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Abstract: In the era of information explosion, it is difficult for people to obtain their desired in-
formation effectively. In tourism, a travel recommender system based on big travel data has been
developing rapidly over the last decade. However, most work focuses on click logs, visit history,
or ratings, and dynamic prediction is absent. As a result, there are significant gaps in both dataset
and recommender models. To address these gaps, in the first step of this study, we constructed
two human-annotated datasets for the travel conversational recommender system. We provided
two linked data sets, namely, interaction sequence and dialogue data sets. The usage of the former
data set was done to fully explore the static preference characteristics of users based on it, while the
latter identified the dynamics changes in user preference from it. Then, we proposed and evaluated
BERT-based baseline models for the travel conversational recommender system and compared them
with several representative non-conversational and conversational recommender system models.
Extensive experiments demonstrated the effectiveness and robustness of our approach regarding
conversational recommendation tasks. Our work can extend the scope of the travel conversational
recommender system and our annotated data can also facilitate related research.

Keywords: tourism domain; conversational recommender; knowledge graph; BERT-based

MSC: 68T50

1. Introduction

With the information explosion, it is difficult for a user to find travel information that
is in line with their interests and suitable for their travel plan to enjoy high-quality travel,
which is driving an urgent need for a personalized travel recommender system to provide
more ingenious travel suggestions and contribute to the success of the service provider.
Traditional travel recommendation methods are mainly divided into two categories: col-
laborative filtering (CF) recommendations [1] and content-based recommendations [2].
The CF methods mostly use travel interaction records and the data sparsity limits their
performance. On the other hand, the content-based recommendation methods can alleviate
the data sparsity problem by using richer auxiliary information, such as textual descrip-
tions, content tags, and social and geographical information. Recently, more attention
has been paid to deep neural networks, such as DeepMF [3], NCF [4], WideDeep [5], and
DeepFM [6].

However, existing travel recommender systems are mostly based on static recom-
mendation models, which primarily predict a user’s preference toward a travel service
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by analyzing past behaviors offline, e.g., click logs, visit history, and ratings on services.
Static recommendation models rely heavily on the quality of historical offline data, which
may be noisy and sparse. An assumption for static models is that historical interactions
entirely represent a user’s preference. However, in many practical scenarios, a user’s
current preference cannot be reliably predicted from past interactions, which are signifi-
cantly lacking or even blank since travel is a low-frequency activity. Furthermore, a user’s
preference would dynamically be impacted by contextual factors. From the standpoint of
communication science, the dissemination of information is often accompanied by the flow
of preferred attitudes or feelings. Finally, the user may not know their preference until
the decision-making phase, e.g., when knowing the available options. The emergence of
the conversational recommender system provides new insight to address many of these
challenges. Unlike static models, conversational recommender system models can elicit
the current and detailed preferences of the user, respond to the feedback by users on the
suggestion, and provide explanations for the recommended item. Unfortunately, there has
been little work done on travel conversational systems.

Our research aimed to propose a deep conversational recommender system incorpo-
rating travel knowledge graph (TKG) that can complete a dynamic context-based travel
recommendation task. Dialogue is introduced as a supplement to an interaction sequence,
alleviates data sparsity, captures current user preferences, or even finds user preferences.
Our deep model represents user preferences by encoding historical conversations and
historical interaction sequences. In addition, we incorporated knowledge to make the
conversation recommendation process more fluid and fit the travel scenario with spatio-
temporal constraints. Meanwhile, we built a travel conversational recommendation dataset
in Chinese to facilitate our study since the rich semantic content of Chinese dialogues can
provide many clues for feature extraction in a deep approach. Overall, we provide resources
and baseline models for using NLP technology to travel recommendations. To our knowl-
edge, our work is the first to produce a deep travel conversational recommendation system.

In summary, our work has the following contributions:
We constructed two human-annotated Chinese datasets for the travel conversational

recommender system. We provided two linked data sets, namely, interaction sequence and
dialogue data sets. The usage of the former data set was to fully explore the static preference
characteristics of users based on it. At the same time, the latter identified the dynamic
changes in user preference from it. Both datasets were collected in Chinese since the rich
semantic content of Chinese dialogues can provide many clues for feature extraction in a
deep approach. The dataset will be released to the public for research purposes. We fill the
current research gap by incorporating travel knowledge graph into a deep conversational
recommender system. In this area, our research is one of the first models to model user
preferences by encoding historical conversations and historical interaction sequences. We
conducted a detailed comparison and analysis between our model and the current SOTA
models in terms of various challenges the travel recommender system faces. The discoveries
from the study can promote the development of travel recommendations.

2. Related Work
2.1. Conversational Recommender System

A conversational recommender system (CRS) is defined as a system that can predict
users’ dynamic preferences through dialogue context to complete recommendation tasks.
As expressed in [7,8], interactive recommender and task-oriented dialogue systems are
regarded as simplified and homogeneous CRSs, respectively. Existing CRSs roughly fall into
three main categories: system-driven [9–11], mixed-driven [12–15], and user-driven [16–18].
In a system-driven CRS, the system mainly asks questions or offers options about user
preferences to recommend. This requires the user to appropriately point out the appropriate
query candidates and be familiar with each item they want. Mixed-driven CRS allows
both the system and user to lead the conversation by asking questions or via chit-chat. The
system constantly interacts with the user in a multi-turn conversation while discussing
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the different topics (e.g., greeting or philosophy) to lead to the final recommendation. The
natural language-based response requires the generated language to be proper, correct
(even fluent), and meaningful, involving helpful information about the recommended
target. Unlike the previous two, a user-driven CRS focuses on scenarios that require query
understanding where the user has explicit claims or query objectives.

2.2. Personalized Travel Recommender System

A personalized travel recommender system needs to capture individual travel pref-
erences accurately. However, the data involved in personal travel preferences are sparse
and vulnerable to change in the current context. Recently, in addition to traditional ma-
chine learning methods [19–21], personalized travel recommender systems have gradually
moved to a deep learning approach [22–25]. However, these deep learning approaches
are mostly static models that extract highly abstracted features from historical interaction
data. Therefore, these approaches are still unable to solve the problems associated with
data scarcity, cold starts, and dynamic preferences in travel recommendations.

Along with the breakthrough and rapid development of NLP technology, there is a
trend in tourism that moves away from the earlier question and answer systems [26] to
conversational systems [27,28]. CRS has the potential to become the new desired travel
recommendation framework due to its ability to dynamically elicit or discover current
user preferences, as was demonstrated early on by [29]. Unfortunately, they did not
have the full advantage of advanced deep learning methods for travel conversational
recommendations then.

2.3. Knowledge-Graph-Based Recommender System

In recent years, knowledge-graph-based recommender systems have attracted con-
siderable interest since they can alleviate data sparsity, mitigate cold starts, and provide a
better understanding of recommendations with the knowledge graph as side information.
Existing methods can be roughly divided into path-based methods [30–32], embedding-
based methods [33–37], and hybrid methods [38,39]. Path-based methods utilize the
connectivity similarity defined in heterogeneous information networks to enrich user
or item representation. Embedding-based methods obtain more precise entity represen-
tations by leveraging the information in a graph structure via KG embedding. Finally,
hybrid methods integrate the semantic representation of entities and relations and the
connectivity information learned by the graph neural network framework [38]. However,
KG-based recommender systems are unable to infer real-time interests due to their static
property. Therefore, integrating knowledge into the conversational recommender system is
a straightforward solution.

3. The Proposed Approach

In this section, we first formulate the personalized travel conversational recommenda-
tion task. Then we introduce our solution to this task.

3.1. Problem Formulation

Given a user u we assume that they have a historical interaction sequence

Pu = {poin}m
n=1, (1)

which is a chronologically-ordered sequence of points of interests (POIs) that u has inter-
acted with. Each POI may be a hotel, a restaurant, or an attraction. Each conversation
consists of a list of utterances, which is denoted by

Uts = {utn}k
n=1, (2)

where utn is the utterance at the nth turn.
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Based on these basic concepts and notations, the task of a personalized travel conver-
sational recommendation is defined as: given a user u, user historical interaction sequence
Pu, historical utterances {ut1, . . . , utk−1}, and associated entities from TKG, the target of
the task is to predict the poik that satisfies user u given the conversation context and their
past interaction records.

3.2. Model Architecture

We proposed a Deep Travel Conversational Recommender System, abbreviated as
DTCRSKG, to complete the aforementioned task. The architecture of the proposed model
is illustrated in Figure 1. Inspired by TGCRS [15], we used two BERT-based modules to
encode historical utterances and historical interaction sequences, respectively. In addition,
we integrated knowledge into BERT to make our model deeply understand the underly-
ing semantic information about user preferences contained in interaction sequences and
conversations in the travel domain. In the following sections, we introduce the details of
our model.
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Figure 1. The architecture of the proposed DTCRSKG model. It contains two major parts, i.e., the
TK-BERT4Rec part that learns user interaction representation and the TK-BERT part that learns
dialogue representation.

3.2.1. Dialog Encoding

We utilized a travel-knowledge-infused BERT (TK-BERT) to encode historical utter-
ances in the dialog encoding module to capture more information about user preferences
in the interactive dialogue. TK-BERT was derived from K-BERT [40] and pre-trains BERT
with TKG. As shown in Figure 1, TK-BERT consists of a knowledge layer, an embedding
layer, a matrixing layer, a mask transformer encoder, and a TKG. First, unlike K-BERT, only
key entities in the input utterance sentence ut = {w1, w2, w3, . . . , wn} are selected to query
their corresponding triples from the travel knowledge graph in the knowledge layer. Here,
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key entities are the ones corresponding to keywords in the sentence. A knowledge query
can be formulated as:

T = KQuery(ut, TKG), (3)

where KQuery is an abbreviation for the knowledge query operation and
T =

{
(wi, ri0, wi0), . . . , (wi, rij, wij)

}
is a collection of queried triples. Then, these knowl-

edge triples are injected into the input sentence by placing them in their corresponding
positions and a sentence tree is generated. The sentence tree can have multiple branches
and its depth is set to 1. The structure of a sentence tree is illustrated in Figure 2.
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Next, the embedding layer was designed to convert the sentence tree into an em-
bedding representation, which is the sum of token embedding, position embedding, and
segment embedding. Among them, the token embedding is obtained via a trainable lookup
table. Furthermore, to maintain the sentence’s structural information (i.e., the order of
tokens), hard-positioning is replaced by soft-positioning [40] in the position embedding.
Taking the sentence tree in Figure 2 as an example, r21 and w21 are inserted between w2
and w3, and r51 and w51 with r52 and w52 are inserted between w5 and w6. If the origi-
nal hard-position sequential encoding scheme of BERT is followed, the input sentence is
changed to {w1, w2, r21, w21, w3, w4, w5, r51, w51, r52, w52, w6}, resulting in a wrong semantic
situation where w51 is the subject of r52. With the soft-position sequential encoding scheme,
the position ordinal number of r52 is replaced by six instead of ten and the position ordinal
number of w3 is replaced by three instead of five. In this way, the original semantic structure
of the sentence information can be maintained. Finally, similar to BERT, segmentation
embedding is used to identify different sentences when multiple sentences are included.

After using soft positioning, the position numbers of both r51 and r52 are six, which
makes them close in the calculation of self-attentiveness, but in reality, they may be un-
related. w21 is only related to w2 and not to w51 or w52. Therefore, the representation of
w21 should not be influenced by w51 or w52. On the other hand, the [CLS] labels used for
classification should not bypass w2 to get the information of w21 because this will bring
the risk of semantic change. To prevent false semantic changes, from the sentence tree, a
matrixing layer (borrowing from the seeing layer [40]) is constructed to calculate a visible
matrix (VM) that indicates whether there is a direct semantic association between each
two hard-position-encoded symbols. The visibility matrix is shown in Figure 3, where, for
example, w2 is visible with w12 and both w3 and w4 are not visible with w12. Last, VM is
used to control the visible area of each token when implementing the mask self-attentive
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mechanism in the transformer encoder. After the mask transformer encoder, the system
produces the final embedded representations of the input utterance sentence ut.
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3.2.2. Sequence Encoding

To fully exploit the representation of a user’s preferences from a limited sequence
of historical interactions, in the sequence encoding module, a sequential recommenda-
tion model named TK-BERT4Rec was adapted to encode the user interaction sequence.
In detail, we introduced BERT4Rec [41] as a base model that is essentially a sequential
recommendation model based on BERT. Hidden representations in a sequence can be fully
explored without the strict constraints of sequence order due to its bidirectional encoding
representation capability. However, the model uses only behavioral information, not infor-
mation about items (e.g., category information for attractions), and the potential learned
information remains relatively limited. Similar to TK-BERT, we added a new knowledge
layer and modified the embedding layer of the traditional BERT4Rec to improve the knowl-
edge representation ability further. The role of the knowledge layer is to select the triples
corresponding to the item entities in the interaction sequence from the knowledge graph.
Similar to the dialogue sentence tree, an extended interaction sequence tree is generated
by populating these knowledge triples with the corresponding positions of the interaction
sequence. Since there is no sentence-like semantic structure relationship between the entity
referents of the interaction sequence, but only an order relationship between the words,
each token of the interaction sequence tree is numbered sequentially.

As shown in Figure 1, K-BERT4Rec includes four parts: a knowledge layer, an embed-
ding layer, transformer layers, and a TKG. Similar to a dialogue encoding module, given a
historical sequence Pu and a TKG, the knowledge layer outputs a sequence tree. To make
use of the sequential information of the input sequence, we summed the corresponding
item embedding and positional embedding as the output of the embedding layer. In the
transformer layer, we stacked hidden representations in L layers together into a repre-
sentation matrix to simultaneously compute the attention function in all positions. Each
transformer layer consists of a multi-head self-attention sub-layer and a position-wise feed-
forward network. The former linearly projects the representation matrix into subspaces and
then applies the attention function in parallel to produce the output representation. The
latter handles non-linear projections through two affine transformations with a Gaussian
error linear unit activation in between. After L layers that hierarchically exchange informa-
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tion across all positions in the previous layers, the system produces the final embedded
representations for all POIs in Pu.

3.2.3. Prediction

The representation eu of user u is

eu = MLP([esem
u ; edem

u ]), (4)

where esem
u is the embedding to represent the historical interaction sequence that is produced

by the sequence encoding module and edem
u is the embedding to represent the historical

utterance that is produced by the dialogue encoding module. Given the user representation,
the probability that an item poi would be recommended to a user u is

Prob(poi) = so f tmax(epoi · eu), (5)

where epoi is the item embedding for poi through the embedding layer. All the POIs are
ranked according to the softmax value. The item poi with the largest probability value is
selected for recommendation.

4. Experiments
4.1. Data Curation

Several datasets have been released to facilitate the study of conversational recom-
mender systems in recent years. Among them, ReDial [12], GoReDial [42], DuRecDial [14],
and TG-ReDial [15] were created by human annotation with pre-defined recommendation
targets. Unfortunately, none of them are to do with tourism. It is worth noting that Multi-
WOZ [43], CrossWOZ [44], and KdConv [45] are dialogue datasets that are related to the
field of tourism. However, they all lack well-labeled user interaction sequences.

To fill the current research gap, we developed two conversational recommendation
datasets for tourism named CwConvRec and KdConvRec. In our dataset, each conversation
can belong to only the tourism domain. To generate the conversation, we obtained all
single-domain conversations from CrossWoz and KdConv. To simulate the recommenda-
tion scenario, we also extracted POIs (e.g., attractions) from CrossWoz and KdConv to
form a visiting record. The entire visiting record was split into several coherent visited
subsequences, where each of the POIs was ensured to share at least one common feature
(e.g., categories) with another. Since the original dataset lacks feature information of POIs,
categories were introduced as features in this study. The categories included ancient ruins,
historical buildings, museums, art galleries, parks and gardens, wildlife parks, theme parks,
and natural landscapes. Each visited subsequence corresponds to a unique conversation,
and each user participates in several conversations. To build knowledge-graph-driven
datasets, CwConvRec and KdConvRec needed to be able to provide turn-level knowledge
annotations. Although CrossWoz does not contain any ready-made knowledge annotations,
it has a domain database with the POIs attribute fields and their attribute values. Therefore,
we first constructed an attribute-graph-based knowledge graph for CwConvRec from the
travel database in CrossWoz, by combining the poi, attribute, and attribute value into a
triplet. Then, we matched entity mentions in a given conversation through a mention
dictionary that can be represented as two-tuple:

D = (M, E), (6)

where M = {m1, m2, . . . , mk} is the set of all mentions in the knowledge graph already
obtained above and E =

{
Em1 , Em2 , . . . , Emk

}
is the set of entities corresponding to the

mentions in M. If the term obtained by splitting the conversation utterance precisely
matches a mention in the dictionary, we take it as a mention candidate. Each identified
mention and its associated entities form a set of mention–entity pairs. Last, we evaluated
the probability of each link from a mention to an entity by computing the weighted sum
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of features of each possible mention–entity pair. The features include the entity’s name
length, the link’s a priori probability, and the entity relatedness. Since the knowledge form
in KdConv contained both unstructured text (e.g., information about the attraction) and
structured graphs (e.g., Forbidden City—Surrounding Attraction—South Luogu Lane), the
tourism knowledge graph in KdConvRec was directly inherited from KdConv.

In the quality control process for the human-annotated data, each utterance was
assigned an annotator and an inspector. We developed a unified annotation specification
before annotation to ensure the consistency of the data. Every annotator must perform
a real-time inspection and every inspector must complete a full sample inspection and
sampling inspection. The detailed statistics of CwConvRec and KdConvRec are shown in
Table 1, and examples for the two datasets are illustrated in Figures 4 and 5.

Table 1. Data statistics of our CwConvRec dataset and KdConvRec dataset.

Dataset CwConvRec KdConvRec

#Users 82 300
#Dialogue 779 1650

#Utterances 10,082 21,349
#Attractions 465 1154

#Words per Utterance 22.5 20.0
#Attractions per Dialogue 3 4

#Visited Attractions per User 4.5 5.5
#Knowledge Type Text and Graph Text and Graph
#Annotation level Sentence Sentence
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by the dashed line) sharing the same category in the user interaction history from the visiting record
that corresponded to the attractions (marked by underline) recommended by the conversation. The
rightmost section shows the corresponding knowledge triplets.

4.2. Baselines

To evaluate the effectiveness of the proposed approach, we compare it with the
following state-of-the-art baselines.

- Popularity: It ranks items according to popularity measured by the number of interactions.
- timeSVD [46]: This model encodes both users and items with low-rank vectors using

matrix decomposition and considers that user preferences may change over time as
well. It is a dynamic matrix factorization-based recommendation model.

- SASRec [47]: This model adopts the transformer architecture to encode user inter-
action history without using conversation data. It is a transformer-based sequential
recommendation model.

- BERT4Rec [41]: It adopts the deep bi-directional transformer architecture to encode the
user interaction history without using conversation data. It is a BERT-based sequential
recommendation model.

- TGCRS (SASRec+BERT) [15]: This model adopts SASRec to encode user interaction
history and BERT to encode conversation data. This is currently the state-of-the-art
conversational recommender system model.

4.3. Evaluation Metrics

In this study, we adopted NDCG and hit rate as evaluation metrics for
recommendation performance.

- Normalized discounted cumulative gain (NDCG) [48]: This matrix is commonly used
as an evaluation indicator of the ranking results to evaluate the accuracy of the ranking;
the NDCG score has also been widely used in evaluating recommender systems.
A recommender system usually returns a list of items for a user, and assuming the list
length is K, the gap between the sorted list and the user’s real interaction list can be
evaluated with NDCG@K, where a higher score denotes better performance.

- Hit rate: Like [47], we calculated the hit rate, which represents the fraction of times
that the ground-truth next item was among the top item list. The proportion of test
cases that have the correctly recommended items in a top K position in a ranking list
can be evaluated with HR@K. A higher score denotes better performance.
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4.4. Performance Comparison and Analysis

In this study, we chose K = 1, 5, and 10 to illustrate the different metrics results at K.
The result of the evaluation on the CwConvRec dataset and the KdConvRec dataset are
presented in Tables 2 and 3, respectively. For each method, the results are obtained on the
best model.

Table 2. Experimental results of performance comparison using the CwConvRec dataset.

Models NDCG@1 NDCG@5 NDCG@10 HR@1 HR@5 HR@10

Popularity 0.001 0.004 0.003 0.002 0.005 0.011
timeSVD 0.006 0.011 0.012 0.008 0.015 0.028
SASRec 0.011 0.023 0.054 0.012 0.019 0.035

BERT4Rec 0.016 0.040 0.074 0.015 0.033 0.045
TGCRS 0.035 0.069 0.089 0.037 0.102 0.144

DTCRSKG 0.041 * 0.070 * 0.083 * 0.043 * 0.106 * 0.146 *
* Denotes significance at p ≤ 0.05.

Table 3. Experimental results of performance comparison using the KdConvRec dataset.

Models NDCG@1 NDCG@5 NDCG@10 HR@1 HR@5 HR@10

Popularity 0.002 0.005 0.006 0.003 0.004 0.010
timeSVD 0.009 0.018 0.016 0.010 0.019 0.033
SASRec 0.011 0.037 0.054 0.011 0.027 0.059

BERT4Rec 0.017 0.040 0.073 0.017 0.040 0.061
TGCRS 0.050 0.072 0.137 0.033 0.079 0.128

DTCRSKG 0.053 * 0.074 * 0.136 * 0.034 * 0.080 * 0.130 *
* Denotes significance at p ≤ 0.05.

As shown in Tables 2 and 3, we can see that the performances of the conversational
recommender system models significantly outperformed any other non-conversational
models, especially regarding the NDCG and hit rate of the recommendation task. This
was thanks to the ability of these models to take full advantage of both the historical
interaction sequence and historical utterances by combining the merits of the BERT part
and the sequential recommendation part. Our proposed DTCRSKG model achieved better
performance compared with the TGCRS model on almost all measurements. On the one
hand, we used the BERT4Rec model with better performance on sequence recommendation
to mine deeper behavioral relationships, and on the other hand, we incorporated the
tourism knowledge graph into the BERT model so that the encoding of the conversation
contained more knowledge in the travel domain and improved the understanding and
representation of the conversation.

However, the improvement degree of our model was lower than expected and there
was even a slight deterioration in performance in NDCG@10. Maybe this was due to the
relatively short length of the interaction sequence in the tourism dataset, and the implicit
information contained in the historical interaction sequence was also minimal. It is not easy
to guarantee the correctness of long sequence ordering. Meanwhile, the knowledge graph
may still bring noise that interferes with the user features represented by conversation
encoding. We take the sentence tree in Figure 6 as an example. We can find that the triple
for the [西湖 (West Lake)] entity is {西湖 (West Lake), 位于 (locate), 杭州 (Hanzhou)}.
However, if the West Lake mentioned in the conversation is located in Fuzhou instead of
Hangzhou, then the knowledge introduced becomes noise.
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Figure 6. A sentence tree example. The triple with “West Lake” in this sentence tree is: “West
Lake”—“locate”—“Hangzhou”. However, in fact, we are talking about the West Lake in Fuzhou.

4.5. Ablation Experiments

To better understand the proposed DTCRSKG model, namely, TK-BERT+TK-BERT4Rec,
we did several sets of ablation experiments using our datasets with the metrics mentioned
above. The results are shown in Tables 4 and 5. We found that the model BERT+BERT4Rec
was improved regardless of which encoding module incorporated the knowledge. Our
proposed TK-BERT+BERT4Rec enhanced the performance to a greater extent than the
model BERT+TK-BERT4Rec due to there being more noise in the latter. Among the tested
models, the DTCRSKG produced the most improvement.

Table 4. Experimental results of ablation experiments using the CwConvRec dataset.

Models NDCG@1 NDCG@5 NDCG@10 HR@1 HR@5 HR@10

BERT+BERT4Rec 0.009 0.039 0.054 0.008 0.019 0.035
BERT+TK-BERT4Rec 0.011 0.043 0.055 0.012 0.023 0.037
Tk-BERT+BERT4Rec 0.031 0.063 0.078 0.036 0.101 0.145

TK-BERT+TK-BERT4Rec 0.041 * 0.070 * 0.083 * 0.043 * 0.106 * 0.146 *
* Denotes significance at p ≤ 0.05.

Table 5. Experimental results of ablation experiments using the KdConvRec dataset.

Models NDCG@1 NDCG@5 NDCG@10 HR@1 HR@5 HR@10

BERT+BERT4Rec 0.014 0.021 0.045 0.017 0.027 0.061
BERT+TK-BERT4Rec 0.015 0.022 0.045 0.019 0.030 0.063
Tk-BERT+BERT4Rec 0.044 0.067 0.133 0.029 0.076 0.128

TK-BERT+TK-BERT4Rec 0.053 * 0.074 * 0.136 * 0.034 * 0.080 * 0.130 *
* Denotes significance at p ≤ 0.05.

4.6. Case Analysis

We used the RASA chatbot as a carrier for the case analysis. The chatbot receives
input sent by the user and will display a recommendation in the form of text. The system
is executed in several steps: (1) the user sends text to the chatbot; (2) after receiving the
text from the user, the NLU (natural language understanding) component identifies the
user’s intention and transfers the data for processing; (3) if the user intends on requesting
for an attraction recommendation, the DM (dialog management) component will run the
recommendation model and the NLG (natural language generation) component displays
the recommendation result; (4) if there is no intent to ask for an attraction but only intends to
ask for, say, time or location, the NLG component will generate an informational result for
an attraction; (5) if the result satisfies the user or they have no other needs, the conversation
is over. The system interface is shown in Figure 7.

In Figure 8, we present a sample to illustrate how our model and TGCRS work in
practice. For both models, the user ends up with satisfactory recommended attractions
during the conversation given the user interaction sequence, dialogue history, and related
knowledge. The last recommended attractions “Longqing Gorge (龙庆峡)” or “Yudu
Mountain (玉渡山)” in S7 not only have the same category label “natural landscapes” with
attraction “Hantuo Mountain (海坨山)” that is mentioned in S5 but also with the attraction
in the user interaction sequence, such as “Hundred Flowers Mountain (百花山)” and “Horn
Gorge Primeval forest park (喇叭沟森林公园)”. It can be seen that both knowledge-aware
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conversational recommendation models could use more correct knowledge to meet the
requirements of travel recommendations in a spatio-temporal constrained environment,
such as categories, opening time, tour time, and address. Since the category information
of the attractions in the interaction sequence is not well utilized, the TGCRs model easily
misidentifies Horn Gorge Primeval Forest Park as a park-like attraction and, therefore, fails
to quickly predict the user’s preference for natural scenery in the absence of user preference
information in the current historical dialog. It was not until the user explicitly expressed
his preference in S6 that the first correct recommendation for the natural scenery category
was given. In contrast, our model incorporated category knowledge into the encoding
of the interaction sequence to better understand the user’s preference information in the
interaction sequence. It predicted that the user may prefer natural attractions, such as
Haitou Mountain in S5, before they explicitly expressed their preference.
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shows the corresponding knowledge triplets.
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However, there are still some unsatisfactory points. First, since the limited sequence of
user interactions tended to provide little information about user preferences, the conversa-
tional recommender system did not initially predict user preferences for natural landscapes
in S1–S3. The system did not start giving the correct recommendations until S6 when the
user directly stated that they liked the attraction mentioned in S5 and needed additional
recommendations. This invariably increases the time for conversational recommendations.
The sample also indicated that the accuracy of our proposed conversational recommender
system needed to be further improved. Second, when the user mentioned an entity or
relation unknown to the system, the system was unable to reply correctly, as in S12 and
S13. Even though the proposed conversational recommender system could also produce a
knowledge-grounded recommendation, the used knowledge was relatively limited and
inappropriate. The knowledge incorporated in the dialogue recommendation system is yet
to be resolved to allow for a complement or update.

5. Conclusions

This study constructed two Chinese conversational recommendation datasets, Cw-
ConvRec and KdConvRec, for the travel recommender system. We also proposed a deep
travel conversational recommender system model DTCRKG as a benchmark for model
comparisons. Since both historical dialogues and interaction sequences were well encoded
with tourism domain knowledge, the learned user preference representation features were
more in-depth and the performance of the model was the best among those tested, which
was also verified by our case analysis. In addition, we also found that dialogue data, as a
complement to the sequence data, could alleviate data sparsity and provide a reason for the
recommendation. Dialogue mode is effective for travel recommender systems, especially
regarding cold starts and dynamics. Our work can expand and promote the development of
a travel recommender system. In the future, we will explore the semi-supervised methods
to amplify the size of dataset annotation and complement TKG or other knowledge graphs
to support the proposed model better. Meanwhile, we will investigate semi-supervised
learning and GNN-related technologies for a unified model, hopefully solving the noise
and sequence length problem.

Author Contributions: Conceptualization, H.F. and C.C.; methodology, H.F.; software, Y.X.; vali-
dation, C.C., Y.L. and G.X.; formal analysis, H.F.; investigation, H.F.; resources, H.F.; data curation,
H.F.; writing—original draft preparation, H.F.; writing—review and editing, Y.L.; visualization, H.F.;
supervision, Y.L.; project administration, H.F.; funding acquisition, H.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under grant no. 2017YFB0504202 and the Leading Talents of Scientific and Technological Inno-
vation in Fujian Province. This study was also jointly supported by the following projects: the Central
Leading Local Project “Fujian Mental Health Human-Computer Interaction Technology Research
Center” (project no. 2020L3024), the Big Data Analysis System National Engineering Laboratory Open
Project “Emotion Based Intelligent Question Answering System” (project no. CASNDST202006), and
the Fujian Provincial Department of Science and Technology Leading Science and Technology Project
“Personalized Intelligent Question Answering System” (project no. 2019H0026).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data detail is contained within the article; the link to the referenced
dataset CrossWoZ is https://github.com/thu-coai/CrossWOZ/tree/master/data/crosswoz (ac-
cessed on 29 October 2021) and the link to the referenced dataset KdConv is https://github.com/thu-
coai/KdConv/tree/master/data (accessed on 20 August 2020).

Acknowledgments: The authors express their acknowledgment to my tutor and my colleagues
at Fuzhou University, Minjiang University, and Yunfei Long at the University of Essex for their
valuable suggestions.

https://github.com/thu-coai/CrossWOZ/tree/master/data/crosswoz
https://github.com/thu-coai/KdConv/tree/master/data
https://github.com/thu-coai/KdConv/tree/master/data


Mathematics 2022, 10, 1402 15 of 16

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Schafer, J.B.; Frankowski, D.; Herlocker, J.; Sen, S. Collaborative filtering recommender systems. In The Adaptive Web; Springer:

Berlin/Heidelberg, Germany, 2007; pp. 291–324. [CrossRef]
2. Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer: Berlin/Heidelberg, Germany,

2007; pp. 325–341. [CrossRef]
3. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep matrix factorization models for recommender systems. IJCAI 2017,

17, 3203–3209. [CrossRef]
4. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International

Conference on World Wide Web, Perth, Australia, 3–7 April 2017. [CrossRef]
5. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Shah, H. Wide & deep learning for recommender

systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016.
[CrossRef]

6. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. Deepfm: A factorizationmachine based neural network for ctr prediction. arXiv 2017,
arXiv:1703.04247. [CrossRef]

7. Gao, C.; Lei, W.; He, X.; de Rijke, M.; Chua, T.S. Advances and challenges in conversational recommender systems: A survey.
arXiv 2021, arXiv:2101.09459. [CrossRef]

8. Jannach, D.; Manzoor, A.; Cai, W.; Chen, L. A survey on conversational recommender systems. ACM Comput. Surv. (CSUR) 2021,
54, 1–36. [CrossRef]

9. Sun, Y.; Zhang, Y. Conversational recommender system. In Proceedings of the 41st International Acm Sigir Conference on
Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018. [CrossRef]

10. Lei, W.; Zhang, G.; He, X.; Miao, Y.; Wang, X.; Chen, L.; Chua, T.S. Interactive path reasoning on graph for conversational
recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Virtual Event, 6–10 July 2020. [CrossRef]

11. Lei, W.; He, X.; Miao, Y.; Wu, Q.; Hong, R.; Kan, M.Y.; Chua, T.S. Estimation-action-reflection: Towards deep interaction between
conversational and recommender systems. In Proceedings of the 13th International Conference on Web Search and Data Mining,
Houston, TX, USA, 3–7 February 2020. [CrossRef]

12. Li, R.; Ebrahimi Kahou, S.; Schulz, H.; Michalski, V.; Charlin, L.; Pal, C. Towards deep conversational recommendations. arXiv
2018, arXiv:1812.07617. [CrossRef]

13. Chen, Z.; Wang, X.; Xie, X.; Parsana, M.; Soni, A.; Ao, X.; Chen, E. Towards Explainable Conversational Recommendation. IJCAI
2020, 414, 2994–3000. [CrossRef]

14. Liu, Z.; Wang, H.; Niu, Z.Y.; Wu, H.; Che, W.; Liu, T. Towards conversational recommendation over multi-type dialogs. arXiv
2020, arXiv:2005.03954. [CrossRef]

15. Zhou, K.; Zhou, Y.; Zhao, W.X.; Wang, X.; Wen, J.R. Towards topic-guided conversational recommender system. arXiv 2020,
arXiv:2010.04125. [CrossRef]

16. Hoeve, M.; Sim, R.; Nouri, E.; Fourney, A.; de Rijke, M.; White, R.W. Conversations with documents: An exploration of document-
centered assistance. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, Vancouver, BC,
Canada, 14–18 March 2020. [CrossRef]

17. Vakulenko, S.; Kanoulas, E.; De Rijke, M. A Large-Scale Analysis of Mixed Initiative in Information-Seeking Dialogues for
Conversational Search. arXiv 2021, arXiv:2104.07096. [CrossRef]

18. Ren, P.; Liu, Z.; Song, X.; Tian, H.; Chen, Z.; Ren, Z.; de Rijke, M. Wizard of Search Engine: Access to Information Through Con-
versations with Search Engines. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, 11–15 July 2021. [CrossRef]

19. Lyu, D.; Chen, L.; Xu, Z.; Yu, S. Weighted multi-information constrained matrix factorization for personalized travel location
recommendation based on geo-tagged photos. Appl. Intell. 2020, 50, 924–938. [CrossRef]

20. Abbasi-Moud, Z.; Vahdat-Nejad, H.; Sadri, J. Tourism recommendation system based on semantic clustering and sentiment
analysis. Expert Syst. Appl. 2021, 167, 114324. [CrossRef]

21. Pan, H.; Zhang, Z. Research on context-awareness mobile tourism e-commerce personalized recommendation model. J. Signal
Process. Syst. 2021, 93, 147–154. [CrossRef]

22. Zhang, Y.; Han, B.; Gao, X.; Li, H. Personalized travel recommendation via multi-view representation learning. In Proceedings of
the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Beijing, China, 8–11 November 2019. [CrossRef]

23. Bin, C.; Gu, T.; Jia, Z.; Zhu, G.; Xiao, C. A neural multi-context modeling framework for personalized attraction recommendation.
Multimed. Tools Appl. 2020, 79, 14951–14979. [CrossRef]

24. Duan, Z.; Gao, Y.; Feng, J.; Zhang, X.; Wang, J. Personalized tourism route recommendation based on user’s active interests. In
Proceedings of the 2020 21st IEEE International Conference on Mobile Data Management (MDM), Online, 30 June–3 July 2020.
[CrossRef]

http://doi.org/10.1561/1100000009
http://doi.org/10.1007/978-3-540-72079-9_10
http://doi.org/10.5555/3172077.3172336
http://doi.org/10.1145/3038912.3052569
http://doi.org/10.1145/2988450.2988454
http://doi.org/10.5555/3172077.3172127
http://doi.org/10.1016/j.aiopen.2021.06.002
http://doi.org/10.1145/3453154
http://doi.org/10.1145/3209978.3210002
http://doi.org/10.1145/3394486.3403258
http://doi.org/10.1145/3336191.3371769
http://doi.org/10.5555/3327546.3327641
http://doi.org/10.5555/3491440.3491854
http://doi.org/10.48550/arXiv.2005.03954
http://doi.org/10.48550/arXiv.2010.04125
http://doi.org/10.1145/3343413.3377971
http://doi.org/10.1145/3466796
http://doi.org/10.1145/3404835.3462897
http://doi.org/10.1007/s10489-019-01566-6
http://doi.org/10.1016/j.eswa.2020.114324
http://doi.org/10.1007/s11265-019-01504-2
http://doi.org/10.1007/978-3-030-31726-3_9
http://doi.org/10.1007/s11042-019-08554-5
http://doi.org/10.1109/MDM48529.2020.00071


Mathematics 2022, 10, 1402 16 of 16

25. Zhang, S.; Yochum, P.; Bin, C.; Chang, L. Travel attractions recommendation based on max-negative the gated recurrent unit
trajectory mining representation. J. Phys. 2020, 1437, 012047. [CrossRef]

26. Janarthanam, S.; Lemon, O.; Liu, X.; Bartie, P.; Mackaness, W.; Dalmas, T.; Goetze, J. A spoken dialogue interface for pedestrian
city exploration: Integrating navigation, visibility, and question-answering. In Proceedings of the SemDial 2012 (SeineDial): The
16th Workshop on the Semantics and Pragmatics of Dialogue, Paris, France, 19–21 September 2012.

27. Jannach, D.; Zanker, M.; Jessenitschnig, M.; Seidler, O. Developing a conversational travel advisor with advisor suite. ENTER
2007, 7, 43–52. [CrossRef]

28. Mahmood, T.; Ricci, F.; Venturini, A. Improving recommendation effectiveness: Adapting a dialogue strategy in online travel
planning. Inf. Technol. Tour. 2009, 11, 285–302. [CrossRef]

29. Mahmood, T.; Ricci, F. Improving recommender systems with adaptive conversational strategies. In Proceedings of the 20th
ACM Conference on Hypertext and Hypermedia, Torino, Italy, 29 June–1 July 2009. [CrossRef]

30. Shi, C.; Hu, B.; Zhao, W.X.; Philip, S.Y. Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl.
Data Eng. 2018, 31, 357–370. [CrossRef]

31. Song, W.; Duan, Z.; Yang, Z.; Zhu, H.; Zhang, M.; Tang, J. Explainable knowledge graph-based recommendation via deep
reinforcement learning. arXiv 2019, arXiv:1906.09506. [CrossRef]

32. Huang, X.; Fang, Q.; Qian, S.; Sang, J.; Li, Y.; Xu, C. Explainable interaction-driven user modeling over knowledge graph for
sequential recommendation. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25
October 2019. [CrossRef]

33. Yang, D.; Guo, Z.; Wang, Z.; Jiang, J.; Xiao, Y.; Wang, W. A knowledge-enhanced deep recommendation framework incor-
porating gan-based models. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore,
17–20 November 2018. [CrossRef]

34. Ye, Y.; Wang, X.; Yao, J.; Jia, K.; Zhou, J.; Xiao, Y.; Yang, H. Bayes embedding (bem) refining representation by integrating
knowledge graphs and behavior-specific networks. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, Beijing, China, 3–7 November 2019. [CrossRef]

35. Sarkar, R.; Goswami, K.; Arcan, M.; McCrae, J.P. Suggest me a movie for tonight: Leveraging Knowledge Graphs for Con-
versational Recommendation. In Proceedings of the 28th International Conference on Computational Linguistics, Online,
8–13 December 2020. [CrossRef]

36. Fu, Z.; Xian, Y.; Zhu, Y.; Xu, S.; Li, Z.; De Melo, G.; Zhang, Y. HOOPS: Human-in-the-Loop Graph Reasoning for Conversational
Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Online, 11–15 July 2021. [CrossRef]

37. Liu, Z.; Wang, H.; Niu, Z.Y.; Wu, H.; Che, W. Durecdial 2.0: A bilingual parallel corpus for conversational recommendation. arXiv
2021, arXiv:2109.08877. [CrossRef]

38. Cao, Y.; Wang, X.; He, X.; Hu, Z.; Chua, T.S. Unifying knowledge graph learning and recommendation: Towards a better
understanding of user preferences. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019.
[CrossRef]

39. Wong, C.M.; Feng, F.; Zhang, W.; Vong, C.M.; Chen, H.; Zhang, Y.; Chen, H. Improving Conversational Recommendation System
by Pretraining on Billions Scale of Knowledge Graph. arXiv 2021, arXiv:2104.14899. [CrossRef]

40. Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-bert: Enabling language representation with knowledge graph.
In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [CrossRef]

41. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. Bert4rec: Sequential recommendation with bidirectional encoder
representations from transformer. In Proceedings of the 28th ACMinternational Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019. [CrossRef]

42. Kang, D.; Balakrishnan, A.; Shah, P.; Crook, P.; Boureau, Y.L.; Weston, J. Recommendation as a communication game: Self-
supervised bot-play for goal-oriented dialogue. arXiv 2019, arXiv:1909.03922. [CrossRef]

43. Budzianowski, P.; Wen, T.H.; Tseng, B.H.; Casanueva, I.; Ultes, S.; Ramadan, O.; Gašić, M. Multiwoz–a large-scale multi-domain
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