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Abstract: Due to the fundamental solutions are employed as basis functions, the localized method of
fundamental solution can obtain more accurate numerical results than other localized methods in
the homogeneous problems. Since the inverse Cauchy problem is ill posed, a small disturbance will
lead to great errors in the numerical simulations. More accurate numerical methods are needed in
the inverse Cauchy problem. In this work, the LMFS is firstly proposed to analyze the inhomoge-
neous inverse Cauchy problem. The recursive composite multiple reciprocity method (RC-MRM)
is adopted to change original inhomogeneous problem into a higher-order homogeneous problem.
Then, the high-order homogeneous problem can be solved directly by the LMFS. Several numerical
experiments are carried out to demonstrate the efficiency of the LMFS for the inhomogeneous inverse
Cauchy problems.

Keywords: localized method of fundamental solutions; meshless method; recursive composite
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1. Introduction

The inverse Cauchy problem is well known for its numerically unstable characteristic;
a small disturbance will lead to great errors in the numerical simulation. To develop a
stable and accurate numerical method for the inverse Cauchy problem is very important.
Different numerical methods are proposed and developed for solving the inverse Cauchy
problems. One of the most popular methods for solving the inverse Cauchy problems is
the finite element method (FEM), where the computational domain is divided into small
meshes [1]. Similar to the FEM, the finite difference method (FDM) is also developed based
on the mesh generation and has been used in inverse Cauchy problems [2]. However,
these mesh-based methods have difficulties in the mesh generation when facing some
complex geometry. Meanwhile, the boundary element method (BEM) has attracted some
researchers’ attention and has been utilized in the inverse Cauchy problems [3–5]. Since the
fundamental solutions are employed in the BEM, the discretization is only imposed on the
boundary, and the accuracy of the BEM is generally higher than other methods. However,
the fundamental solutions in the BEM have some troubles in dealing with the singularities,
and the BEM are not easy to apply to nonlinear problems.

Besides the mesh-based methods, many meshless methods have also been proposed
for inverse Cauchy problems in recent years [6–9]. The collocation method is one type of
the strong meshless methods, which are very popular recently for their simplicity [10,11].
Similar to the classification of the FEM and BEM, the collocation methods can be divided
into domain-type and boundary-type methods. Domain-type collocation methods employ
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interior nodes to discretize the governing equations. The boundary-type collocation meth-
ods employ the fundamental solutions or general solutions as the basis function, and the
governing equations are analytically satisfied; thus, the accuracy of the boundary-type col-
location methods is higher [12]. Many boundary-type collocation methods are developed
for inverse Cauchy problems. For example, there are boundary-type methods available for
inverse Cauchy problems including the boundary knot method (BKM) [13], the singular
boundary method (SBM) [14], the boundary particle method (BPM) [15], and the method
of fundamental solutions (MFS) [16,17].

The MFS was proposed by Karageorghis in 1964 [16] and has been utilized in different
kinds of inverse Cauchy problems [17]. The MFS is powerful in dealing with engineering
problems [18]; however, the full discretized matrix is always ill conditioned. Thus, the MFS
is difficult to apply to the large-scale problems. Meanwhile, a finite difference approach is
proposed into the global domain-type methods to localize the collocation methods [19,20],
which makes the large-scale problems possible. Recently, the finite difference approach has
been further applied to the MFS by considering the fictitious nodes [21], which is referred
as the localized method of fundamental solutions (LMFS). Similar to the calculation process
of the LRBFCM, the LMFS uses both of the interior nodes and boundary nodes at the same
time to yield a sparse matrix. The LMFS can be applied to large-scale problems with higher
accuracy than other domain-type methods. [22,23].

In general, the boundary-type methods cannot solve inhomogeneous PDEs directly.
As such, several numerical techniques have been proposed to solve the inhomogeneous
problems, such as the dual reciprocity method (DRM) [24,25], the multiple reciprocity
method (MRM) [26,27], and the recursive composite multiple reciprocity (RC-MRM) tech-
nique [28]. The DRM and MRM solve the inhomogeneous problems by a linear combination
of the homogeneous solution and the particular solution, and the accuracy is related to
the approximation of the particular solutions. In order to avoid the errors caused by the
particular solutions, the RC-MRM employs high-order differential operators to eliminate
the inhomogeneous terms in the governing equations, so that the homogeneous problem
can be solved by the LMFS directly. By using the RC-MRM, the accuracy of solving the
inhomogeneous inverse Cauchy problem is only related to the numerical methods. The
RC-MRM has been effectively applied to the Kirchhoff plate bending problems [29] and
Winkler plate bending problems [30].

The paper is organized as follows: Section 2 mainly gives the details of numerical
formation of the inhomogeneous inverse Cauchy problem. In Section 3, the RC-MRM is
proposed to show how to eliminate the inhomogeneous terms in detail, and the numerical
procedure of the LMFS is introduced clearly. In order to verify the effectiveness of this
study, several numerical examples of 2D inhomogeneous inverse Cauchy problems are
taken into consideration in Section 4. Finally, some conclusions and remarks are provided
in Section 5.

2. The Inhomogeneous Inverse Cauchy Problem

In this section, the governing equation of the inverse problem is presented by a simple
PDE given as follows,

<(u(x)) = f (x), x ∈ Ω, (1)

with boundary conditions
u(x) = h(x), x ∈ ∂Ω1, (2)

∂u(x)
∂n

= g(x), x ∈ ∂Ω1, (3)

where <() is a second-order differential operator, and x = (x, y) represents the spatial
position of nodes. f (x) is the inhomogeneous term of the governing equation. h(x) and
g(x) are the Dirichlet boundary condition and Neumann boundary condition, respectively.
As shown in Figure 1, Ω is the computational domain with boundary ∂Ω = ∂Ω1 ∪
∂Ω2(∂Ω1 ∩ ∂Ω2 = ∅). In addition, n = (nx, ny) is the unit outward normal vector.
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There is no information along boundary ∂Ω2 in the inverse problems. The main aim
for the inverse Cauchy problem is to find out the numerical solutions of the unknown parts,
including the boundary ∂Ω2 and the computational domain Ω.
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Figure 1. Schematic illustration for a computational domain.

3. Solution Procedure

In this section, the general idea of the RC-MRM and the details of the numerical
discretization of the LMFS are presented.

3.1. The Recursive Multiple Reciprocity Technique (RC-MRM)

Since the fundamental solutions are evaluated from the homogeneous PDEs, the LMFS
cannot be used directly to the inhomogeneous PDE. Therefore, the RC-MRM is applied
to the LMFS to get the numerical solutions. The RC-MRM uses high-order differential
operators to eliminate the inhomogeneous term f (x) in the governing equations as follows:

LM · · · L2L1<(u(x)) = LM · · · L2L1{( f (x))} ∼= 0, (4)

where Lm(m = 1, 2, 3, · · · , M.) denote some second-order differential operators, and M is
the number of the differential operators that we used in Equation (4). The linear differ-
ential operators Lm in Equation (4) are not unique, we mainly consider the Laplacian
∆ = ∇2 = ∂2

∂x2 + ∂2

∂y2 , the Helmholtz operator ∆ + κ2, and the modified Helmholtz operator

∆− κ2, where κ is the wavenumber. The above three differential operators can be used on
both side of Equation (1) until the inhomogeneous term is eliminated.

Since the re-formulated homogeneous governing equation becomes a higher-order
PDE, as shown in Equation (4), extra boundary conditions are added to ensure the unique-
ness of the numerical solution. According to principle of the RC-MRM, additional M
boundary conditions are given as follows,

<(u(x)) = f (x), x ∈ ∂Ω,
L1<(u(x)) = L1 f (x), x ∈ ∂Ω,

L2L1<(u(x)) = L2L1 f (x), x ∈ ∂Ω,
. . . . . .

LM − 1 . . . . . . L2L1<(u(x)) = LM − 1 . . . . . . L2L1 f (x), x ∈ ∂Ω.

(5)

Therefore, the inhomogeneous problem described in Equations (1)–(3) can be changed
to a higher-order homogeneous problem in Equation (4) with the boundary conditions
described in Equations (2), (3) and (5). It should be noted that the new added boundary
conditions are put along all the boundaries. Then, the homogeneous solution can be
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obtained directly by the LMFS. In order to illustrate the specific operation process of the
RC-MRM, we propose a simple example below. If the original inhomogeneous governing
equation is ∆u = x + y, when we set L1 = ∆, a new homogeneous governing equation
L1∆u = 0 can be easily obtained. Moreover, the new boundary condition ∆u = x + y of
the whole boundaries is added to ensure the uniqueness of the solution.

3.2. Introduction of the LMFS

Before introducing the LMFS, the fundamental solution is defined as G, which can be
obtained according to the differential operators < or Lm mentioned in Equations (1) and (4).
Three fundamental solutions according to different differential operators can be found on
the right side of Table 1 [31], where Y0 and K0 are the second kind of Bessel function and
modified Bessel function, respectively. In addition, r =

∥∥xi − sj
∥∥ represents the distance

between the ith filed node xi = (xi, yi) and the jth source node sj =
(

sx
j
, sy

j

)
, which can

be found in Figure 2.

Table 1. Fundamental solutions of different differential operators in two-dimensional cases [31].

< or Lm G

∆ − 1
2π ln(r)

∆ + κ2 1
4 Y0(κr)

∆− κ2 1
2π K0(κr)
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As shown in Figure 2, a local domain Ωs near the ith node is considered, where
(ns − 1) can be found inside the local domain Ωs. The numerical solutions of the nodes
inside the local domain can be expressed by considering fictitious nodes uniformly dis-
tributed on an artificial circle ∂Ωs as follows:

u(x) =
ns
∑

j = 1
αjG

(
x, sj

)
, x ∈ Ωs, (6)

where
{

sj

}ns

j = 1
are the fictitious source nodes uniformly distributed on an artificial circle

∂Ωs, as shown on the right side of Figure 2.
{

αj

}j = ns

j = 1
are the unknown coefficients of

source nodes, which are related to
{

sj

}ns

j = 1
. The radius of the artificial circle is defined as

Rs, which can be controlled by the following equation,

Rs = R × max
1 ≤ j ≤ ns

(
λj
)
, (7)



Mathematics 2022, 10, 1464 5 of 22

where λj is the distance between the ith node and jth nodes in the local domain, and R > 1 is
usually called the scaling factor that can be given randomly in a considerable range. In this
work, R = 10 is chosen for simplicity; thus, an artificial circle or surface centered at ith node
can be generated with radius Rs. Equation (6) can be rewritten as

uns × 1 = Gns × nsαns × 1, (8)

where

Gns × ns =


G(x1, s1) G(x1, s2) · · · G(x1, sns)
G(x2, s1) G(x2, s2) · · · G(x2, sns)

...
... · · ·

...
G(xns , s1) G(xns , s2) · · · G(xns , sns)

. (9)

Then, the unknown coefficients at source nodes on the artificial circle ∂Ωs can be
interpolated in terms of the information at the ns local nodes, which can be expressed as

αns × 1 =
(
Gns × ns

)−1uns × 1. (10)

Reconsidering Equation (10) back to Equation (16), the phase field at ith node can be
changed as follows,

u(xi)=
ns

∑
j = 1

αjG
(

xi, sj

)
= c1 × ns

αns × 1=c1 × ns

(
Gns × ns

)−1uns × 1=
ns

∑
j = 1

Wi
j uj, (11)

where c1 × ns
=
{

G
(
xi, s1

)
G(xi, s2) G(xi, s3) . . . G

(
xi, sns

) }
is the vector related to

the fundamental solution by considering xi and sj.
{

Wi
j

}ns

j = 1
are the weighting coefficients

of the ns nodes in the local domain at the ith node. By considering the sparse system of the
weighting coefficients, the phase field inside domain is evaluated directly without knowing
the unknown coefficients αns × 1 in the LMFS. This is different from the classical MFS.

Since Gns × ns is a full matrix during the computational process, the ill condition
should be proper treated when dealing with the inverse of Gns × ns . In this work, the
MATLAB command pinv (G, tol) is directly taken to solve the inverse of Gns × ns , where tol
is the tolerance error. The command, pinv (G, tol), reduces the impact of the ill condition by
using the singular value decomposition (SVD). Then, the representation of G becomes:

G = USVT =
[

U1 U2
][ S1 0

0 0

][
V1 V2

]T, (12)

G = U1S1VT
1 . (13)

where U is a left singular matrix that contains eigenvectors of matrix GGT, V is a right singu-
lar matrix that contains eigenvectors of matrix GTG, and S is a diagonal matrix containing
singular values {\displaystyle \mathbf {Uˆ{*}U} =\mathbf {Vˆ{*}V} =\mathbf {I} _{r}}. When
the singular values along the diagonal of S are smaller than tol, the pseudoinverse of G is
then given by:

B = V1S−1
1 UT

1 . (14)

The MATLAB command B = pinv (G, tol) returns the Moore–Penrose pseudoinverse
of matrix G. It should be noted that the pseudoinverse B exists for any matrix G, and B has
the same dimensions as GT.

Since Equation (11) is derived by assuming that the solution within the local domain
of the ith node satisfies the governing equation, each interior node can be taken as the ith
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node, and the procedures of Equations (6)–(11) can be implemented. Thus, the following
system of linear algebraic equations can be yielded,

u(xi) −
ns
∑

j = 1
Wi

j uj = 0, i = 1, 2, 3, . . . , ni . (15)

Meanwhile, the Dirichlet boundary condition can be satisfied directly as follows,

u(xi) = hi, i = ni + 1, ni + 2, ni + 3, . . . , ni + nb1 , (16)

where ni represents the number of interior nodes, and nb1 and nb2 represent the numbers
of nodes located at boundary ∂Ω1 and boundary ∂Ω2, respectively. The Dirichlet boundary
conditions are given on ∂Ω1, and there is no boundary information on ∂Ω2. N = ni + nb is
defined as the total number of the nodes, and nb = nb1 + nb2 is the number of boundary
nodes. Since the Neumann boundary conditions are usually expressed as the first-order
derivatives, the numerical approximation of the first-order derivative can be presented as

∂u
∂x

∣∣∣∣
xi

=
ns

∑
j = 1

αj

∂G
(

x, sj

)
∂x

∣∣∣∣∣∣
xi

= cx,i
1 × ns

αns × 1 = cx,i
1 × ns

(
Gns × ns

)−1uns × 1 =
ns

∑
j = 1

Wx,i
j uj, (17)

∂u
∂y

∣∣∣∣
xi

=
ns

∑
j = 1

αj

∂G
(

x, si
j

)
∂y

∣∣∣∣∣∣
xi

= cy,i
1 × ns

αns × 1=cy,i
1 × ns

(
Gns × ns

)−1uns × 1 =
ns

∑
j = 1

Wy,i
j uj, (18)

where

cx,i
1 × ns

=
{

∂G(x,s1)
∂x

∣∣∣∣
xi

∂G(x,s2)
∂x

∣∣∣∣
xi

∂G(x,s3)
∂x

∣∣∣∣
xi

. . .
∂G(x,sns)

∂x

∣∣∣∣
xi

}
and

cy,i
1 × ns

=
{

∂G(x,s1)
∂y

∣∣∣∣
xi

∂G(x,s2)
∂y

∣∣∣∣
xi

∂G(x,s3)
∂y

∣∣∣∣
xi

. . .
∂G(x,sns)

∂y

∣∣∣∣
xi

}
are the vectors of the derivatives of fundamental solutions.

{
Wx,i

j

}ns

j = 1
and

{
Wy,i

j

}ns

j = 1
are

the weighting coefficients related to derivative calculation. By considering the formulation
of first-order derivative in Equations (17) and (18), the Neumann boundary condition can
be discretized as

nxi
∂u
∂x

∣∣∣∣
i
+nyi

∂u
∂y

∣∣∣
i

= nxi
ns
∑

j = 1
Wx,i

j uj + nyi
ns
∑

j = 1
Wy,i

j uj=gi, i = ni + 1, ni + 2, . . . , ni + nb1 , (19)

where ni =
(
nxi, nyi

)
is the unit outward normal vector at the ith node. Mapping from

the local to global domain, the governing equations in Equation (15) and the boundary
conditions in Equations (16) and (19) can be recast as the following sparse system

AN × NuN × 1 = bN × 1, (20)

where A is the coefficient matrix, while b is the vector consist of the forcing term related to
the governing equations and boundary conditions. The numerical solution uN × 1 can be
obtained by solving the above sparse system. In this paper, a MATLAB command backslash
is used to solve the above system [11].

4. Numerical Examples

In this section, several different inhomogeneous inverse Cauchy problems are pre-
sented to show the efficiency and stability of the proposed LMFS. Some noises are added
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to the boundary conditions to show the ability of the proposed LMFS. The noise data are
introduced as follows:

ĥl = hl(1 + sε l), (21)

ĝp = gp
(
1 + sεp

)
, (22)

where ε l and εp are random numbers between [−1, 1], and l and p represent the index of the
number of boundary nodes on the Dirichlet and the Neumann boundary, respectively, as
shown in Figure 1. s is used to control the noise data, which are given by researchers. Since
the noise is caused by boundary measurement and the additional boundary conditions are
derived by the RC-MRM without any measurement, there is no need to consider the noise
in the additional boundary conditions. It means that the boundary conditions presented
in Equation (5) remain unchanged. The maximum average relative error Emaxr and global
error Eglobal in this work are defined as follows:

Emaxr = max
∣∣∣∣ua(xk) − u(xk)

ua(xk)

∣∣∣∣, (23)

Eglobal=

√√√√∑N
k = 1(ua(xk) − u(xk))

2

∑N
k = 1(ua(xk))

2 . (24)

where ua(xk) and u(xk) are the analytical and numerical solutions at xk, respectively.
In order to find the optimal tolerance of MATLAB command pinv, the previous work

by Wang et al. [32] is considered in this work, where tol = 10−3 is used in Examples 2 and 4
while tol = 10−4 is picked up for Examples 1 and 3. Since the LMFS can always get accurate
results with a big range of R in the previous research [21], a fixed R = 10 is set in all the
examples.

4.1. Example 1

In this example, a simple unit square domain is considered in Figure 3, where
Ω = {(x, y)|0 < x < 1, 0 < y < 1} represents the interior domain, and Γj, j = 1...4 rep-
resents the four boundaries, respectively. The Dirichlet boundary conditions with noise
data are considered on Γ1, Γ2, and Γ3. There is no information on Γ4, an additional Neu-
mann boundary condition with noise data imposed on Γ1 to guarantee the solvability of
the system.
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( ) ( )( ) 1ˆ = 1 , ,pg g sε+ ∈Γx x x  (30)
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sents the index of number of boundary nodes on 1 2 3, ,Γ Γ Γ , and p = 1, 2, …, nb1 represents 
the index of number of boundary nodes on 1Γ . In this paper, we chose s = 1%, 3%, 5%, 
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The inhomogeneous governing equation subjected to mixed boundary conditions of
Equations (2) and (3) is given as follows:

<(u(x)) =
(
∆ − κ2)u(x) = f (x), x ∈ Ω, (25)

where κ = 1
2π is utilized. The following analytical solution is considered,

ua(x) = 4(eκx + eκy) +
sin(γx) + cos(γy)

5
+

x3 + y3

2
+ 5(x + y) − 5

2
, (26)

where the constant γ=1 is simply used. The given boundary conditions without noise data
can be obtained from Equation (26), which are presented as follows:

u(x) = h(x)= 4(eκx + eκy) +
sin(γx) + cos(γy)

5
+

x3 + y3

2
+ 5(x + y) − 5

2
, x ∈ Γ1, Γ2, Γ3, (27)

∂u(x)
∂n

= g(x) =

(
4κeκx +

cos(γx)
5

+
3
2

x2 + 5
)

nx +

(
4κeκy − sin(γy)

5
+

3
2

y2 + 5
)

ny, x ∈ Γ1. (28)

When considering noise in Equations (21) and (22), the given boundary conditions in
Equations (27) and (28) can be rewritten as

ĥ(x) = h(x)(1 + sε l), x ∈ Γ1, Γ2, Γ3, (29)

ĝ(x) = g(x)
(
1 + sεp

)
, x ∈ Γ1, (30)

where ε l and εp are random numbers between [−1, 1], l = 1, 2, . . . , nb1 + nb2 + nb3 represents
the index of number of boundary nodes on Γ1, Γ2, Γ3, and p = 1, 2, . . . , nb1 represents the
index of number of boundary nodes on Γ1. In this paper, we chose s = 1%, 3%, 5%, and 7%.
From Equations (25) and (26), the inhomogeneous forcing term can be expressed as,

f (x) = − κ2 + γ2

5
(sin(γx) + cos(γy)) + 3(x + y) − κ2

(
x3 + y3

2
+ 5(x + y) − 5

2

)
(31)

Using the RC-MRM, the inhomogeneous term in the governing equation can be
annihilated by three differential operators as

L3L2L1 <(u(x)) = ∆2(∆ + γ2)(∆ − κ2)u(x) = 0, x ∈ Ω, (32)

where L1 = ∆ + γ2 and L2 = L3 = ∆. Since Equation (32) is an eighth-order homogeneous
problem, the LMFS can be used directly. According to the procedure in RC-MRM, three
additional boundary conditions are required to guarantee the solvability of the eighth-order
PDE, which are given as

<(u(x)) =
(
∆ − κ2)u(x) = f (x), x ∈ Γ1, Γ2, Γ3, Γ4, (33)

L1<(u(x)) =
(
∆ + γ2)(∆ − κ2)u(x) =

(
∆ + γ2) f (x), x ∈ Γ1, Γ2, Γ3, Γ4, (34)

L2 L1<(u(x)) = ∆
(
∆ + γ2)(∆ − κ2)u(x) = ∆

(
∆ + γ2) f (x), x ∈ Γ1, Γ2, Γ3, Γ4. (35)

Therefore, the discretized system in Equation (20) can be obtained by considering gov-
erning Equation (30), the additional boundary conditions described in Equations (30)–(35),
and the given boundary conditions with noise data in Equations (29) and (30).

First, different noises controlled by s are considered to obtain the numerical results
by using N = 3591, nb1 = nb2 = nb3 = nb4 = 57, and ns = 300. The analytical and numerical
solutions in Figure 4 are depicted with black solid and red dashed curves, respectively.
Since the noises are given on boundary Γ1, Γ2, Γ3, it can be found that the red dashed
curves are obviously unstable near these three boundaries in Figure 4, especially when the
value of s is large. Meanwhile, the numerical solutions near boundary Γ4 show the most
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unstable results since there is zero information. From the results in Figure 4, we can find
that the analytical and numerical solutions are almost identical in Figure 4a when s = 1%.
Meanwhile, the deviation of the two curves increases as the value of s enlarges in the
other parts of Figure 4. As there is no information on the boundary Γ4,. the location of the
maximum deviation always appears on Γ4. Therefore, the comparison between analytical
and numerical solutions of the boundary nodes on Γ4 is shown in Figure 5. By observation,
the deviation between each numerical and analytical curve will increase when the value
of s is enlarging. Additionally, when the value of u is large, a large deviation between the
numerical and the analytical curve can be found, especially when s = 5% and s = 7%.
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The numerical tests above show that the LMFS can solve this inhomogeneous inverse
Cauchy problem accurately with a group of fixed parameters. Furthermore, in order to
test the stability of numerical solutions calculated by the LMFS, the numerical results
obtained by using different ns and N will be discussed. The Emaxr and Eglobal are listed in
Tables 2 and 3. In Table 2, five different groups of ns varying from 200 to 360 with fixed
N = 3591 are used for the calculation. In Table 3, ns = 300 is fixed, and N changes from
3591 to 7650. By observing the errors in Tables 2 and 3, it can be found that the values of
Emaxr are quite close to their corresponding values of s, which can validate the accuracy of
the proposed method. In addition, the Eglobal obtained in Tables 2 and 3 also show similar
accuracy. In the considered range of the ns and N, the LMFS shows a strong stability in
solving the inhomogeneous inverse Cauchy problem. By using the RC-MRM, although the
order of the governing equation is raised, the numerical solutions are still quite accurate.
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Table 2. The numerical errors of different number of local nodes.

ns 200 240 280 320 360

s = 1%
Emaxr 1.02 × 10−2 8.71 × 10−3 8.46 × 10−3 9.47 × 10−3 9.16 × 10−3

Eglobal 3.38 × 10−3 3.62 × 10−3 3.39 × 10−3 3.21 × 10−3 1.69 × 10−3

s = 3%
Emaxr 2.67 × 10−2 2.64 × 10−2 2.90 × 10−2 2.92 × 10−2 2.84 × 10−2

Eglobal 5.81 × 10−3 7.64 × 10−3 9.94 × 10−3 5.80 × 10−3 6.28 × 10−3

s = 5%
Emaxr 4.95 × 10−2 4.70 × 10−2 4.40 × 10−2 4.77 × 10−2 4.18 × 10−2

Eglobal 2.18 × 10−2 1.41 × 10−2 1.76 × 10−2 8.59 × 10−3 9.31 × 10−3

s = 7%
Emaxr 6.97 × 10−2 6.81 × 10−2 6.45 × 10−2 6.17 × 10−2 6.20 × 10−2

Eglobal 3.22 × 10−2 1.71 × 10−2 1.94 × 10−2 1.90 × 10−2 1.08 × 10−2

During our test, when a fixed N is given, ns < 200 leads to a Emaxr > s in Table 2.
Meanwhile, the results in Table 3 show that when s = 1%, N changes from 6552 to 7560
with fixed ns, and Emaxr will be close to s. However, the accuracy will be reduced if N is
increased. It means that when calculating a high-order governing equation, a large number
of ns should be employed. Here, the order of PDE is the eighth, and more than 200 local
nodes are required. In other examples, we discuss whether the accuracy of LMF can be
proved by less than 200 local nodes when the order of the governing equation is less than
the eighth.

Table 3. The numerical errors of different number of total nodes.

N 3591 4615 5616 6552 7560

s = 1%
Emaxr 9.40 × 10−3 9.64 × 10−3 9.49 × 10−3 1.16 × 10−2 1.47 × 10−2

Eglobal 2.29 × 10−3 2.35 × 10−3 2.43 × 10−3 3.63 × 10−3 5.19 × 10−3

s = 3%
Emaxr 2.64 × 10−2 2.92 × 10−2 2.67 × 10−2 2.83 × 10−2 3.32 × 10−2

Eglobal 6.96 × 10−3 8.47 × 10−3 4.35 × 10−3 1.00 × 10−2 1.16 × 10−2

s = 5%
Emaxr 4.71 × 10−2 4.57 × 10−2 4.64 × 10−2 4.61 × 10−2 4.90 × 10−2

Eglobal 1.18 × 10−2 1.78 × 10−2 1.33 × 10−2 1.18 × 10−2 1.17 × 10−2

s = 7%
Emaxr 5.83 × 10−2 6.03 × 10−2 6.66 × 10−2 6.96 × 10−2 6.77 × 10−2

Eglobal 1.70 × 10−2 1.49 × 10−2 2.28 × 10−2 2.34 × 10−2 3.10 × 10−2

4.2. Example 2

In this example, an inverse Cauchy problem in a double connected domain is presented.
The computational domain consists of two concentric circles, where the inner unit circle
locates at a center point x = [0, 0] and the radius of the outer circle is 1.5, as shown in
Figure 6. There is no boundary information on outer boundary Γ2 in this inverse Cauchy
problem. At the same time, the boundary conditions on inner boundary Γ1 are given with
Cauchy noise data.
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The original governing equation is given as follows,

<(u(x)) =
(
∆ + κ2)u(x) = f (x), x ∈ Ω, (36)

where the wavenumber κ = 1 is given. The inhomogeneous term in Equation (36), the
Dirichlet and Neumann boundary conditions on the boundary Γ1 can be directly obtained
from the following analytical solution,

ua(x) = sin
(

κx + κy√
2

)
+ eγx + eγy, (37)

where the constant γ = 1/8π. The noises given in Equations (21) and (22) are considered in the
given boundary conditions on boundary Γ1. By adopting the RC-MRM, a modified Helmholtz
operator is used to annihilate the inhomogeneous term, L1 f (x) =

(
∆ − γ2) f (x) = 0. Thus,

the inhomogeneous governing equation can be converted as follows,

L1 <(u(x)) =
(
∆ − γ2)(∆ + κ2)u(x) = 0, x ∈ Ω. (38)

Since the order of the governing equation is raised by the RC-MRM, the additional
boundary conditions are required. The following boundary condition generated from the
RC-MRM is used directly without any noise,

<(u(x)) =
(
∆ + κ2)u(x) = f (x), x ∈ Γ1, Γ2. (39)

Firstly, N = 3259, and ns = 120 is used to test this inverse Cauchy problem. In Figure 7,
the black solid contours represent the analytical solution, and the red dashed contours
represent the numerical solution. Since the noises are given on boundary Γ1, the red dashed
curves are unstable near the outer boundary in Figure 7, especially when the value of s is
large. When s = 1%, the numerical and analytical solutions are almost close to each other in
Figure 7a. When s increases to 3%, 5%, and 7%, the deviation between the numerical and
analytical solutions keeps increasing. Meanwhile, due to the missing boundary conditions
of boundary Γ2, the maximum deviation always appears on the outer boundary. Therefore,
the details of numerical and analytical solutions on the boundary Γ2 are shown in Figure 8,
where θ is the angular coordinate of the outer boundary node in the polar coordinate
system. From the Figure 8, we can see that the deviation between numerical and analytical
curve increases when the value of s is enlarging, and a large deviation can always be found
when the value of u is large.
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Then, the stability of the LMFS with different parameters is discussed. In order to test
the influence of ns, we selected five groups of local nodes with fixed N = 3259 to evaluate
the numerical errors in Table 4. The accuracy of the numerical results can be validated
by the comparing the values of Emaxr and the given noises s. In Table 4, the values of the
Emaxr and s are very close to each other. Meanwhile, the values of Eglobal listed in the Table 4
are generally smaller. When N remains unchanged and ns increases, a larger ns makes
the numerical errors smaller. However, more local nodes lead the system matrix to a full
matrix, which increases the computational costs. Giving consideration to the accuracy and
efficiency, ns = 120 is suggested in this example.

In the last part of this example, the influence of N is tested by using five different N
with fixed ns = 120. The values of Emaxr are approximate to the values of given noises, and
the values of Eglobal are quite small in Table 5. Numerical results validate that the LMFS
can be applied to a big range of N. In addition, when the ns is fixed, the increase of N will
lead to a slight increase of errors. Then, the Emaxr are not close to the value of given noise
data, especially when N is too large. These results show that there is an upper limit on
the selection of N with a fixed ns. Similar with the results obtained in Example 1, when a
larger N is used, more local nodes should be used to guarantee the accuracy. Furthermore,
although the order of the original governing equation is raised by the RC-MRM, the LMFS
can still obtain very accurate numerical results by using 120 local nodes even when N = 8834.
Compared with Example 1, less local nodes are required since the order of the governing
equation is only the fourth.

Table 4. The numerical errors with different number of local nodes.

ns 80 100 120 140 160

s = 1%
Emaxr 1.32 × 10−2 1.18 × 10−2 1.05 × 10−2 9.84 × 10−3 8.30 × 10−3

Eglobal 3.66 × 10−3 3.02 × 10−3 3.51 × 10−3 2.56 × 10−3 2.27 × 10−3

s = 3%
Emaxr 3.02 × 10−2 3.15 × 10−2 3.07 × 10−2 3.00 × 10−2 2.84 × 10−2

Eglobal 9.41 × 10−3 7.09 × 10−3 6.50 × 10−3 6.66 × 10−3 7.44 × 10−3

s = 5%
Emaxr 5.21 × 10−2 5.13 × 10−2 5.20 × 10−2 4.98 × 10−2 4.66 × 10−2

Eglobal 1.73 × 10−2 1.51 × 10−2 1.54 × 10−2 1.81 × 10−2 1.38 × 10−2

s = 7%
Emaxr 7.84 × 10−2 7.25 × 10−2 7.19 × 10−2 6.78 × 10−2 6.90 × 10−2

Eglobal 2.26 × 10−2 1.77 × 10−2 1.87 × 10−2 2.12 × 10−2 1.69 × 10−2

The LMFS shows its stability and effectiveness of in a double connected computational
domain in this example. Since the traditional MFS can hardly be applied in complex
geometrics of the inverse problem, in the next example, we further study an inverse
problem composed of a multi-connected domain.
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Table 5. The numerical errors with different number of total nodes.

N 3259 4661 6052 7405 8834

s = 1%
Emaxr 1.05 × 10−2 1.10 × 10−2 1.10 × 10−2 1.19 × 10−2 1.41 × 10−2

Eglobal 3.15 × 10−3 3.01 × 10−3 3.00 × 10−3 3.67 × 10−3 3.54 × 10−3

s = 3%
Emaxr 3.07 × 10−2 2.99 × 10−2 3.38 × 10−2 3.47 × 10−2 3.78 × 10−2

Eglobal 6.50 × 10−3 9.48 × 10−3 1.01 × 10−2 1.01 × 10−2 1.28 × 10−2

s = 5%
Emaxr 5.20 × 10−2 5.22 × 10−2 5.26 × 10−2 5.49 × 10−2 5.57 × 10−2

Eglobal 1.54 × 10−2 1.50 × 10−2 1.44 × 10−2 1.69 × 10−2 1.72 × 10−2

s = 7%
Emaxr 7.19 × 10−2 7.00 × 10−2 7.19 × 10−2 8.35 × 10−2 8.38 × 10−2

Eglobal 1.87 × 10−2 2.17 × 10−2 1.64 × 10−2 2.25 × 10−2 2.88 × 10−2

4.3. Example 3

This example introduces another inhomogeneous problem in an irregular multi-
connected domain, as shown in Figure 9. For some engineering problems, the boundaries
of hidden holes are irregular, and their boundary conditions can be hardly measured. The
multi-connected domain Ω, which is the same as what was used in [32], is composed of a
symmetrical outer boundary Γ1 and three irregular inner boundaries Γ2, Γ3, and Γ4. The
parametric equations of the irregular boundaries can be defined as follows,

Γt = {(x, y)|x = ρt(θ) cos(θ) + ct, y = ρt(θ) sin(θ), 0 ≤ θ ≤ 2π }, t = 1, 2, 3, 4, (40)

where θ represents the angles in polar coordinates of the boundary nodes along each boundary,

c1 = c2 = 0, c3 = −3, c4 = 3, ρ1(θ) = 4
√

cos 2θ +
√

1.1 − sin2 2θ, ρ2(θ) = 0.5(cos 3θ

+
√

2 − sin2 3θ)1/3, ρ3(θ) = 0.5 + cos2 4θ, and ρ4(θ) = 0.7
(
esin θ sin2 2θ + ecos θ cos2 2θ

)
.

The original governing equation can be written as,

<(u(x)) = ∆u(x) = f (x), x ∈ Ω. (41)
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Figure 9. Collocation nodes’ distribution.

Unlike the boundary conditions in Example 2, the Cauchy data are used in the outer
boundary Γ1, while no information is employed on Γ2, Γ3, and Γ4. Similar to the work
in [32], the Cauchy problem with missing boundary conditions of the inner boundaries is
solved. However, the numerical problem in this example is inhomogeneous, which means
it cannot be solved directly by the LMFS. For the inhomogeneous term in Equation (41), the
Dirichlet and Neumann boundary conditions can be obtained by the analytical solution
as follows,

ua(x) = sin(γx) + sin(γy) +
1
6

(( x
2

)3
+
(y

2

)3
)

+ 10, (42)

where the constant γ = 3/4 is used. The noise data in Equations (21) and (22) are imposed
on the Dirichlet and Neumann boundary conditions on the boundary Γ1. By adopting the
RC-MRM, a Helmholtz operator and a Laplace operator are used to annihilate the inho-
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mogeneous term for Equation (41), which can be shown as L2L1 f (x) = ∆
(
∆ + γ2) f (x) = 0.

Therefore, a new homogeneous governing equation can be formed as follows,

L2L1 <(u(x)) = ∆
(
∆ + γ2)∆u(x) = 0, x ∈ Ω. (43)

The order of the original governing equation is increased by the RC-MRM, and the
new homogeneous governing equation is transformed into a sixth-order PDE. Then, two
additional boundary conditions without considering any additional noises are imposed on
the whole boundaries as follows,

<(u(x)) = ∆u(x) = f (x), x ∈ Γ1, Γ2, Γ3, Γ4, (44)

L1 <(u(x)) =
(
∆ + γ2)∆u(x) =

(
∆ + γ2) f (x), x ∈ Γ1, Γ2, Γ3, Γ4. (45)

Firstly, N = 3144 and ns = 120 are used to test this problem. The analytical and numeri-
cal solutions are depicted by black solid contours and red dashed contours, respectively,
in Figure 10. From the Figure 10, we can see that when s = 1%, the contours of numerical
solution and analytical solution fit well. As the value of s increases, the deviation between
the two kinds of contours is becoming larger. Although some unstable results appear on the
outer boundary, the most unstable numerical results are located on the inner boundaries,
where zero boundary information can be obtained. This phenomenon is similar with the
previous examples. Therefore, in order to further show the detailed numerical results of
each inner boundary, the numerical and analytical solutions on boundaries Γ2, Γ3, and Γ4
are presented in Figures 11–13. In Figures 11–13, when s = 1% the analytical and numerical
solutions all are almost consistent with each other on the inner boundaries, the largest ab-
solute deviation can be found on boundary Γ4. From the details in the last part of Figure 13,
when s = 7%, the maximum relative error Emaxr is close to 6.67%. However, the maximum
relative error on the inner boundary is still close to its given noise data, which validates the
efficiency of the proposed LMFS.
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The convergence rate of the LMFS is presented in Tables 6 and 7. In Table 6, different
ns are tested with fixed N = 3144. When ns ranges from 100 to 200, the values of Emaxr and s
are almost identical. Meanwhile, Eglobal is stable in the range of [0.001, 0.01]. These results
show that, when ns ≥ 100 and N = 3144, the numerical results calculated by the LMFS are
accurate. Then, considering the homogeneous governing equation is a sixth-order PDE, ns
= 180 is used to test the influence of N in the Table 7.

Table 6. The numerical errors with different number of local nodes.

ns 100 120 160 180 200

s = 1%
Emaxr 9.62 × 10−3 8.05 × 10−3 9.04 × 10−3 9.95 × 10−3 9.70 × 10−3

Eglobal 2.58 × 10−3 2.16 × 10−3 2.02 × 10−3 2.22 × 10−3 1.99 × 10−3

s = 3%
Emaxr 2.82 × 10−2 2.37 × 10−2 2.90 × 10−2 2.82 × 10−2 2.83 × 10−2

Eglobal 7.49 × 10−3 6.16 × 10−3 5.56 × 10−3 6.32 × 10−3 5.89 × 10−3

s = 5%
Emaxr 4.38 × 10−2 4.08 × 10−2 4.59 × 10−2 4.73 × 10−2 4.88 × 10−2

Eglobal 1.35 × 10−2 1.09 × 10−2 1.08 × 10−2 1.00 × 10−2 1.12 × 10−2

s = 7%
Emaxr 6.98 × 10−2 6.11 × 10−2 6.17 × 10−2 6.32 × 10−2 5.85 × 10−2

Eglobal 1.74 × 10−2 1.59 × 10−2 1.43 × 10−2 1.24 × 10−2 1.28 × 10−2

Table 7. The numerical errors with different number of local nodes.

N 1629 3472 4562 6047 7680

s = 1%
Emaxr 9.95 × 10−3 9.75 × 10−3 8.09 × 10−3 9.27 × 10−3 1.16 × 10−2

Eglobal 1.96 × 10−3 2.40 × 10−3 1.59 × 10−3 2.08 × 10−3 2.14 × 10−3

s = 3%
Emaxr 2.60 × 10−2 2.80 × 10−2 2.67 × 10−2 2.67 × 10−2 2.88 × 10−2

Eglobal 5.40 × 10−3 6.71 × 10−3 5.66 × 10−3 5.95 × 10−3 6.99 × 10−3

s = 5%
Emaxr 4.92 × 10−2 4.99 × 10−2 4.26 × 10−2 4.00 × 10−2 4.71 × 10−2

Eglobal 8.94 × 10−3 1.04 × 10−2 8.82 × 10−3 7.97 × 10−3 8.75 × 10−3

s = 7%
Emaxr 6.91 × 10−2 6.72 × 10−2 5.73 × 10−2 6.89 × 10−2 6.46 × 10−2

Eglobal 1.39 × 10−2 1.61 × 10−2 1.32 × 10−2 1.24 × 10−2 1.34 × 10−2
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As shown in Table 7, the value of Emaxr is slightly smaller or close to s, except when
s = 1% and N = 7680, Emaxr =1.17%≈s. All the numerical errors show good accuracy of the
LMFS. The values of Eglobal in Table 7 are all quite small and similar with those in Table 6.
When the value of N is larger than 7860, more local nodes are needed to guarantee the
accuracy. According to Equation (43), as the order of the final governing equation in this
example is lower than that in Example 1, and higher than that in Example 2, the value
of ns used in this example is smaller than Example 1 and larger than Example 2 when
considering the same N. This can be validated by the numerical results calculated with
N = 7560 in Table 3, N = 7405 in Table 5, and N = 7680 in Table 7. The results show that more
local nodes are suggested for calculating when the order of the final governing equation
is higher.

4.4. Example 4

In this part, an inhomogeneous inverse problem without an analytical solution is
proposed. The mixed Dirichlet and Neumann boundary conditions are given in this
problem. It should be emphasized that, in order to simulate the engineering problems, the
two kinds of boundary conditions can neither be derived from each other nor meet the
governing equations. The inverse Cauchy problem was proposed recently by Fan et al. [33],
which can be introduced as two steps: the direct problem and inverse problem. Then, the
details of the irregular boundary are shown in Figure 14, where θ represents the angles of
polar coordinates of the boundary nodes. The formulas of the boundaries are presented
as follows,{

Γ1=
{
(x, y)

∣∣x = ρ(θ) cos θ, y = ρ(θ) sin θ, 0 ≤ θ < 3
2 π
}

, ρ(θ) = 1 + cos2 4θ,
Γ2 =

{
(x, y)

∣∣x = ρ(θ) cos θ, y = ρ(θ) sin θ, 3
2 π ≤ θ < 2π

}
, ρ(θ) = 1 + cos2 4θ,

(46)
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Figure 14. Collocation nodes’ distribution.

Step 1. Direct problem:

The direct problem introduces a Poisson equation as the governing equation. In
addition, the Neumann boundary condition is given on the boundary Γ1 and the Dirichlet
boundary condition is given on the boundary Γ2. The governing equation and the boundary
conditions are given as follows:

<(u(x)) = ∆u(x)= f (x)=
3
2
(x + y), x ∈ Ω, (47)

∂u(x)
∂n

=
4
5
(x + y), x ∈ Γ1, (48)
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u(x) =
(

sinh
( x

π

)
+ cosh

( x
π

))
sin
(y

4

)
+ x + y + 40, x ∈ Γ2. (49)

Meanwhile, through the using of RC-MRM, the inhomogeneous governing equation
can be transformed into the following homogeneous form,

L1<(u(x)) = ∆∆u(x) = ∆ f (x) = 0, x ∈ Ω. (50)

Therefore, the Poisson equation is changed into a biharmonic equation, which can
be solved by the LMFS directly. Since the order of differential operator is increased, the
additional boundary condition on the whole boundary is given as follows,

<(u(x)) = ∆u(x) = f (x) =
3
2
(x + y), x ∈ Γ1, Γ2. (51)

Then, the LMFS can solve the direct problem governed by the new governing equation,
Equation (50), with the given boundary conditions and the additional boundary condition
(Equation (51)) directly. Since no analytical solution can be used for comparison, it is hard
to verify the accuracy of numerical results. Thus, an inverse Cauchy problem is introduced
in Step 2 for solving this problem. It should be emphasized that the LMFS is still applied to
this inverse Cauchy problem. In addition, the boundary data Γ2 in Step 1 denoted as u2 are
used as the given information in Step 2.

Step 2. Inverse problem:

By using the LMFS with RCMRM in Step 1, we have the numerical solutions û of all
the collocation nodes. In Step 2, we note the value of û on boundary Γ1 as û1. Thus, the
new defined û1 can be used as the Dirichlet boundary condition on boundary Γ1 in Step 2.
The above description can be summarized as the following formula,

u(x) = û1, x ∈ Γ1. (52)

Then, we remove the original boundary condition on boundary Γ2 and regard it as
a boundary with no information. Thus, the original governing Equation (47), the given
Neumann boundary condition (48), and the new Dirichlet boundary condition (52) on
boundary Γ1, consist of a new inhomogeneous inverse Cauchy problem. Similarly, the
RC-MRM can be used to transform the governing equation from Equation (47) into a
homogeneous Equation (50). Moreover, the additional boundary condition (51) can help
the LMFS to solve this inverse Cauchy problem directly. Unlike the previous examples,
we do not put any noise on boundary conditions in this example. Because the numerical
solutions from Step 1 contain numerical errors, there is no need to add extra noise into the
boundary conditions. The final numerical solution is denoted as u in Step 2.

The comparison of the contours of û and u calculated by different N and ns can be
seen in Figures 15 and 16, respectively. In order to test the influence of N, ns = 100 is used to
obtain numerical results in Figure 15. Since the final governing equation is a second-order
PDE, the value of ns is suggested to be located in between 40 and 100, and the influence of
the local nodes is tested in Figure 16. The contour maps show that no matter how many
total nodes or local nodes are used, the numerical solutions between the direct problem
and the inverse problem are close to each other. Since no noise is added, the contours of
the direct problem and the inverse problem can be completely well fit with each other on
boundary Γ1, while the deviation between the contours only occurs far away from this
boundary. It is easy to find that almost all the maximum deviations occur near boundary
Γ2, especially in the middle of this boundary. In order to further show the accuracy of the
LMFS, we compare the numerical solutions on boundary Γ2 to find out the specific value of
the deviation in Figures 17 and 18.
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Figure 17. Comparison between u2 in Step 2 (dashed lines) and u2 in Step 1 (solid line) on Γ2.
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The numerical solution on boundary Γ2 in Step 2 is defined as u2. Figures 17 and 18
show the details of the numerical results from Figures 15 and 16 on Γ2, respectively.
The numerical curves of u2 and u2 can are compared in detail, where the curves in
Figures 17 and 18 fit well with each other, and only small deviations can be found be-
tween every two curves. The maximum deviation always appears in the middle of the
curves, which draws the same conclusions as Figures 15 and 16. These numerical results
show that the most inaccurate position often appears at the position that is far away from
the boundary with the given boundary conditions. Meanwhile, the maximum deviation
appears on the curve when N = 7561 in Figure 17, where u2 ≈ 39, and the maximum devia-
tion can be found as less than 1. Then, the relative deviation is approximated to 1/39 < 3%,
which is smaller than the allowable error in many engineering problems.

5. Conclusions

In this paper, the LMFS is firstly used for solving the inverse Cauchy problems of
two-dimensional inhomogeneous problems based on the RC-MRM without considering
any particular solutions. Four numerical examples with and without analytical solutions
are provided in this paper. Different noise data are considered in our numerical examples.
From the presented numerical results and analysis, it is clear that the proposed LMFS
can solve the inverse Cauchy problem of different geometries accurately and stably. The
number of the local nodes is related to the order of the formulated PDE in the RC-MRM.
The numerical errors are convergent to the same level of the given noise data as the number
of nodes increases. Some useful suggestions and experience are presented in detail for the
LMFS in solving the inverse Cauchy problem.
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