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Abstract: Traffic forecasting plays an important role in intelligent transportation systems. However,
the prediction task is highly challenging due to the mixture of global and local spatiotemporal depen-
dencies involved in traffic data. Existing graph neural networks (GNNs) typically capture spatial
dependencies with the predefined or learnable static graph structure, ignoring the hidden dynamic
patterns in traffic networks. Meanwhile, most recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) cannot effectively capture temporal correlations, especially for long-term
temporal dependencies. In this paper, we propose a spatial–temporal attention graph convolution
network (STAGCN), which acquires a static graph and a dynamic graph from data without any prior
knowledge. The static graph aims to model global space adaptability, and the dynamic graph is
designed to capture local dynamics in the traffic network. A gated temporal attention module is
further introduced for long-term temporal dependencies, where a causal-trend attention mechanism
is proposed to increase the awareness of causality and local trends in time series. Extensive experi-
ments on four real-world traffic flow datasets demonstrate that STAGCN achieves an outstanding
prediction accuracy improvement over existing solutions.

Keywords: deep learning; traffic forecasting; graph convolution networks; attention mechanism;
spatial–temporal graph data

MSC: 68T07

1. Introduction

Traffic forecasting aims to predict future traffic conditions (e.g., traffic flow, interval
speed) based on historical traffic information that is as long as the prediction interval.
In general, traffic prediction tasks can be divided into two categories according to the
length of the prediction interval, namely short-term (5~30 min) and long-term (30~60 min)
prediction tasks [1]. Traffic forecasting also plays an important role in Intelligent Trans-
portation Systems (ITS), and it remains challenging due to its complex and changing
spatial–temporal dependencies in real-world road networks [2]. Traditional forecasting
methods, such as the autoregressive integrated moving average (ARIMA) model [3] and
Kalman filter [4], have a solid theoretical foundation, but they must rely on the stationarity
assumption. Furthermore, these methods are mainly applied to univariate time series,
which restricts their applications in real-world scenarios. With the development of data
availability and information computation, deep learning-based prediction work achieves
remarkable performance. Deep neural networks for spatiotemporal sequence modeling
are mainly divided into three categories: recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and graph convolutional networks (GCNs) [5]. RNN-based
approaches employ hidden recurrent units to retain historical information, but they may
suffer from vanishing gradient issues when modeling long-term temporal dependencies
(i.e., temporal correlations between distant time steps in long sequences). CNN-based
approaches propagate spatiotemporal information under the assumption that traffic data
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are generated from grid-distributed sensors, and they fail to explicitly capture spatial corre-
lations in non-Euclidean data. GCN-based approaches receive widespread attention due to
their high adaptability in dealing with non-Euclidean data. At present, most GCNs rely on
the predefined static graph structure with prior knowledge. A fine-grained graph structure
will bring great improvements for prediction performance, and how to obtain the optimal
graph structure becomes a primary challenge. In most cases, complex spatiotemporal data
are not equipped with an explicit graph structure, because connections among arbitrary
nodes (e.g., sensors of traffic network) should be generated in a data-oriented manner.
Graph WaveNet [6] proposes a self-adaptive adjacency matrix to preserve hidden spatial
correlations. Wu et al. [7] extract a sparse graph adjacency matrix adaptively based on data
and updates the matrix during training. Yu et al. [8] introduce iterative learning for graph
learning by leveraging graph regularization. While the mentioned graph-based methods
have been successfully used in real-world applications, including but not limited to action
recognition, point cloud segmentation, and time series forecasting, they will still face the
following challenges:

• Global adaptability and local dynamics. Most GCNs only focus on constructing an
adaptive graph matrix to capture long-term or global space dependencies in traffic
data, while overlooking the fact that the correlation between local nodes is changing
significantly over time. As shown in Figure 1, sudden traffic accidents may lead to
local changes in spatial correlation among nodes. The primary question is how to keep
the balance between global adaptability and local dynamics in an end-to-end work.

• Long-term temporal correlations. Current graph-based methods are ineffective to
model long-term temporal dependencies. Existing methods either integrate GCNs into
RNNs or CNNs, in which small prediction errors at each time step may be magnified as
the prediction interval grows. This type of error forward propagation makes long-term
forecasting more challenging.

(a) Detection sensors on road network (b) Traffic flow of different detectors

Figure 1. Example of spatiotemporal dependencies in PEMSD8 Dataset. (a) Global space correlation
is dominated by the road network structure. (b) Sudden events, as marked with black boxes in
the figure.

In this paper, we propose a novel approach to overcome the aforementioned chal-
lenges. Our framework consists of three components: graph learning layer, adaptive graph
convolution layer, and gated temporal attention module. For challenge 1, we propose
a graph learning layer in which two types of graph matrices can be learned from data,
namely a static graph and dynamic graph. The static graph aims to explore global space
adaptability in traffic graph networks, and graph regularization is further employed to
control the quality of the static graph. The dynamic graph is designed to capture the
locally changing information among nodes. For challenge 2, we propose a gated temporal
attention module, which adopts multi-head self-attention to address long-term prediction
issues. In contrast to RNNs and CNNs, the attention mechanism aggregates temporal
features through a summation function with dynamically generated weights. This leads to
an effective global receptive field and allows the model to focus on significant historical
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information, which can alleviate error forward propagation. To be more aware of causality
and local trends in time series, we introduce a causal-trend attention mechanism instead of
using traditional multi-head attention directly. In summary, our main contributions are as
follows:

• We propose a novel graph learning layer to explore the interactions between global
space adaptability and local dynamics in traffic networks without any guidance of
prior knowledge. The static graph aims to model global adaptability, and the dynamic
graph is designed to capture local spatial changes.

• We propose a gated temporal attention module to model long-term temporal depen-
dencies. Furthermore, we design a causal-trend attention mechanism that enables our
model to extract causality and local trends in time series.

• Extensive experiments are conducted on four public traffic datasets, and the experi-
mental results show that our method consistently outperforms all baseline methods.

2. Related work
2.1. Traffic Forecasting

Traffic forecasting has been extensively studied in the past few decades. Earlier work
is usually based on the traditional statistical methods, such as ARIMA and the Kalman
filter. Although statistical methods are widely adopted for traffic forecasting due to their
simplicity and interpretability, they have to rely on the stationary assumption and do not
scale well for complex traffic data. Deep learning approaches can effectively capture the
non-linearity of traffic data. Many of them initially employed RNNs [9] or TCNs [10]
to model temporal dependency, ignoring the spatial correlations in traffic data. Later,
researchers used CNNs [11] to extract spatial dependencies in Euclidean space, but this
fails to effectively process non-Euclidean data and limits the prediction performance.

Recently, many studies have attempted to employ graph convolution methods to
model spatial and temporal dependencies in non-Euclidean road networks. Most of them
assume that a well-defined graph structure has already existed. Li et al. [12] integrate
diffusion convolution into gated recurrent units (GRUs), where the predefined graph ma-
trix is generated from road network distances. Now, many researchers are devoted to
finding optimal graph structures in a data-driven way. Wang et al. [13] propose a new adap-
tive feature graph to learn correlations between topological structures and node features.
Song et al. [14] propose a spatiotemporal graph to simultaneously capture the localized
spatiotemporal dependencies, which requires prior graph knowledge and additional graph
construction operation. The above graph-based methods mainly concentrate on adaptive
graph construction or heavily rely on the predefined graph structure, ignoring dynamic
correlations in traffic data.

2.2. Graph Convolutional Network

Graph convolutional networks (GCNs) have achieved extraordinary performance on
several types of graph-based tasks, such as node classification [15], link prediction [16],
and clustering [17]. From the perspective of convolution operators, GCNs have two
mainstreams, namely spectral approaches and spatial approaches. Spectral approaches
smooth graph signals in the spectral domain through Fourier transform. Spatial approaches
define convolution operations directly on the graph based on the topology structure.
Velickovic et al. [18] assign different weights to neighbor nodes via an attention mechanism.
Li et al. [19] incorporate residual connections to increase the depth of GCNs and alleviates
oversmoothing and vanishing gradient issues. In these methods, the graph adjacency matrix
is regarded as prior knowledge and is static throughout the training phase. Wang et al. [20]
employ distance metrics to adaptively learn a similarity graph weight matrix for label
learning. The generated matrix relies on dynamic node representation and may hamper
model performance on graphs where the node set keeps changing.
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2.3. Attention Mechanism

The attention mechanism has been widely used in diverse application domains due to
its high efficiency and flexibility in modeling dependencies. The core idea of the attention
mechanism is to adaptively focus on significant parts when processing massive amounts
of information. Fukui et al. [21] extend the attention mechanism to a response-based
visual explanation model and achieves remarkable performance. Yan et al. [22] employ
attention mechanisms to adaptively encode local and global point cloud context information.
Zheng et al. [23] propose a spatiotemporal attention mechanism to explore dynamic spatial
and non-linear temporal correlations. In this paper, we adopt an attention mechanism for
long-term temporal dependency modeling.

3. Methodology
3.1. Preliminaries

Traffic Networks: The traffic prediction task can be expressed as a typical spatiotempo-
ral series forecasting problem. We define the topological road network as a directed graph
G(V, A). Here, V is the set of N = |V| vertices representing detectors installed on the road.
The graph structure can be represented as a weighted adjacency matrix A ∈ RN×N , where
Ai,j > 0 indicates the correlation between vertices vi and vj. In general, the values on the
diagonal of the initialized adjacency matrix A are equal to 1, which could avoid ignoring
the feature of the node itself. The traffic signals observed at time step t on traffic network G
can be defined as xt ∈ RN×C, where C denotes the feature dimension of vertices (e.g., traffic
flow, traffic speed).

Problem Statement: Given the historical observed P time steps traffic signals, denoted
as X = {xt1 , xt2 , . . . , xtp} ∈ RP×N×C, our goal is to predict next H time step traffic signals
Y = {xtp+1 , xtp+2 , . . . , xtp+h} ∈ RH×N×C.

Scaled Dot-Product Attention: The attention function aims to map a query and a set
of key–value pairs to an output, where the query and key–value pairs are all vectors. The
output is a weighted sum of values, where the weight assigned to each value is determined
jointly by a query and the corresponding key. The dot-product attention is a widely adopted
attention function, which enjoys remarkable properties such as time and space efficiency.
Finally, the output is as follows:

Attention(Q, K, V) = So f tMax(
Q ·KT
√

dk
)V. (1)

where Q, K, V, and dk represent the query, keys, values, and dimensions, respectively.

3.2. Framework of STAGCN

Figure 2 illustrates the architecture of our proposed STAGCN model, which consists
of a static–dynamic graph learning layer, gated temporal attention module (Gated TAM),
and adaptive graph convolution layer (GCN). To explore the complex correlations between
global and local spatiotemporal dependencies, two types of graphs are learned from data,
i.e., static graph and dynamic graph. Gated TAM consists of two parallel temporal attention
layers, where causal-trend attention is proposed for long-term temporal dependencies. In
GCN, we employ two separate modules to aggregate spatial information based on the static
and dynamic graph. Every layer adopts residual connections and is skipped to the output
module. In more detail, the core components of our model are illustrated in the following.

3.3. Spatial Static–Dynamic Graph Learning Layer
3.3.1. Static Graph Learning

The spatial static graph learning layer aims to learn a static adaptive adjacency matrix,
which can capture the global spatial correlations among traffic data without the predefined
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graph structure. We employ node embedding to construct the static adjacency matrix [7,24],
denoted as follows:

M1 = tanh(E1 · θ1), (2)

M2 = tanh(E2 · θ2), (3)

As = So f tMax(ReLU(M1 ·MT
2 )), (4)

where E1, E2 represent randomly initialized node embedding, whose parameters can be
learned during training, and θ1, θ2 are model parameters. We employ ReLU activation to
eliminate weak connections between nodes. So f tMax activation is adopted to normalize
the learned adjacency matrix.

Figure 2. The framework of STAGCN. The model consists of a spatial static–dynamic graph learning
layer, gated temporal attention module (Gated TAM), and adaptive graph convolution layer (GCN).
The input and learned spatiotemporal embedding are first passed through Gated TAM, followed
by the graph learning layer to obtain static and dynamic graphs. Then, feature representation and
graphs are passed to GCN for spatial modeling.

A well-defined graph structure can bring significant benefits to the prediction task,
so it is essential to control the sparsity and smoothness of the learned graph structure.
Therefore, we add a graph regularization loss function following previous work [8] to
improve the quality of the graph structure. For the learned global adjacency matrix A and
the given node feature matrix XF = (x1, x2, . . . , xN) ∈ RN×D, the graph regularization loss
is as follows:

LG = α
1

N2

N

∑
i,j

Ai,j‖xi − xj‖2 + β‖A‖2
F, (5)

where α, β are model hyperparameters and ‖·‖2
F denotes the Frobenius norm of the matrix.

A widely recognized assumption is that graph signals change smoothly through adjacent
nodes, so minimizing the first term will force adjacent nodes to have similar features.
However, only restricting the smoothness of the graph will lead to A = 0, so we add the
Frobenius norm of the matrix to control the sparsity of the graph. Instead of applying
regularization to all inputs or node embedding at once, we apply it to the node output
features in the gradient update section.

3.3.2. Dynamic Graph Learning

For spatiotemporal traffic data, the dependencies among nodes are very likely to
dynamically change over time, e.g., traffic congestion upstream will affect the traffic flow
downstream. Therefore, only applying the static graph structure may fail to grasp such
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local dynamic correlation. To this end, we introduce a dynamic graph that can adaptively
alter the relationship among nodes at all time steps.

The key idea of our method is to adopt a self-attention mechanism to calculate the
spatial correlations among nodes. To be concrete, given the dynamic node feature set
Xt ∈ RN×dmodel , the dynamic spatial adjacency matrix can be denoted as:

Ad = So f tMax(
Xt · XT

t√
dmodel

) ∈ RN×N . (6)

3.4. Adaptive Graph Convolution Module

A graph convolution network is widely adopted to process non-grid or unstructured
data and aims to extract a high-level node feature representation through the neighborhood
aggregation method. Li et al. [12] proposed a graph diffusion convolution layer to learn
node representations by iteratively aggregating adjacent node features. For a k-layer
diffusion model, the l-th layer information propagation step can be formulated as:

H(l) = ÂH(l−1)W(l), (7)

where H(l) ∈ RN×dl denotes the output of node features of layer l, H(0) represents the
initialized node feature, Â denotes the normalized adjacency matrix, and W(l) ∈ Rdl−1×dl

denotes the layer-specific model weight matrix.
However, a common challenge faced by graph convolution operation is that the node

hidden states will become more similar when graph convolution layers go deeper. On
the other hand, a shallow graph convolution network cannot sufficiently propagate the
edge node information to the entire graph. Depending on the application, an appropriate
receptive field or neighborhood size should be more desirable. To achieve this, motivated
by [25], we explore an adaptive attention mechanism that can adaptively adjust the neigh-
borhood size of each node. As shown in Figure 3, compared to simply concatenating
[H(0), H(1), . . . , H(k)] to combine different layers, the mechanism can maintain a better bal-
ance between local and global information propagation, which leads to more discriminative
node features. The mechanism formula is as follows:

H(0) = MLP(X), ∈RN×D

H(l) = αH(0) + (1− α)ÂH(l−1), ∈RN×D

P = stack(H(0), H(1) . . . , H(k)), ∈RN×(k+1)×D

S = reshape(σ(PW)), ∈RN×1×(k+1)

Z = squeeze(SP), ∈RN×D

(8)

where H(0) denotes the feature matrix derived from applying MLP to the initialized node
features X, W represents the trainable model parameters, and S represents the attention
score for each layer. σ denotes the activation function and we employ sigmoid here. α
is a hyperparameter that controls the original node feature retention rate to preserve the
local property.

To explore the interaction between global spatial adaptability and local dynamics,
we apply static and dynamic graph structures to the adaptive graph convolution layer
separately, i.e., replacing Â with learned As and Ad. The final output is as follows:

Z = Zstatic + Zdynamic. (9)

3.5. Gated Temporal Attention Module

The temporal attention module applies attention mechanisms to extract long-term
temporal dependencies. As shown in Figure 2, this module consists of two parallel temporal
attention layers, where the causal-trend attention mechanism is proposed. One layer is
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followed by a tangent hyperbolic activation function, which works as a filter. The other
layer is followed by a sigmoid activation function as a gate, which controls the information
that needs to be passed to the next module.

(a) (b)

Figure 3. An illustration of the proposed adaptive graph convolution module. This module can
adaptively adjust the node neighborhood size according to the application. (a) K-hop neighbor nodes,
(b) adaptive neighborhood size adjustment.

Multi-head self-attention [26] can effectively attend to information from different
representation subspaces. The basic operation in multi-head self-attention has been defined
in Equation (1), where all the keys, values, and queries are the same sequence representation,
i.e., Q = K = V. It first linearly projects the queries, keys, and values to different feature
subspaces and then the attention function is performed in parallel. Lastly, the outputs are
concatenated and once projected again. Formally, the final value can be defined as:

MultiHead(Q, K, V) = ⊕(head1, . . . , headh)Wo

headj = Attention(QWj
Q, KWj

K, VWj
V),

(10)

where Wj
Q, Wj

K, Wj
V are the projection matrices applied to Q, K, V, Wo is the output

projection matrix, and the subscript h represents the number of attention heads. The multi-
head self-attention can selectively focus on important information and efficiently explore
the correlation between arbitrary elements in the sequence, thus leading to a flexible global
receptive field.

Note that the attention mechanism was originally proposed to process discrete word
sequences and it fails to learn the causality and local trends inherent in time series. The
traditional attention mechanism may incorrectly match two points in the sequence because
they are numerically similar. However, two points will exhibit significantly different local
trends (e.g., uptrend or downtrend). Inspired by ASTGNN [27], we introduce a causal-trend
attention mechanism to explore traffic series’ temporal property, as shown in Figure 4. To
take local contextual information into consideration, we replace the projection operation on
the queries and keys with 1D convolution. For masking future information, we employ
causal convolution [28] on the values. Contextual information is taken as input and future
information will not be intercepted, thus eventually benefiting the entire model to be aware
of local changes and effectively fit predicted values. Formally, our causal-trend attention
mechanism is defined as follows:

CTAttention(Q, K, V) = ⊕(head1, . . . , headh)Wo

headj = Attention(Q ·ΦQ
j , K ·ΦK

j , V ·ΨV
j ),

(11)

where ΦQ
j , ΦK

j are 1D convolution kernel parameters and ΨV
j represents causal convolution

kernel parameter.
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Figure 4. Comparison of traditional self-attention mechanism and our causal-trend attention mech-
anism. Traditional self-attention mechanisms may incorrectly match points in the sequence with
similar values shown in (a). Our causal-trend attention mechanism is shown in (c), which replaces the
projection operations with 1D and causal convolution. As shown in (b), such awareness of locality
and causality in time series can correctly match the most relevant feature in the series.

3.6. Extra Components

In this section, we introduce extra components that the SATGCN adopts to enhance
its representation power.

3.6.1. Spatial–Temporal Embedding

Though our method can capture spatial and temporal dynamic properties through
separate modules, we ignore the spatioemporal heterogeneity and intrinsic signal order.
Inspired by STSGCN [14], we equip position embedding into the model so that we can
take into account both spatial and temporal information, which can enhance the ability
to model spatial–temporal correlations. For the traffic signal sequence XG ∈ RN×T×C,
we create a learnable temporal embedding matrix TE ∈ RT×C and spatial embedding
matrix SE ∈ RN×C. After the training phase, the embedding matrix will contain extra
spatial–temporal information to improve the prediction performance.

We add the embedding matrix to the input traffic signal sequence with broadcasting
operation for augmenting sequence representation:

XG+Temb+Semb = XG + TE + SE, (12)

3.6.2. Loss Function

Compared with most current approaches, we learn the graph structure and optimize
model parameters by minimizing a hybrid loss function that combines graph regularization
loss and prediction loss. The hybrid loss function is as follows:

L(Y, Ŷ) = LG + L1loss(Y, Ŷ). (13)

where Y, Ŷ denote the ground truth and predictions of the model, L1loss is computed for
back-propagation, and graph regularization loss LG is formulated following Equation (5).

4. Experiments
4.1. Datasets

We verify the performance of STAGCN on four public traffic network datasets,
PEMS03, PEMS04, PEMS07, and PEMS08, collected from the Caltrans Performance Mea-
surement System (PEMS).

PEMSD3: The dataset records the highway traffic flow information in the North
Central Area. There are 358 road detectors placed in different regions, and the data were
collected from 1 September 2018 to 30 November 2018.

PEMSD4: The dataset contains traffic flow data in the San Francisco Bay Area. We
select 307 road detectors and capture the data from 1 January 2018 to 28 February 2018.

PEMSD7: The dataset refers to the traffic information collected from 883 loop detectors
on Los Angeles County highways from 1 May 2017 to 31 August 2018.
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PEMSD8: The dataset includes the traffic flow information in the San Bernardino area.
It is gathered from 170 road detectors within the period from 1 July 2016 to 31 August 2016.

These datasets record traffic flow statistics on the highways of California and are
aggregated into 5-min windows, which means that the sequence has 12 time steps in one
hour. We utilize the historical data for the 12 time steps (1 h) to predict traffic flow for the
next hour. In addition, we employ the same data pre-processing measures as STSGCN,
and the data are normalized via the Z-score method. Further detailed dataset statistical
information is provided in Table 1.

Table 1. Dataset statistics.

Datasets Samples Nodes Time Range

PEMS03 26,208 358 1 September 2018–30 November 2018
PEMS04 16,992 307 1 January 2018–28 February 2018
PEMS07 28,224 883 1 May 2017–31 August 2017
PEMS08 17,856 170 1 July 2016–31 August 2016

4.2. Experimental Setting

We split all datasets with ratio 6:2:2 into training sets, validation sets, and testing
sets [29]. We use Equation (8) for the graph convolution operation and diffusion step k = 3.
The size of the hidden state is set to 64, and the dimension of node embeddings is set to
32. The number of attention heads is set to 8, and early stopping is employed to avoid
overfitting. In addition, we train our model using the Adam optimizer [30] with an initial
learning rate of 0.001. We choose mean absolute error (MAE), root mean squared error
(RMSE), and mean absolute percentage error (MAPE) to evaluate the performance of our
model. The evaluation metrics’ formulas are as follows:

(1) Mean absolute error (MAE):

MAE =
1
n

n

∑
t=1
|Yt − Ŷt|, (14)

MAE represents the average absolute difference between the predicted values and the
ground truth. The smaller the MAE value, the better the prediction performance.

(2) Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
t=1

(Yt − Ŷt)2, (15)

RMSE describes how far predictions fall from measured true values using Euclidean
distance. It is mainly used to evaluate the prediction error.

(3) Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
t=1
|Yt − Ŷt

Yt
|. (16)

MAPE measures the prediction accuracy as a percentage and works best if the data
have no extreme values.

4.3. Baseline Methods

• SVR: Support vector regression [31], which uses a support vector machine for prediction tasks.
• FC-LSTM: LSTM encoder–decoder predictor model, which employs a recurrent neural

network with fully connected LSTM hidden units [32].
• DCRNN: Diffusion convolutional recurrent neural network [12], which integrates

diffusion graph convolution into gated recurrent units.
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• STGCN: Spatio–temporal graph convolutional network [33], which adopts graph convo-
lutional and causal convolutional layers to model spatial and temporal dependencies.

• ASTGCN (r): Attention-based spatial-temporal graph convolutional network [34],
which designs a spatiotemporal attention mechanism for traffic forecasting. It ensem-
bles three different components to model the periodicity of traffic data, and we only
use its recent input segment for a fair comparison.

• STSGCN: Spatial–temporal synchronous graph convolutional network [14], which
captures correlations directly through a localized spatial–temporal graph.

• AGCRN: Adaptive graph convolutional recurrent network [35], which captures the
node-specific spatial and temporal dynamics through a generated adaptive graph.

• STFGNN: Spatial–temporal fusion graph neural networks [36], which use the dynamic
time warping algorithm (DTW) for graph construction to explore local and global
spatial correlations.

4.4. Experimental Results

Table 2 quantitatively presents the performance of our network on the PEMS datasets
compared to other representative methods. STAGCN obtains superior performance with
overall accuracy. We can observe that (1) SVR and FC-LSTM only take temporal correla-
tions into consideration and ignore the spatial dependencies in road networks. Therefore,
their performance is the worst. Especially, as shown in Table 2, SVR and FC-LSTM drop
significantly on the PEMS04 and PEMS07 datasets with more detection nodes. GCN-based
networks consistently outperform SVR and LSTM, demonstrating that graph convolution
can effectively capture spatial heterogeneity in time series. For instance, urban and rural
traffic flows have similar trend fluctuations during rush hours, but urban traffic is signifi-
cantly higher than rural traffic. (2) Adaptive graph network AGCRN surpasses pre-defined
graph models including DCRNN, ASTGCN, and STGCN by a large margin, indicating
that data-driven spatial dependency modeling plays an integral role in traffic forecasting
tasks. In most cases, the predefined graph is not optimal and struggles to adapt to complex
spatiotemporal traffic data. Compared with the predefined graph structure, the learned
adaptive graph matrix can uncover unseen graph structures automatically from the data,
without any guidance of prior knowledge. (3) Compared to other graph-based works,
STAGCN achieves superior performance, especially on the RMSE metric, for all datasets.
We argue that our static–dynamic graph learning layer significantly improves the capability
to capture local changing spatial heterogeneity and global spatial dependencies. The spatial
dependencies between different locations are highly dynamic, which is determined by
real-time traffic conditions and road networks. All the above baseline methods fail to
model this dynamic attribute of the traffic network, restricting the prediction performance.
(4) DCRNN and AGCRN are the typical RNN-based traffic forecasting works. Limited
by the capability to model long-term temporal dependencies, their forecasting accuracy is
much lower than our method. CNN-based forecasting works such as STGCN employ 1D
convolution or TCN for temporal dependencies. Similar to the RNN-based works, it cannot
effectively capture long-term temporal dependencies due to the size of the convolution
kernel. Compared with RNN and CNN-based works, our temporal modeling layer based
on the causal-trend attention mechanism can mitigate prediction error propagation to some
extent, and further improve the prediction accuracy.

4.5. Ablation Study

To further investigate the effectiveness of different components that contribute to the
superior performance of our model, we conduct ablation studies on the PEMS4 and PEMS8
datasets. We name the models without different components as follows:

• w/o GLoss: STAGCN without graph regularization loss.
• w/o Emb: STAGCN without spatial and temporal embedding.
• w/o DyGra: STAGCN without dynamic graph learning layer. We only use a static

graph learning layer to adaptively model spatial correlation.
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• w/o Gating: STAGCN without gating mechanism. We pass the output of the temporal
attention layer to the next module directly without information selection.

• w/o CT-Att: STAGCN without causal-trend attention. We use traditional multi-head
self-attention to replace causal-trend attention without considering local trends.

Table 2. Performance comparison of different methods on PEMS datasets.

Datasets Metrics SVR FC-LSTM DCRNN STGCN ASTGCN(r) STSGCN AGCRN STFGCN STAGCN

PEMS03
MAE 21.97 21.33 18.18 17.49 17.69 17.48 15.98 16.77 15.40

MAPE(%) 21.51 23.33 18.91 17.15 19.40 16.78 15.23 16.30 14.48
RMSE 35.29 35.11 30.31 30.12 29.66 29.21 28.25 28.34 26.23

PEMS04
MAE 28.70 27.14 24.70 22.70 22.93 21.19 19.83 19.83 19.02

MAPE(%) 19.20 18.20 17.12 14.59 16.56 13.90 12.97 13.02 12.46
RMSE 44.56 41.59 38.12 35.55 35.22 33.65 32.30 31.88 30.75

PEMS07
MAE 32.49 29.98 25.30 25.38 28.05 24.26 22.37 22.07 21.10

MAPE(%) 14.26 13.20 11.66 11.08 13.92 10.21 9.12 9.21 8.92
RMSE 50.22 45.94 38.58 38.78 42.57 39.03 36.55 35.80 34.10

PEMS08
MAE 23.25 22.20 17.86 18.02 18.61 17.13 15.95 16.64 15.36

MAPE(%) 14.64 14.20 11.45 11.40 13.08 10.96 10.09 10.60 9.80
RMSE 36.16 34.06 27.83 27.83 28.16 26.80 25.22 26.22 24.32

The best results are in bold and underline denotes re-implementation or re-training.

The evaluation results measured using MAE and RMSE are shown in Figure 5. We
notice that STAGCN obtains the best result, indicating that different components of our
model worked. In addition, some observations from these results deserve to be highlighted:

(a)

(b)

Figure 5. Component analysis of STAGCN on two datasets. (a) Ablation study on PEMSD4, (b) per-
formance comparison at each prediction horizon.

• As Figure 5a illustrates, removing graph regularization loss diminishes the perfor-
mance significantly. This is because the graph loss function could optimize the
adaptive traffic graph structure and facilitate graph information propagation. If
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the graph regularization loss function is removed, the learned adaptive graph ma-
trix will not effectively reflect global spatial correlations in the traffic network. The
result also indirectly proves that global spatial dependency has significant impacts on
prediction performance.

• After removing the dynamic graph learning layer, the performance of our model
gradually deteriorates over the 12 prediction time steps, which is evident in RMSE for
the PEMS4 dataset and MAE for the PEMS8 dataset. We conjecture that the reason
is that the long-term spatial dependencies have changed significantly, and the global
graph structure cannot perceive fine-grained local spatial information. Our dynamic
graph can capture local changing spatial correlations and overcome this shortcoming.

• STAGCN without the causal-trend attention mechanism performs much worse than
STAGCN, demonstrating that modeling the causality and local trends in time series
has better prediction performance than the traditional multi-head self-attention mech-
anism. Furthermore, the spatiotemporal embedding and gated mechanism are also
essential, as they can improve the prediction accuracy at each prediction horizon.

4.6. Parameter Study

To explore the influence of hyper-parameters, we conduct a hyper-parameter study
on the core parameters of STAGCN. The chosen hyper-parameters are as follows: the
dimension of hidden state and node embedding that range from 32 to 128 and 16 to 128,
respectively, the layers of graph convolution, and the number of attention heads.

We repeat each experiment three times and report the average of MAE on the test
set of PEMSD8. Figure 6 shows the experimental results of the parameter study. As
shown in Figure 6a, though increasing the dimension of the hidden state can enhance
the representation ability of sequence features and decrease the MAE loss, the overly
high feature dimension will lead to overfitting, which diminishes the performance to
a large extent. The optimal hidden state dimension is around 64. Compared with the
hidden state dimension, increasing the node embedding dimension will only hamper the
prediction performance. This is because the static graph structure is optimized by error
back-propagation during the training phase, and an overly complex initialization graph
structure and node embedding can make this optimization more difficult. As shown in
Figure 6b, the model achieves superior performance with the dimension of node embedding
at around 32. The result in Figure 6c indicates that increasing the number of attention heads
is not cost-efficient in terms of model consumption and prediction performance when the
number of attention heads is large. In addition, Figure 6d demonstrates the effect of graph
convolution layers. The prediction performance is significantly improved when the number
of layers ranges from 1 to 3, which indicates that a deeper graph convolution layer could
effectively capture spatial dependencies in traffic data. However, the depth of the graph
convolution layer should not be too high in case of overfitting.

4.7. Effect of Graph Learning Layer

To verify the effectiveness of our proposed static graph learning layer, we conduct a
study that experiments with different methods of constructing the static graph. Table 3
presents the experimental results with different forms of the static graph tested on the
PEMS8 dataset. Predefined-A consists of road connectivity, where the values are 0 or 1.
Global-A assumes that the static graph structure is a parameter matrix, which contains
N2 parameters. Directed-A is constructed directly with initialized node embeddings. In
our method, a non-linear function layer is applied to node embeddings so that we can
effectively compute similarity scores for node features. According to Table 3, our method
achieves the lowest scores on all three evaluation matrices. It works even better than
Predefined-A, Global-A, and Directed-A.
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(a) (b)

(c) (d)

Figure 6. Parameter study on PEMSD8. (a) Effects of hidden state dimension, (b) effects of node
embedding dimension, (c) effects of attention head number, (d) effects of graph convolution layers.

Table 3. Comparison of different static graph learning methods.

Methods Graph Configuration MAE MAPE RMSE

Predefined-A Pf 16.26 10.19 25.27

Global-A A = So f tmax(ReLU(W)) 15.73 10.07 24.94

Directed-A A = So f tmax(ReLU(E1 · E2
T)) 15.52 9.94 24.86

Ours A = So f tmax(ReLU(tanh(θ1E1) · tanh(θ2
T E2

T))) 15.36 9.80 24.32
The best results are in bold.

We further investigate the learned static adaptive graph via a visualization study.
Figure 7a shows the predefined graph matrix in the PEMS8 dataset, Figure 7b shows the
adaptive adjacency matrix learned by our model, and Figure 7c exhibits the dynamic
graph structure learned on the two time-spans. As shown in Figure 7, we can observe that
(1) in the predefined adjacency matrix, most nodes exhibit self-attention loop properties,
i.e., diagonal line in the diagram. In contrast to manually defined self-attention loops,
node self-attention in an adaptive graph is learned from spatial relationships in traffic
data. (2) The predefined graph matrix is a symmetric matrix, which cannot process inflow
and outflow information passed through each adjacent road. In our adaptive graph, most
adjacent nodes have different connection weights, indicating that our model could capture
road spatial interdependencies. (3) The dynamic graph structures are close to each other
at different time intervals, demonstrating that the global space correlation appears to be
stable in a short-term span. Furthermore, as marked with rectangular boxes in Figure 7c,
the connectivity of local nodes is weakened in the short term, indicating that the proposed
dynamic graph learning layer can effectively capture the changing correlations in local
nodes. In order to better evaluate the performance of our model in practical application,
we also visualize the predicted traffic flow of a certain node on the PEMSD8 dataset shown
in Figure 8.
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(a) (b)

(c)

Figure 7. Graph structure visualization on PEMSD8. (a) Predefined graph structure, (b) learned
adaptive adjacency matrix, (c) learned dynamic adjacency matrix at adjacent time intervals.

Figure 8. Visualization of the predicted values of traffic flow on the PEMSD8 dataset.

5. Conclusions

In this paper, we introduce a novel graph neural network for traffic forecasting. In
contrast to most current methods that only concentrate on global spatial dependencies, our
model captures global space adaptation and local dynamics in traffic data by constructing
a static adaptive graph and dynamic graph from the data. A causal-trend attention mecha-
nism is further introduced for long-term prediction tasks, which can effectively capture
causality and local contextual information in time series. Extensive experiments on four
public traffic network datasets demonstrate the superiority of our model over most existing
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methods. However, our model suffers from some inadequacies. For example, we argue that
there should be information interaction between the static and dynamic graphs, and the
two graph structures could complement each other. In the future, it would be worthwhile
to explore the interaction between the static and dynamic graph structures and how to
accelerate the inference speed of our proposed network. We will also attempt to apply our
model to other multivariate time series forecasting tasks.
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