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Abstract: The capacity of some busy rail lines is increasingly tight and passenger demand far 

exceeds the railway capacity. To schedule as many trains as possible in order to satisfy more 

transportation demands, we studied the capacity-oriented train scheduling problem. While most 

approaches focus only on increasing the capacity of the rail line, this research considers both the 

time-space distribution of transportation demands and the operation and maintenance of rolling 

stock. To solve this problem, we first constructed a time-space network to describe the time-space 

path of rolling stock. We then proposed an integer planning model with rolling stock maintenance 

and the OD service frequency constraints to maximize the number of running arcs in rail sections. 

After decomposing this model by introducing some Lagrangian multipliers to relax its hard 

constraints, we proposed a Lagrangian relaxation-based decomposition algorithm, including two 

path search sub-algorithms for rolling stock to optimize both the relaxed and the feasible solutions. 

Finally, we conducted a computation study on a practical double-track high-speed railway line to 

test the performance of this algorithm. It reports that the train timetables and the operation of rolling 

stock are well managed. 

Keywords: train scheduling; capacity-oriented; Lagrangian relaxation; rolling stock maintenance; 

OD travel demand 
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1. Introduction 

A train timetable is the basis of transportation organization. It specifies the departure 

and arrival times of trains at each visited station. It is highly valued by railway companies 

as it ensures the safe operation of trains and effective coordination among all related 

departments in the rail system. Moreover, since it affects the transportation efficiency and 

the quality of passenger travel service, it determines whether the passengers decide to 

travel by train. Optimizing train scheduling will not only help to reduce the operating 

costs of the railway company, but it will also help to provide high-quality travel services 

for passengers. In other words, it is beneficial to attract more passengers and increase the 

benefits of the railway company. As demand for rail services grows with passenger 

numbers, fixing the train scheduling problem is critical in the operation and management 

of a high-speed railway. 

Generally speaking, train scheduling problems are divided into cost-oriented 

problems and demand-oriented problems. Cost-oriented train timetabling aims to 

improve transportation efficiency and lower operating costs on the basis of passenger 

satisfaction. The optimization objectives usually include minimizing trains’ total travel 

time, maximizing the total benefit of the railway company, and reducing trains’ delays at 

stations, etc. For instance, Shi et al. [1] improved transportation efficiency by minimizing 

trains’ total travel time and turnaround time. Zhou et al. [2] adopted the sequential 
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optimization method to optimize train timetables to minimize the total trains’ travel time. 

Cacchiani et al. [3] designed two relaxation-based heuristics and precise algorithms to 

maximize the operating profit for railway companies. Furthermore, some studies 

proposed to reduce trains’ delays to optimize train scheduling, such as Xu et al. [4] and Li 

et al. [5]. Additionally, some studies such as Shafia et al. [6], Su et al. [7], Bešinović et al. 

[8], and Robenek et al. [9] optimized train scheduling for the purpose of improving 

robustness and saving energy. However, the demand-oriented train timetabling problem 

intends to save passengers’ travel time and improve passenger satisfaction. For example, 

Goerigk and Schöbel [10] designed a periodic timetabling model with the goal of 

minimizing passengers’ travel time. Wong et al. [11] proposed a timetabling model to 

minimize the waiting time for transfer passengers. Kroon et al. [12] took reducing the sum 

of passengers’ waiting time and travel time as the optimization objective. Huang et al. [13] 

developed a method to optimize uneven running train timetables by considering 

passenger departure time and seat-class preferences. 

With the enormous transportation demand on some busy rail lines, their capacity is 

increasingly tight. Therefore, the capacity-oriented problem has recently received 

increasing attention. It aims to make full use of transportation capacity in order to operate 

more trains. A great deal of research considers transportation organization as a major 

factor affecting capacity. Chen et al. [14] proposed a timing-cycle iterative method to 

maximize the number of scheduled trains by considering the combination of the train stop 

plan and speed level. Boroun et al. [15] proposed a new mathematical programming 

approach to maximize the railway infrastructure capacity by minimizing the schedule 

makespan. Lu et al. [16] proposed different train speed level ratios to maximize the 

utilization of railway capacity. Dong and Siji [17] aimed to minimize the average 

minimum interval time for increasing the capacity for rail sections. Some works 

transformed this problem into a multi-commodity network flow problem, such as Harrod 

[18] and Azadi et al. [19]. Compared with the existing studies for capacity-oriented train 

scheduling problems, most of them only focus on the train operational factor. Our work 

differs from these studies in that our model generates train scheduling and rolling stock 

scheduling simultaneously. 

In recent years, many integrated models of train timetable and rolling stock 

circulation have been proposed. Olsson [20] analyzed how the interaction between train 

timetables and rolling stock affects train punctuality. Veelenturf et al. [21] studied the 

integrated optimization for train rescheduling and rolling stock circulation. Liao et al. [22] 

formulated an integrated model to maximize transportation performance and proposed a 

Lagrangian relaxation decomposition method. These approaches provide strong support 

for the integrated capacity-oriented optimization. Similarly, our model generates train 

scheduling and rolling stock circulation simultaneously. Unfortunately, few studies have 

focused on the impact of rolling stock maintenance on capacity. Therefore, our model 

involves the daily rolling stock maintenance problem, which is an important area in 

railway operations. The related works include the rolling stock maintenance problem 

typically proposed as a two-step approach that combines the scheduling tasks related to 

train services, such as Giacco et al. [23] and Zhong et al. [24]. 

Compared with the existing studies for capacity-oriented train scheduling, they 

assume a set of trains given in advance and aim to calculate the maximum number of 

trains that can be feasibly scheduled. Our approach does not pre-determine candidate 

trains, but rather provides a set of candidate routes and stop plans. Particularly, some 

service requirements are considered to match trains’ scheduling with the time-space 

distribution of transportation demand, such as the minimum dwell rate of trains at each 

station and the minimum number of trains to serve each OD. 

This paper studies the capacity-oriented train scheduling problem on a busy high-

speed rail line whose transportation demand far exceeds the railway capacity. Our model 

aims to schedule as many trains as possible into a timetable and enables them to match 

the time-space distribution of transportation demand. We also consider the operation and 
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maintenance of rolling stock. In this way, we can increase the transportation capacity and 

ensure the practical operation of the train timetable. This research will provide the 

following major contributions in the area of train scheduling optimization. 

1. The capacity-oriented train scheduling not only matches train services with the time-

space distribution of transportation demand, but also ensures rolling stock 

maintenance. In this way, we can provide more train services to meet all OD travel 

demand and ensure the practical operation of rolling stock scheduling. 

2. A time-space network is designed to describe the operation of rolling stock. Based on 

this time-space network, an integer programming model is formulated to maximize 

the number of running arcs, so that we can increase the operating time of rolling stock 

in rail sections to provide more train services. 

3. A Lagrangian relaxation-based decomposition algorithm is designed, and it contains 

two path search sub-algorithms for optimizing the upper and lower bounds 

corresponding to the relaxation and feasible solutions, respectively. This algorithm 

can not only solve our model efficiently, but also optimize the quality of train 

scheduling. 

The rest of this paper is organized as follows. In Section 2, the time-space network is 

presented and the problem is described in detail. In Section 3, the optimization model is 

presented. In Section 4, the decomposition model based on Lagrangian relaxation is 

presented. In Section 5, the design of the Lagrangian relaxation-based decomposition 

algorithm is described. In Section 6, we discuss the practical case of the Wuhan-

Guangzhou high-speed railway to verify the validity of the model and the algorithm. In 

Section 7, some conclusions and future studies are given. 

2. Capacity-Oriented Train Scheduling Problem Description 

We study the train scheduling problem by considering the operation and 

maintenance of rolling stock. While a rolling stock unit can serve multiple trains in its 

operation hours, we aim to simultaneously determine the trains scheduling and the 

rolling stock scheduling. Our problem is based on a double-track high-speed rail line 

composed of rail sections, stations and depots. Trains can stop at any station for 

passengers to board and alight, but can only turn around at stations with turnaround 

capability. A depot is an area of tracks close to a station and provides parking or 

maintenance services for rolling stock. In addition, there are two types of depots, namely 

parking depots and maintenance depots. All rolling stock units are assumed to be initially 

and finally placed in depots. Particularly, only stations that are directly connected to 

depots can be used as origins and destinations of rolling stock. 

2.1. Time-Space Network Construction 

We design a time-space network composed of multiple types of nodes and arcs to 

describe the time-space paths of rolling stock units and their serving trains. 𝑆 represents 

the set of stations, and 𝑆𝑧 ∈ 𝑆 represents the set of stations with turnaround capability. 

𝑆𝑦 represents the set of depots and 𝑦𝑘 ∈ 𝑆𝑦 represents a depot connected with a station 

𝑘 ∈ 𝑆. In addition, the parking depot is denoted as �̇� ∈ 𝑆𝑦 , while the maintenance depot 

is denoted as �̈� ∈ 𝑆𝑦 . Given the rail line and planning time horizon, the nodes and arcs of 

the time-space network can be constructed as follows. 

2.1.1. Nodes Construction 

Each station is discretized as a set of arrival, departure and passing nodes by 

incorporating the time dimension. Furthermore, we construct the upward and downward 

arrival, departure and passing nodes to distinguish the direction. For a station 𝑘, we 

denote 𝑢𝑘,𝑑
𝑡 , 𝑤𝑘,𝑑

𝑡 , 𝑣𝑘,𝑑
𝑡  to represent arrival, passing and departure nodes in the direction 

𝑑 at time 𝑡, respectively. When 𝑑 = 1, it indicates the downward direction, and when 

𝑑 = 0, it indicates the upward direction. In addition, since the initial position of each 
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rolling stock unit is not pre-specified, we assume a rolling stock unit will depart from a 

virtual origin node and return to a virtual end node on the time-space network, which are 

denoted as �̅� and �̅�, respectively. 

2.1.2. Directed Arcs Construction 

Five types of directed arcs re constructed among the arrival, departure and passing 

nodes as follows. 

1. Virtual arcs 

In the Chinese high-speed railway, rolling stock units stay in depots and are 

maintained at night. In other words, rolling stock units must leave depots in the morning 

and return to depots at night. To indicate the starting place and time of a rolling stock 

unit, a virtual leave-arc denoted as �̂�𝑘
𝑡 = (�̅�, 𝑢𝑘,𝑑

𝑡 ) is constructed from the virtual node �̅� 

to an arrival node 𝑢𝑘,𝑑
𝑡  if 𝑦𝑘 ∈ 𝑆𝑦 and 𝑡 = 1,… , 𝑇 − 1. Similarly, to indicate the ending 

place and time of a rolling stock unit, a virtual entry-arc denoted as �̌�𝑘
𝑡 = (𝑣𝑘,𝑑

𝑡 , �̅�) is 

constructed from departure node 𝑣𝑘,𝑑
𝑡  to the virtual end node �̅�  if 𝑦𝑘 ∈ 𝑆𝑦  and 𝑡 =

1, … , 𝑇. These two kinds of arcs are shown in Figure 1. 

...

...

......

...

...

1

�̈� 

�̇� 

downward arrival node

downward passing node

downward departure node

virtual origin node

virtual end node

upward arrival node

upward passing node

upward departure node

downward virtual leave-arc

downward virtual entry-arc
upward virtual leave-arc

upward virtual entry-arc

Time

T − 1 T

 

Figure 1. Nodes and virtual arcs in the time-space network. 

2. Running arcs in rail sections 

The running arcs are constructed to describe trains running in rail sections. Let 𝐸 

present the set of rail sections, and each rail section (𝑘, 𝑘′) ∈ 𝐸 presents the track segment 

from station 𝑘 to station 𝑘′, with no intermediate station in between. Based on whether 

a train stops at stations in a rail section, trains running is divided into four situations: pass-

pass, departure-pass, pass-arrival, and departure-arrival. Denoted 𝑡𝑘,𝑘′ as the minimum 

running time in the rail section (𝑘, 𝑘′), and 𝑡𝑠,𝑡𝑏 as the additional times for decelerating 

and accelerating, respectively. In the rail section (𝑘, 𝑘′), the four kinds of running arcs are 

constructed as follows. 

• Pass-Pass (P-P for short): when the train does not stop at both the stations 𝑘 and 𝑘′, 

we construct the pass-pass running arc denoted as �̃�
𝑘,𝑘′
𝑡,𝑡′ = (𝑤𝑘,𝑑

𝑡 , 𝑤𝑘′,𝑑
𝑡′ )  from the 

passing node at station 𝑘 to the passing node at station 𝑘′. This arc means that the 

train passes through station 𝑘 at time 𝑡 and then passes through station 𝑘′ at time 

𝑡′, as shown in Figure 2 by the green dotted line with arrows. Obviously, 𝑡′ = 𝑡 +

𝑡𝑘,𝑘′. 

• Departure-Pass (D-P for short): when the train stops at station 𝑘, but passes through 

station  𝑘′ , we construct the departure-pass running arc denoted as �̃�
𝑘,𝑘′
𝑡,𝑡′ =

(𝑣𝑘,𝑑
𝑡 , 𝑤𝑘′,𝑑

𝑡′ ) from the departure node at station 𝑘 to the passing node at station 𝑘′. 

This arc means that the train departs from the station 𝑘 at time 𝑡 and then passes 
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through station 𝑘′ at time 𝑡′, as shown in Figure 2 by the black dotted line with 

arrows. In addition, 𝑡′ = 𝑡 + 𝑡𝑘,𝑘′ + 𝑡𝑠. 

• Pass-Arrival (P-A for short): when the train passes through station 𝑘, but stops at 

station 𝑘′, we construct the pass-arrival running arc denoted as �̃�
𝑘,𝑘′
𝑡,𝑡′ = (𝑤𝑘,𝑑

𝑡 , 𝑢𝑘′,𝑑
𝑡′ ) 

from the passing node at station 𝑘 to the arrival node at station 𝑘′. This arc means 

that the train passes through station 𝑘 at time 𝑡 and then stops at station 𝑘′ at time 

𝑡, as shown in Figure 2 by the red dotted line with arrows. In addition, 𝑡′ = 𝑡 + 𝑡𝑘,𝑘′ +

𝑡𝑏. 

• Departure-Arrival (D-A for short): when the train stops at both station 𝑘  and 

station  𝑘′ , we construct the departure-arrival running arc denoted as �̃�
𝑘,𝑘′
𝑡,𝑡′ =

(𝑣𝑘,𝑑
𝑡 , 𝑢𝑘′,𝑑

𝑡′ ) from the departure node at station 𝑘 to the arrival node at station 𝑘′. 

This arc means that the train departs from station 𝑘 at time 𝑡 and then stops at 

station 𝑘′ at time 𝑡′, as shown in Figure 2 by the blue dotted line with arrows. In 

addition, 𝑡′ = 𝑡 + 𝑡𝑘,𝑘′ + 𝑡𝑏 + 𝑡𝑠. 

P-P running arc P-A running arcD-P running arc D-A running arc

1                  2                  3                 4                  5                  6                 7                   8                 9      

Time

Station k

Station k’

downward arrival node downward passing node downward departure node

 

Figure 2. Four types of running arcs in down directions. 

3. Dwell arcs 

The train will remain at the station for passengers to board and alight. Therefore, we 

construct the dwell arc between adjacent arrival nodes at the same station in the same 

direction, as shown in Figure 3 by the black dotted lines with arrows. The dwell arc is 

presented by �̅�𝑘,𝑑
𝑡 = (𝑢𝑘,𝑑

𝑡 , 𝑢𝑘,𝑑
𝑡+1), which means the train will dwell for 1 min. 

dwell arc stopping sign arc turnaround sign arc

...

Time

Station k

 

Figure 3. Dwell arc, stopping sign arc and turnaround sign arc. 
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4. Stopping sign arcs 

We construct the stopping sign arc to indicate a train entering a rail section after 

stopping at a station. The stopping sign arc denoted as �̇�𝑘,𝑑
𝑡 = (𝑢𝑘,𝑑

𝑡 , 𝑣𝑘,𝑑
𝑡 ) is constructed 

between the arrival node to the departure node in the same direction, at the same time 

and at the same station, as shown in Figure 3 by the yellow dotted lines with arrows. 

5. Turnaround sign arcs 

When a train arrives at its terminal station, a rolling stock unit will finish serving it 

and start another train service. Therefore, we construct the turnaround sign arc to indicate 

a rolling stock unit turning around at its terminal station before serving a new train. The 

turnaround sign arc denoted as �̈�𝑘,𝑞
𝑡 = (𝑢𝑘,𝑑

𝑡 , 𝑣𝑘,𝑑′
𝑡 )  is constructed between the arrival 

node to the departure node in different directions, but at the same time and at the same 

station, as shown in Figure 3 by the red dotted lines with arrows. It is worth noting that 

𝑘 ∈ 𝑆 ∪ 𝑆𝑦. 

2.1.3. Time-Space Network Characteristics 

The time-space network has been widely used in train scheduling problems and 

locomotive assignment, since Caprara et al. [25] proposed an integer programming based 

on a directed graph, followed by various improvements to the time-space network 

approach. Many of them are used to describe the train time-space path for train 

scheduling [26] and the vehicle circulation for locomotive assignment [23], respectively. 

We combine both to indicate rolling stock circulation and train services. The time-space 

network constructed in this paper has the following features, compared to those studies. 

1. As to the nodes, while the traditional time-space network consists of a set of arrival 

and passing nodes corresponding to every station and time, we add a kind of nodes 

called passing nodes. Based on the combination of three nodes, the different types of 

running arcs are constructed to solve the problem of the running time being affected 

by stops. Moreover, we set the direction for all nodes. In addition, the sign arcs about 

stops and turnaround can more directly indicate the changes in state, direction and 

location of a rolling stock unit over time. 

2. A continuous path from virtual origin node �̅� to virtual end node �̅� corresponds to 

a rolling stock unit’s possible schedule. The running arcs enable the running of a train 

service, and after the train service, the rolling stock service does not finish, but 

continues to run another train service, or it goes back to the depot. 

The objective of the timetable problem is to obtain the maximum transportation 

capacity. Therefore, it is imperative to maximize the total cost of the selected arcs in the 

time-space network. With a feasible solution, the selected running arcs can be interpreted 

as a feasible timetable, while all the time-space paths can be interpreted as the vehicle 

circulation schedule in the feasible timetable. 

2.2. Candidate Stop Plans 

In this research, we aim to find paths for rolling stock units so that they can serve as 

many trains as possible. To further determine the stops of each train, we provide a set of 

candidate stop plans. Since transportation demand varies within a day, we divide the 

operating time into multiple time periods, and set various sets of candidate stop plans for 

these time-periods. Let 𝑞 denote the stop plan. The set of candidate stop plans in time 

period ℎ is denoted by 𝑄ℎ. When a rolling stock unit starts to serve a train during time 

period ℎ, it can only choose one stop plan for a train from the set 𝑄ℎ. Specifically, a set of 

candidate stop plans will be pre-determined according to the time-space distribution of 

passenger demand in each time period and a rolling stock unit must choose a candidate 

stop plan for each train it serves. 
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2.3. Problem Description and Symbol Definition 

In this research, the problem is referred to as the capacity-oriented train scheduling 

problem. We aim to schedule more trains in order to increase the railway capacity. 

Furthermore, we ensure that the trains’ scheduling can meet each OD demand and the 

requirements of rolling stock maintenance and safe operation. We transform the train 

scheduling problem into the rolling stock path-searching problem. A rolling stock path 

consists of all the selected nodes and arcs in the time-space network, which indicates the 

time when a rolling stock unit enters and leaves each station. Meanwhile, the operation of 

rolling stock will be subject to numerous constraints, which will be detailed in the 

following model. 

2.3.1. Assumptions 

Our research is based on the following five assumptions: 

1. The rail line is a double-track high-speed railway, and both the stations and the 

depots are regarded as nodes without capacity. The depots are connected to two 

terminal stations of the rail line, regardless of the path between the station and the 

depot. 

2. On the rail line, there are only two terminal stations with turnaround conditions, and 

all rolling stock units must turn around at these two stations. 

3. The number of rolling stock units is provided and they are of the same type. In 

addition, depots are functionally divided into parking depots and maintenance 

depots. The latter can provide maintenance services. 

4. The operating time is discretized into a series of equal time intervals, and the time 

unit is 1 min. 

5. The transportation demand on this rail line is large enough and the rolling stock units 

do not have to light run along the track segment (i.e., run with no passengers). 

2.3.2. Input and Output 

The input data include the rail line, the time-space network composed of all nodes 

and arcs, rolling stock, and other parameters related to constraints. Table 1 gives a 

symbolic description of the input parameters. 

For each rolling stock unit, the output data include a time-space path, including the 

arcs selected by it. Based on this, the decision variables are defined as shown in Table 2. 

Table 1. Input data. 

Described Objects Symbols Definitions 

Railway network 

𝐸 Set of rail sections 

𝜃 The set of OD 𝑚 → 𝑛  

𝑆 The set of stations  

𝑘,𝑚, 𝑛 Index of station, 𝑘,𝑚, 𝑛 ∈ 𝑆 

𝑆𝑦 The set of depots 

�̇� Parking depot, �̇� ∈ 𝑆𝑦  

�̈� Maintenance depot, �̈� ∈ 𝑆𝑦 

𝑆𝑧 Set of stations with turnaround capability, 𝑆𝑧 ⊆ 𝑆 

Rolling stock 

𝐹 Set of rolling stock units 

𝑓 Index of rolling stock unit, 𝑓 ∈ 𝐹 

𝑚𝑓 Total number of rolling stock units 

Time-space network 

𝑁 Set of nodes  

𝑡, 𝜏 Index of time 

𝑑 Up or down direction of the rail line 

𝑗 Index of node, 𝑗 ∈ 𝑁 

�̀�𝑗 Set of entry arcs connected with the node 𝑗, �̀�𝑗 ∈ 𝐴  
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�́�𝑗 Set of leave arcs connected with the node 𝑗, �́�𝑗 ∈ 𝐴 

𝑢𝑘,𝑑
𝑡  Arrival node of station 𝑘 at time 𝑡 on direction 𝑑, 𝑢𝑘,𝑑

𝑡 ∈ 𝑁 

𝑣𝑘,𝑑
𝑡  Departure node of station 𝑘 at time 𝑡 on direction 𝑑, 𝑣𝑘,𝑑

𝑡 ∈ 𝑁 

𝑤𝑘,𝑑
𝑡  Passing node of station 𝑘 at time 𝑘 on direction 𝑑,𝑤𝑘,𝑑

𝑡 ∈ 𝑁 

o̅ Virtual origin node of the rolling stock path, o̅ ∈ 𝑁 

�̅� Virtual end node of the rolling stock path, �̅� ∈ 𝑁 

𝐴 Set of arcs 

𝑎 Index of arc, 𝑎 ∈ 𝐴 

�̂�𝑘 Virtual leave-arc connecting to the depot 𝑘, �̂�𝑘 ∈ 𝐴 

�̌�𝑘 Virtual entry-arc connecting to the depot 𝑘, �̌�𝑘 ∈ 𝐴 

�̅�𝑘,𝑑
𝑡  Dwelling arc of station 𝑘 in direction 𝑑 at time 𝑡, �̅�𝑘,𝑑

𝑡 ∈ 𝐴 

�̇�𝑘,𝑑
𝑡  Stopping sign arc of station 𝑘 in direction 𝑑 at time 𝑡, �̇�𝑘,𝑑

𝑡 ∈ 𝐴 

�̈�𝑘
𝑡  Turnaround sign arc of station 𝑘 at time 𝑡, �̈�𝑘

𝑡 ∈ 𝐴 

�̃�
𝑘,𝑘′
𝑡,𝑡′  

Running arc, which means leaving station 𝑘 at time 𝑡 and arriving at station 𝑘′ at 

time 𝑡′, �̃�
𝑘,𝑘′
𝑡,𝑡′ ∈ 𝐴 

�̃� Set of running arcs, �̃� ⊆ 𝐴 

�̅� Set of dwell arcs, �̅� ⊆ 𝐴 

𝐷�̃�𝑘,𝑘′
𝑡  Set of running arcs that leave the station 𝑘 at time 𝜏 and enter the section (𝑘, 𝑘′) 

𝐴�̃�𝑘,𝑘′
𝑡  Set of running arcs that arrive at the station 𝑘 at time 𝜏 and leave the section (𝑘, 𝑘′) 

Parameters 

𝑡𝑘,𝑘′ Minimum running time in the section (𝑘, 𝑘′) 

𝑡𝑏 Additional time for the train decelerating 

𝑡𝑠 Additional time for the train accelerating 

𝛿̅𝑘,𝑑
ℎ𝑡  

Minimum dwelling time for rolling stock from direction 𝑑 to stop at station 𝑘 

within the time period ℎ𝑡 of time 𝑡 

𝛿̿𝑘,𝑑
ℎ𝑡  

Maximum dwelling time for rolling stock from direction 𝑑 to stop at station 𝑘 

within the time period ℎ𝑡 of time 𝑡 

�̅�𝑘 Minimum turnaround time of rolling stock in station 𝑘 

�̿�𝑘 Maximum turnaround time of rolling stock in station 𝑘 

∆𝐷 Train departure interval time 

∆𝐴 Train arrival interval time 

𝜎𝑚𝑛 Minimum travel time from station 𝑚 to station 𝑛 

𝜎𝑚𝑛 Maximum travel time from station 𝑚 to station 𝑛 

𝐿𝑚,𝑛 Minimum service frequency of OD 𝑚 → 𝑛 

Other 

𝑀 Infinity 

𝑇 Operating time period 

ℎ𝑡 Time period 𝑡 

ℎ𝑠 The initial time of a period ℎ 

ℎ𝑒 The end time of a period ℎ 

Table 2. Decision variables. 

Variables Definitions 

𝑥𝑓(𝑎) 0–1 decision variables, if the rolling stock unit 𝑓 selects arc 𝑎, then 𝑥𝑓(𝑎) = 1, otherwise 𝑥𝑓(𝑎) = 0 

𝜗𝑚,𝑛
𝑓 (𝜏) 

0–1 variable, if the rolling stock unit 𝑓 serves OD 𝑚 → 𝑛 in the time period related to time 𝜏, 

𝜗𝑚,𝑛
𝑓 (𝜏)  = 1, otherwise 𝜗𝑚,𝑛

𝑓 (𝜏)  = 0 

3. Optimization Model of Capacity-Oriented Train Scheduling 

Using the notations and decision variables detailed in Tables 1 and 2, respectively, a 

model named as BM is built based on the time-space network detailed in Section 2.1. 
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3.1. Objective Function 

Our goal is to maximize the number of scheduled trains in order to increase the 

transportation capacity. A train is served by a rolling stock unit and a rolling stock unit 

can serve multiple trains. It is obvious then that the more trains a rolling stock unit serves, 

the longer it runs in rail sections. In other words, more running arcs means a greater 

transportation capacity. For this purpose, we propose a model called BM with the goal of 

maximizing running arcs selected by rolling stock units. 

max 𝑍 =∑∑𝑥𝑓(𝑎)

𝑎∈𝐴𝑓

 (1) 

3.2. The Constraints 

3.2.1. Constraints Related to the Single Rolling Stock Unit Operation 

1. Flow balance constraints. 

∑ ∑ 𝑥𝑓(�̂�𝑘
𝑡 )

𝑘∈𝑆𝑦

𝑇

𝑡=0

= 1 ,                                                                                         ∀𝑓   (2) 

∑ ∑ 𝑥𝑓(�̌�𝑘
𝑡 )

𝑘∈𝑆𝑦

𝑇

𝑡=0

= 1 ,                                                                                          ∀𝑓   (3) 

∑ 𝑥𝑓(𝑎)

𝑎∈𝐴𝑗
+

= ∑ 𝑥𝑓(𝑎)

𝑎∈𝐴𝑗
−

,                                                          ∀𝑓; 𝑗 ∈ 𝑁/{o̅, �̅�}   
(4) 

Constraint (2) requires that the rolling stock unit 𝑓 departs from the virtual origin 

node, and Constraint (3) requires that the rolling stock unit 𝑓 finally returns to the virtual 

end node. Constraint (4) ensures the flow balance at every node in the network. Note that 

the depots related to the virtual origin and end node are the actual starting and ending 

places of rolling stock units. 

2. Constraint on the minimum and maximum dwell time at stations in different time 

periods. 

When a train dwells at a station, the dwell time shall not be shorter than the minimum 

time required for passengers to board and alight, nor too long to affect the total travel time 

of trains. Note that the number of passengers boarding and alighting at each station varies 

throughout the day. Therefore, the minimum dwell time at stations should vary in 

different time periods and in different directions. Let 𝛿̅𝑘,𝑑
ℎ𝑡  and 𝛿̿𝑘,𝑑

ℎ𝑡 ,respectively, 

represent the minimum and maximum dwell times, so the dwell time should satisfy the 

following constraint: 

𝛿̅𝑘,𝑑
ℎ𝑡 × 𝑥𝑓(�̇�𝑘,𝑑

𝑡 ) ≤ ∑ 𝑥𝑓(�̅�𝑘,𝑑
𝜏 )

𝑡−1

𝜏=𝑡−�̿�𝑘,𝑑
ℎ𝑡 −1

≤ 𝛿̿𝑘,𝑑
ℎ𝑡 × 𝑥𝑓(�̇�𝑘,𝑑

𝑡 ),         ∀𝑓; ∀�̇�𝑘,𝑑
𝑡 |𝑡 ≥𝛿̅𝑘,𝑑

ℎ𝑡    (5) 

where ℎ𝑡  represents the time period to which time 𝑡  belongs. When 𝑥𝑓(�̇�𝑘,𝑑
𝑡 ) = 1, a 

rolling stock unit stops at station 𝑘 from direction 𝑑. Constraint (5) guarantees that a 

rolling stock unit continuously select at least 𝛿̅𝑘𝑑
ℎ𝑡  and at most 𝛿̿𝑘𝑑

ℎ𝑡  arcs from the set of 

dwell arcs {�̅�𝑘
𝜏 |𝜏 = 𝑡 − 𝛿̿𝑘𝑑

ℎ𝑡 − 1,⋯ , 𝑡 − 1} , that is, 𝛿̅𝑘𝑑
ℎ𝑡 ≤ ∑ 𝑥𝑓(�̅�𝑘

𝜏) ≤ 𝛿̿𝑘𝑑
ℎ𝑡𝑡−1

𝜏=𝑡−�̿�𝑘𝑑
ℎ𝑡−1

. 

Otherwise, the rolling stock unit cannot select any dwell arc. 

3. Constraint on the minimum and maximum turnaround time at stations. 

After a train arrives at the terminal, it is essential to ensure that the turnaround time 

is not less than the time required for passengers to board and alight, and to ensure that 

the rolling stock unit can change its direction to serve the next train. In addition, the 
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turnaround time should not be too long to affect transportation organization efficiency. 

Let �̅�𝑘 and �̿�𝑘 , respectively, represent the minimum and maximum turnaround time at 

station 𝑘, so the turnaround time should satisfy the following constraint. 

�̅�𝑘 × 𝑥𝑓(�̈�𝑘,𝑞
𝑡 ) ≤ ∑ 𝑥𝑓(�̅�𝑘,𝑑

𝜏 )

𝑡−1

𝜏=𝑡−�̿�𝑘−1

 ≤ �̿�𝑘 × 𝑥𝑓(�̈�𝑘,𝑞
𝑡 ) + 𝑀 × [1 − 𝑥𝑓(�̈�𝑘,𝑞

𝑡 )] ,            ∀𝑓; ∀�̈�𝑘,𝑞
𝑡 |𝑡 ≥ �̅�𝑘 (6) 

When 𝑥𝑓(�̇�𝑘,𝑑
𝑡 ) = 1, a rolling stock starts to turnaround at station 𝑘 at time 𝑡 from 

direction 𝑑. Constraint (6) ensures that the rolling stock continuously selects not less than 

�̅�𝑘 and not more than �̿�𝑘 arcs before selecting turnaround sign arc �̈�𝑘
𝑡 . 

4. Constraint on rolling stock daily maintenance. 

In the Chinese high-speed railway, rolling stock will receive maintenance services 

within 48 h to ensure safe operation. In order to guarantee rolling stock maintenance, we 

require all rolling stock units to stay at least one night in maintenance depots within two 

days. Specifically, a rolling stock unit must leave the maintenance depot in the morning 

or return there in the evening. If one of the stations in the virtual leave-arc �̂�𝑘
𝑡  and virtual 

entry-arc �̌�𝑘
𝑡  connects to a depot �̈� ∈ 𝑆𝑦 , it means that a rolling stock unit enters and 

leaves the maintenance depot. Thus, the constraint is set as follows: 

∑𝑥𝑓(�̂�𝑘
𝑡 )

𝑡

+∑𝑥𝑓(�̌�𝑘
𝑡 )

𝑡

≥ 1 ,                                                          ∀𝑓; ∀𝑘|y𝑘 ∈ 𝑆�̈� (7) 

5. Constraint on running time in rail sections. 

The running time in rail sections consists of the minimum running time and the 

additional time for accelerating and decelerating. It is influenced by the departure and 

arrival of trains. Since Section 2.1 has constructed the running arcs in four cases, this 

constraint can be satisfied by selecting the corresponding arcs. 

6. Constraints on consistency between OD service variables and stop variables. 

For OD 𝑚 → 𝑛, only when rolling stock unit 𝑓 stops at both the station 𝑚 and the 

station 𝑛, can its serving trains serve the OD passengers. Considering that the train must 

stop at the origin and destination stations, the OD service variable 𝜗𝑚,𝑛
𝑓 (𝑡) must satisfy 

the following four constraints: 

𝜗𝑚,𝑛
𝑓 (𝑡) =∑𝑥𝑓 (�̃�𝑘,𝑘′

𝑡,𝑡′ )

𝑡′

 ,                                                           𝑚, 𝑛 ∈ 𝑆𝑧   (8a) 

𝜗𝑚,𝑛
𝑓 (𝑡) = 𝑥𝑓(�̇�𝑚,𝑑

𝑡 ) ,                                                           𝑚 ∈ 𝑆𝑧; 𝑛 ∉ 𝑆𝑧   (8b) 

𝜗𝑚,𝑛
𝑓 (𝑡) = 𝑥𝑓(�̇�𝑛,𝑑

𝑡 ) ,                                                           𝑚 ∉ 𝑆𝑧; 𝑚 ∈ 𝑆𝑧  (8c) 

2𝜗𝑚,𝑛
𝑓 (𝑡) ≤ 𝑥𝑓(�̇�𝑚,𝑑

𝑡 ) + ∑ 𝑥𝑓(�̇�𝑛,𝑑
𝑡′ )

𝑡+�̿�𝑚,𝑛

𝑡′=𝑡+�̅�𝑚,𝑛

≤ 𝜗𝑚,𝑛
𝑓 (𝑡) + 1 ,    𝑚, 𝑛 ∉ 𝑆𝑧 (8d) 

Constraint (8a) applies to ODs whose origin and destination are the terminal stations 

of the rail line. Since all trains stop at the two stations, the rolling stock unit can serve the 

OD passengers as long as it departs from station 𝑚 at time 𝑡. 

Constraint (8b) applies to ODs whose origin is the terminal station of the rail line, 

and destination is the intermediate station. Constraint (8c) applies to ODs whose origin is 

the intermediate station, and destination is the terminal station of the rail line. Since the 

terminal stations of the rail line are the origin and destination stations of the trains, a train 

can serve these two types of OD passengers as long as it stops at the intermediate station. 

Constraint (8d) applies to ODs whose origin and destination are the intermediate 

stations of the rail line. A train can serve the OD passengers as long as it stops at both 
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stations of the OD within a reasonable period of time. Let 𝜎𝑚,𝑛 and 𝜎𝑚,𝑛, respectively 

present the shortest time and the longest time when the train runs from the station 𝑚 to 

the station 𝑛, as shown in Figure 4. Within the time range of [𝑡 + �̅�𝑚,𝑛 , 𝑡 + 𝜎𝑚,𝑛], a train 

can serve the OD passengers as long as it selects stopping sign arcs �̇�𝑚,𝑑
𝑡  and �̇�𝑛,𝑑

𝑡  at 

station 𝑚 and station 𝑛, respectively. 

m

n

m − 1

m + 1

n − 1

n + 1

𝑡 𝑡 + 𝜎𝑚 ,𝑛  𝑡 + 𝜎𝑚 ,𝑛  𝑡′  

The fastest train to arrive

The slowest train to arrive

Trains that arrive at other times

 

Figure 4. Schematic diagram of OD train service. 

3.2.2. Association Constraints among Multiple Rolling Stock Units. 

1. Balance constraint on the number of rolling stock units leaving and entering the 

depot in the morning and evening. 

In order to ensure that the scheduled trains can repeat regularly in a daily operation, 

the number of rolling stock units leaving the depot in the morning should be the same as 

the number of rolling stock units returning to the depot in the evening. This paper 

assumes that all rolling stock units are of the same type, so we do not need to ensure they 

return to where they left in the morning. 

∑∑𝑥𝑓(�̂�𝑘
𝑡 )

𝑇

𝑡=0𝑓

=∑∑𝑥𝑓(�̌�𝑘
𝑡 )

𝑇

𝑡=0𝑓

,                                                         ∀𝑘| y𝑘 ∈ 𝑆𝑦   (9) 

Constraint (9) guarantees that the number of virtual entry-arcs �̂�𝑘
𝑡  is the same as the 

number of virtual leave-arcs �̌�𝑘
𝑡 . 

2. Constraints on arrival and departure intervals. 

When two trains depart successively from the same station to the same rail section, a 

certain interval should be kept between the departure times to ensure operation safety. 

Similarly, a certain interval should also be kept between the arrival times of the trains. 

𝐷�̃�𝑘,𝑘′
𝜏  represents the set of running arcs that leave the station 𝑘 at time 𝜏 and enter the 

section (𝑘, 𝑘′). 𝐴�̃�𝑘,𝑘′
𝜏  represents the set of running arcs that arrive at the station 𝑘 at 

time 𝜏  and leave the section (𝑘, 𝑘′) . Meanwhile, ∆𝐷  and ∆𝐴  are denoted as the 

minimum safe departure interval and arrival interval, respectively, and the constraints 

are set as follows: 

∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′
𝜏,𝜏′ )

�̃�
𝑘,𝑘′
𝜏,𝜏′ ∈𝐷𝐴

𝑘,𝑘′
𝜏

𝑡+∆𝐷−1

𝜏=𝑡𝑓

≤ 1 ,                      ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇 (10) 

∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′
𝜏′,𝜏 )

�̃�
𝑘,𝑘′
𝜏′,𝜏 ∈𝐴𝐴

𝑘,𝑘′
𝜏

𝑡+∆𝐴−1

𝜏=𝑡𝑓

≤ 1 ,                      ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇  (11) 

Constraint (10) guarantees that at most one running arc entering the section 
(𝑘, 𝑘′) can be selected within the time range of [𝑡, 𝑡 + ∆𝐷 − 1], which ensures that only 
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one train can depart from station 𝑘 and enter the section (𝑘, 𝑘′) within the minimum 

departure interval. Similarly, constraint (11) guarantees that only one train can leave the 

section (𝑘, 𝑘′) and arrives at station 𝑘 within the minimum arrival interval. 

3. Constraint on OD service frequency in different time periods. 

The frequency of trains stopping at each station should match the travel demand 

intensity of each OD. Meanwhile, for each OD 𝑚 → 𝑛, the travel demand intensity varies 

in different time periods, so the number of trains serving the OD must not be less than the 

minimum required number in different time periods. 

∑∑𝜗𝑚,𝑛
𝑓 (𝑡)

𝑡∈ℎ𝑡𝑓

≥ 𝜌𝑚,𝑛
ℎ𝑡  ,                                           ∀𝑚 → 𝑛; ∀ℎ  (12) 

where 𝜌𝑚,𝑛
ℎ𝑡  represents the minimum number of trains serving OD 𝑚 → 𝑛 in the period 

ℎ𝑡 to which time 𝑡 belongs. 

4. Lagrangian Relaxation Decomposition Model 

Lagrangian relaxation is an effective method for solving large scale combinatorial 

problems. This method has been widely used in solving the train scheduling problem [25], 

the train routing problem [27], and the locomotive assignment problem [28]. Taking the 

advantage of the decomposability of the time-space network, the Lagrangian relaxation 

approach can be applied to decompose the integrated model into an easier relaxation 

problem. 

Since the BM model has large-scale decision variables and complex constraints, it is 

an NP-hard problem. For this reason, a heuristic algorithm based on Lagrangian 

relaxation decomposition will be designed to solve it. 

4.1. Equivalent Minimization Model EM 

Since the original model BM belongs to the maximization optimization problem, we 

first convert it into an equivalent minimization optimization model. In this way, it is easier 

to facilitate the design of a Lagrangian relaxation heuristic algorithm. 

The Chinese high-speed railway conducts regular evening maintenance on the rail 

line and signal equipment. One day’s operating time ranges from 6:00 to 24:00. Under the 

premise of fixed operating hours, the less time that the rolling stock units dwell at stations, 

the longer they will run in rail sections, which means the rolling stock units can serve 

more trains and increase transportation capacity accordingly. Therefore, the 

maximization of total running arcs in the original BM model is equivalent to the 

minimization of total dwell arcs. Let 𝑐(𝑎) indicate the weight of arc 𝑐, which means the 

dwell time generated when the rolling stock selects the arc 𝑎. Obviously, if any dwell arc 

𝑎 is selected, 𝑐(𝑎) = 1, otherwise, 𝑐(𝑎) = 0. Consequently, the model BM is converted 

into the following equivalent model called EM. 

min 𝐺 =∑∑𝑥𝑓(𝑎) × 𝑐(𝑎)

𝑎∈𝐴𝑓

 (13) 

Subject to constraints (2) to (12). 

In the original time-space network, the virtual origin node (virtual end node) is 

connected to multiple virtual leave-arcs (virtual entry-arcs) corresponding to different 

times. Under the guidance of the objective of the equivalent EM model, the rolling stock 

units may choose to leave the virtual origin node later and enter the virtual end node 

earlier to finish their service tasks. In this case, even if the total dwell time of rolling stock 

units is short, it still cannot provide more train services. To avoid this, we need to make 

some adjustments to the time-space network. We keep all the earliest virtual leaving arcs 

and the latest virtual entering arcs and remove the other virtual arcs. As a result, all rolling 

stock units will leave the depot at the earliest time and return to the depot at the latest 
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time. In this way, we guarantee consistency between the original BM model and the 

equivalent EM model. 

Note that a dwell arc will increase the total dwell time by 1, while other types of arcs 

will not. In the equivalent EM model, rolling stock units will prefer arcs other than dwell 

arcs to reduce total dwell time when they search the routes. 

4.2. Lagrangian Relaxation Decomposition Based on Rolling Stock 

In the EM model, it is obvious that the constraints associated with multiple rolling 

stock units (i.e., constraints (9) to (12)) are complex, making the model difficult to solve. 

Therefore, we relax the four complicated constraints into the objective function of the EM 

model to make it easier to solve. For this purpose, we introduce four non-negative 

Lagrange multipliers for constraints (9) to (12), respectively, as shown in Table 3. 

Table 3. Definition of Lagrange multipliers. 

Lagrange Multipliers Define Scope Related Constraints 

𝜇𝑘 ∀𝑘| y𝑘 ∈ 𝑆𝑦 Equation (9) 

𝛽𝑘,𝑘′
𝑡  ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇 Equation (10) 

𝛾𝑘,𝑘′
𝑡  ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇 Equation (11) 

𝜔𝑚,𝑛
ℎ  ∀𝑚 → 𝑛; ∀ℎ Equation (12) 

When the corresponding constraints of the above four Lagrange multipliers are 

relaxed into the objective function, the relaxation model called RM is determined as 

follows: 

 min 𝑅 =∑∑𝑥𝑓(𝑎) × 𝑐(𝑎)

𝑎∈𝐴𝑓

+ ∑ 𝜇𝑘 ∙ [∑∑𝑥𝑓(�̂�𝑘
𝑡 )

𝑇

𝑡=0𝑓

−∑∑𝑥𝑓(�̌�𝑘
𝑡 )

𝑇

𝑡=0𝑓

]

𝑘| y𝑘∈𝑆𝑦

+ ∑ ∑𝛽𝑘,𝑘′
𝑡 ∙

[
 
 
 

∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′
𝜏,𝜏′ )

�̃�
𝑘,𝑘′
𝜏,𝜏′ ∈𝐷𝐴

𝑘,𝑘′
𝜏

𝑡+∆𝐷−1

𝜏=𝑡𝑓

− 1

]
 
 
 𝑇

𝑡=0(𝑘,𝑘′)∈𝐸

+ ∑ ∑𝛾𝑘,𝑘′
𝑡 ∙

[
 
 
 

∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′
𝜏′ ,𝜏 )

�̃�
𝑘,𝑘′
𝜏′,𝜏

∈𝐴𝐴
𝑘,𝑘′
𝜏

𝑡+∆𝐴−1

𝜏=𝑡𝑓

− 1

]
 
 
 𝑇

𝑡=0(𝑘,𝑘′)∈𝐸

+∑ ∑ 𝜔𝑚,𝑛
ℎ ∙ [𝐿𝑚,𝑛

ℎ𝑡 −∑∑ 𝜗𝑚,𝑛
𝑓 (𝑡)

𝑡∈ℎ𝑡𝑓

]

𝑚→𝑛∈𝜃ℎ

 

(14) 

Subject to constraints (2) to (8) and (13). 

Through reorganization, the objective function formulation (14) can be expressed in 

the following simplified form: 

min𝑅 =∑∑𝑥𝑓(𝑎) ∙ 𝐿(𝑎)

𝑎∈A𝑓

−∑𝐶𝑞(𝑓)

𝑓

+ ℱ  (15) 

where 𝐿(𝑎)  is the Lagrangian cost of various directed arcs adjusted by Lagrangian 

multipliers in the time-space network, and its specific representation is as follows: 

𝐿(𝑎) =

{
  
 

  
 
𝑐(𝑎) + ∑ 𝛽𝑘,𝑘′

𝑡

𝜏

𝑡=𝜏−∆𝐷+1

+ ∑ 𝛾𝑘,𝑘′
𝑡

𝜏′

𝑡=𝜏′−∆𝐴+1

       𝑎 = �̃�
𝑘,𝑘′
𝜏,𝜏′                  

𝑐(𝑎) + 𝜇𝑘                                                               𝑎 = �̂�𝑘
𝑡                      

𝑐(𝑎) − 𝜇𝑘                                                               𝑎 = �̌�𝑘
𝑡                      

𝑐(𝑎)                                                                        𝑎 ∈ {�̅�𝑘
𝑡 , �̇�𝑘,𝑑

𝑡 , �̈�𝑘
𝑡 }  

                                 (16) 



Mathematics 2022, 10, 1639 14 of 32 
 

 

𝐶𝑞(𝑓) presents the Lagrangian cost of the rolling stock unit 𝑓 for serving OD with a 

stop plan adjusted by the Lagrangian multiplier, and its expression is as follows: 

𝐶𝑞(𝑓) = ∑ ∑ ∑𝜗𝑚,𝑛
𝑓 (𝑡) ∙ 𝜔𝑚,𝑛

ℎ

𝑡∈ℎ𝑡𝑚→𝑛ℎ

                      ∀𝑓 (17) 

ℱ is denoted as the sum of the relevant Lagrange multipliers, which is expressed as 

follows: 

ℱ =∑ ∑ 𝜔𝑚,𝑛
ℎ ∙ 𝐿𝑚,𝑛

ℎ𝑡

𝑚→𝑛ℎ

− ∑ ∑𝛽𝑘,𝑘′
𝑡

𝑇

𝑡=0(𝑘,𝑘′)∈𝐸

− ∑ ∑𝛾𝑘,𝑘′
𝑡

𝑇

𝑡=0(𝑘,𝑘′)∈𝐸

 (18) 

With a given value of four Lagrangian multipliers, the Lagrangian cost 𝐿(𝑎) and the 

sum of the Lagrangian multipliers ℱ are both fixed values. Since all constraints in the 

Lagrangian relaxation RM model are only for one rolling stock unit, the objective function 

can be decomposed based on rolling stock units. Furthermore, if the constant term ℱ is 

removed, the above relaxation model can be decomposed into multiple path search sub-

problems, where each sub-problem is to find a shortest path for a rolling stock unit in the 

time-space network. In this way, the model RM is decomposed into multiple independent 

rolling stock path search sub-models, which is the relaxation sub-model called SRM for 

the rolling stock unit 𝑓 only, as follows: 

min𝑅𝑓 =∑𝑥𝑓(𝑎) ∙ 𝐿(𝑎)

𝑎∈A

− 𝐶𝑞(𝑓) (19) 

Subject to constraints (2) to (8) and (13). 

5. Algorithm Design Based on Lagrange Relaxation Decomposition 

The core idea of the Lagrange relaxation decomposition algorithm is to obtain the 

relaxed solution and the feasible solution in each iteration. Specifically, it should firstly 

solve the Lagrangian relaxed model RM to obtain a relaxed solution corresponding to a 

lower bound and then use it to generate a feasible solution corresponding to an upper 

bound. With the Lagrangian multipliers improved by iterations, both the lower and upper 

bound will be continuously improved. The iteration process terminates until the gap 

between these two bounds is less than or equal to the given acceptable value or the 

iteration number reaches the maximum given value. The basic idea and the framework of 

the Lagrange relaxation decomposition algorithm are introduced in Section 5.1. 

Furthermore, the algorithms that generate the relaxed and the feasible solutions are 

detailed in Sections 5.2 and 5.3, respectively, which are the most critical parts of the 

algorithm. 

5.1. The Solving Framework of Lagrange Relaxation Decomposition Algorithm 

We obtain the lower bound by solving each Lagrangian relaxation sub-model SRM 

of the RM model in each iteration. Since the lower bound can be optimized by the 

Lagrangian multipliers, we use the Lagrangian multipliers as the decision variables to 

construct a dual model called DM, as follows: 

max
𝜇,𝛽,𝛾,𝜔

𝐿 = min
𝑥
∑∑𝑥𝑓(𝑎) ∙ 𝐿(𝑎) −∑∑ ∑ ∑𝜗𝑚,𝑛

𝑓 (𝑡) ∙ 𝜔𝑚,𝑛
ℎ

𝑡∈ℎ𝑡𝑚→𝑛ℎ𝑓𝑎∈A𝑓

+ ℱ  (20) 

s. t.                𝜇𝑘 ≥ 0,                  ∀𝑘| y𝑘 ∈ 𝑆𝑦  (21) 

𝛽𝑘,𝑘′
𝑡 ≥ 0,              ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇  (22) 

𝛾𝑘,𝑘′
𝑡 ≥ 0,              ∀(𝑘, 𝑘′) ∈ 𝐸; 𝑡 = 0,1,⋯ , 𝑇 (23) 

𝜔𝑚,𝑛
ℎ ≥ 0,             ∀𝑚 → 𝑛;∀ℎ (24) 
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We can solve the above dual model DM of the relaxation model to obtain the optimal 

relaxed solution corresponding to the optimal lower bound. The sub-gradient method is 

widely used to solve the dual problem of Lagrangian relaxation. For example, Xu et al. 

[23] designed an improved sub-gradient algorithm to solve the Lagrangian relaxation 

problem of the joint optimization of train scheduling and locomotive allocation. Castillo 

et al. [24] proposed the stepwise sub-gradient method based on the standard sub-gradient 

algorithm to improve the convergence speed of solving dual problems. The core idea of 

the sub-gradient method in our problem is given as follows. 

The sub-gradients of the 𝑛 iteration are represented as 𝜌𝜇
𝑛(𝑘), 𝜌𝛽

𝑛(𝑡, 𝑘, 𝑘′),𝜌𝛾
𝑛(𝑡, 𝑘, 𝑘′) 

and 𝜌𝜔
𝑛(𝑚, 𝑛), respectively, and they can be updated as follows: 

𝜌𝜇
𝑛(𝑘) = ∑∑𝑥𝑓(�̂�𝑘

𝑡 )

𝑇

𝑡=0𝑓

−∑∑𝑥𝑓(�̌�𝑘
𝑡 )

𝑇

𝑡=0𝑓

  (25) 

𝜌𝛽
𝑛(𝑡, 𝑘, 𝑘′) =∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′

𝜏,𝜏′ )

�̃�
𝑘,𝑘′
𝜏,𝜏′ ∈𝐷𝐴

𝑘,𝑘′
𝜏

𝑡+∆𝐷−1

𝜏=𝑡𝑓

− 1 (26) 

𝜌𝛾
𝑛(𝑡, 𝑘, 𝑘′) = ∑ ∑ ∑ 𝑥𝑓 (�̃�𝑘,𝑘′

𝜏′ ,𝜏 )

�̃�
𝑘,𝑘′
𝜏′,𝜏 ∈𝐴𝐴

𝑘,𝑘′
𝜏

𝑡+∆𝐴−1

𝜏=𝑡𝑓

− 1 (27) 

𝜌𝜔
𝑛(𝑚, 𝑛) = 𝐿𝑚,𝑛

ℎ𝑡 −∑∑𝜗𝑚,𝑛
𝑓 (𝑡)

𝑡∈ℎ𝑡𝑓

  (28) 

According to the updated sub-gradients, four Lagrange multipliers of the 𝑛 + 1 

iteration are updated as follows: 

𝜇𝑘
(𝑛+1) = 𝑚𝑎𝑥{0, 𝜇𝑘

(𝑛) + 𝑔𝑛 ∙ 𝜌𝜇
𝑛(𝑘)}  (29) 

𝛽𝑘,𝑘′
𝑡 (𝑛+1)

= 𝑚𝑎𝑥{0, 𝜇𝑘
′ (𝑛) + 𝑔𝑛 ∙ 𝜌𝛽

𝑛(𝑡, 𝑘, 𝑘′)}  (30) 

𝛾𝑘,𝑘′
𝑡 (𝑛+1)

= 𝑚𝑎𝑥{0, 𝜇𝑘
′ (𝑛) + 𝑔𝑛 ∙ 𝜌𝛾

𝑛(𝑡, 𝑘, 𝑘′)}  (31) 

𝜔𝑚,𝑛
(𝑛+1)

= 𝑚𝑎𝑥{0, 𝜇𝑘
′ (𝑛) + 𝑔𝑛 ∙ 𝜌𝜔

𝑛(𝑚, 𝑛)} (32) 

where 𝜇𝑘
(𝑛), 𝛽𝑘,𝑘′

𝑡 (𝑛)
, 𝛾𝑘,𝑘′

𝑡 (𝑛)
,𝜔𝑚,𝑛

(𝑛)
 are the values of Lagrangian multipliers of the 𝑛 

iteration, respectively. 𝑔𝑛 is the step size of 𝑛 generation, and it is calculated as follows: 

𝑔𝑛 = 1/(1 + 𝑛) (33) 

At the beginning of each iteration, the Lagrangian cost of each arc will be reset based 

on the current Lagrange multipliers. Since each relaxation sub-model SRM is actually a 

shortest path problem, we will search for the shortest rolling stock path in the time-space 

network with the goal of the minimum total Lagrangian cost of arcs (i.e., the optimal 

objective value of the sub-model SRM). Then a relaxed solution can be obtained and its 

corresponding lower bound is denoted as 𝑅𝑙𝑜𝑤𝑒𝑟
𝑛 . After that, to ensure the rolling stock 

routes do not violate the constraints related to multiple rolling stock units, we change the 

relaxed solution to a feasible solution and denote its corresponding upper bound as 

𝑅𝑢𝑝𝑝𝑒𝑟
𝑛 . 

After generating the relaxed solution and the feasible solution, the Lagrangian cost 

of each arc will be recalculated with the Lagrangian multiples updated according to 

formulation (29) to (32). The procedure then goes to the next iteration and terminates only 

when each of the following three termination conditions is triggered: 

(1) The iteration number reaches its maximum limit 𝑁𝑚𝑎𝑥 . 

(2) All sub-gradients are no more than the given standard values 𝜌𝑚𝑎𝑥. 
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(3) The number of continuous iterations without improving the lower bound reaches the 

maximum limit 𝐾𝑚𝑎𝑥 , where the judgment principle of the unimproved lower bound 

is as follows: 

|𝑅𝑙𝑜𝑤𝑒𝑟
𝑛 − 𝑅𝑙𝑜𝑤𝑒𝑟

𝑛−1 |

𝑅𝑙𝑜𝑤𝑒𝑟
𝑛−1 ≤ ε  (34) 

where 𝑅𝑙𝑜𝑤𝑒𝑟
𝑛  and 𝑅𝑙𝑜𝑤𝑒𝑟

𝑛−1  are the lower bounds of the 𝑛  and 𝑛 − 1  iterations, 

respectively, and 𝜀 is the given calculation accuracy. 

Overall, the entire procedure of the algorithm based on the Lagrange relaxation 

decomposition method are shown in Algorithm 1. 

Algorithm 1: Algorithm based on Lagrange relaxation decomposition 

Input: rail line, number of rolling stock, set of alternative stop plans 

Output: Optimal feasible solution and its upper bound 

Start 

Step 1: Initialization 

Let iteration index 𝑛 = 1, initial multiplier update step size 𝑔𝑛 = 1/2, Lagrangian multipliers 𝜇𝑘
(𝑛) = 0, 𝛽𝑘,𝑘′

𝑡 (𝑛)
=

0, 𝛾𝑘,𝑘′
𝑡 (𝑛)

= 0,𝜔𝑚,𝑛
(𝑛)

= 0. 

Step 2: Calculate the Lagrangian cost 𝐿(𝑎) and 𝐶𝑞(𝑓) according to formulations (16) and (17), respectively. 

Step 3: (Solving the relaxation model RM to achieve a relaxed solution and its lower bound) 

Achieve a relaxed solution using the relaxation solution generation sub-algorithm introduced in Section 5.2. Search 

the shortest paths for rolling stock based on the Lagrange cost of arcs one by one in any order.  

Step 4: (Generating a feasible solution and its upper bound based on the relaxed solution) 

Achieve a feasible solution using the feasible solution generation sub-algorithm introduced in Section 5.3. Search 

the shortest paths for rolling stock based on the weights of arcs one by one in ascending priority order. 

Step 5: The sub-gradient is updated according to formulations (25) to (28). 

Step 6: (Termination conditions) 

If all termination conditions are not satisfied, then update the Lagrange multipliers according to formulations (29) 

to (32), and return to step 2. Otherwise, the procedure is terminated. 

End 

Note that the above designed algorithm includes two key sub-algorithms. One is to 

search for the shortest rolling stock paths without considering the constraints related to 

multiple rolling stock units, and the other is the heuristic algorithm to search the rolling 

stock paths considering constraints related to multiple rolling stock units. These two sub-

algorithms are introduced in detail in Sections 5.2 and 5.3, respectively. 

5.2. Sub-Algorithm of Generating the Relaxed Solution 

In this section, a shortest path algorithm based on the label strategy of the Dijkstra 

algorithm is designed to search the path with the minimum total Lagrangian cost for each 

rolling stock unit. Thus, we can obtain a relaxed solution of the model RM. Its value is the 

total Lagrangian costs of rolling stock paths. It should be noted that the path of each 

rolling stock unit will not be affected by other rolling stock paths as we do not consider 

the association constraints among rolling stock units in this sub-algorithm. 

This sub-algorithm takes the dwell arc and the sub-path unit formed between two 

terminal stations of the rail line as the search object. To be exact, it starts from the virtual 

origin node and continuously searches for the sub-path units and dwell arcs visited by the 

rolling stock unit until it reaches the virtual end node. Note that we define a sub-path unit 

to describe the rolling stock path from one terminal station to another terminal station of 

the rail line. Particularly, each sub-path unit is uniquely determined by a stop plan, and a 

set of candidate stop plans are determined in advance. The introduction of the sub-path 
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unit can greatly improve the searching efficiency of the shortest path and ensure the 

rationality of a train’s stops. In this way, we can select one of the candidate stop plans to 

determine the corresponding sub-path unit. 

In general, the search object of the common Dijkstra shortest path algorithm is a 

directed arc starting from the current node, but the search object of our sub-algorithm 

includes both the directed arc and the sub-path unit. For the convenience of expression, 

the directed arc search is also regarded as a sub-path unit. Therefore, the sub-algorithm 

can be described as starting from the virtual origin node and continuously searching the 

sub-path units until reaching the virtual end node. 

Based on the above main idea, a label set is defined for each node. Each label contains 

the information of the total cost of the shortest path from the virtual origin node to its 

corresponding node, its previous sub-path unit and its previous label set. Then, a shortest 

rolling stock path search algorithm based on the labeling idea is constructed. The symbols 

used in the sub-algorithm are shown in Table 4, and its detailed steps are described in 

Algorithm 2. 

Table 4. Symbols used in the algorithm definition. 

Symbols Meaning 

𝐿𝑣 Set of labels of node 𝑣 

𝑙 The index of label, 𝑙 ∈ 𝐿𝑣 

𝑣𝑙  Node to which label 𝑙 belongs, if 𝑙 ∈ 𝐿𝑣 , 𝑣𝑙 = 𝑣 

𝑡𝑣 Time of node 𝑣 

𝑆𝑣 Station to which node 𝑣 belongs 

𝑍𝑙 Total Lagrangian costs for the path from virtual starting point �̅� to node 𝑣𝑙  belonging to label 𝑙 

𝑙𝑙 Pre-label of label 𝑙 

𝑝(𝑣, 𝑣′ , 𝑞) Sub-path unit from node 𝑣 to node 𝑣′ by stop plan 𝑞 

𝐶𝑙(𝑣, 𝑣′, 𝑞) Total Lagrangian costs of directed arcs in a path unit 
𝐶𝑞 Total cost of the 𝑂𝐷 served by stop plan 𝑞 

𝐿𝑐 Set of labels have been checked 

𝐿𝑋 Set of labels have been checked by the latest updating 
𝐿𝑡𝑒𝑚𝑝 Set of temporary storing labels 

 

Algorithm 2: Single rolling stock shortest path search algorithm based on label idea 

Input: operation time 𝑇, node set, arc set, number of rolling stock, candidate stop plan set, stop time parameters, 

turnaround time parameters 

Output: Relaxation solution and its upper bound 

Start 

Step 1: Initialization 

Add label 𝑙 to set 𝐿�̅� and let other label sets equal to ∅. 

Let set 𝐿𝑐 = 𝐿𝑋 = {𝑙|𝑣𝑙 = �̅�}, set 𝐿𝑡𝑒𝑚𝑝 = ∅. 

Step 2: Label checking and updating 

Select each label 𝑙 in set 𝐿𝑋 one by one, execute 

Select sub-path units 𝑝(𝑣, 𝑣′, 𝑞) from node 𝑣𝑙  of label 𝑙 one by one, and execute 

If 𝑙′ = ∅, execute 

Add the label 𝑙′ to label set 𝐿𝑣′  of the node 𝑣𝑙′ , and set its subordinate nodes 𝑣𝑙′ = 𝑣
′ , total cost 

𝑍𝑙′ = +∞ and pre-label 𝑙𝑙′ = ∅. 

If 𝑙′ ∉ 𝐿𝑐 , execute 

If the time of the nodes contained in sub-path unit 𝑝(𝑣, 𝑣′, 𝑞) are all within the operation time 𝑇, 

execute 

Calculate the total cost 𝐶𝑙(𝑣, 𝑣
′, 𝑞) of the sub-path unit and the OD service cost 𝐶𝑞 of the stop plan. 
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If 𝑍𝑙′ > 𝑍𝑙 + 𝐶𝑙(𝑣, 𝑣
′, 𝑞) − 𝐶𝑞, execute 

Let 𝑍𝑙′ = 𝑍𝑙 + 𝐶𝑙(𝑣, 𝑣
′, 𝑞) − 𝐶𝑞, 𝑙𝑙′ = 𝑙, and add label 𝑙′ to set 𝐿𝑡𝑒𝑚𝑝. 

Step 3: Judgment termination condition 

Let 𝐿𝑋 = ∅. Find the minimum cost label in 𝐿𝑡𝑒𝑚𝑝 and transfer it to 𝐿𝑐 and 𝐿𝑋. 

If there is label 𝑙 ̅ in𝐿𝑋 and its node 𝑣𝑙 ̅ is the virtual end point �̅�, go to step 4. Otherwise, return to step 2.  

Step 4: Backtracking primary path and determining all subordinate paths 

Traceback the path from node 𝑣𝑙 ̅ of label 𝑙 ̅ according to the node and the path unit of pre-label 

End 

5.3. Sub-Algorithm of Generating Feasible Solution Based on the Relaxed Solution 

This sub-algorithm is to obtain a feasible solution based on a relaxed solution, to 

make it satisfy the constraints related to multiple rolling stock units such as safe headway, 

maintenance requirements, and OD service frequency requirements. Note that the rolling 

stock path with the lower total Lagrangian cost in the relaxed solution contains more non-

dwell arcs, which is more conducive to improving the objective value of the model EM. 

Thus, we rank the rolling stock units in ascending order according to their optimal 

objective values of the sub-model SRM. Then, search the path for each rolling stock unit 

one by one in this order. In order to ensure the train scheduling does not violate the 

constraints (9 to12) related to multiple rolling stock units of the equivalent model BM, the 

occupied arcs by the former paths cannot be chosen by the current rolling stock unit. 

Compared with the sub-algorithm generating the relaxation solution, the sub-

algorithm generating feasible solution has the following differences. 

1. Path search is based on the total weights of arcs contained in each path unit. To be 

exact, it aims to find the path with the minimum total weights of arcs, rather than the 

path with the minimum total Lagrangian cost of arcs. For simplicity, the symbols 𝑍𝑙 

and 𝐶𝑙(𝑣, 𝑣
′, 𝑞) in this section are redefined as the total weights of arcs. 

2. In order to satisfy the OD service frequency constraints, there are two options when 

searching a path for the current rolling stock unit. If the generated rolling stock paths 

have not satisfied the minimum service frequency requirements of each OD, it will 

select the sub-path unit that is most conductive to improving the OD service 

frequency according to the greedy principle. Otherwise, when all OD service 

frequencies in the generated paths have met the requirements, it will select the sub-

path unit with the minimum number of stops (i.e., the sub-path unit with minimum 

total weights of arcs). The matching degree 𝑐𝑜𝑑 of service OD of each stop plan is 

calculated as follows: 

𝑐𝑜𝑑 =

{
 
 

 
 1     , 𝑖𝑓 ∑∑ ∑𝜗𝑜,𝑑

𝑓 (𝑡)

𝑡∈ℎ𝑡𝑜→𝑑ℎ

< 𝐿𝑜,𝑑
ℎ𝑡  

0.1   ,          𝑖𝑓 ∑∑ ∑𝜗𝑜,𝑑
𝑓 (𝑡)

𝑡∈ℎ𝑡𝑜→𝑑ℎ

≥ 𝐿𝑜,𝑑
ℎ𝑡  

 (35) 

3. In order to satisfy constraints on arrival and departure intervals related to multiple 

rolling stock units, the restricted arc set is determined in advance. No arcs in the set 

are allowed to be selected, otherwise the safe headway conflict will occur. The 

restricted arc set consists of running arcs that are occupied by high priority rolling 

stock units and the related running arcs that do not conform to their safe interval 

constraints. Let 𝐴𝑣𝑖𝑠𝑖𝑡  be denoted as the set of all running arcs selected by the 

scheduled rolling stock paths, then restrict arc set. 𝐴𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡  can be determined as 

follows: 

𝐴𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 = 𝐴𝑣𝑖𝑠𝑖𝑡 ∪ {�̃�𝑘,𝑘′
𝜏,𝜏′ |∃�̃�

𝑘,𝑘′
𝑡,𝑡′ ∈ 𝐴𝑣𝑖𝑠𝑖𝑡 , |𝑡 − 𝜏| < ∆𝐷} ∪ {�̃�

𝑘,𝑘′
𝜏′,𝜏 |∃�̃�

𝑘,𝑘′
𝑡′,𝑡 ∈ 𝐴𝑣𝑖𝑠𝑖𝑡 , |𝑡 − 𝜏| < ∆𝐴}  (36) 
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4. In order to meet the rolling stock maintenance constraint we must ensure that all 

rolling stock units can enter the maintenance depot within 48 h. Thus, for each rolling 

stock unit, if it starts from the virtual leave-arc related to the maintenance depot, it 

can choose any virtual entry-arc to return to the virtual end node. Otherwise, it can 

only return to the virtual end point by the virtual entry-arc related to the maintenance 

depot. In this way, we can guarantee that all rolling stock units stay one night every 

two days at the maintenance depot to receive maintenance. 

In summary, based on the sub-algorithm generating relaxation solution, the sub-

algorithm generating a feasible solution can be designed by integrating the differences of 

the path search above, and its detailed steps are described in Algorithm 3. 

Algorithm 3: Heuristic algorithm for generating feasible solutions 

Input: operation time 𝑇, node set, arc set, number of rolling stock, candidate stop plan set, dwell time parameters, 

turnaround time parameters 

Output: Feasible solution and upper bound 

Start 

Step 1: Initialization 

Let 𝐴𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 = ∅. Rank all rolling stock in ascending order according to their optimal function value in model SRM. 

The priority order is represented as 𝑓(𝑛). 

Step 2: Search rolling stock path one by one 

Select rolling stock 𝑓 in priority order 𝑓(𝑛), execute 

Step 2.1: Initialization 

Add label 𝑙 to set 𝐿�̅� and let other label sets equal to ∅. 

Let 𝐿𝑐 = 𝐿𝑋 = {𝑙|𝑣𝑙 = �̅�}, 𝐿𝑡𝑒𝑚𝑝 = ∅. 

Step 2.2: Judging the balance between entering and leaving the depot 

Judge whether the rolling stock starting from the depot with maintenance capability can return to the depot and 

adjust the virtual arc of returning to the depot. 

Step 2.3: Restricted arc set updating 

Update 𝐴𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡  according to the restricted arc set update method. 

Step 2.4: Label checking and updating 

Select each label 𝑙 in the set 𝐿𝑋 one by one, execute 

Select sub-path units 𝑝(𝑣, 𝑣′, 𝑞) from node 𝑣𝑙  of label 𝑙 one by one, execute 

If the sub-path unit is not a dwell arc, execute 

The combination of greedy principle and shortest path principle is used to select the optimal sub-path 

unit for node 𝑣𝑙 . 

If 𝑙′ = ∅, execute 

Add the label 𝑙′ to the label set 𝐿𝑣′  of node 𝑣𝑙′, and let 𝑣𝑙′ = 𝑣
′, 𝑍𝑙′ = +∞, 𝑙𝑙′ = ∅. 

If 𝑙′ ∉ 𝐿𝑐, execute 

If the time of the nodes contained in 𝑝(𝑣, 𝑣′ , 𝑞) is within the time 𝑇, execute 

Calculate the total cost 𝐶𝑙(𝑣, 𝑣
′, 𝑞) of the sub-path unit. 

If 𝑍𝑙′ > 𝑍𝑙 + 𝐶𝑙(𝑣, 𝑣
′ , 𝑞), execute 

let 𝑍𝑙′ = 𝑍𝑙 + 𝐶𝑙(𝑣, 𝑣
′, 𝑞), 𝑙𝑙′ = 𝑙, and add 𝑙′ 𝑡𝑜 𝐿𝑡𝑒𝑚𝑝. 

Step 2.5: Termination conditions 

Let 𝐿𝑋 = ∅. Find the label with the lowest cost in 𝐿𝑡𝑒𝑚𝑝 and transfer it to 𝐿𝑐 and 𝐿𝑋. 

If 𝑙 ̅ ∈ 𝐿𝑋 and node 𝑣𝑙 ̅ is node �̅�, go to Step 2.6. Otherwise, return to Step 2.4.  

Step 2.6: Backtracking primary path and determining all subordinate paths 

Traceback the path from node 𝑣𝑙 ̅ of label 𝑙 ̅ according to the node and the sub-path unit of pre-label. 

End 
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6. Case Study 

In this section, we conduct a computation study on a practical double-track high-

speed railway line to test the performance of this algorithm. We show the results of the 

solution and perform an in-depth analysis of them. 

6.1. Experiment Setup 

In this case study, the performance of our approach is reported on a practical high-

speed railway between Wuhan city and Guangzhou city in China. This high-speed 

railway consists of 16 stations and 15 double-track rail sections, and its total length is 1069 

km, as shown in Figure 5. Its terminal stations, namely Wuhan station and Guangzhou 

South station, have the turnaround capacity, and they both connect to the maintenance 

depots. We define the direction of leaving from Wuhan station as the downward direction, 

and the direction of leaving from Guangzhou South station as the upward direction. 

Station connected to the depot Ordinary station
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Figure 5. A double-track high-speed railway line between Wuhan city and Guangzhou city. 

We set the parameters of the stop plans and the OD service frequency according to 

the passenger flow characteristics and train plan in this railway in 2016. The planning 

horizon T is set from 6:00 to 24:00. We divide it into three time periods according to 

passenger travel preferences, namely [6:00–10:00], [10:00–16:00], [16:00–24:00]. 

Particularly, we set time period 2 (i.e., from 10:00 to 16:00) as a high demand period, 

because passengers prefer to travel during this period. The parameters of all OD service 

frequency in the whole day are shown in Table 5 and the parameters in each time period 

are set according to the ratio of 3:8:3. There are three candidate stop plans, as shown in 

Figure 5. 

In this case, both the minimum departure and arrival time intervals in rail sections 

are set as 5 min. The minimum and the maximum dwell times at each station are set as 3 

min and 5 min, respectively. The minimum turnaround time is set as 20 min. The 

additional times for the decelerating and accelerating are both 1 min. The minimum 

running times are set as shown in Table 6. In addition, the parameters related to the 

algorithm are shown in Table 7. 

All algorithms are implemented by a Matlab 9.1.0.441655 (R2016b) version and all 

instances are performed on a XiaoXinAir-14ARE 2020 Laptop with a 2.10 GHz CPU, 16.0 

GB memory (15.4 GB usable) and a Windows 10 64-bit professional operating system. 
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Table 5. The parameters of all OD service frequency in the whole day. 

OD S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

S1 0  27  27  40  27  53  40  27  53  27  53  40  27  27  40  53  

S2 27  0  27  0  27  0  0  27  0  27  0  0  27  27  0  27  

S3 27  27  0  0  27  0  0  27  0  27  0  0  27  27  0  27  

S4 40  0  0  0  0  40  40  0  40  0  40  40  0  0  40  40  

S5 27  27  27  0  0  0  0  27  0  27  0  0  27  27  0  27  

S6 53  0  0  40  0  0  40  0  53  0  53  40  0  0  40  53  

S7 40  0  0  40  0  40  0  0  40  0  40  40  0  0  40  40  

S8 27  27  27  0  27  0  0  0  0  27  0  0  27  27  0  27  

S9 53  0  0  40  0  53  40  0  0  0  53  40  0  0  40  53  

S10 27  27  27  0  27  0  0  27  0  0  0  0  27  27  0  27  

S11 53  0  0  40  0  53  40  0  53  0  0  40  0  0  40  53  

S12 40  0  0  40  0  40  40  0  40  0  40  0  0  0  40  40  

S13 27  27  27  0  27  0  0  27  0  27  0  0  0  27  0  27  

S14 27  27  27  0  27  0  0  27  0  27  0  0  27  0  0  27  

S15 40  0  0  40  0  40  40  0  40  0  40  40  0  0  0  40  

S16 53  27  27  40  27  53  40  27  53  27  53  40  27  27  40  0  
For simplicity, the stations are numbered in sequence in the down direction, corresponding to S1–

S16. 

Table 6. The minimum running times. 

Section Origin Station Terminal Station Minimum Running Time (min) 

1 Wuhan Xianning North 20 

2 Xianning North Chibi North 10 

3 Chibi North Yueyang East 21 

4 Yueyang East Guluo East 17 

5 Guluo East Changsha South 18 

6 Changsha South Zhuzhou West 12 

7 Zhuzhou West Hengshan East 20 

8 Hengshan East Hengyang East 10 

9 Hengyang East Leiyang West 13 

10 Leiyang West Chenzhou West 24 

11 Chenzhou West Shaouguan 36 

12 Shaouguan Yingdexi 21 

13 Yingdexi Qingyuan 14 

14 Qingyuan Guangzhou North 9 

15 Guangzhou North Guangzhou South 11 

Table 7. Values of parameters in algorithm. 

Parameter Value Unit 

𝑇 1080 min 

ℎ [1–239; 240–599, 600–1080] min 

𝑄ℎ [𝑞1 𝑞2 𝑞3; 𝑞1 𝑞2 𝑞3; 𝑞1 𝑞2 𝑞3] - 

𝑁𝑚𝑎𝑥  100 - 

𝜌𝑚𝑎𝑥 0.05 - 

𝐾𝑚𝑎𝑥 20 - 

ε 0.005 - 
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6.2. Analysis with the Computational Results 

In the following case studies, we define the following evaluation indexes to evaluate 

the quality of the solution. 

1. Upper bound (UB): the optimal objective value of model EM. This corresponds to a 

feasible solution. 

2. Trans scheduled: the maximum number of trains that can be included in the train 

timetable. 

3. Capacity utilization (CU): indicating the transportation capacity in a train timetable 

which is the ratio of the number of scheduled trains to the ideal number of trains. 

Note that the number of scheduled trains in the train timetable corresponds to an 

optimal feasible solution, and the ideal number of trains refers to the upper limit of 

railway capacity. Considering that the dwell time and the number of stops will affect the 

departure intervals among trains, it is generally impossible to achieve the capacity 

calculated by the minimum safe headway. Thus, we calculate the ideal number of trains 

with a deduction coefficient based on the actual operation experience, and its formulation 

as follows: 

Ideal number of trains =
𝑇 − 𝑇𝑜
∆𝐷

× (1 − ℛ) × 2 × 100% (37) 

where, ∆𝐷  represents the minimum departure interval as well as the minimum safe 

headway. 𝑇𝑜 represents fixed occupied time, and it is set as 𝑇𝑜 = 212. ℛ represents the 

deduction coefficient, and it is set as ℛ = 0.1. 

6.2.1. Computational Results 

Table 8 shows part of the optimization results when the input number of rolling stock 

units is increased from 80 to 120, and |𝐿| represents the input amount of rolling stock 

units. Based on the results, we can observe that the maximum number of scheduled trains 

in the practical high-speed railway is 286, and the actual number of used rolling stock 

units is 95. As the optimal result, no more trains can be added to the train timetable, and 

the capacity utilization rate is up to 91.53%. It shows that our approach can effectively 

improve transportation capacity. 

Table 8. Computation results with increasing values of |𝐿|. 

|𝑳| UB Trains Scheduled CU 

80 33,400 250 80.01% 

84 35,176 262 83.85% 

88 36,952 274 87.69% 

92 39,576 282 90.25% 

96 43,048 286 91.53% 

100 47,368 286 91.53% 

120 68,968 286 91.53% 

Figure 6 shows the convergence process of the Lagrangian algorithm when |𝐿| =

100. The algorithm terminates after 68 iterations, and it can stably converge. The train 

timetable obtained by this algorithm is shown in Figure 7. 
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Figure 6. Convergence process of the Lagrangian relaxation algorithm (|𝐿| = 100). 

 

Figure 7. Train timetable (|𝐿| = 100). 

6.2.2. Analysis of the Turnaround Efficiency of Rolling Stock 

The turnaround time of a rolling stock unit determines its turnaround efficiency. 

Figure 8 shows the number of trains served by a rolling stock unit and the average time 

for one turnaround. As shown, there are 95 rolling stock units in service. We observe that 

a rolling stock unit with a shorter turnaround time can serve more trains. There are 67 

rolling stock units whose turnaround times are within 40 min, accounting for 70%. The 

number of rolling stock units serving 4 trains is 10, and their average turnaround time is 

about 20 min, which is equal to the minimum turnaround time. This indicates that the 

connection efficiency of rolling stock is extremely high. The number of rolling stock units 

serving 3 trains is 78, and their average turnaround time is 33 min. The number of rolling 

stock units serving 2 trains is 5, and their average turnaround time is 69 min, which is 

relatively long but acceptable. Besides, there are 2 rolling stock units that only serve one 

train, so there is no turnaround process. In general, the turnaround times of rolling stock 

are short or acceptable, and the turnaround efficiency is high. 
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Figure 8. Number of trains served and average turnaround time of each rolling stock. 

6.2.3. Analysis of OD Service Quality 

In order to explore the influence of different OD demand intensities on train 

scheduling, we divide the planning time into three time periods. Each time period has 

different OD service requirements. In particular, time period 2 is the high demand period. 

According to the different travel demand intensities, we set three types of ODs. These ODs 

are denoted as OD-1, OD-2, OD-3 in descending order of intensity, corresponding to the 

ODs with values of 27, 40, and 53 in Table 9, respectively. 

Table 9 shows the service frequency of each OD in different time periods. The 

‘Average value’ in the Table 9 is the average service frequency of ODs. The ‘Minimum 

value’ in the Table 9 indicates the minimum service frequency required by ODs. Figure 9 

shows the OD service rate in upward and downward directions. The OD service rate is 

the ratio of the OD service frequency to the number of scheduled trains. 

From Table 9, we observe that the train scheduling can satisfy the requirements of 

different OD service frequencies in different time periods. If the OD demand intensity is 

high, the OD service frequency tends to be high. This indicates that it tends to provide 

more train services for ODs with a large travel demand. 

Figure 9 compares the OD service rates in different time periods. The minimum OD 

service rate of OD-3 is in period 2, and the maximum OD service rates of OD-1 and OD-2 

are in period 2. It indicates that all the ODs of various travel demand intensity have 

satisfactory OD service rates in high demand time periods. In other time periods, trains 

prefer to serve ODs with a high travel demand. 

Overall, our approach can provide OD services that match the OD travel demand 

distribution. 

Table 9. OD service frequency. 

Direction Type 

Time Period 1 Time Period 2 Time Period 2 𝑻 

Minimum 

Value 

Average 

Value 

Minimum 

Value 

Average 

Value 

Minimum 

Value 

Average 

Value 

Minimum 

Value 

Average 

Value 

Downward 

OD-1 6  6  15  15  6  6  27  27  

OD-2 9  12  23  31  9  12  40  55  

OD-3 11  37  30  50  11  33  53  119  

Upward 

OD-1 6  6  15  15  6  6  27  27  

OD-2 9  12  23  31  9  11  40  54  

OD-3 11  37  30  50  11  33  53  119  



Mathematics 2022, 10, 1639 25 of 32 
 

 

 

Figure 9. OD serve rates in upward and downward directions. 

6.2.4. Analysis of the Quality of Train Services 

Along the Wuhan-Guangzhou high-speed railway, there are seven intermediate 

stations with large passenger flow, namely Yueyang East, Changsha South, Zhuzhou 

West, Hengyang East, Chenzhou West, Shaoguan, and Guangzhou North. Among them, 

the passenger flow of Changsha South, Hengyang East and Chenzhou West is far larger 

than other stations. Based on the passenger flow distribution at each station, we can 

analyze the quality of train services from the following aspects. 

Figure 10 shows the train stop rate at each station in different time periods. 

Comparing Figure 10 a,b, it can be found that the train stop rates in the upward and 

downward directions have the same distribution characteristics. Comparing different 

time periods, we can observe that the stopping rates at each station have the same 

distribution characteristics. Particularly, a station with high passenger flow has a high 

stop rate. For example, the stop rates of Changsha South station, Hengyang East station 

and Chenzhou West station are 81.1%. In summary, this means that we can provide train 

services that match the passenger flow distribution of each station in different time 

periods and in different directions. 

 

Figure 10. Stop rates at each station in different time periods and directions. (a) Stop rates at each 

station at different time periods in the downward direction; (b) Stop rates at each station at 

different time periods in the upward direction. 
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Table 10 shows the use of each stop plan and the corresponding average train travel 

time. The “D-value” column reports the difference between the average travel time and 

the minimum travel time. 𝑞1 ensures that the train stops at large passenger flow stations. 

𝑞2 ensures that the train stops at small passenger flow stations. 𝑞3 is the stop plan with 

the minimum number of stops, mainly serving the ODs among the five stations of Wuhan, 

Changsha South, Hengyang East, Chenzhou East, and Guangzhou North. 

From Table 10, the results show that the number of q3 and q1 is more than the number 

of q2. This indicates that the trains will choose the matching stop plans according to the 

passenger flow of the stations. Comparing D-value, we observe that the train travel times 

are short, and there is no serious operational disturbance between different trains. 

Therefore, trains can provide efficient transportation services. 

Table 10. Stop plans and average train travel time. 

Stop Plan 
Average Train Travel Time/min D-Value Number of Stop Plans 

Down Direction Up Direction Down Direction Up Direction Down Direction Up Direction 

𝑞1 249 249 0 0 55 54 

𝑞2 249 249 0 0 27 27 

𝑞3 229 229 0 0 61 62 

Table 11 shows the time-space distribution of trains. From the perspective of time 

distribution, the trains departing from the upward and downward directions are the same 

in each time period, which indicates that the train departure distribution is symmetrical. 

From the perspective of time distribution, the number of departures in time period 2 is 

more than that in the other two time periods because the transportation demand in this 

time period is huge. In summary, the number of trains is consistent with the trend of travel 

demand over time. 

Furthermore, Table 11 displays the origin places and terminal places of rolling stock 

units. We observe that the number of rolling stock units departing and returning at each 

depot is equal which indicates that we can ensure the daily repeated operation of rolling 

stock. 

Table 11. Time-space distribution of trains and rolling stock departure. 

Origin Station 
Number of Train Departures Number of Rolling Stock Units 

Period 1 Period 2 Period 3 T Departure Arrival 

Wuhan 42 63 38 143 48 48 

Guangzhou South 42 63 38 143 47 47 

6.3. Analysis of Sensitivity 

The amount of rolling stock and the minimum headway are very important factors 

of capacity in our problem. Specifically, we conduct some instances to explore the 

sensitivity of transportation capacity and its impact factors with different parameters. To 

save the computation time of the algorithm, we construct a small-scale double-track rail 

line containing five stations. The planning time horizon is 240 min and the parameters of 

the Lagrangian algorithm are unchanged. Other time parameters are reset according to 

Appendix A. In this section, we will analyze the sensitivity based on this small-scale case. 

6.3.1. Analysis of Sensitivity Based on Rolling Stock Amount 

In order to explore the influence of the rolling stock amount on railway capacity, we 

set the minimum headway to 4 min and increase the number of rolling stock units from 1 

to 35. 

From Figure 11, we observe that there are no feasible solutions here when the |𝐿| 

value is less than 9. This is because the current number of rolling stock units is small, and 
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it cannot satisfy the requirements of all OD service frequency in all time periods. As seen 

in it, UB increases as |𝐿|  increases, because for every additional rolling stock unit, 

whether it is used or not, the time it stays at stations or depots is counted. Figure 11 further 

shows that CU value increases first and then remains unchanged as the |𝐿|  value 

increases from 10 to 25. It indicates that increasing the number of rolling stock units can 

improve the transportation capacity, but there is an upper limit to it. Furthermore, it can 

be found that the maximum capacity utilization rate in our case is 88.89%. Its 

corresponding transportation capacity is very close to the upper limit of the transportation 

capacity. 

 

Figure 11. The variation of UB and UR with the increase in the number of rolling stock units. 

As shown in Figure 12, the blue curve shows the variation of the number of scheduled 

trains with different rolling stock amounts. The ideal number of trains with the red dashed 

line is 99. We observe that the number of scheduled trains grows faster at the beginning 

as |𝐿| increases. When |𝐿| = 16, the rail line can schedule 80 trains, and the capacity 

utilization rate is 80.81%. After that, its growth gradually slows down to no change, and 

it reaches 88 when |𝐿| ≥ 19. This means that at least three rolling stock units must be 

added to reach the maximum transportation capacity, but the capacity utilization rate is 

increased by only 8%. Thus, from the point of view of saving operational cost, it is not 

economical to use too many rolling stock units when the transportation capacity is large 

enough. 

 

Figure 12. The variation of number of trains scheduled under different values of |𝐿|. 

6.3.2. Analysis of Sensitivity Based on Minimum Headway 

         

                             

 

   

    

    

    

    

    

    

    

    

 
 

  

  

  

  

  

   

 
 
  

 

          

                             

  

  

  

  

   

 
 
 
 
 
  
 
  
  
 
  
 

                

                      



Mathematics 2022, 10, 1639 28 of 32 
 

 

The minimum headway denoted as ∆𝐷 is an important factor affecting the railway 

capacity. In order to analyze the influence of different minimum headways on the results, 

we set |𝐿| = 16, 18, 20, 22, 24 and ∆𝐷 = 3, 4, 5, 6. 

Figure 13 shows the variation tendency of UB with the increase in the minimum 

headway. We observe that UB value increases as ∆𝐷 increases. In addition, if the |𝐿| 

value is larger, the UB value is higher. This is because the increase in the minimum 

headway will increase the waiting time of the rolling stock units in stations or depots. 

 

Figure 13. The variation tendency of UB with the increase in the minimum headway. 

Figure 14 displays the variation of CU with the increase in the minimum headway. 

We observe that when the rolling stock amount is small (16 and 18 in the instance), CU 

increases significantly as ∆𝐷 decreases. This indicates that the increase in the minimum 

headway will result in a smaller upper limit of transportation capacity. However, when 

the rolling stock amount is large (20, 22 and 24 in the instance) and ∆𝐷 value is small, CU 

is significantly affected by |𝐿|. As seen in it, when ∆𝐷 = 3, the CU increases from 60.61% 

to 88.64% with the increase of |𝐿|. This is because the transportation capacity at this time 

is limited by the amount of rolling stock, and there is still room for further improvement. 

Furthermore, we also observe that the capacity utilization rate can reach more than 90% 

under different ΔD values, which shows that our approach can effectively improve the 

transportation capacity. 

 

Figure 14. The variation of CU with the increase in the minimum headway. 

Figure 15 displays the variation of scheduled trains with the increase in the minimum 

headway. The number of the scheduled trains decreases significantly with the increase of 

ΔD. In particular, the loss of transportation capacity is greater when |𝐿| is large. For 
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example, when |𝐿| = 24, the number of trains decreases by 55 as ΔD increases from 3 to 

6. Thus, we can draw a conclusion that compressing the minimum headway is beneficial 

to schedule more trains. 

 

Figure 15. The variation of trains scheduled with the increase in the minimum headway. 

7. Conclusions and Further Study 

This paper studies a capacity-oriented train scheduling problem that is devoted to 

maximizing the transportation capacity by considering the operation of rolling stock and 

the OD service frequency constraints. The capacity optimization problem is practically 

solved to schedule as many trains as possible on a busy double-track high-speed rail line. 

We propose an integer model based on a time-space network. An algorithm based on a 

Lagrangian relaxation decomposition is designed to solve this problem efficiently, and for 

practical instances. The main conclusions of this paper are as follows: 

1. The proposed method is proved to improve the overall transportation capacity by 

solving a practical instance. The computational results show that we can obtain a 

saturate train timetable, and the maximum capacity utilization is 91.53%, which 

closely approximates the expected maximum capacity of the rail line. 

2. The approach first allows quantifying the impact of rolling stock operations and 

maintenance aspects into transportation capacity optimization. The optimization 

result shows that good coordination between train timetable and rolling stock 

circulation helps improve capacity. Furthermore, the train scheduling can optimize 

the stop rate and OD service frequency to well match the time-space distribution of 

passenger demands. Meanwhile, the rolling stock scheduling achieves a high 

turnaround efficiency and ensures the daily maintenance of rolling stock. 

3. From a comprehensive sensitivity analysis, increasing rolling stock amounts and 

reducing the minimum headway are obvious ways to improve capacity. However, 

the level of rolling stock shortage determines the effect of increasing capacity by 

reducing the minimum headway. Abundant rolling stock is more beneficial to 

improvement. 

Finally, several important limitations need to be considered. Firstly, the most 

important limitation lies in the fact that the network size is very large, which greatly 

improves the difficulty of solving the problem. Further, rolling stock maintenance 

constraints do not take into account the limitation of mileage, which may reduce the 

practical operation of rolling stock. Finally, the stations and the depots are incapacitated, 

and their potential effects were not accounted for in the model. 

Therefore, the following main contents are required to conduct further studies in the 

future: Since incapacitated stations and depots are out of touch with reality, our method 

can be improved by considering the station and depot capacity constraints. Moreover, the 
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rolling stock maintenance can consider the constraints of time, space and mileage. It is 

worth noting that HSR lines are organized differently in other countries, and the model 

we study is more suitable for those busy HSR lines with aperiodic train scheduling. 
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Appendix A 

Table A1. The minimum running times in each section. 

Sections Minimum Running Times/min 

s1–s2 4 

s2–s3 4 

s3–s4 6 

s4–s5 6 

Table A2. The minimum service frequency of OD. 

Sections 
Down Direction Up Direction 

Time Period 1 Time Period 2 Time Period 1 Time Period 2 

s1–s2 5  10 5  10 

s1–s3 5  10 5  10 

s1–s4 5  10 5  10 

s1–s5 5  10 5  10 

s2–s3 5  10 5  10 

s2–s4 5  10 5  10 

s2–s5 5  10 5  10 

s3–s4 5  10 5  10 

s3–s5 5  10 5  10 

s4–s5 5  10 5  10 

Table A3. Values of time parameters. 

Parameters Values Units 

𝑇 240 min 

ℎ [1, 119; 120, 240] min 
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𝑄ℎ [𝑞1 𝑞2 𝑞3; 𝑞1 𝑞2 𝑞3] - 

Minimum turn-around time 10 min 

Minimum dwell time 2 min 

Maximum dwell time 4 min 

Minimum turnaround time 10 min 
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