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Abstract: A wide variety of methods and techniques with multiple characteristics are used in solving
replenishment, production and distribution planning problems. Selecting a solution method (either a
solver or an algorithm) when attempting to solve an optimization problem involves considerable
difficulty. Identifying the best solution method among the many available ones is a complex activity
that depends partly on human experts or a random trial-and-error procedure. This paper addresses
the challenge of recommending a solution method for replenishment, production and distribution
planning problems by proposing a decision-making tool for algorithm selection based on the fuzzy
TOPSIS approach. This approach considers a collection of the different most commonly used solution
methods in the literature, including distinct types of algorithms and solvers. To evaluate a solution
method, 13 criteria were defined that all address several important dimensions when solving a plan-
ning problem, such as the computational difficulty, scheduling knowledge, mathematical knowledge,
algorithm knowledge, mathematical modeling software knowledge and expected computational
performance of the solution methods. An illustrative example is provided to demonstrate how
planners apply the approach to select a solution method. A sensitivity analysis is also performed to
examine the effect of decision maker biases on criteria ratings and how it may affect the final selection.
The outcome of the approach provides planners with an effective and systematic decision support
tool to follow the process of selecting a solution method.

Keywords: fuzzy TOPSIS; algorithm selection; production planning; heuristics; metaheuristics; matheuristics
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1. Introduction

The supply chain comprises different sequential activities, such as replenishment, pro-
duction and distribution, which must all be planned and optimized. The main management
function of companies is planning [1]. Planning activities aim to effectively coordinate and
schedule a company’s available resources [2]. Planning is accompanied by a set of decisions
to be made by the planning manager; for example, a planner must make decisions about
the quantity of materials needed for production by taking into account storage capacity and
production batches to reduce production and inventory costs, production scheduling and
sequencing on machines, and to finally make decisions about the delivery flow of finished
products to customers or distribution centers [3].

Many real-world combinatorial optimization problems, such as those in transportation
and logistics [4–6] and manufacturing [7–9], pose a huge challenge due to the high complex-
ity of most companies’ operations given the type of industry to which they belong. They
are also subject to not only dynamic conditions, such as customer demands, processing
times, returns on investment, but also to uncertainties, such as unavailability of items,
changes in market conditions and shortages due to changes in demand [10].
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Thus, planning problems seek to maximize profit or gain while minimizing costs and
meeting market, environmental and societal constraints. For example, in supply planning
problems, there is a direct relation between inventory costs and the costs associated with
distribution planning, such as transportation costs and on-time delivery to customers [11].
Therefore, the difficulty of such problems is substantial due to the amount of data they
handle [12], nonlinearities and discontinuities, complex constraints, possible conflicting
objectives and uncertainty [13]. Hence, different types of solvers are used to solve these
problems, as are algorithms because of their computational difficulty [14].

Given the large number of algorithms for solving replenishment [15], production [16]
and distribution planning problems [17], how to effectively select an algorithm for a given
task or a specific problem is an important, but also difficult issue. Peres and Castelli [18]
highlight that rules which standardize the formulations of existing combinatorial opti-
mization problems (COP) in planning are lacking, which means that researchers have to
start building an algorithm from scratch, which thus limits the interoperability of this field
because the algorithms in the literature must be adjusted to solve a specific problem. These
authors conclude that the consolidation of combinatorial optimization problems is lacking
and note that this is important for the field of COPs to reach a higher degree of maturity.

The algorithm selection problem (ASP) is an active research area in many fields, such
as operations research [19–21] and artificial intelligence (AI) [22,23]. For many decades,
researchers have developed increasingly sophisticated techniques and algorithms to solve
difficult optimization problems [18]. These techniques include mathematical programming
approaches, heuristics, metaheuristics, nature-inspired metaheuristics, matheuristics and
various hybridizations [24]. Literature reviews such as that presented by Jamalnia et al. [25],
who reviewed the aggregate production planning problem under uncertainty between 1970
and 2018, detailed the use of approximately 24 different techniques to solve this type of
problem out of 92 reviewed papers. Kumar et al. [26] presented a literature review covering
the period from 2000 to 2019 of the quantitative approaches used to solve production and
distribution planning problems. They found 13 different techniques and types of solvers,
including CPLEX and LINGO, to solve this type of problem out of 74 papers. Pereira
et al. [27] analyzed the tactical sales and operations planning problem. To do so, they
reviewed 103 papers, where the year was not limited. They detailed about 35 different
techniques to solve this type of problem. Hussain et al. [28] conducted a literature review
of the applications of metaheuristic algorithms and found 140 different metaheuristic
algorithms in 1222 publications over a 33-year search period (1983 to 2016).

Different research papers have conducted experimental studies to determine the
performance of an algorithm [29–32] or several algorithms according to a problem type
with a collection of datasets available in the literature [33–35]. For example, Pan et al. [36]
compared three constructive heuristics and four metaheuristics (discrete artificial bee
colony, scatter search, iterated local search, iterated greedy algorithm) for the distributed
permutation flowshop problem, for which they made extensive comparative evaluations
based on 720 instances. However, these comparisons do not provide any enlightening
results because they are generally limited to a set of algorithms and to a specific problem
set [24].

In practice, algorithm performance vastly varies from one problem state to another.
In many cases, heuristic [37], metaheuristic [28] and matheuristic [38] techniques involve
randomization, such as genetic algorithm, particle swarm optimization, bee swarm opti-
mization, bat algorithm, artificial tribe algorithm and firefly algorithm [39–43], which results
in performance variability, even across repeated trials in a single problem instance [44].
Risk is an important additional feature of algorithms because the planner or the person in
charge of selecting an algorithm for planning must be willing to settle for average or lower
performance in exchange for a reasonable answer or may also find a better solution than
that expected in the same resolution time. This situation is often encountered in companies
that attempt to maximize their profits because these problems are solved by constructing
mixed strategies, i.e., strategies that meet the desired risk and return.
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Nowadays, if a study demonstrates the superiority of one algorithm over other algo-
rithms, that algorithm can be expected to be useful for other problem types for which it
has not yet been tested. No-free-lunch (NFL) theorems [45] describe that there is no single
algorithm that outperforms all algorithms in all the instances of a problem [24].

Therefore, the selection of the most suitable algorithm to solve an optimization problem
for replenishment, production and distribution planning is a very difficult task. Algorithm
selection requires advanced knowledge of the efficiency of algorithms, the characteristics
of the problem, as well as mathematical and statistical knowledge. However, having the
necessary knowledge to find a solution with algorithms does not guarantee success [46].

Algorithm selection depends mainly on the expected results and the data that the
company has at the time. Therefore, the properties or characteristics of the business problem
must be examined. For this purpose, the linearity of the problem, the number of parameters
and the characteristics that the solution supports must be analyzed.

Evaluating algorithms to solve a problem usually involves more than one criterion,
such as problem type, problem knowledge, performance, computation time, the quality of
the expected solution and programming knowledge. Therefore, algorithm selection can be
modeled as a multicriteria decision making problem [22].

The objective of multicriteria decision making (MCDM) is to identify the most eligible
alternatives from a set of alternatives based on qualitative and/or quantitative criteria
with different units of measurement to select or rank them [47]. Different techniques such
as AHP, ELECTRE, PROMETHEE, SAW, TOPSIS and VIKOR are used to solve MCDM
problems [3]. Several studies have been conducted to compare the performance of these
techniques; for example, that presented by Zanakis et al. [48], which compared eight
MCDM techniques (four variations of AHP, ELECTRE, TOPSIS and SAW). It concluded
that different techniques are affected mainly by the number of alternatives because as
alternatives increase, methods tend to generate similar final rankings. Opricovic and
Tzeng [49] performed a comparative analysis of the VIKOR and TOPSIS methods. Both
these methods are based on an aggregation function that represents the closeness to the
ideal. The study revealed that the main differences between the two methods were the
employed normalization method types.

Opricovic and Tzeng [50] compared the extended VIKOR method to ELECTRE II,
PROMETHEE and TOPSIS. The obtained results showed that ELECTRE II, PROMETHEE
and VIKOR gave similar results, while TOPSIS presented different results in some alter-
natives. Chu et al. [51] made a comparison of the VIKOR, TOPSIS and SAW methods.
The study revealed that SAW and TOPSIS presented similar classifications, while VIKOR
presented different results. These authors concluded that VIKOR and TOPSIS provided
results that were close to reality. Ozcan et al. [52] presented a comparative analysis of the
TOPSIS, ELECTRE and Grey Theory techniques for the warehouse location selection prob-
lem, where the Grey Theory provided different results to TOPSIS and ELECTRE. Instead,
the last two obtained similar results.

In situations in which information is not quantifiable or incomplete, as in real-world
problems where data may be incomplete or imprecise, i.e., nondeterministic, data can
be represented in a fuzzy way using linguistic variables to represent decision makers’
preferences in complex or not well-defined situations. Imprecision in MCDM problems can
be modeled using the fuzzy Set Theory, which is used to extend different MCDM techniques.
In this background, Ertuğrul and Karakaşoğlu [53] conducted a comparative study of the
fuzzy AHP and fuzzy TOPSIS methods for the facility location selection problem. Both
methods obtained the same results, i.e., the same rank order of alternatives.

Other studies have used an extension of the classical fuzzy set called the intuitionistic
fuzzy set, as proposed by Atanassov [54]. Intuitionistic fuzzy sets have been applied in
many fields, such as facility location selection [55], supplier selection [56], evaluation of
project and portfolio management information systems [57,58], and personnel selection [59].
Büyüközkan and Güleryüz [60] compared the performance of ranked fuzzy TOPSIS and in-
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tuitionistic fuzzy TOPSIS by detailing how the alternatives ranking barely differed between
the two approaches.

From the above comparisons, it is clear that many techniques are available for multi-
criteria decision making [61]. These techniques have their advantages and limitations over
others depending on the type of problem [62].

Different MCDM techniques have been used for the classification algorithm selection
problem, such as the study by Lamba et al. [63] in which TOPSIS and VIKOR were used
to evaluate 20 classification algorithms. Both methods obtained similar results. Peng
et al. [22] used four different MCDM techniques (TOPSIS, VIKOR, PROMETHEE II and
WSM) to select multiclass classification algorithms. The TOPSIS, VIKOR and PROMETHEE
II methods achieved similar classifications, while WSM obtained slightly different ones.
Peng et al. [64] evaluated ranking algorithms for financial risk prediction purposes. Using
TOPSIS, PROMETHEE and VIKOR, they obtained similar results for the three main ranking
algorithms. They concluded that the followed techniques were advantageous for choosing
a classification algorithm.

Along these lines, TOPSIS stands out as a widely used technique that is efficient
for selecting classification algorithms. It has been successful in different areas such as
supply chain and logistics management, environment and energy management, health and
safety management, business and marketing management, engineering and manufacturing,
human resource management and transportation management [47,65–67] and, according
to Chu et al. [51], is able to represent reality. It is also useful for companies because it can
be run with a spreadsheet [68]. For all these reasons and given the fact that the choice of a
solution method is subject to vagueness and uncertainty, we use the fuzzy TOPSIS method.

In this context, the present paper aims to answer this question: which solution method
is suitable for a replenishment, production and distribution planning problem given a
portfolio of algorithms or solvers?

To answer this question, and by taking into account that no research to date has
analyzed the selection of algorithms for planning with a multicriteria decision method, a
decision-making tool to select algorithms for a planning problem based on fuzzy TOPSIS
is presented. To validate the use of the tool herein proposed, an illustrative example is
presented, which has been validated by four different manufacturing companies. This
paper is organized as follows. Section 2 deals with the literature review. The adopted
methodology is shown in Section 3 and the numerical application of the methodology
is presented in Section 4. The sensitivity analysis of the results is provided in Section 5.
Finally, Section 6 includes the conclusions and future research lines.

2. Algorithm Selection Problem Literature Review

Algorithm selection has been widely addressed by the scientific community in both
the mathematics [69,70] and Artificial Intelligence (AI) [71,72] areas. In the mathematical
area, Stützle and Fernandes [73] report how the characteristics of problem instances make
the performance of metaheuristics relative to the properties of instances. Therefore, it is
necessary to explore the relation between algorithms and instances. In the AI area, different
models have been developed to predict which algorithm is the best one for a problem
instance, which is conducted by analyzing the relation between the characteristics of an
instance and a set of training data used by an algorithm. In this way, with an algorithms
portfolio it is possible to predict which algorithm in a new problem instance is most likely
to work [74].

Growing interest has been shown in the ASP to put previously developed algorithms
to best use to solve a specific problem instead of developing new ones [75]. According to
Leyton-Brown et al. [76], some algorithms are better than others on average, and there is
rarely a best algorithm for a given problem. Instead “it is often the case that different algo-
rithms perform well on different problem instances. This phenomenon is most pronounced
among algorithms for solving NP-Hard problems, because runtimes for these algorithms
are often highly variable from instance to instance”. In this context, Rice [77] proposes the
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first description of methodologies to select algorithms. Kotthoff [75] defines this as the
“task of algorithm selection involves choosing an algorithm from a set of algorithms on
a per-instance basis in order to exploit the varying performance of algorithms over a set
of instances”.

In this regard, algorithm selection approaches have been successfully applied in
different problem domains [78]. The following table summarizes a literature review of the
various papers that have approached ASP from different perspectives (Table 1).

Table 1. Research studies addressing the algorithm selection problem.

Author Proposal

Lagoudakis and Littman [79] Algorithm selection using reinforcement learning.

Xu et al. [80]

A scalable and completely automated portfolio construction. The
authors improve the ASP methodology by integrating local search
solvers as candidate solvers by predicting performance scores
instead of runtime, and by using hierarchical hardness models
that take into account different types of instances.

Smith-Miles [81]

A unified framework to take the algorithm selection problem as a
learning problem and to use this framework to tie together
cross-disciplinary developments in tackling the algorithm
selection problem. The authors generalize metalearning concepts
to algorithms that focus on tasks, including sorting, forecasting,
constraint satisfaction and optimization.

Bischl et al. [35] An algorithm selection problem as a cost-sensitive classification
task that is based on an Exploratory Landscape Analysis.

Hoos et al. [82]
A modular open-solver architecture that integrates several
different portfolio-based algorithm selection approaches
and techniques.

Kotthoff [75] An algorithm selection for combinatorial search problems.

Tierney and Malitsky [83]

An algorithm selection benchmark based on optimal search
algorithms to solve the container premarshalling problem
(CPMP), an NP-hard problem from the container terminal
optimization field.

Cunha et al. [84]

A metalearning method is used to select the best recommendation
algorithms within different scopes to allow to understand the
relations between data characteristics and the relative
performance of recommendation algorithms, which can be used
to select the best algorithm(s) for a new problem. This work
analyzes the algorithm selection problem for Recommender
Systems by focusing on Collaborative Filtering.

Bożejko et al. [85]
A local and optima network analysis and machine learning is
used to select appropriate algorithms on an
instance-to-instance basis.

Drozdov et al. [86]
Graph convolutional network-based generative adversarial
networks for the algorithm selection problem in
classification terms.

Vilas Boas et al. [87]

Integer programming-based approaches to build decision trees
for the algorithm selection problem. These techniques allow the
automation of three crucial decisions by discerning the most
important problem features to determine problem classes by
grouping problems into classes, and then selecting the best
algorithm configuration for each class.
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Table 1. Cont.

Author Proposal

Marrero et al. [88]

An efficient parallel genetic algorithm (GA) is proposed as a first
step to solve the algorithm selection problem. GA is able to attain
competitive results in optimal objective value terms and in a short
time. The computational results show that the approach is able to
efficiently scale and considerably reduce the average elapsed time
to solve Knapsack Problem (KNP) instances.

De Carvalho et al. [21]

A cross-domain evaluation for multi-objective optimization. The
authors investigate how four state-of-the-art online
hyperheuristics with different characteristics perform to find
solutions for 18 real-world multi-objective optimization problems.
These hyperheuristics were designed in previous studies and
tackle the algorithm selection problem from different
perspectives: election-based, based on Reinforcement Learning
and based on a mathematical function.

In manufacturing environments, formulations are usually very complex [78] because
they present a variety of specific constraints related to the company’s scope. Generally,
these formulations can serve as blocks or subproblems for other formulations of other
specific manufacturing environments. In this way, many formulations or algorithms can
obtain similar results to the formulations proposed above. When selecting a formulation
or algorithm, tuning the parameters of the different techniques is a very demanding
task because each algorithm has different characteristics and the number of times that
a parameter tuning has to be performed against different instances of a problem when
performing a comparison can exponentially grow [33]. Furthermore, to compare algorithms
and select one, the feature set of the instances must be taken into account because the
characterization of instances determines a solution approach’s performance. In practice,
the information needed to establish the characteristics is not always available [89], and
experimental results may lead to the fact that there is no single best or worst algorithm for
all problem instances [46]. In this context, and as shown in Table 1, several approaches have
been proposed to address the algorithm selection challenge, including heuristic algorithms,
metaheuristics, hybrid metaheuristics, hyperheuristics, and machine-learning techniques.
Many of these approaches integrate similarities, such as using a set of instances to learn,
measuring or predicting the performance of the best algorithm. The success of algorithm
selection approaches for some problem domains has motivated us to develop a decision
making tool to support planners of companies to select a solution method (algorithm or a
solver) for replenishment, production and distribution planning problems.

3. Solution Methodology

For combinatorial optimization problems with realistic discrete decision variables,
such as scheduling, sequencing, distribution and transportation planning problems, per-
forming an exhaustive search space for this problem type is not a realistic option de-
spite having a finite search space. The literature includes several heuristic, metaheuristic
and matheuristic algorithms, as well as tests with commercial and non-commercial high-
performance solvers to solve such problems. So, this question arises: which algorithm is to
be chosen for a combinatorial optimization problem?

Generally one way of finding an algorithm to solve a combinatorial optimization
problem is to exhaustively run all the available algorithms and choose the best solution [90].
However, this method requires unlimited computational resources and companies have
limited computational, programming and mathematical resources, which makes it impos-
sible to test all the algorithms or to use several solvers to test one instance or several for
a specific problem. Weise et al. [12] emphasize that there is a variety of methods to solve
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different types of problems with acceptable performance, but they can be outperformed by
very specialized methods.

Weise et al. [12] consider that there is no optimization method that is better or can
outperform others, and the NFL Theorem [45] corroborates this theory. This theorem states
that no optimization algorithm is likely to outperform several existing types of methods in
different types of problems.

In turn, the same authors mention that the efficiency of an optimization algorithm
is based on knowledge of a problem. Radcliffe [91] emphasizes that the algorithm’s
performance will improve with adequate knowledge of the problem. However, knowledge
of one type of problem can be misleading for another type of problem [89] because there is
no algorithm that outperforms others in all instances of a problem. Therefore, an algorithm’s
performance will be based on experience and empirical results.

Algorithm selection schemes are based mainly on approaches that either run a se-
quence of algorithms in a limited execution time [80,82] or predict the performance of an
algorithm for a given instance and select the algorithm with the best predicted perfor-
mance [92].

Real-world planning problems are subject to inaccuracies and uncertainties, conflicts
between constraints and objectives, discontinuities and nonlinearities [13]. Therefore,
determining which algorithm is appropriate poses a challenge that can be analyzed using a
multicriteria decision technique for ranking and prioritizing algorithms because algorithm
selection involves multiple decisions that require the simultaneous assessment of the
various advantages and disadvantages.

In most companies, the complexity of operations has several components that must be
addressed at the same time. Evaluating an algorithm to solve a problem often involves more
than one criterion, such as problem type, problem knowledge, performance, computation
time, the quality of the expected solution and programming knowledge.

MCDM techniques integrate different criteria and an order of preference to evaluate
and select the optimal option among multiple alternatives based on the expected outcome.
The objective of these techniques is to obtain an ideal solution to a problem in which a
decision makers’ experience does not allow them to decide among the various considered
parameters. As a result, a ranking is obtained according to the selected criteria, their
respective values and the assigned weights [93].

There are many criteria in real-life problems that can directly or indirectly affect the
outcome of different decisions. Decision making often involves inaccuracies and vagueness
that can be effectively dealt with using fuzzy sets. This method is especially important for
clarifying decisions that are difficult to quantify or compare, especially if decision makers
have different perspectives, as in this study. Therefore, we herein adopt the fuzzy TOPSIS
methodology to model an algorithm or solver selection given a solution methods portfolio
to solve replenishment, production and distribution planning problems.

In decision making problems, the Fuzzy Set Theory was introduced by Zadeh [94]
to overcome the ambiguity and uncertainty of human thought and reasoning by using
linguistic terms to represent decision makers’ choices.

The TOPSIS method was originally proposed by Hwang and Yoon [95]. It is based on
choosing an alternative that should have the shortest distance between the positive ideal
solution (PIS) and the negative ideal solution (NIS), i.e., the selected alternative is obtained
with the closest solution to the PIS and is farthest away from the NIS. The main limitation
of this technique is that it cannot capture ambiguity in the decision making process [96]. To
overcome this limitation, Chen [97] developed the Fuzzy TOPSIS Method to quantitatively
evaluate the score of different alternatives by conferring weight to the different criteria
described with linguistic variables. This section briefly describes the employed Fuzzy Set
Theory and Fuzzy TOPSIS Method.
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3.1. Fuzzy Set Theory and Fuzzy Numbers

The Fuzzy Set Theory [94,98,99] is associated with the TOPSIS method, and are related
to another by the degree of membership of the elements in fuzzy sets. A fuzzy set is charac-
terized by the membership function, which can come in different formats, e.g., triangular,
sigmoid or trapezoidal. The membership function assigns a degree of membership to each
object according to its relevance µA(x) : x → [0.0, 1.0] . To represent a fuzzy set, a tilde ‘∼’
is placed [68].

For our study, we consider a triangular fuzzy number, Ã, which is denoted by its
vertices (l, m, u), as shown in Figure 1. Triangular fuzzy numbers are used to adapt decision
makers’ preference to capture the vagueness of linguistic evaluations, where l, u and m,
respectively, denote the lower bound, the upper bound and the crisp central value.
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Membership function d of triangular fuzzy number Ã is defined as:

µÃ(x) =


x−l
m−l , l ≤ x ≤ m,
u−x
u−m , m ≤ x ≤ n,

0, otherwise
(1)

where Ã = (lA, mA, uA) and B̃ = (lB, mB, uB) are two triangular fuzzy numbers with
bases l, m, u. Then, the basic operational laws for triangular numbers are defined as:

Ã (+) B̃ = (lA, mA, uA) (+) (lB, mB, uB) = (lA + lB, mA + mB , uA + uB) (2)

Ã (−) B̃ = (lA, mA, uA) (−) (lB, mB, uB) = (lA − lB, mA −mB , uA − uB (3)

Ã (×) B̃ = (lA, mA, uA) (×) (lB, mB, uB) = (lA × lB, mA ×mB , uA × uB) for lA , lB > 0 ; mA , mB > 0; uA , uB > 0 (4)

Ã (÷) B̃ = (lA, mA, uA) (÷) (lB, mB, uB) =

(
lA
uB

,
mA
mB

,
uA
lB

)
for lA , lB > 0 ; mA , mB > 0; uA , uB > 0 (5)

kÃ = klA, kmA, kuA (6)

Ã
−1

= (lA, mA, uA)
−1 =

(
1

uA
,

1
mA

,
1
lA

)
for lA , lB > 0 ; mA , mB > 0; uA , uB > 0 (7)

By assuming that fuzzy numbers Ã and B̃ are real numbers, then the distance measure is
identical to the Euclidean distance. Therefore, the vertex method is defined to calculate the
distance between two fuzzy numbers (see Equation (8)). Although there are several ways
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of measuring distances between fuzzy numbers [100], the vertex method is a simple and
efficient method [97,101].

d
(

Ã, B̃
)
=

√
1
3

[
(lA − lB)

2 + (mA −mB)
2 + (uA − uB)

2
]

(8)

3.2. The Fuzzy TOPSIS Method

The main fuzzy TOPSIS idea is based on defining the fuzzy positive ideal solution
(FPIS) and the fuzzy negative ideal solution (FNIS). The chosen alternative should have
the shortest distance to the FPIS and the farthest distance to the FNIS. TOPSIS follows a
systematic process and logic that seek to express the logic of human choice [102]. The basic
fuzzy TOPSIS method steps are described in the following way (see [97,103,104]):

Step 1. Consider a set of k decision makers (D1, D2, . . . , Dk) with m alternatives
(A1, A2, . . . , An) and n criteria (C1, C2, . . . , Cn) for which the decision matrix is established:

C1 C2 . . . CnD̃ =

A1
A2
...

Am


X̃11 X̃12
X̃21 X̃22

. . . X̃1n

. . . X̃2n
...

...
X̃n1 X̃n2

...
...

. . . X̃nm

 i = 1, 2, . . . , m; j = 1, 2, . . . , n

W̃ = [w̃1, w̃2 , . . . , w̃n ]

(9)

Considering that the perception of algorithms and solvers varies according to knowl-
edge and experience with algorithms for planning, the average value method is applied;
where x̃k

ij is the rating or score of the alternative Ai in relation to criterion Cj evaluated
by the K-th decision maker (Equation (10)). The weights of criteria are aggregated using
Equation (11), where w̃k

j describes the weight of each criterion Cj according to decision
makers Dk.

x̃ij =
1
k

(
x̃1

ij + x̃2
ij + . . . + x̃k

ij

)
(10)

w̃j =
1
k

(
w̃1

j + w̃2
j + . . . + w̃k

j

)
(11)

Step 2. Normalize the fuzzy decision matrix. Decision matrix D̃ with m alternatives
and n criteria is normalized to eliminate inconsistencies with the different units of mea-
surement or scales to preserve the ranges of the normalized triangular fuzzy numbers.
R̃ represents the normalized decision matrix (Equation (12)):

R̃j =
[
r̃ij
]

m×n, i = 1, 2, . . . , m; j= 1, 2, . . . , n (12)

The normalization process is performed by Equations (13) and (14), where B and C
represent the set of benefit and cost criteria, respectively.

r̃ij =

(
lij
u+

j
,

ij
u+

j
,

uij

u+
j

)
, and u+

j = maxiuij i f j ∈ B (13)

r̃ij =

(
l−j
uij

,
l−j
mij

,
l−j
lij

)
, and l−j = minilij i f j ∈ C (14)

Step 3. Construct the weighted normalized fuzzy decision matrix Ṽ (Equation (15)).
ṽij is obtained by multiplying the weights of criteria w̃j and the normalized fuzzy decision
matrix r̃ij values:

Ṽ =
[
ṽij
]

m×n , i = 1, 2, . . . , m; j= 1, 2, . . . , n (15)

ṽij = r̃ij × w̃j (16)
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Step 4. Obtain the FPIS (FPIS, A+) and the FNIS (FNIS, A−), as shown in Equations
(17) and (18), respectively. The ideal solutions can be defined according to Chen [97] as:
ṽ+j = (1, 1, 1) and ṽ−j = (0, 0, 0)

A+ =
{

ṽ+1 , ṽ+j , . . . , ṽ+m
}

(17)

A− =
{

ṽ−1 , ṽ−j , . . . , ṽ−m
}

(18)

Step 5. Calculate the distances for each alternative, where D+
i indicates the distance

between the scores of alternative Ai to the FPIS (Equation (19)), and D−i denotes the
distances between the values of alternative Ai to the FNIS (Equation (20)), where d(ṽa, ṽb)
represents the distance between two fuzzy numbers.

D+
i = ∑n

j=1 d
(

ṽij, ṽ+j
)

, i = 1, 2, . . . , m; j= 1, 2, . . . , n (19)

D−i = ∑n
j=1 d

(
ṽij, ṽ−j

)
, i = 1, 2, . . . , m; j= 1, 2, . . . , n (20)

Step 6. Determine proximity coefficient CCi, which evaluates the rank order of all
the alternatives Ai according to their overall performance. The proximity coefficient is
calculated as shown in Equation (21).

CCi =
D−i(

D+
i + D−i

) (21)

Step 7. Rank alternatives Ai, using a decreasing order of CCi values, the shortest
distances from the FPIS, i.e., close to 1, to indicate that the overall performance of alternative
Ai is better because it is farther away from the FNIS. Having obtained the ranking order,
decision makers select the most feasible alternative Ai.

4. The Methodological Approach for the Algorithm Selection Problem

This paper employs a three-stage methodology to select an algorithm or solver to
solve a replenishment, production and distribution planning problem (see Figure 2). The
objective of this section is to present a numerical analysis to demonstrate the performance
of the proposed methodology.

The three stages of the proposed methodology are described in the following subsections.

4.1. Stage 1—Define Criteria and Alternatives

We first identify the different criteria that are taken into account when selecting a
solution method; these criteria can be identified in the literature and are based on the
opinion of experts in the field [105]. According to each identified criterion, the decision
maker evaluates the suitability of a solution method for the type of problem; that is, how
algorithms or solvers can be suitable and formulated for a given problem.

In this research, 13 criteria are identified based on an exhaustive review of the literature
(see [8,18,25,27,106,107]) and the assessments of experts in the field of operations research.
These criteria are presented in Table 2.
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Table 2. Criteria for algorithm selection.

Id Criteria Definition

C1 Problem type

The replenishment (source), production (make) and distribution (deliver) planning problem type
is determined by the SCOR (Supply Chain Operation Reference) methodology [106,108] (see
Figure 3). Each problem type has its own characteristics and computational difficulty.
According to Weise et al. [12], it is very difficult to make accurate estimates of a problems’
computational performance because a solution method’s performance will almost always depend
on experience, the empirical results based on related research areas and the rules of thumb
established for these problems. So, a problem’s computational performance depends on different
factors. Some of the main factors of a problem’s complexity are: problem size, linearity, variables
and presence of constraints [109]. Based on these considerations, criteria C2–C7 are proposed.

C2 Equation type It expresses the equations present in the problem. These equations can be linear or nonlinear.

C3 Variable type

It represents the elements to be modeled. Variables can be integer, binary and continuous.
Planning problems generally contain a combination of variables: Continuous + Integer, Integer +
Binary, Continuous + Binary, Continuous + Integer + Binary. These combinations normally
generate greater computational difficulty. Each combination can generate a different behavior for
the solution method because algorithm or solver performance is linked with the amount of
resources used. These resources can be: amount of memory, processing time to deal with each
type of variable [12].

C4 Number of
instantiated variables

It determines the number of variables present in a problem, which is a determining factor when
establishing the expected response time to obtain an answer.

C5 Type of constraints
and solutions

The constraint type determines the computational difficulty that the problem will have because
constraints express limitations of resources. Some constraints can be expressed as follows:

n decision >= data (e.g., production >= demand)
n decision <= data (e.g., load <= capacity)
n decision == data (e.g., production >= demand)
n decision >= decision (e.g., production of A >= production of B)
n decision <= decision (e.g., load of M <= load of N)
n decision == decision (e.g., inventory A == inventory B)
n continuity equations of some variables (e.g., Inventory == Inventory prior period + Production -
Demand)

One factor that affects a problem’s difficulty is when the expected solutions to the problem
contain a route or sequence. These routing planning or sequencing problems are generally
NP-hard [110,111].

C6 Number of constraints
The number of constraints contained in a problem can be a limiting factor for establishing the
problem’s difficulty. Therefore, the evaluator analyzes whether the set of constraints can be
adapted to an algorithm or to a solver.

C7 Dataset size When representing the problem input data size, a problem’s computation is directly related to the
amount of data.

C8 Programming
knowledge

Programming knowledge is a determining factor when selecting an algorithm because it
determines decision makers’ ability to program one algorithm or several algorithms when having
to test different algorithms in the hope to obtain a solution that meets the company’s needs.

C9 Mathematical
knowledge

Mathematical knowledge is important when choosing whether to express the problem as a
mathematical model or to directly choose an algorithm. Algorithms generally require certain
mathematical knowledge.

C10 Knowledge of
algorithms One aspect to take into account in companies is knowledge of the different algorithms.

C11 Software

This criterion is considered if the company has mathematical modeling software, but is not
considered if the company does not.
If the company has specific optimization software, the decision maker defines the scope of its
performance against each alternative to solve a planning problem.

C12 Quality of solutions This criterion establishes the quality of the expected solutions to the problem. These solutions can
be optimal, near-optimal or good.

C13 Calculation time The computation time sets the amount of expected time to obtain a solution for the problem.
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Second, we identify the portfolio of solution methods (alternatives). This portfolio is
composed of a set of nine algorithms and four solvers, identified as the most commonly
used ones in the planning problems reported in [107,112]. Alternatives are divided between
different algorithm types, which are:

n Heuristic algorithms (HA). They are used when solvers or exact techniques cannot reach
solutions in acceptable computation times. These techniques do not provide optimal
solutions, but can offer solutions that come very close to the optimum in acceptable
computation times [113];
n Metaheuristic algorithms (MA). According to Swan et al. [114], these techniques are: “an
iterative master process that guides and modifies the operations of subordinate heuristics
to efficiently produce high-quality solutions. At each iteration, it manipulates either a
complete (or partial) single solution or a collection of such solutions”;
n Matheuristic algorithms (MTA). They combine mathematical programming techniques
and heuristic or metaheuristic algorithms [115].

The alternatives in this classification are A1—HA/Benders’ decomposition,
A2—HA/LP and Fix, A3—HA/LP Relaxation, A4—MA/Tabu Search, A5—MA/Genetic
Algorithm, A6—MA/Simulated annealing, A7—MA/Variable Neighborhood Search,
A8—MTA/ Genetic Algorithm + Mathematical Model, A9—MTA/Simulated anneal-
ing + Mathematical Model. Different solver types used to solve planning problems are
also considered. For this purpose, commercial and non-commercial solvers are identi-
fied to deal with mathematical models with linear and nonlinear equations. These are:
A10—CPLEX (Commercial), A11—CBC (Non-Commercial), A12—BONMIN
(Non-Commercial—Nonlinear), A13—LINDO (Commercial—Linear/Nonlinear).
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sponds to the characterization of the different dimensions that have been proposed, which
is composed of four dimensions (the problem type and its characteristics, programming
knowledge, the software and the expected performance of algorithms or solvers); in the
third layer comes the categorization of the 13 identified criteria; in the last one, methods
or solution alternatives appear. The correlation between layer 3 and 4 is related to the
performance of an algorithm or a solution method.
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4.2. Stage 2—Problem Statement

In this stage, the type of planning problem to be addressed was defined, for which
four expert decision makers working in different manufacturing companies in the planning
area were invited to propose a planning problem. The decision makers proposed that the
problem to be studied should be a production planning problem falling within the make
classification, as shown in Figure 3.

Once the problem type has been defined, a questionnaire is developed to obtain the
weight of preference of criteria and to thus evaluate alternatives according to the criteria.
To devise the questionnaire, it is necessary to construct a fuzzy linguistic scale.

Linguistic scales are used to transform linguistic terms into fuzzy numbers [96]. Lin-
guistic terms are subjective categories of the linguistic variable [116]. Zadeh [117] intro-
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duced the linguistic variable concept. A linguistic variable is a variable whose values
allow computation with words instead of numbers [118]. Linguistic variables are used to
represent decision makers’ assessments, estimates and subjectivity [119].

To evaluate the criteria, we use a scale between 0 and 1. To rate the alternatives, we
employ a scale from 0 to 10 [97]. The linguistic scales that evaluate the weights of the
criteria and alternatives are shown in Table 3.

Table 3. Linguistic scales to assess the criteria and alternatives (Chen [97]).

Linguistic Expression for Rating Alternatives
(Algorithms) Linguistic Variable for the Relative Importance Weight of Criteria

Linguistic Expression l m u Linguistic Expression l m u

Very Low (VL) 0.1 0.1 2.5 Very Low Importance (VLI) 0.01 0.03 0.25
Low (L) 0.1 2.5 5.0 Low Importance (LI) 0.01 0.25 0.50
Moderate (M) 2.5 5.0 7.5 Medium Importance (MI) 0.25 0.50 0.75
High (H) 5.0 7.5 10.0 High Importance (HI) 0.50 0.75 1.00
Very High (VH) 7.5 10.0 10.0 Very High Importance (VHI) 0.75 1.00 1.00

Finally, decision makers were invited to review the questionnaire and to check its
content. Based on this review, we were able to adjust the questionnaire.

In this same stage, we invited the four decision makers who worked in the planning
area to evaluate the alternatives and to determine the weights of the criteria. For this
purpose, we asked the decision makers to use the linguistic scale described in Table 3. An
extract of the questionnaires used by the decision makers is shown in Tables A1 and A2.

Table 4 details the fuzzy weights of each criterion based on the linguistic scales selected
by the decision makers. The decision makers’ ratings of the alternatives against all criteria
are shown in Tables A3–A6.

Table 4. Decision makers’ linguistic assessment of the criteria.

D1 D2 D3 D4

C1 MI MI MI MI
C2 LI LI LI LI
C3 VHI VHI VHI VHI
C4 HI HI HI HI
C5 LI LI LI LI
C6 HI MI MI MI
C7 HI VHI VHI MI
C8 LI MI HI HI
C9 LI MI HI HI
C10 MI MI LI HI
C11 LI LI LI LI
C12 VHI VHI VHI VHI
C13 VHI VHI VHI VHI

4.3. Stage 3—Application of the Fuzzy TOPSIS Method

In this stage, the Fuzzy TOPSIS Method is used to analyze the different alternatives
in relation to the identified criteria. The process used to apply the Fuzzy TOPSIS Method
consists of five steps, which are detailed below.

Step 1. Based on the linguistic assessments of the alternatives (see Tables A3–A6),
the linguistic terms are converted into fuzzy numbers according to Table 3 and the fuzzy
decision matrix is constructed. The aggregation of the ratings is performed using the
fuzzy arithmetic mean, and the aggregate ratings for each alternative are obtained using
Equation (10) (see Table 5).



Mathematics 2022, 10, 1544 16 of 28

Table 5. Decision matrix with the aggregated scores.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u

A1 0.10 2.50 5.00 1.33 3.15 5.63 0.70 3.13 5.63 0.70 1.93 4.38 1.30 2.55 5.00 2.53 5.00 7.50 4.38 6.88 9.38 0.10 2.50 5.00 0.10 2.50 5.00 0.10 1.90 4.38 0.10 0.10 2.50 1.30 2.55 5.00 1.93 4.38 6.88

A2 3.15 5.63 8.13 4.38 6.88 9.38 3.78 6.25 8.75 0.70 2.53 5.00 1.90 3.78 6.25 2.53 5.00 7.50 4.38 6.88 9.38 1.33 3.75 6.25 1.33 1.95 4.38 1.93 4.38 10.00 0.10 2.50 5.00 1.30 2.55 5.00 2.53 5.00 7.50

A3 6.88 9.38 10.00 4.38 6.88 9.38 4.38 6.88 9.38 2.53 5.00 7.50 2.50 5.00 7.50 3.13 5.63 8.13 4.38 6.88 9.38 1.95 4.38 6.25 3.13 5.63 8.13 1.93 4.38 7.50 0.10 2.50 5.00 2.50 5.00 7.50 3.13 5.63 8.13

A4 6.88 9.38 10.00 4.38 6.88 9.38 0.70 1.33 3.75 3.78 5.65 7.50 4.38 6.88 8.75 3.75 6.25 8.75 4.38 6.88 9.38 7.50 10.00 10.00 1.33 1.95 4.38 3.78 5.65 10.00 0.10 0.10 2.50 7.50 10.00 10.00 4.38 6.88 9.38

A5 6.88 9.38 10.00 6.25 8.75 9.38 4.38 6.88 9.38 5.00 7.50 9.38 4.38 6.88 8.75 3.75 6.25 8.13 4.38 6.88 9.38 5.63 8.13 10.00 1.95 4.38 6.25 5.00 7.50 10.00 7.50 10.00 10.00 5.00 7.50 10.00 6.88 9.38 10.00

A6 2.50 5.00 7.50 2.50 5.00 7.50 1.33 3.75 6.25 1.90 4.38 6.88 1.90 4.38 6.88 1.30 3.75 6.25 4.38 6.88 9.38 0.70 3.13 5.63 2.50 5.00 7.50 1.33 3.75 5.00 1.33 3.75 6.25 2.50 5.00 7.50 2.55 5.00 7.50

A7 2.50 5.00 7.50 1.90 3.78 6.25 0.10 2.50 5.00 1.90 4.38 6.88 1.90 3.78 6.25 1.90 4.38 6.88 4.38 6.88 9.38 0.70 3.13 5.63 2.50 5.00 7.50 0.10 0.70 10.00 0.10 2.50 5.00 2.50 5.00 7.50 1.90 4.38 6.88

A8 0.70 3.13 5.63 0.10 1.90 4.38 0.10 2.50 5.00 1.90 4.38 6.88 1.90 3.78 6.25 1.90 4.38 6.88 4.38 6.88 9.38 0.10 2.50 5.00 0.10 2.50 5.00 0.10 2.50 5.00 0.10 2.50 5.00 2.50 5.00 7.50 1.90 4.38 6.88

A9 0.70 3.13 5.63 0.10 1.90 4.38 0.10 2.50 5.00 1.90 4.38 6.88 1.90 3.78 6.25 1.90 4.38 6.88 4.38 6.88 9.38 0.10 2.50 5.00 1.90 4.38 6.88 0.10 2.50 10.00 0.10 2.50 5.00 2.50 5.00 7.50 1.90 4.38 6.88

A10 4.38 6.88 9.38 5.63 8.13 9.38 3.75 6.25 8.75 3.13 5.63 8.13 3.75 6.25 8.75 2.50 5.00 7.50 4.38 6.88 9.38 3.13 5.63 8.13 4.38 6.88 9.38 5.00 7.50 10.00 4.38 6.88 9.38 5.63 8.13 9.38 5.63 8.13 9.38

A11 2.50 5.00 7.50 2.50 5.00 7.50 1.90 4.38 6.88 2.50 5.00 7.50 2.50 5.00 7.50 2.53 5.00 7.50 4.38 6.88 9.38 0.70 3.13 5.63 2.50 5.00 7.50 2.50 5.00 7.50 2.50 5.00 7.50 3.75 6.25 8.13 6.25 8.75 9.38

A12 0.10 1.90 4.38 0.10 0.70 3.13 0.10 2.50 5.00 0.70 2.53 5.00 0.10 1.90 4.38 0.70 3.13 5.63 0.70 3.13 5.63 0.10 2.50 5.00 0.10 1.90 4.38 0.10 2.50 10.00 0.10 2.50 5.00 0.10 2.50 5.00 0.10 2.50 5.00

A13 0.10 1.90 4.38 0.10 1.90 4.38 0.10 2.50 5.00 0.70 2.53 5.00 0.10 1.90 4.38 0.70 3.13 5.63 0.70 3.13 5.63 0.10 2.50 5.00 0.10 2.50 5.00 0.10 2.50 10.00 0.10 2.50 5.00 0.10 2.50 5.00 0.10 2.50 5.00
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In order to obtain the aggregate weights of each criterion, the fuzzy weights of each
criterion are used, which are extracted by converting the linguistic terms of the four de-
cision makers (see Table 4) into fuzzy numbers according to Table 3; for example, the
fuzzy weights of criterion C7 of the four decision makers are D1 = (0.50, 0.75, 1.00),
D2 = (0.75, 1.00, 1.00), D3 = (0.75, 1.00, 1.00), D4 = (0.25, 0.50, 0.75), and applying Equation
(11), the aggregate fuzzy weight of C7 = (0.56, 0.81, 0.93) is obtained. The results of the
aggregate fuzzy weights of all the criteria are tabulated in Table 6.

Table 6. Aggregate fuzzy weights for each criterion.

Criteria Aggregate Fuzzy Weights

C1 (0.25, 0.50, 0.75)

C2 (0.01, 0.25, 0.50)

C3 (0.75, 1.00, 1.00)

C4 (0.50, 0.75, 1.00)

C5 (0.01, 0.25, 0.50)

C6 (0.31, 0.56, 0.81)

C7 (0.56, 0.81, 0.93)

C8 (0.32, 0.56, 0.81)

C9 (0.32, 0.56, 0.81)

C10 (0.25, 0.50, 0.75)

C11 (0.01, 0.25, 0.50)

C12 (0.75, 1.00, 1.00)

C13 (0.75, 1.00, 1.00)

Step 2 and Step 3. Using Equations (13) and (14), the normalized fuzzy decision matrix
is obtained. For criteria C1–12, Equation (13) is used because the objective of these criteria
is to maximize. For criterion C13, Equation (14) is applied because the aim is to minimize
the computation time criterion. Table A7 shows the results of the normalized matrix.

After normalization, the weighted normalized decision matrix is calculated using
Equation (16). The results are shown in Table A8.

Step 4. It is followed to calculate the FPIS and the FNIS because the positive triangular
fuzzy numbers fall within the range [0, 1], and the FPIS and the FNIS are obtained by
Equations (17) and (18). Then, the relative distance is calculated between the algorithms
(alternatives) and is computed with Equations (19) and (20) (see Table 7).

Table 7. Distances between alternatives.

D+ D−

A1 6.051 2.149
A2 5.596 2.724
A3 5.192 3.296
A4 5.136 3.370
A5 4.770 3.802
A6 5.595 2.748
A7 5.677 2.786
A8 5.861 2.467
A9 5.766 2.654
A10 4.918 3.597
A11 5.391 3.004
A12 6.176 2.279
A13 6.144 2.323
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Step 5. It is followed to determine the closeness coefficient using Equation (21). CCi
The obtained values represent the total score of each algorithm for a production planning
problem. Table 8 shows the obtained results.

Table 8. Closeness quotient and algorithms ranking.

Alternative Algorithm CCi Rank

A1 HA/Benders decomposition 0.262 13
A2 HA/LP and Fix 0.327 8
A3 HA/LP Relaxation 0.388 4
A4 MA/Tabu Search 0.396 3
A5 MA/Genetic Algorithm 0.444 1
A6 MA/Simulated annealing 0.329 6
A7 MA/Variable Neighborhood Search 0.329 7
A8 MTA Genetic Algorithm + Mathematical Model 0.296 10
A9 MTA Simulated annealing + Mathematical Model 0.315 9
A10 CPLEX (Commercial) 0.422 2
A11 CBC (Non-Commercial) 0.358 5
A12 BONMIN (Non-Commercial—Nonlinear) 0.270 12
A13 LINDO (Commercial—Linear/Nonlinear) 0.274 11

When applying the proposed methodological approach based on the Fuzzy TOPSIS
Method for a production planning problem, the GA is the most suitable solution method.
This finding is not new because the literature review by Guzman et al. [107] concludes that
GAs are the most widely used for this problem. Second in the ranking is CPLEX, which is
the most widespread solver [107].

5. Sensitivity Analysis

This section evaluates the effects of the different weightings of the criteria, i.e., we
aim to evaluate the answers given by decision makers and how they influence algorithm
selection. The aim of the sensitivity analysis is to make minor variations in the weights and
to observe the influence of this variation on algorithm choice. The weights for the rating of
algorithms range from very low importance (VLI) to very high importance (VHI). Using
this rating, we performed an analysis of 10 combinations, where each combination was
expressed as an experiment.

The criteria that were evaluated with the highest weight were the type of variables (C3),
the quality of solutions (C12) and computation time (C13) (see Table 4). These parameters
in a planning problem are dominant when choosing an algorithm. Therefore, we made
a minimal variation and looked for criteria with lower scores, such as: problem type
(C1), knowledge of algorithms (C10), dataset size (C7), programming knowledge (C8).
The details of the experiments are shown in Table 9, where the second column details
the changes in the weights of the criteria, and the third column shows the results of the
proximity coefficient, while the last column expresses the alternatives ranking.
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Table 9. Quantitative results of the sensitivity analysis.

Experiment
No.

Changes in Weights of
Criteria A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 Alternatives Ranking

E1 C1 = (0.50, 0.75, 1.00) 0.267 0.337 0.402 0.409 0.457 0.338 0.337 0.302 0.321 0.433 0.366 0.274 0.279
A5 > A10 > A4 > A3 > A11 >

A6 > A7 > A2 > A9 > A8 > A13
> A12 > A1

E2 C1 = (0.75, 1.00, 1.00) 0.268 0.341 0.410 0.418 0.465 0.341 0.341 0.304 0.323 0.439 0.370 0.275 0.279
A5 > A10 > A4 > A3 > A11 >

A6 > A2 > A7 > A9 > A8 > A13
> A12 > A1

E3 C3 = (0.50, 0.75, 1.00) 0.260 0.322 0.383 0.395 0.438 0.327 0.328 0.295 0.314 0.417 0.355 0.268 0.273
A5 > A10 > A4 > A3 > A11 >

A7 > A6 > A2 > A9 > A8 > A13
> A12 > A1

E4 C5 = (0.25, 0.50, 0.75) 0.268 0.335 0.398 0.408 0.455 0.338 0.337 0.304 0.323 0.434 0.367 0.274 0.279
A5 > A10 > A4 > A3 > A11 >

A6 > A7 > A2 > A9 > A8 > A13
> A12 > A1

E5 C10 = (0.50, 0.75, 1.00) 0.266 0.336 0.396 0.406 0.455 0.335 0.336 0.301 0.323 0.434 0.366 0.278 0.282
A5 > A10 > A4 > A3 > A11 >

A2 > A7 > A6 > A9 > A8 > A13
> A12 > A1

E6 C10 = (0.75, 1.00, 1.00) 0.267 0.339 0.399 0.410 0.461 0.338 0.336 0.302 0.324 0.440 0.370 0.278 0.283
A5 > A10 > A4 > A3 > A11 >

A2 > A6 > A7 > A9 > A8 > A13
> A12 > A1

E7 C8 = (0.01, 0.25, 0.50),
C12= (0.50, 0.75, 1.00) 0.254 0.317 0.376 0.370 0.422 0.319 0.319 0.287 0.306 0.404 0.346 0.262 0.267

A5 > A10 > A3 > A4 > A11 >
A6 > A7 > A2 > A9 > A8 > A13

> A12 > A1

E8 C10 = (0.75, 1.00, 1.00), C11
= (0.50, 0.75, 1.00) 0.268 0.342 0.402 0.411 0.473 0.342 0.339 0.305 0.326 0.448 0.375 0.280 0.285

A5 > A10 > A4 > A3 > A11 >
A6 > A2 > A7 > A9 > A8 > A13

> A12 > A1

E9 C7 = (0.50, 0.75, 1.00) 0.262 0.327 0.388 0.396 0.443 0.329 0.329 0.296 0.315 0.422 0.358 0.270 0.275
A5 > A10 > A4 > A3 > A11 >

A6 > A7 > A2 > A9 > A8 > A13
> A12 > A1

E10 C7 = (0.75, 1.00, 1.00) 0.268 0.333 0.394 0.402 0.449 0.335 0.335 0.302 0.321 0.428 0.364 0.272 0.277
A5 > A10 > A4 > A3 > A11 >

A6 > A7 > A2 > A9 > A8 > A13
> A12 > A1
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The sensitivity analysis shows that alternatives A5 (GA), A10 (CPLEX), A4 (Tabu
Search) have the best scores and occupy the first three positions. Hence, the variation
in the weights in the chosen criteria minimally affects these alternatives; for example,
A5 reaches the first position in all the experiments. The main variations occur in the sixth,
seventh and eighth positions with alternatives A2, A6 and A7. However, the last ranking
positions remain unchanged in the classification. In this context, decision makers can use
these variations or make other modifications to weightings to prioritize a criterion and to
thus facilitate the evaluation process in decision making.

6. Conclusions

The complexity of real-world problems should be seen not only as an obstacle, but also
as a research challenge for effective solutions for large-scale planning problems. Relatively
small companies often face very complex problems.

It is usually very difficult for production planners in companies to determine or
choose an algorithm. The algorithm selection process normally involves the experimental
evaluation of several algorithms with different dataset sizes. However, these sets of
experiments require considerable computational resources and long processing times. This
adds to the disadvantage of having fewer resources to invest in commercial solvers. In
addition, efforts often have to be duplicated when attempting to replicate the algorithms or
models available in the literature.

To overcome these drawbacks, the methodological approach based on the fuzzy
TOPSIS proposed herein intends to be a support tool to select a solution method for replen-
ishment, production and distribution planning problems. To this end, 13 different criteria
were defined and used to select nine different algorithm types (heuristic, metaheuristic, and
matheuristic) and four solvers (commercial and non-commercial) that are often employed
in planning problems. All these criteria address several important dimensions when solv-
ing a planning problem. These dimensions are related to the computational difficulty of
the planning problem, programming skills, mathematical skills, algorithmic skills, mathe-
matical modeling software skills, and also to the expected computational performance of
the solution methods. These criteria were analyzed based on the linguistic values given
by four planning experts from different manufacturing companies. The problem selected
to apply the proposed approach was that of production planning. For this problem, the
results of the methodology showed that the GA was the best alternative, while Benders’
decomposition was the worst. Given our study results, it can be concluded that it is possible
to select a set of suitable candidate algorithms for solving optimization problems with the
proposed approach. In this way, not only can one algorithm be selected, but so can other
algorithms that provide similar solutions at the same time. The results of this methodology
can guide companies to choose whether to use a commercial or non-commercial algorithm
or solver. This can help companies to determine whether they should invest in a solver or
use mathematical modeling or algorithm programming software and, at the same time, to
understand planning staff’s training needs.

There are different approaches for algorithm selection [44,70,75,79]. These approaches
are heuristic, metaheuristic and AI, and they offer benefits and disadvantages. However,
these techniques can be restrictive for companies because they involve a large number of
computational resources and experiments that can be affected by accuracy, the number of
tested instances, instance generation, consistency, AI techniques, and training time. The
proposed approach requires very few resources, is very useful thanks to its simplicity and
is easily replicable. The main limitation of this technique is the appropriate selection of
criteria and the balance between them, which is a subjective issue that requires experts in
the planning problems field, not to mention the personal bias of experts’ opinions.

Future research could be conducted to experiment the proposed approach with the
portfolio of algorithms and solvers defined in [107], where some 50 algorithms are identi-
fied, including optimizing, heuristic, metaheuristic and matheuristic algorithms, as well
as different types of commercial solvers. Alternatives and criteria could be evaluated
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with more decision makers. Other MCDM techniques such as ELECTRE, PROMETHEE,
intuitionistic fuzzy TOPSIS, or novel methods such as the performance calculation tech-
nique of the integrated multiple multi-attribute decision making (PCIM-MADM) [120],
which incorporates four techniques (COPRAS, GRA, SAW and VIKOR) into a single final
classification index, could be used.
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Appendix A

Table A1 shows a section of the questionnaire format used by decision makers to eval-
uate the algorithm selection criteria. Table A2 presents the questionnaire used to score the
chosen alternatives, i.e., the selected algorithms and solvers against the 13 identified criteria.

Table A1. Questionnaire used to know decision makers’ preferences for the identified criteria.

Very Low
Importance
(VLI)

Low
Importance
(LI)

Medium
Importance
(MI)

High
Importance
(HI)

Very High
Importance
(VHI)

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
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Table A2. Questionnaire used to know the decision makers’ preferences for the 13 alternatives
according to the criteria.

C1

Very Low (VL) Low (L) Moderate (M) High (H) Very High
(VH)

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13

Tables A3–A6 show the decision makers’ alternatives ratings against all the criteria

Table A3. Decision maker 1′s linguistic assessment.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

A1 L H M M M M M L L L VL M H
A2 M H H M M M M L VL L L M H
A3 VH H H M M M M L M L L M H
A4 VH H VL M M M M VH VL H VL VH H
A5 VH VH H M M M M H L H VH H VH
A6 M M L M M M M L M L L M L
A7 M M L M M M M L M VL L M M
A8 L L L M M M M L L L L M M
A9 L L L M M M M L M L L M M
A10 H VH H M H M M M H H H VH VH
A11 M M M M M M M L M M M M VH
A12 L L L M L M M L L L L L L

Table A4. Decision maker 2′s linguistic assessment.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

A1 L L L L VL L H L L VL VL VL M
A2 H H H L M L H L VL M L VL M
A3 VH H H H M M H L M M L M M
A4 VH H VL H M M H VH VL H VL VH H
A5 VH VH H H M M H H L H VH H VH
A6 M M L M M L H L M L L M L
A7 M M L M VL L H L M VL L M M
A8 L L L M VL L H L L L L M M
A9 L L L M VL L H L M L L M M
A10 H VH H M H M H M H VH H VH VH
A11 M M M M M L H L M M M M VH
A12 L VL L VL VL L L L L L L L L
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Table A5. Decision maker 3′s linguistic assessment.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

A1 L VL L VL VL M H L L L VL VL L
A2 L M L L VL M H H H H L VL M
A3 H M M L M M H VH H H L M M
A4 H M M VL VH H H VH H VL VL VH H
A5 H M M VH H VH H VH VH H VH H VH
A6 M M L L M L H M M H H M H
A7 M VL L L M M H M M L L M M
A8 M VL L L M M H L L L L M M
A9 M VL L L M M H L L L L M M
A10 M H M H M M H H M M M M M
A11 M M L M M M H M M M M M M
A12 VL VL L L L L L L VL L L L L
A13 VL VL L L L L L L L L L L L

Table A6. Decision maker 4′s linguistic assessment.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

A1 L L L VL M H H L L L VL M L
A2 H H H VL M H H L VL L L M L
A3 VH H H M M H H L M L L M M
A4 VH H VL VH H H H VH VL H VL VH M
A5 VH VH H H VH M H H L H VH H H
A6 M M H M L M H L M L L M H
A7 M M L M M M H L M VL L M L
A8 L L L M M M H L L L L M L
A9 L L L M M M H L M L L M L
A10 H M M M M M H M H H H H H
A11 M M M M M H H L M M M VH VH
A12 L VL L L L L L L L L L L L
A13 L L L L L L L L L L L L L

Table A7. Normalized fuzzy decision matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u

A1 0.01 0.25 0.50 0.14 0.34 0.60 0.07 0.33 0.60 0.07 0.21 0.47 0.15 0.29 0.57 0.29 0.57 0.86 0.47 0.73 1.00 0.01 0.25 0.50 0.01 0.27 0.53 0.01 0.19 0.44 0.01 0.01 0.25 0.13 0.26 0.50 0.01 0.02 0.05

A2 0.32 0.56 0.81 0.47 0.73 1.00 0.40 0.67 0.93 0.07 0.27 0.53 0.22 0.43 0.71 0.29 0.57 0.86 0.47 0.73 1.00 0.13 0.38 0.63 0.14 0.21 0.47 0.19 0.44 1.00 0.01 0.25 0.50 0.13 0.26 0.50 0.01 0.02 0.04

A3 0.69 0.94 1.00 0.47 0.73 1.00 0.47 0.73 1.00 0.27 0.53 0.80 0.29 0.57 0.86 0.36 0.64 0.93 0.47 0.73 1.00 0.20 0.44 0.63 0.33 0.60 0.87 0.19 0.44 0.75 0.01 0.25 0.50 0.25 0.50 0.75 0.01 0.02 0.03

A4 0.69 0.94 1.00 0.47 0.73 1.00 0.07 0.14 0.40 0.40 0.60 0.80 0.50 0.79 1.00 0.43 0.71 1.00 0.47 0.73 1.00 0.75 1.00 1.00 0.14 0.21 0.47 0.38 0.57 1.00 0.01 0.01 0.25 0.75 1.00 1.00 0.01 0.01 0.02

A5 0.69 0.94 1.00 0.67 0.93 1.00 0.47 0.73 1.00 0.53 0.80 1.00 0.50 0.79 1.00 0.43 0.71 0.93 0.47 0.73 1.00 0.56 0.81 1.00 0.21 0.47 0.67 0.50 0.75 1.00 0.75 1.00 1.00 0.50 0.75 1.00 0.01 0.01 0.01

A6 0.25 0.50 0.75 0.27 0.53 0.80 0.14 0.40 0.67 0.20 0.47 0.73 0.22 0.50 0.79 0.15 0.43 0.71 0.47 0.73 1.00 0.07 0.31 0.56 0.27 0.53 0.80 0.13 0.38 0.50 0.13 0.38 0.63 0.25 0.50 0.75 0.01 0.02 0.04

A7 0.25 0.50 0.75 0.20 0.40 0.67 0.01 0.27 0.53 0.20 0.47 0.73 0.22 0.43 0.71 0.22 0.50 0.79 0.47 0.73 1.00 0.07 0.31 0.56 0.27 0.53 0.80 0.01 0.07 1.00 0.01 0.25 0.50 0.25 0.50 0.75 0.01 0.02 0.05

A8 0.07 0.31 0.56 0.01 0.20 0.47 0.01 0.27 0.53 0.20 0.47 0.73 0.22 0.43 0.71 0.22 0.50 0.79 0.47 0.73 1.00 0.01 0.25 0.50 0.01 0.27 0.53 0.01 0.25 0.50 0.01 0.25 0.50 0.25 0.50 0.75 0.01 0.02 0.05

A9 0.07 0.31 0.56 0.01 0.20 0.47 0.01 0.27 0.53 0.20 0.47 0.73 0.22 0.43 0.71 0.22 0.50 0.79 0.47 0.73 1.00 0.01 0.25 0.50 0.20 0.47 0.73 0.01 0.25 1.00 0.01 0.25 0.50 0.25 0.50 0.75 0.01 0.02 0.05

A10 0.44 0.69 0.94 0.60 0.87 1.00 0.40 0.67 0.93 0.33 0.60 0.87 0.43 0.71 1.00 0.29 0.57 0.86 0.47 0.73 1.00 0.31 0.56 0.81 0.47 0.73 1.00 0.50 0.75 1.00 0.44 0.69 0.94 0.56 0.81 0.94 0.01 0.01 0.02

A11 0.25 0.50 0.75 0.27 0.53 0.80 0.20 0.47 0.73 0.27 0.53 0.80 0.29 0.57 0.86 0.29 0.57 0.86 0.47 0.73 1.00 0.07 0.31 0.56 0.27 0.53 0.80 0.25 0.50 0.75 0.25 0.50 0.75 0.38 0.63 0.81 0.01 0.01 0.02

A12 0.01 0.19 0.44 0.01 0.07 0.33 0.01 0.27 0.53 0.07 0.27 0.53 0.01 0.22 0.50 0.08 0.36 0.64 0.07 0.33 0.60 0.01 0.25 0.50 0.01 0.20 0.47 0.01 0.25 1.00 0.01 0.25 0.50 0.01 0.25 0.50 0.02 0.04 1.00

A13 0.01 0.19 0.44 0.01 0.20 0.47 0.01 0.27 0.53 0.07 0.27 0.53 0.01 0.22 0.50 0.08 0.36 0.64 0.07 0.33 0.60 0.01 0.25 0.50 0.01 0.27 0.53 0.01 0.25 1.00 0.01 0.25 0.50 0.01 0.25 0.50 0.02 0.04 1.00
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Table A8. Weighted normalized fuzzy decision matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u l m u

A1 0.00 0.13 0.38 0.00 0.08 0.30 0.06 0.33 0.60 0.04 0.15 0.47 0.00 0.07 0.29 0.09 0.32 0.70 0.26 0.60 0.94 0.00 0.14 0.41 0.00 0.15 0.43 0.00 0.10 0.33 0.00 0.00 0.13 0.10 0.26 0.50 0.01 0.02 0.05

A2 0.08 0.28 0.61 0.00 0.18 0.50 0.30 0.67 0.93 0.04 0.20 0.53 0.00 0.11 0.36 0.09 0.32 0.70 0.26 0.60 0.94 0.04 0.21 0.51 0.04 0.12 0.38 0.05 0.22 0.75 0.00 0.06 0.25 0.10 0.26 0.50 0.01 0.02 0.04

A3 0.17 0.47 0.75 0.00 0.18 0.50 0.35 0.73 1.00 0.13 0.40 0.80 0.00 0.14 0.43 0.11 0.36 0.75 0.26 0.60 0.94 0.06 0.25 0.51 0.11 0.34 0.70 0.05 0.22 0.56 0.00 0.06 0.25 0.19 0.50 0.75 0.01 0.02 0.03

A4 0.17 0.47 0.75 0.00 0.18 0.50 0.06 0.14 0.40 0.20 0.45 0.80 0.01 0.20 0.50 0.13 0.40 0.81 0.26 0.60 0.94 0.24 0.56 0.81 0.04 0.12 0.38 0.10 0.28 0.75 0.00 0.00 0.13 0.56 1.00 1.00 0.01 0.01 0.02

A5 0.17 0.47 0.75 0.01 0.23 0.50 0.35 0.73 1.00 0.27 0.60 1.00 0.01 0.20 0.50 0.13 0.40 0.75 0.26 0.60 0.94 0.18 0.46 0.81 0.07 0.26 0.54 0.13 0.38 0.75 0.01 0.25 0.50 0.38 0.75 1.00 0.01 0.01 0.01

A6 0.06 0.25 0.56 0.00 0.13 0.40 0.11 0.40 0.67 0.10 0.35 0.73 0.00 0.13 0.39 0.05 0.24 0.58 0.26 0.60 0.94 0.02 0.18 0.46 0.08 0.30 0.65 0.03 0.19 0.38 0.00 0.09 0.31 0.19 0.50 0.75 0.01 0.02 0.04

A7 0.06 0.25 0.56 0.00 0.10 0.33 0.01 0.27 0.53 0.10 0.35 0.73 0.00 0.11 0.36 0.07 0.28 0.64 0.26 0.60 0.94 0.02 0.18 0.46 0.08 0.30 0.65 0.00 0.04 0.75 0.00 0.06 0.25 0.19 0.50 0.75 0.01 0.02 0.05

A8 0.02 0.16 0.42 0.00 0.05 0.23 0.01 0.27 0.53 0.10 0.35 0.73 0.00 0.11 0.36 0.07 0.28 0.64 0.26 0.60 0.94 0.00 0.14 0.41 0.00 0.15 0.43 0.00 0.13 0.38 0.00 0.06 0.25 0.19 0.50 0.75 0.01 0.02 0.05

A9 0.02 0.16 0.42 0.00 0.05 0.23 0.01 0.27 0.53 0.10 0.35 0.73 0.00 0.11 0.36 0.07 0.28 0.64 0.26 0.60 0.94 0.00 0.14 0.41 0.06 0.26 0.60 0.00 0.13 0.75 0.00 0.06 0.25 0.19 0.50 0.75 0.01 0.02 0.05

A10 0.11 0.34 0.70 0.01 0.22 0.50 0.30 0.67 0.93 0.17 0.45 0.87 0.00 0.18 0.50 0.09 0.32 0.70 0.26 0.60 0.94 0.10 0.32 0.66 0.15 0.41 0.81 0.13 0.38 0.75 0.00 0.17 0.47 0.42 0.81 0.94 0.01 0.01 0.02

A11 0.06 0.25 0.56 0.00 0.13 0.40 0.15 0.47 0.73 0.13 0.40 0.80 0.00 0.14 0.43 0.09 0.32 0.70 0.26 0.60 0.94 0.02 0.18 0.46 0.08 0.30 0.65 0.06 0.25 0.56 0.00 0.13 0.38 0.28 0.63 0.81 0.01 0.01 0.02

A12 0.00 0.10 0.33 0.00 0.02 0.17 0.01 0.27 0.53 0.04 0.20 0.53 0.00 0.05 0.25 0.03 0.20 0.52 0.04 0.27 0.56 0.00 0.14 0.41 0.00 0.11 0.38 0.00 0.13 0.75 0.00 0.06 0.25 0.01 0.25 0.50 0.02 0.04 1.00

A13 0.00 0.10 0.33 0.00 0.05 0.23 0.01 0.27 0.53 0.04 0.20 0.53 0.00 0.05 0.25 0.03 0.20 0.52 0.04 0.27 0.56 0.00 0.14 0.41 0.00 0.15 0.43 0.00 0.13 0.75 0.00 0.06 0.25 0.01 0.25 0.50 0.02 0.04 1.00
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85. Bożejko, W.; Gnatowski, A.; Niżyński, T.; Affenzeller, M.; Beham, A. Local optima networks in solving algorithm selection
problem for TSP. Adv. Intell. Syst. Comput. 2019, 761, 83–93. [CrossRef]

86. Drozdov, G.; Zabashta, A.; Filchenkov, A. Graph convolutional network based generative adversarial networks for the algorithm
selection problem in classification. In Proceedings of the International Conference on Control, Robotics and Intelligent System,
Xiamen, China, 27–29 October 2020; pp. 88–92. [CrossRef]

87. Boas, M.G.V.; Santos, H.; Merschmann, L.H.D.C.; Berghe, G.V. Optimal decision trees for the algorithm selection problem: Integer
programming based approaches. Int. Trans. Oper. Res. 2021, 28, 2759–2781. [CrossRef]

88. Marrero, A.; Segredo, E.; Leon, C. A parallel genetic algorithm to speed up the resolution of the algorithm selection problem. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 1978–1981.

89. Müller, D.; Müller, M.G.; Kress, D.; Pesch, E. An algorithm selection approach for the flexible job shop scheduling problem:
Choosing constraint programming solvers through machine learning. Eur. J. Oper. Res. 2022; in press. [CrossRef]

90. Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.-G. Machine learning at the service
of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422.
[CrossRef]

91. Radcliffe, N.J. The algebra of genetic algorithms. Ann. Math. Artif. Intell. 1994, 10, 339–384. [CrossRef]
92. Hutter, F.; Xu, L.; Hoos, H.; Leyton-Brown, K. Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 2014, 206,

79–111. [CrossRef]
93. Ozsahin, I.; Ozsahin, D.U.; Uzun, B.; Mustapha, M.T. Chapter 1—Introduction. In Applications of Multi-Criteria Decision-Making

Theories in Healthcare and Biomedical Engineering; Ozsahin, I., Ozsahin, D.U., Uzun, B., Eds.; Academic Press: Cambridge, MA,
USA, 2021; pp. 1–2.

94. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
95. Hwang, C.-L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making; Springer:

Berlin/Heidelberg, Germany, 1981; pp. 58–191.
96. Kannan, D.; De Sousa Jabbour, A.B.L.; Jabbour, C.J.C. Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS

applied to a Brazilian electronics company. Eur. J. Oper. Res. 2014, 233, 432–447. [CrossRef]
97. Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9.

[CrossRef]
98. Bellman, E.; Zadeh, L.A. A fuzzy environment. Manage. Sci. 1970, 17, 141–164. [CrossRef]
99. Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic Press: Cambridge, MA, USA, 1980.
100. Chakraborty, C.; Chakraborty, D. A theoretical development on a fuzzy distance measure for fuzzy numbers. Math. Comput.

Model. 2006, 43, 254–261. [CrossRef]
101. Ploskas, N.; Papathanasiou, J. A decision support system for multiple criteria alternative ranking using TOPSIS and VIKOR in

fuzzy and nonfuzzy environments. Fuzzy Sets Syst. 2019, 377, 1–30. [CrossRef]
102. Shen, L.; Olfat, L.; Govindan, K.; Khodaverdi, R.; Diabat, A. A fuzzy multi criteria approach for evaluating green supplier’s

performance in green supply chain with linguistic preferences. Resour. Conserv. Recycl. 2013, 74, 170–179. [CrossRef]
103. Wang, T.-C.; Chang, T.-H. Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Syst.

Appl. 2007, 33, 870–880. [CrossRef]
104. Afful-Dadzie, E.; Nabareseh, S.; Afful-Dadzie, A.; Oplatková, Z.K. A fuzzy TOPSIS framework for selecting fragile states for

support facility. Qual. Quant. 2015, 49, 1835–1855. [CrossRef]
105. Piya, S.; Shamsuzzoha, A.; Khadem, M. An approach for analysing supply chain complexity drivers through interpretive

structural modelling. Int. J. Logist. Res. Appl. 2020, 23, 311–336. [CrossRef]
106. Guzmán, E.; Poler, R.; Andrés, B. Un análisis de revisiones de modelos y algoritmos para la optimización de planes de

aprovisionamiento, producción y distribución de la cadena de suministro. Dir. Organ. 2020, 70, 28–52. [CrossRef]
107. Guzman, E.; Andres, B.; Poler, R. Models and algorithms for production planning, scheduling and sequencing problems: A

holistic framework and a systematic review. J. Ind. Inf. Integr. 2021, 27, 100287. [CrossRef]
108. Stewart, G. Supply-chain operations reference model (SCOR): The first cross-industry framework for integrated supply-chain

management. Logist. Inf. Manag. 1997, 10, 62–67. [CrossRef]
109. Michalewicz, Z.; Fogel, D.B. How to Solve It: Modern Heuristics; Springer Science & Business Media: Berlin, Germany, 2013.
110. Tasan, A.S.; Gen, M. A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries.

Comput. Ind. Eng. 2012, 62, 755–761. [CrossRef]
111. Ku, W.-Y.; Beck, J.C. Mixed Integer Programming models for job shop scheduling: A computational analysis. Comput. Oper. Res.

2016, 73, 165–173. [CrossRef]
112. Fahimnia, B.; Farahani, R.Z.; Marian, R.; Luong, L. A review and critique on integrated production–distribution planning models

and techniques. J. Manuf. Syst. 2013, 32, 1–19. [CrossRef]
113. Gavrilas, M. Heuristic and metaheuristic optimization techniques with application to power systems. In Proceedings of the

International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, Timisoara, Romania,
21–23 October 2010; pp. 95–103.

114. Swan, J.; Adriaensen, S.; Brownlee, A.E.; Hammond, K.; Johnson, C.G.; Kheiri, A.; Krawiec, F.; Merelo, J.; Minku, L.L.; Özcan, E.;
et al. Metaheuristics “In the Large”. Eur. J. Oper. Res. 2021, 297, 393–406. [CrossRef]

http://doi.org/10.1007/978-3-319-91446-6_9
http://doi.org/10.1145/3437802.3437818
http://doi.org/10.1111/itor.12724
http://doi.org/10.1016/j.ejor.2022.01.034
http://doi.org/10.1016/j.ejor.2021.04.032
http://doi.org/10.1007/BF01531276
http://doi.org/10.1016/j.artint.2013.10.003
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1016/j.ejor.2013.07.023
http://doi.org/10.1016/S0165-0114(97)00377-1
http://doi.org/10.1287/mnsc.17.4.B141
http://doi.org/10.1016/j.mcm.2005.09.025
http://doi.org/10.1016/j.fss.2019.01.012
http://doi.org/10.1016/j.resconrec.2012.09.006
http://doi.org/10.1016/j.eswa.2006.07.003
http://doi.org/10.1007/s11135-014-0062-3
http://doi.org/10.1080/13675567.2019.1691514
http://doi.org/10.37610/dyo.v0i70.567
http://doi.org/10.1016/j.jii.2021.100287
http://doi.org/10.1108/09576059710815716
http://doi.org/10.1016/j.cie.2011.11.025
http://doi.org/10.1016/j.cor.2016.04.006
http://doi.org/10.1016/j.jmsy.2012.07.005
http://doi.org/10.1016/j.ejor.2021.05.042


Mathematics 2022, 10, 1544 28 of 28

115. Boschetti, M.A.; Maniezzo, V.; Roffilli, M.; Röhler, A.B. Matheuristics: Optimization, simulation and control. In International
Workshop on Hybrid Metaheuristics; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5818,
pp. 171–177. [CrossRef]

116. Sun, C.-C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37,
7745–7754. [CrossRef]

117. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249.
[CrossRef]

118. Nădăban, S.; Dzitac, S.; Dzitac, I. Fuzzy TOPSIS: A General View. Procedia Comput. Sci. 2016, 91, 823–831. [CrossRef]
119. Torlak, G.; Sevkli, M.; Sanal, M.; Zaim, S. Analyzing business competition by using fuzzy TOPSIS method: An example of Turkish

domestic airline industry. Expert Syst. Appl. 2011, 38, 3396–3406. [CrossRef]
120. Lo, H.-W.; Liaw, C.-F.; Gul, M.; Lin, K.-Y. Sustainable supplier evaluation and transportation planning in multi-level supply chain

networks using multi-attribute- and multi-objective decision making. Comput. Ind. Eng. 2021, 162, 107756. [CrossRef]

http://doi.org/10.1007/978-3-642-04918-7_13
http://doi.org/10.1016/j.eswa.2010.04.066
http://doi.org/10.1016/0020-0255(75)90036-5
http://doi.org/10.1016/j.procs.2016.07.088
http://doi.org/10.1016/j.eswa.2010.08.125
http://doi.org/10.1016/j.cie.2021.107756

	Introduction 
	Algorithm Selection Problem Literature Review 
	Solution Methodology 
	Fuzzy Set Theory and Fuzzy Numbers 
	The Fuzzy TOPSIS Method 

	The Methodological Approach for the Algorithm Selection Problem 
	Stage 1—Define Criteria and Alternatives 
	Stage 2—Problem Statement 
	Stage 3—Application of the Fuzzy TOPSIS Method 

	Sensitivity Analysis 
	Conclusions 
	Appendix A
	References

