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Abstract: Synthetic drugs are taking the place of traditional drugs and have made headlines giving
rise to serious social issues in many countries. In this work, a synthetic drug transmission model
incorporating psychological addicts with two time delays is being developed. Local stability and
exhibition of Hopf bifurcation are established analytically and numerically by taking the combinations
of the two time delays as bifurcation parameters. The exhibition of Hopf bifurcation shows that it is
burdensome to eradicate the synthetic drugs transmission in the population.
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1. Introduction

In recent years, synthetic drugs which consist of a variety of psychoactive substances
such as cocaine and marijuana compounds, are more and more popular due to the fact
that they mainly appear in public places of entertainment frequented by young people.
Synthetic drugs can bring about serious deleterious effects on a user’s Central Nervous
System (CNS) and make the users excited or inhibited [1]. Therefore, synthetic drugs are
more addictive compared with traditional drugs. On the other hand, the manufacturing
method of synthetic drugs is relatively simple and they are also easy to obtain. Accordingly,
this leads to a sharp rise in the number of synthetic drug users around the globe. In China,
for example, synthetic drug abuse had ranked first by the end of 2017 [2]. It is much worse
that infectious diseases especially the spread of AIDS can be caused by synthetic drug
abuse. In order to maintain social order, it is extremely urgent to control the spread of
synthetic drug abuse.

A mathematical modelling approach has been utilized to solve social issues extensively
since heroin addiction was considered an infectious disease [3]. Liu et al. [4,5] studied a
heroin epidemic model with bilinear incidence rate. Ma et al. [6–8] discussed dynamics
of a heroin model with nonlinear incidence rate. Yang et al. [9,10] considered an age-
structured multi-group heroin epidemic model. There have been also some works about
giving up smoking models [11–16], and drinking abuse models [17–20]. Motivated by the
aforementioned works, some synthetic drug transmission models have been formulated
by scholars. In [21], Das et al. proposed a fractional order synthetic drugs transmission
model and decided stability of the model and formulated the optimal control of the model.
In [22], Saha and Samanta proposed a synthetic drugs transmission model considering
general rate. They proved local and global stability of the model and presented sensitivity
analysis. Taking into account the relapse phenomenon in synthetic drug abuse, Liu et
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al. [23] formulated a delayed synthetic drugs transmission model with relapse and analyzed
stability of the model. Based on the work by Ma et al. [24] and in consideration of the effect
of psychology and time delay, Zhang et al. [25] established the following synthetic drugs
transmission model with time delay:

dS(t)
dt = A− dS(t)− β1S(t)P(t)− β2S(t)H(t),

dP(t)
dt = β1S(t)P(t) + β2S(t)H(t)− πP(t)− (d + γ)P(t),

dH(t)
dt = πP(t) + θT(t− τ)− σH(t)− dH(t),

dT(t)
dt = γP(t) + σH(t)− θT(t− τ)− dT(t),

(1)

where S(t) denotes the number of the susceptible population at time t, P(t) is the number
of the psychological addicts at time t, H(t) is the number of the physiological addicts at
time t and T(t) is the number of the drug-users in treatment at time t. A is the constant
rate of entering the susceptible population; β1 is the contact rate between the susceptible
population and the psychological addicts; β2 is the contact rate between the susceptible
population and the physiological addicts; d is the natural mortality of all the populations;
π is the escalation rate from the psychological addicts to the physiological addicts; γ is
the treatment rate of the psychological addicts; σ is the treatment rate of the physiological
addicts; θ is the relapse rate of the drug-users in treatment. The symbol τ is the relapse
time period of the drug-users in treatment. Zhang et al. analyzed the effect of the time
delay due to the relapse time period of the drug-users in treatment on the model (1).

Clearly, Zhang et al. considered that a drug-user in treatment usually needs a certain
interval to become a physiological addict again. Likewise, we believe that both the psycho-
logical addicts and the physiological addicts need a period to accept treatment and come off
drugs. In fact, the dynamical model with multiple time delays has been somewhat fruitful.
Kundu and Maitra [26] formulated a three species predator-prey model with three delays
and obtained the critical value of each time delay where the Hopf-bifurcation happened.
Ren et al. [27] proposed a computer virus model with two time delays and found that
a Hopf bifurcation may occur depending on the time delays. Xu et al. [28] investigated
the influence of multiple time delays on bifurcation of a fractional-order neural network
model through taking two different delays as bifurcation parameters. Motivated by the
work above, we investigate the following synthetic drug transmission model with two time
delays: 

dS(t)
dt = A− dS(t)− β1S(t)P(t)− β2S(t)H(t),

dP(t)
dt = β1S(t)P(t) + β2S(t)H(t)− πP(t)− dP(t)− γP(t− τ2),

dH(t)
dt = πP(t) + θT(t− τ1)− σH(t− τ2)− dH(t),

dT(t)
dt = γP(t− τ2) + σH(t− τ2)− θT(t− τ1)− dT(t),

(2)

where τ1 is the time delay due to the relapse time period of the drug-users in treatment
and τ2 is the time delay due to the period that both the psychological addicts and the
physiological addicts need to accept treatment and come off drugs.

The outline of this work is as follows. In the next Section, a series of sufficient criteria
are derived by choosing four different combinations of the two time delays as bifurcation
parameters. Moreover, direction and stability of the Hopf bifurcation are explored under the
case when τ1 ∈ (0, τ10) and τ2 > 0 in Section 3. Numerical simulations are demonstrated
to examine the validity of our theoretical findings in Section 4. Section 5 ends our work.
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2. Positivity and Boundedness of the Solutions

Considering R4
+ = {(z1, z2, z3, z4)|zj ≥ 0, j = 1, 2, 3, 4} and τ = max{τ1, τ2}. The

initial conditions for the model (2) are

S(ϑ) = ξ1(ϑ), P(ϑ) = ξ2(ϑ), H(ϑ) = ξ3(ϑ), T(ϑ) = ξ4(ϑ), (3)

where ξ j(ϑ) ≥ 0, ξ(0) > 0, j = 1, 2, 3, 4; ϑ ∈ [−τ, 0] and (ξ1, ξ2, ξ3, ξ4) ∈ C([−τ, 0],R4
+),

where C([−τ, 0],R4
+) is the Banach Space of continuous functions from [−τ, 0] to R4

+.
It can be observed that all the solutions of the model (2) with the above initial con-

ditions (3) are defined on R4
+ and remain positive ∀t ≥ 0. We prove this by utilizing

provided methods of Bodnar [28] and Yang et al. [29] . For this purpose we present the
following result.

Theorem 1. All the solution of model (2) with the positive initial condition (3) are positive for all
t > 0.

Proof. It is easy to verify for system (2) that by choosing that S(t) = 0 implies that
S′(t) = A > 0 for all t ≥ 0. Hence, S(t) > 0, for all t ≥ 0.

Now, we let τ = max{τ1, τ2}. Suppose that there exists t1 ∈ [0, τ] such that P(t1) = 0
and P′(t1) < 0, and P(t) > 0 for t ∈ [0, t1], and H(t1) > 0, T(t1) > 0, and H(t) > 0,
T(t) > 0 for all t ∈ [0, t1], then we have

P′(t1) = β2S(t1)H(t1)− γP(t1 − τ2),

Note that t1 − τ2 ∈ [−τ2, 0] therefore P′(t1) < 0 not always holds (in this case for any
initial condition). Therefore, we have a contradiction with P′(t1) < 0. Therefore, P(t) > 0
for all t ∈ [0, τ].

Similarly, we assume that there exists t2 ∈ [0, τ] such that H(t2) = 0 and H′(t2) < 0,
and H(t) > 0 for t ∈ [0, t2], and T(t2) > 0, and T(t) > 0 for all t ∈ [0, t2], then we have

H′(t) = πP(t2) + θT(t2 − τ1)− σH(t− τ2).

Then, t2 − τ2 ∈ [−τ2, 0] therefore, H′(t2) < 0 does not always hold, which is a
contradiction. Therefore, H(t) > 0 for all t ∈ [0, τ]. Using the same method we obtain
T(t) > 0 for all t ∈ [0, τ]. Therefore, the solution is positive for t ∈ [0, τ]. By induction, we
can show that the solution is positive for t ∈ [nτ, (n + 1)τ]. Therefore, we deduce that the
solution of the system (2) is positive under the given initial conditions (3) for all t ≥ 0.

Denote N(t) = S(t) + P(t) + H(t) + T(t), then in view of the equations of the
model (2), we obtain

d
dt

N(t) = A− dN(t). (4)

Solving Equation (4), yields

N(t) =
A
d
+ (N(0)− A

d
)e−dt. (5)

Accordingly, for N(0) < A
d , then we can know that N(t) < A

d and limt→∞N(t) = A
d .

Conclusively, the set

∆ = {(S, P, H, T) ∈ R4
+ : S + P + H + T =

A
d

, S > 0, P > 0, H > 0, T > 0}

is a bounded feasible region as well as positively invariant under the model (2).
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3. Exhibition of the Hopf bifurcation

In this section, we shall explore the impact of the time delay τ1 and τ2 according to
analysis of the distribution of the roots of associated characteristic equations, and using a
similar process about delayed systems in [30–33].

According to the computation by Zhang et al. [25], we conclude that if the basic
reproductive number <0 > 1 then the model (2) is provided with a unique synthetic drug
addiction equilibrium point E∗(S∗, P∗, H∗, T∗), where

S∗ =
(π + d + γ)P∗
β1P∗ + β2H∗

, P∗ =
d[(<0 − 1) + U]

β1 + β2V
,

H∗ =
πP∗ + θT∗

σ + d
, T∗ =

[d(γ + π) + dγ]P∗
d(θ + σ + d)

,

and

U =
Aβ2θ[γ(σ + d) + πσ]

d2(σ + d)(θ + σ + d)(π + d + γ)
,

V =
π

σ + d
+

θ[γ(σ + d) + πσ]

d(σ + d)(θ + σ + d)
,

<0 =
A[β1(σ + d) + β2π]

d(σ + d)(π + γ + d)
.

The linearized section of the model (2) around the synthetic drug addiction equilibrium
point E∗(S∗, P∗, H∗, T∗) is

dS(t)
dt = x11S(t) + x12P(t) + x13H(t),

dP(t)
dt = x21S(t) + x22P(t) + x23H(t) + z22P(t− τ2),

dH(t)
dt = x32P(t) + x33H(t) + z33H(t− τ2) + y34T(t− τ1),

dT(t)
dt = x44T(t) + z42P(t− τ2) + z43H(t− τ2) + y44T(t− τ1),

(6)

with

x11 = −(d + β1P∗ + β2H∗), x12 = −β1S∗, x13 = −β2S∗,

x21 = β1P∗ + β2H∗, x22 = β1S∗ − (π + d), x23 = β2S∗, z22 = −γ,

x32 = π, x33 = −d, z33 = −σ, y34 = θ,

x44 = −d, y44 = −θ, z42 = γ, z43 = σ.

Then, we can obtain the corresponding characteristic equation about the synthetic
drug addiction equilibrium point E∗(S∗, P∗, H∗, T∗) as follows

λ4 + X03λ3 + X02λ2 + X01λ + X00

+ (Y03λ3 + Y02λ2 + Y01λ + Y00)e−λτ1

+ (Z03λ3 + Z02λ2 + Z01λ + Z00)e−λτ2

+ (A02λ2 + A01λ + A00)e−λ(τ1+τ2)

+ (B02λ2 + B01λ + B00)e−2λτ2

+ (C01λ + C00)e−λ(τ1+2τ2) = 0, (7)

where
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X00 = x11x33x44(x22 + z22),

X01 = −(x22 + z22)(x11x33 + x11x44 + x33x44)− x11x33x44,

X02 = x11x33 + x11x44 + x33x44 + (x22 + z22)(x11 + x33 + x44),

X03 = −(x11 + x22 + x33 + x44 + z22),

Y00 = x11x22x33y44,

Y01 = −y44(x11x22 + x11x33 + x22x33),

Y02 = y44(x11 + x22 + x33), Y03 = −y44,

Z00 = x11x22x44z33,

Z01 = −z33(x11x22 + x11x44 + x22x44),

Z02 = z33(x11 + x22 + x44), Z03 = −z33,

A00 = x11x22(y34z43 + y44z33)− x21y34(x12z43 + x13z42)

+x11(x33y44z22 + x23y34z42),

A01 = x23y34z42 − y44z22(x11 + x33)− (x11 + x22)(y34z43 + y44z33),

A02 = y34z43 + y44(z33 − z22),

B00 = x11x44z22z33, B01 = −z22z33(x11 + x44), B02 = z22z33,

C00 = x11z22(y34z43 + y44z33), C01 = −z22(y34z43 + y44z33).

Case 1. τ1 = τ2 = 0, Equation (7) equals

λ4 + X13λ3 + X12λ2 + X11λ + X10 = 0, (8)

with

X10 = X00 + Y00 + Z00 + A00 + B00 + C00,

X11 = X01 + Y01 + Z01 + A01 + B01 + C01,

X12 = X02 + Y02 + Z02 + A02 + B02,

X13 = X03 + Y03 + Z03.

Following the work by Ma et al. [24] and the Routh-Hurwitz theorem, it can be seen
that if X10 > 0, X13 > 0, X12X13 > X11 and X11X12X13 > X10X2

13 + X2
11, the model (2) is

locally asymptotically stable.

Case 2. τ1 > 0 and τ2 = 0, Equation (7) becomes

λ4 + X23λ3 + X22λ2 + X21λ + X20 + (Y23λ3 + Y22λ2 + Y21λ + Y20)e−λτ1 = 0, (9)

with

X20 = X00 + Z00 + B00, X21 = X01 + Z01 + B01,

X22 = X02 + Z02 + B02, X23 = X03 + Z03,

Y20 = Y00 + A00 + C00, Y21 = Y01 + A01 + C01,

Y22 = Y02 + A02, Y23 = Y03.

Let λ = iς1(ς1 > 0) be a root of Equation (9), then{
(Y21ς1 −Y23ς3

1) sin(τ1ς1) + (Y20 −Y22ς2
1) cos(τ1ς1) = X22ς2

1 − ς4
1 − X20,

(Y21ς1 −Y23ς3
1) cos(τ1ς1)− (Y20 −Y22ς2

1) sin(τ1ς1) = X23ς3
1 − X21ς1.

(10)

It follows from Equation (10) that

ς8
1 + D23ς6

1 + D22ς4
1 + D21ς2

1 + D20 = 0, (11)
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with

D20 = X2
20 −Y2

20,

D21 = X2
21 + 2Y20Y22 −Y2

21,

D22 = X2
22 + 2X20 − 2X21X23 −Y2

22 + 2Y21Y23,

D23 = X2
23 − 2X22 −Y2

23.

Denote ς1 = ϑ1, then

ϑ4
1 + D23ϑ3

1 + D22ϑ2
1 + D21ϑ1 + D20 = 0. (12)

Distribution of the roots of Equation (12) has been discussed by Li and Wei [34]. Next,
we suppose that Equation (12) has at least one positive root ϑ10 such that ς10 =

√
ϑ10

ensuring that Equation (9) has a pair of purely imaginary roots ±iς10. For ς10, from
Equation (10), we have

τ10 =
1

ς10
× arccos

[
E21(ς10)

E22(ς10)

]
, (13)

where

E21(ς10) = (Y22 − X23Y23)ς
6
10 + (X23Y21 + X21Y23 −Y20 − X22Y22)ς

4
10

+(X22Y20 − X21Y21 + X20Y22)ς
2
10 − X20Y20,

E22(ς10) = Y2
23ς6

10 + (Y2
22 − 2Y21Y23)ς

4
10 + (Y2

21 − 2Y20Y22)ς
2
10 + Y2

20.

By Equation (9), one has

[
dλ

dτ
]−1 = − 4λ3 + 3X23λ2 + 2X22λ + X21

λ(λ4 + X23λ3 + X22λ2 + X21λ + X20)

+
3Y23λ2 + 2Y22λ + Y21

λ(Y23λ3 + Y22λ2 + Y21λ + Y20)
− τ

λ
(14)

Further,

Re[
dλ

dτ
]−1
λ=iς10

=
f ′(ϑ10)

E22(ς10)
, (15)

where f (ϑ) = ϑ4
1 + D23ϑ3

1 + D22ϑ2
1 + D21ϑ1 + D20 and ϑ10 = ς2

10. It is apparent that if
f ′(ϑ10) 6= 0 holds, then the sufficient conditions for the appearance of a Hopf bifurcation at
τ10 are satisfied. In conclusion, we have the following results in accordance with the Hopf
bifurcation theorem in [35].

Theorem 2. If <0 > 1, then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally asymptotically stable
whenever τ1 ∈ [0, τ10); while the model (2) exhibits a Hopf bifurcation near E∗(S∗, P∗, H∗, T∗)
when τ1 = τ10 and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Remark 1. Actually, it should be pointed out that the impact of the time delay τ1 has been analyzed
in [25]. In what follows, we shall further analyze the impact of the time delay τ2 and the combinations
of the time delay τ1 and τ2, which has been neglected in [25].

Case 3. τ1 = 0 and τ2 > 0, Equation (7) equals

λ4 + X33λ3 + X32λ2 + X31λ + X30 + (Z33λ3 + Z32λ2 + Z31λ + Z30)e−λτ2 + (B32λ2 + B31λ + B30)e−2λτ2 = 0, (16)

with
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X30 = X00 + Y00, X31 = X01 + Y01, X32 = X02 + Y02, X33 = X03 + Y03,

Z30 = Z00 + A00, Z31 = Z01 + A01, Z32 = Z02 + A02, Z33 = Z03,

B30 = B00 + C00, B31 = B01 + C01, B32 = B02.

Multiplying by eλτ2 on left and right of Equation (16), then

Z33λ3 + Z32λ2 + Z31λ + Z30 + (λ4 + X33λ3 + X32λ2 + X31λ + X30)eλτ2 + (B32λ2 + B31λ + B30)e−λτ2 = 0. (17)

Let λ = iς2(ς2 > 0) be a root of Equation (17), then{
W31(ς2) cos(τ2ς2)−W32(ς2) sin(τ2ς2) = W33(ς2),

W34(ς2) sin(τ2ς2) + W35(ς2) cos(τ2ς2) = W36(ς2),
(18)

where

W31(ς2) = ς4
2 − (X32 + B32)ς

2
2 + X30 + B30,

W32(ς2) = (X31 − B31)ς2 − X33ς3
2,

W33(ς2) = Z32ς2
2 − Z30,

W34(ς2) = ς4
2 − (X32 − B32)ς

2
2 + X30 − B30,

W35(ς2) = (X31 + B31)ς2 − X33ς3
2,

W36(ς2) = Z33ς3
2 − Z31ς2.

Then, one has

cos(τ2ς2) =
E31(ς2)

E33(ς2)
, sin(τ2ς2) =

E32(ς2)

E33(ς2)
,

with

E31(ς2) = (Z32 − X33Z33)ς
6
2 + [Z33(X31 − B31) + X33Z31 − Z32(X32 − B32)− Z30]ς

4
2

+[Z30(X32 − B32)− Z31(X31 − B31)]ς
2
2 − Z30(X30 − B30),

E32(ς2) = ς7
2 + [X33Z32 − Z31 − Z33(X32 + B32)]ς

5
2

+[Z33(X30 + B30) + Z31(X32 + B32)− Z32(X31 + B31)− X33Z30]ς
3
2

+[Z30(X31 + B31)− Z31(X30 + B30)]ς2,

E33(ς2) = ς8
2 + (X2

33 − 2X32)ς
6
2 + (X2

32 + 2X30 − B2
32 − 2X31X33)ς

4
2

+(2B30B32 − 2X30X32 + X2
31 − B2

31)ς
2
2 + X2

30 − B2
30.

Then, one can obtain the following relation about ς2

E2
33(ς2)− E2

31(ς2)− E2
32(ς2) = 0. (19)

It can be concluded that if we know all the values of parameters in the model (2), then
all the roots of Equation (19) can be obtained with the help of Matlab software package.
Therefore, we suppose that Equation (19) has at least one positive root ς20 such that
Equation (17) has a pair of purely imaginary roots ±iς20. For ς20, we have

τ20 =
1

ς20
× arccos

[
E31(ς20)

E33(ς20)

]
. (20)

Differentiating Equation (17) with respect to τ2,

[
dλ

dτ2
]−1 = −U31(λ)

U32(λ)
− τ2

λ
, (21)

where
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U31(λ) = 3Z33λ2 + 2Z32λ + Z31 + (2B32λ + B31)e−λτ2

+(4λ3 + 3X33λ2 + 2X32λ + X31)eλτ2 ,

U32(λ) = (λ5 + X33λ4 + X32λ3 + X31λ2 + X30λ)eλτ2

−(B32λ3 + B31λ2 + B30λ)e−λτ2 .

Thus,
Re[

dλ

dτ2
]−1
λ=iς20

=
Ξ31Π31 + Ξ32Π32

Π2
31 + Π2

32
, (22)

with

Ξ31 = Z31 − 3Z33ς2
20 + 2B32ς20 sin(τ20ς20) + B31 cos(τ20ς20)

+(X31 − 3X33ς2
20) cos(τ20ς20)− (2X32ς20 − 4ς3

20) sin(τ20ς20),

Ξ32 = 2Z32ς20 + 2B32ς20 cos(τ20ς20)− B31 sin(τ20ς20)

+(X31 − 3X33ς2
20) sin(τ20ς20) + (2X32ς20 − 4ς3

20) cos(τ20ς20),

Π31 = (X33ς4
20 − X31ς2

20) cos(τ20ς20)− (ς5
20 − X32ς3

20 + X30ς20) sin(τ20ς20)

+(B32ς3
20 − B30ς20) sin(τ20ς20) + B31ς2

20 cos(τ20ς20),

Π32 = (X33ς4
20 − X31ς2

20) sin(τ20ς20) + (ς5
20 − X32ς3

20 + X30ς20) cos(τ20ς20)

+(B32ς3
20 − B30ς20) cos(τ20ς20)− B31ς2

20 sin(τ20ς20).

Therefore, if Ξ31Π31 + Ξ32Π32 6= 0 then Re[ dλ
dτ2

]−1
λ=iς20

6= 0. In conclusion, we have the
following theorem.

Theorem 3. If <0 > 1, then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally asymptotically stable
whenever τ2 ∈ [0, τ20); while the model (2) exhibits a Hopf bifurcation near E∗(S∗, P∗, H∗, T∗)
when τ2 = τ20 and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Case 4. τ1 > 0 and τ2 ∈ (0, τ20). Let λ = iς1 be a root of Equation (7), then{
W41(ς1) sin(τ1ς1) + W42(ς1) cos(τ1ς1) = W43(ς1),

W41(ς1) cos(τ1ς1)−W42(ς1) sin(τ1ς1) = W44(ς1),
(23)

where

W41(ς1) = Y01ς1 −Y03ς3
1 + A01ς1 cos(τ2ς1)− (A00 − A02ς2

1) sin(τ2ς1)

+C01ς1 cos(2τ2ς)− C00 sin(2τ2ς),

W42(ς1) = Y00 −Y02ς2
1 + A01ς1 sin(τ2ς1) + (A00 − A02ς2

1) cos(τ2ς1)

+C01ς1 sin(2τ2ς) + C00 cos(2τ2ς),

W43(ς1) = X02ς2
1 − ς4

1 − X00 + (Z03ς3
1 − Z01ς1) sin(τ2ς1) + (Z02ς2

1 − Z00) cos(τ2ς1)

−B01ς1 sin(2τ2ς1) + (B02ς2
1 − B00) cos(2τ2ς1),

W44(ς1) = X03ς3
1 − X01ς1 + (Z03ς3

1 − Z01ς1) cos(τ2ς1)− (Z02ς2
1 − Z00) sin(τ2ς1)

−B01ς1 cos(2τ2ς1)− (B02ς2
1 − B00) sin(2τ2ς1).

Based on Equation (23), we obtain

cos(τ1ς1) =
E41(ς1)

E43(ς1)
, sin(τ1ς1) =

E42(ς1)

E43(ς1)
,

where

E41(ς1) = W41(ς1)W44(ς1) + W42(ς1)W43(ς1),

E42(ς1) = W41(ς1)W43(ς1)−W42(ς1)W44(ς1),

E43(ς1) = W2
41(ς1) + W2

42(ς1).
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Then, we have the following relation about ς1

E2
43(ς1)− E2

41(ς1)− E2
42(ς1) = 0. (24)

Similarly, we suppose that Equation (24) has at least one positive root ς1∗ such that
Equation (7) has a pair of purely imaginary roots ±iς1∗. For ς1∗, we have

τ1∗ =
1

ς1∗
× arccos

[
E41(ς1∗)

E43(ς1∗)

]
. (25)

Differentiating Equation (7) with respect to τ1, we have

[
dλ

dτ1
]−1 =

U41(λ)

U42(λ)
− τ1

λ
, (26)

where

U41(λ) = 4λ3 + 3X03λ2 + 2X02λ + X01 + (3Y03λ2 + 2Y02λ + Y01)e−λτ1

+(−τ2Z03λ3 + (3Z03 − τ2Z02)λ
2 + (2Z02 − τ2Z01)λ + Z01 − τ2Z00)e−λτ2

+(−τ2 A02λ2 + (2A02 − τ2 A01)λ + A01 − τ2 A00)e−λ(τ1+τ2)

+(−2τ2B02λ2 + (2B02 − 2τ2B01)λ + B01 − 2τ2B00)e−2λτ2

+(−2τ2C01λ + C01 − 2τ2C00)e−λ(τ1+2τ2),

U42(λ) = (Y03λ4 + Y02λ3 + Y01λ2 + Y00λ)e−λτ1

+(A02λ3 + A01λ2 + A00λ)e−λ(τ1+τ2) + (C01λ2 + C00λ)e−λ(τ1+2τ2).

Further
Re[

dλ

dτ1
]−1
λ=iς1∗

=
Ξ41Π41 + Ξ42Π42

Π2
41 + Π2

42
, (27)

with

Ξ41 = X01 − 3X03ς2
1∗ + Y02ς1∗ sin(τ1∗ς1∗) + (Y01 − 3Y03ς2

1∗) cos(τ1∗ς1∗)

+((2Z02 − τ2Z01)ς1∗ + τ2Z03ς3
1∗) sin(τ2ς1∗)

+(Z01 − τ2Z00 − (3Z03 − τ2Z02)ς
2
1∗) cos(τ2ς1∗)

+(2A02 − τ2 A01)ς1∗ sin((τ1∗ + τ2)ς1∗)

+(τ2 A02ς2
1∗ + A01 − τ2 A00) cos((τ1∗ + τ2)ς1∗)

+2(B02 − τ2B01)ς1∗ sin(2τ2ς1∗) + (2τ2B02ς2
1∗ + B01 − 2τ2B00) cos(2τ2ς1∗)

−2τ2C01ς1∗ sin((τ1∗ + 2τ2)ς1∗) + (C01 − 2τ2C00) cos((τ1∗ + 2τ2)ς1∗),

Ξ42 = 2X02ς1∗ − 4ς3
1∗ + Y02ς1∗ cos(τ1∗ς1∗)− (Y01 − 3Y03ς2

1∗) cos(τ1∗ς1∗)

+((2Z02 − τ2Z01)ς1∗ + τ2Z03ς3
1∗) cos(τ2ς1∗)

−(Z01 − τ2Z00 − (3Z03 − τ2Z02)ς
2
1∗) sin(τ2ς1∗)

+(2A02 − τ2 A01)ς1∗ cos((τ1∗ + τ2)ς1∗)

−(τ2 A02ς2
1∗ + A01 − τ2 A00) sin((τ1∗ + τ2)ς1∗)

+2(B02 − τ2B01)ς1∗ cos(2τ2ς1∗)− (2τ2B02ς2
1∗ + B01 − 2τ2B00) sin(2τ2ς1∗)

−2τ2C01ς1∗ cos((τ1∗ + 2τ2)ς1∗)− (C01 − 2τ2C00) sin((τ1∗ + 2τ2)ς1∗),

Π41 = (Y00ς1∗ −Y02ς3
1∗) sin(τ1∗ς1∗) + (Y03ς4

1∗ −Y01ς2
1∗) cos(τ1∗ς1∗)

+(A00ς1∗ − A02ς3
1∗) sin((τ1∗ + τ2)ς1∗)− A01ς2

1∗ cos((τ1∗ + τ2)ς1∗)

+C00ς1∗ sin((τ1∗ + 2τ2)ς1∗)− C01ς2
1∗ cos((τ1∗ + 2τ2)ς1∗),

Π42 = (Y00ς1∗ −Y02ς3
1∗) cos(τ1∗ς1∗)− (Y03ς4

1∗ −Y01ς2
1∗) sin(τ1∗ς1∗)

+(A00ς1∗ − A02ς3
1∗) cos((τ1∗ + τ2)ς1∗) + A01ς2

1∗ sin((τ1∗ + τ2)ς1∗)

+C00ς1∗ cos((τ1∗ + 2τ2)ς1∗) + C01ς2
1∗ sin((τ1∗ + 2τ2)ς1∗).
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Clearly, if Ξ41Π41 + Ξ42Π42 6= 0 then Re[ dλ
dτ1

]−1
λ=iς1∗

6= 0. Then, we have the following
theorem.

Theorem 4. If <0 > 1 and τ2 ∈ (0, τ20), then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally
asymptotically stable whenever τ1 ∈ [0, τ1∗); while the model (2) exhibits a Hopf bifurcation near
E∗(S∗, P∗, H∗, T∗) when τ1 = τ1∗ and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Case 5. τ1 ∈ (0, τ10) and τ2 > 0. Multiplying eλτ on both sides of Equation (7), one can find

Z03λ3 + Z02λ2 + Z01λ + Z00

+ (B02λ2 + B01λ + B00)e−λτ2

+ (λ4 + X03λ3 + X02λ2 + X01λ + X00)eλτ2

+ (Y03λ3 + Y02λ2 + Y01λ + Y00)eλ(τ2−τ1)

+ (A02λ2 + A01λ + A00)e−λτ1

+ (C01λ + C00)e−λ(τ1+τ2) = 0, (28)

Let λ = iς2 be a root of Equation (7), then{
W51(ς2) sin(τ2ς2) + W52(ς2) cos(τ2ς2) = W53(ς2),

W54(ς2) cos(τ2ς2) + W55(ς2) sin(τ2ς2) = W56(ς2),
(29)

where

W51(ς2) = X03ς3
2 + (B01 − X01)ς2 − (Y01ς2 −Y03ς3

2) cos(τ1ς2)

+(Y00 −Y02ς2
2) sin(τ1ς2) + C01ς2 cos(τ1ς2)− C00 sin(τ1ς2),

W52(ς2) = ς4
2 − (B02 + X02)ς

2
2 + B00 + X00 + (Y01ς2 −Y03ς3

2) sin(τ1ς2)

+(Y00 −Y02ς2
2) cos(τ1ς2) + C01ς2 sin(τ1ς2) + C00 cos(τ1ς2),

W53(ς2) = Z02ς2
2 − Z00 − A01ς2 sin(τ1ς2)− (A00 − A02ς2

2) cos(τ1ς2),

W54(ς2) = (B01 + X01)ς2 − X03ς3
2 + (Y01ς2 −Y03ς3

2) cos(τ1ς2)

−(Y00 −Y02ς2
2) sin(τ1ς2) + C01ς2 cos(τ1ς2)− C00 sin(τ1ς2),

W55(ς2) = ς4
2 + (B02 − X02)ς

2
2 − B00 + X00 + (Y01ς2 −Y03ς3

2) sin(τ1ς2)

+(Y00 −Y02ς2
2) cos(τ1ς2)− C01ς2 sin(τ1ς2)− C00 cos(τ1ς2),

W56(ς2) = Z03ς3
2 − Z01ς2 − A01ς2 cos(τ1ς2) + (A00 − A02ς2

2) sin(τ1ς2).

Accordingly, one has

cos(τ2ς2) =
E51(ς2)

E53(ς2)
, sin(τ2ς2) =

E51(ς2)

E53(ς2)
,

with

E51(ς2) = W51(ς2)W56(ς2)−W53(ς2)W55(ς2),

E52(ς2) = W53(ς2)W54(ς2)−W52(ς2)W56(ς2),

E53(ς2) = W51(ς2)W54(ς2)−W52(ς2)W55(ς2).

Then, one has
E2

53(ς1)− E2
51(ς1)− E2

52(ς1) = 0. (30)

Next, we suppose that Equation (30) has at least one positive root ς2∗ such that
Equation (28) has a pair of purely imaginary roots ±iς2∗. For ς2∗, we have

τ2∗ =
1

ς2∗
× arccos

[
E51(ς2∗)

E53(ς2∗)

]
. (31)
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Differentiating Equation (28) regarding τ2 and substituting λ = iς2∗, we have

Re[
dλ

dτ2
]−1
λ=iς2∗

=
Ξ51Π51 + Ξ52Π52

Π2
51 + Π2

52
, (32)

where

Ξ51 = Z01 − 3Z03ς2
2∗ + 2B02ς2∗ sin(τ2∗ς2∗) + B01 cos(τ2∗ς2∗)

+(X01 − 3X03ς2
2∗) cos(τ2∗ς2∗)− (2X02ς2∗ − 4ς3

2∗) sin(τ2∗ς2∗)

+(Y01 − τ1 − (3Y03 − τ1Y02)ς
2
2∗) cos((τ2∗ − τ1)ς2∗)

−((2Y02 − τ1Y01)ς2∗ + τ1Y03ς3
2∗) sin((τ2∗ − τ1)ς2∗)

+(2A02 − τ1 A01)ς2∗ sin(τ2∗ς2∗) + (τ1 A02ς2
2∗ + A01 − τ1 A00) cos(τ2∗ς2∗)

+(C01 − τ1C00) cos((τ1 + τ2∗)ς2∗)− τ1C01ς2∗ sin((τ1 + τ2∗)ς2∗),

Ξ52 = 2Z02ς2∗ + 2B02ς2∗ cos(τ2∗ς2∗)− B01 sin(τ2∗ς2∗)

+(X01 − 3X03ς2
2∗) sin(τ2∗ς2∗) + (2X02ς2∗ − 4ς3

2∗) cos(τ2∗ς2∗)

+(Y01 − τ1 − (3Y03 − τ1Y02)ς
2
2∗) sin((τ2∗ − τ1)ς2∗)

+((2Y02 − τ1Y01)ς2∗ + τ1Y03ς3
2∗) cos((τ2∗ − τ1)ς2∗)

+(2A02 − τ1 A01)ς2∗ cos(τ2∗ς2∗)− (τ1 A02ς2
2∗ + A01 − τ1 A00) sin(τ2∗ς2∗)

−(C01 − τ1C00) sin((τ1 + τ2∗)ς2∗)− τ1C01ς2∗ cos((τ1 + τ2∗)ς2∗),

Π51 = (X03ς4
2∗ − X01ς2

2∗) cos(τ2∗ς2∗) ∗ −(ς5
2∗ − X02ς3

2∗ + X00ς2∗) sin(τ2∗ς2∗)

+(Y03ς4
2∗ −Y01ς2

2∗) cos((τ2∗ − τ1)ς2∗)− (Y00ς2∗ −Y02ς3
2∗) sin((τ2∗ − τ1)ς2∗)

+(B02ς3
2∗ − B00ς2∗) sin(τ2∗ς2∗) + B01ς2

2∗ cos(τ2∗ς2∗)

+C00ς2∗ sin((τ1 + τ2∗)ς2∗) + C01ς2
2∗ cos((τ1 + τ2∗)ς2∗),

Π52 = (X03ς4
2∗ − X01ς2

2∗) sin(τ2∗ς2∗) ∗+(ς5
2∗ − X02ς3

2∗ + X00ς2∗) cos(τ2∗ς2∗)

+(Y03ς4
2∗ −Y01ς2

2∗) sin((τ2∗ − τ1)ς2∗) + (Y00ς2∗ −Y02ς3
2∗) cos((τ2∗ − τ1)ς2∗)

+(B02ς3
2∗ − B00ς2∗) cos(τ2∗ς2∗)− B01ς2

2∗ sin(τ2∗ς2∗)

+C00ς2∗ cos((τ1 + τ2∗)ς2∗)− C01ς2
2∗ sin((τ1 + τ2∗)ς2∗).

Then, we can see that if Ξ51Π51 + Ξ52Π52 6= 0 then Re[ dλ
dτ2

]−1
λ=iς2∗

6= 0. Thus, we have
the following theorem.

Theorem 5. If <0 > 1 and τ1 ∈ (0, τ10), then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally
asymptotically stable whenever τ2 ∈ [0, τ2∗); while the model (2) exhibits a Hopf bifurcation near
E∗(S∗, P∗, H∗, T∗) when τ2 = τ2∗ and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

4. Stability of the Periodic Solutions

In this section, we examine direction and stability of the Hopf bifurcation at τ2∗
for the case τ1 ∈ (0, τ10) and τ2 > 0. Denote v1(t) = S(t) − S∗, v2(t) = P(t) − P∗,
v3(t) = H(t) − H∗, v4(t) = T(t) − T∗, τ2 = τ2∗ + µ and t → (t/τ2). Suppose that
τ10∗ ∈ (0, τ10) < τ2∗ in this section. Thus, the model system (2) becomes Equation (33) in
C = C([−1, 0], R4):

v̇(t) = Lµ(vt) + F(µ, vt), (33)

where

Lµφ = (τ2∗ + µ)

(
L1φ(0) + L2φ(−τ10∗

τ2∗
) + L3φ(−1)

)
, (34)
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and

F(µ, φ) =


−β1φ1(0)φ2(0)− β2φ2(0)φ3(0)

β1φ1(0)φ2(0) + β2φ2(0)φ3(0)

0

0

, (35)

with

L1 =


x11 x12 x13 0

x21 x22 x23 0

0 x32 x33 0

0 0 0 x44

, L2 =


0 0 0 0

0 0 0 0

0 0 0 y34

0 0 0 y44

, L3 =


0 0 0 0

0 z22 0 0

0 0 z33 0

0 z42 z43 0

.

Thus, there exists η function of ω and µ for ω ∈ [−1, 0] fulfills

Lµφ =
∫ 0

−1
dη(ω, µ)φ(ω). (36)

In fact,

η(ω, µ) = (τ2∗ + µ)



(L1 + L2 + L3), ω = 0,

(L2 + L3), ω ∈ [− τ10∗
τ2∗

, 0),

L2, ω ∈ (−1,− τ10∗
τ2∗

),

0, ω = −1,

(37)

For φ ∈ C([−1, 0], R4),

A(µ)φ =


dφ(ω)

dω , −1 ≤ θ < 0,∫ 0
−1 dη(ω, µ)φ(ω), θ = 0,

(38)

R(µ)φ =

{
0, −1 ≤ ω < 0,

F(µ, φ), ω = 0,
(39)

Then system (33) equals

v̇(t) = A(µ)vt + R(µ)vt. (40)

For ξ ∈ C1([0, 1], (R4)∗),

A∗(ξ) =

 −
dξ(s)

ds , 0 < s ≤ 1,∫ 0
−1 dηT(s, 0)ξ(−s), s = 0,

(41)

and

〈ξ(s), φ(ω)〉 = ξ̄(0)φ(0)−
∫ 0

ω=−1

∫ ω

χ=0
ξ̄(χ−ω)dη(ω)φ(χ)dχ, (42)

an inner product form is defined in this form with η(ω) = η(ω, 0).
Denote that Υ(ω) = (1, Υ2, Υ3, Υ4)

Teiς2∗τ2∗ω is the eigenvector of A(0) related with
+iς2∗τ2∗ and Υ∗(s) = U(1, Υ∗2 , Υ∗3 , Υ∗4)

Teiς2∗τ2∗s is the eigenvector of A∗(0) related with
−iς2∗τ2∗, respectively. Then,
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Υ2 =
x13x21 + x23(iς2∗ − x11)

x13(iς2∗ − x22 − z22e−iτ2∗ς2∗) + x12x23
,

Υ3 =
iς2∗ − x11 − x12Υ2

x13
,

Υ4 =
(z42Υ2 + z43Υ3)e−iτ2∗ς2∗

iς2∗ − x44 − y44e−iτ10∗ς2∗
,

Υ∗2 = − iω0 + l11 + l31v3

l21
,

Υ∗2 = − iς2∗ + x11

x21
,

Υ∗3 = − x13 + x23Υ2

iς2∗ + x33 + (z33 + z43Υ∗)eiτ2∗ς2∗
,

Υ∗4 = Υ∗Υ∗3 , Υ∗ = −
y34eiτ10∗ς2∗

iς2∗ + x44 + y44eiτ10∗ς2∗
.

In view of Equation (42), one has

Ū = [1 + Υ2Ῡ∗2 + Υ3Ῡ∗3 + Υ4Ῡ∗4 + (Υ3Ῡ∗3 + Υ4Ῡ∗4)e
−iτ10∗ς2∗

+Υ2(z22Ῡ∗2 + z42Ῡ∗4)e
−iτ2∗ς2∗ + Υ3(z33Ῡ∗3 + z43Ῡ∗4)e

−iτ2∗ς2∗ ]−1. (43)

Next, we can get the coefficients as follows by means of the method proposed in [35]:

Ψ20 = 2τ2∗Ū(Υ∗2 − 1)(β1Υ2 + β2Υ3),

Ψ11 = τ2∗Ū(Υ∗2 − 1)(2β1Re{Υ2}+ 2β2Re{Υ3}),
Ψ02 = ḡ20,

Ψ21 = 2τ2∗Ū(Υ∗2 − 1)[β1(Q
(1)
11 (0)Υ2 +

1
2

Q(1)
20 (0)Ῡ2 + Q(2)

11 (0) +
1
2

Q(2)
20 (0))

+β2(Q
(1)
11 (0)Υ3 +

1
2

Q(1)
20 (0)Ῡ3 + Q(3)

11 (0) +
1
2

Q(3)
20 (0))],

(44)

with

Q20(ω) =
iΨ20

ς2∗τ2∗
Υ(ω) +

iΨ̄02

3ς2∗τ2∗
Ῡ(ω) + J1e2iς2∗τ2∗ω,

Q11(ω) = − iΨ11

ς2∗τ2∗
V(θ) +

iΨ̄11

ς2∗τ2∗
Ῡ(ω) + J2.

where

J1 = 2


x∗11 −x12 −x13 0

−x21 x∗22 −x23 0

0 −x32 x∗33 y34e−2iς2∗τ10∗

0 −z42e−2iς2∗τ2∗ −z43e−2iς2∗τ2∗ x∗44


−1

×


−(β1Υ2 + β2Υ2)

β1Υ2 + β2Υ2

0

0

,

J2 =


x11 x12 x13 0

x21 x22 + z22 x23 0

0 x32 x33 + z33 y34

0 z42 z33 + z33 x44 + y44


−1

×


−(2β1Re{Υ2}+ 2β2Re{Υ3})

2β1Re{Υ2}+ 2β2Re{Υ3}

0

0

,
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with

x∗11 = 2iς2∗ − x11,

x∗22 = 2iς2∗ − x22 − z22e−2iς2∗τ2∗ ,

x∗33 = 2iς2∗ − x33 − z33e−2iς2∗τ2∗ ,

x∗44 = 2iς2∗ − x44 − y44e−2iς2∗τ10∗ (45)

Then,

C1(0) = i
2τ2∗ς2∗

(
Ψ11Ψ20 − 2|Ψ11|2 − |Ψ02|2

3

)
+ Ψ21

2

Λ1 = − Re{C1(0)}
Re{λ′(τ2∗)}

,

Λ2 = 2Re{C1(0)},

Λ3 = − Im{C1(0)}+Λ1 Im{λ′(τ2∗)}
τ2∗ς2∗

,

(46)

Theorem 6. For system (2), if Λ1 > 0 , then the Hopf bifurcation at τ2∗ is supercritical (subcritical
for Λ1 < 0); if Λ2 < 0, then bifurcating periodic solutions showing around E∗(S∗, P∗H∗, T∗)
are stable (unstable for Λ2 > 0); if Λ3 > 0, then bifurcating periodic solutions showing at
E∗(S∗, P∗H∗, T∗) increase (decrease for Λ3 < 0).

5. Numerical Example

In this section, we shall adopt a numerical example by extracting the same values of
parameters as those in [25] to certify our obtained analytical results in previous sections.
Then, the following numerical example model system is obtained:

dS(t)
dt = 2− 0.02S(t)− 0.016S(t)P(t)− 0.028S(t)H(t),

dP(t)
dt = 0.016S(t)P(t) + 0.028S(t)H(t)− 0.05P(t)− 0.095P(t− τ2),

dH(t)
dt = 0.03P(t) + 0.5T(t− τ1)− 0.421H(t− τ2)− 0.02H(t),

dT(t)
dt = 0.095P(t− τ2) + 0.421H(t− τ2)− 0.5T(t− τ1)− 0.02T(t),

(47)

from which one has <0 = 12.3481 > 1 and the unique synthetic drug addiction equilibrium
point E∗(1.3196, 13.6111, 45.6355, 39.4338).

For the case when τ1 > 0 and τ2 = 0, one has ς10 = 1.0902 and τ10 = 9.7367. In line
with Theorem 1, E∗(1.3196, 13.6111, 45.6355, 39.4338) is locally asymptotically stable in the
interval τ1 ∈ [0, τ10 = 9.7367). Figure 1 shows the local asymptotical stability of the model
system (47). Whereas, Figure 2 shows the exhibition of a Hopf bifurcation at τ10 = 9.7367.

For τ1 = 0 and τ2 > 0, we have ς20 = 1.6264 and τ20 = 20.8839 based on some
calculations. It can be observed that the model system (47) is locally asymptotically stable
around E∗(1.3196, 13.6111, 45.6355, 39.4338) when τ2 = 18.6934 < τ20 = 20.8839, which is
depicted in Figure 3. Nevertheless, E∗(1.3196, 13.6111, 45.6355, 39.4338) loses its stability
and the model system (47) experiences a Hopf bifurcation as the value of τ2 crossed τ20.
The loss of stability dynamics of E∗(1.3196, 13.6111, 45.6355, 39.4338) for τ2 = 25.9358 >
τ20 = 20.8839 is shown in Figure 4.

For τ1 > 0 and τ2 = 2.5 ∈ (0, τ20) and supposing τ1 as a parameter, we obtain
ς1∗ = 3.2156 and τ1∗ = 1.4096 through some computations. In such a case, the model
system (47) is locally asymptotically stable when τ1 < τ1∗ but as τ1 passes through τ1∗ the
model system (47) exhibits a Hopf bifurcation and the model system (47) loses stability. This
property is depicted in Figures 5 and 6 for τ1 = 1.3785 (< τ1∗) and τ1 = 1.1.4308 (> τ1∗),
respectively.
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Figure 1. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 8.2247 < τ10 = 9.7367 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 2. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 11.1421 > τ10 = 9.7367 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 3. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 18.6934 < τ20 = 20.8839 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 4. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 25.9358 > τ20 = 20.8839 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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For τ2 > 0 and τ1 = 1.5 ∈ (0, τ10) and supposing τ2 as a parameter, we get ς2∗ = 0.7849
and τ2∗ = 8.9875. The model system (47) is locally asymptotically stable for τ2 < τ2∗ and
unstable for τ2 > τ2∗. Stability and instability behavior of the model system (47) is presented
in Figures 7 and 8 for different values of τ2, respectively.

0 200 400 600 800 1000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time

S
(t

)

(a)
0 200 400 600 800 1000

13.45

13.5

13.55

13.6

13.65

13.7

13.75

13.8

Time

P
(t

)

(b)

0 200 400 600 800 1000
42

43

44

45

46

47

48

49

Time

H
(t

)

(c)
0 200 400 600 800 1000

36

37

38

39

40

41

42

43

Time

T
(t

)

(d)

Figure 5. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 1.3785 < τ1∗ = 1.4096 and τ2 = 2.5 ∈ (0, τ20) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 6. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 1.4308 > τ1∗ = 1.4096 and τ2 = 2.5 ∈ (0, τ20) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 7. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 8.2943 < τ2∗ = 8.9875 and τ1 = 1.5 ∈ (0, τ10) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.

0 200 400 600 800 1000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time

S
(t

)

(a)

0 200 400 600 800 1000
13.4

13.45

13.5

13.55

13.6

13.65

13.7

13.75

Time

P
(t

)

(b)

0 200 400 600 800 1000
40

42

44

46

48

50

Time

H
(t

)

(c)

0 200 400 600 800 1000
35

36

37

38

39

40

41

42

43

Time

T
(t

)

(d)

Figure 8. The time of (a) susceptible population, (b) psychological addicts, (c) physiological addicts
and (d) drug-users in treatment plot for τ2 = 9.3825 > τ2∗ = 8.9875 and τ1 = 1.5 ∈ (0, τ10) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.



Mathematics 2022, 10, 1532 19 of 20

In addition, for τ1 = 1.5 ∈ (0, τ10) and τ2 > 0, we obtain λ′(τ2∗) = 0.06568892−
0.00081555i and C0 = −4.25450964 + 13.07154877i. Thus, we have Λ1 = 64.76753827 > 0,
Λ2 = −8.50901928 < 0 and Λ3 = −1.84550535 < 0. Based on the Theorem 5, we can see
that the Hopf bifurcation at τ2∗ = 8.9875 is supercritical; the bifurcating periodic solutions
showing around E∗(1.3196, 13.6111, 45.6355, 39.4338) are stable, and the bifurcating periodic
solutions showing around E∗(1.3196, 13.6111, 45.6355, 39.4338) are decreasing.

6. Conclusions

In this study, a synthetic drug transmission model with two time delays is proposed
by introducing the time delay due to the period that both the psychological addicts and
the physiological addicts need to accept treatment and come off drugs into the formulated
model by in [25]. Through regarding the combinations of the two time delays as bifurcation
parameters, sufficient criteria for local stability and exhibition of Hopf bifurcation are
established. A crucial value point at which a Hopf bifurcation appears is calculated.
Particularly, direction and stability of the model are explored with the aids of the normal
form theory and center manifold theorem. Compared with the work in [25], we not only
consider the impact of the time delay (τ1) due to the relapse time period of the drug-users
in treatment on the model system (2) but also the time delay (τ2) due to the period that
both the psychological addicts and the physiological addicts need to accept treatment and
come off drugs on the model system. The results obtained in this study are supplements of
the work in [25].
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