).
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