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Abstract: Digital signatures are unsuitable for specific applications that are sensitive on a personal
or commercial level because they are universally verifiable. Jakobsson et al. proposed the Designated
Verifier Signature (DVS) system, which only allows the intended verifier to validate a message’s
signature. It prohibits the disclosure of a conviction to a third party. This functionality is useful in
applications that require both authenticity and signer privacy, such as electronic voting and tender
calls. The vast majority of current DVS schemes are based on difficult number theory problems
such as integer factorization or discrete log problems over various groups. The development of
a large-scale quantum computer would render these schemes unsafe. As a result, it is critical to
develop quantum-resistant DVS methods. In both quantum and classical computers, signatures
based on one-way functions are more efficient and secure. They have several advantages over digital
signatures based on trapdoor functions. As a result, hash-based signatures are now considered viable
alternatives to number-theoretic signatures. Existing hash-based signatures, on the other hand, are
easily verifiable by anyone. As a result, they do not protect the signer’s identity. In addition, they
are one-time signatures. This paper presents a hash-based multi-time designated verifier signature
scheme that ensures signer anonymity. The unforgeability of the signature scheme is also tested in
the random oracle model under chosen message attack. The properties such as non-transferability
and non-delegatability are investigated.

Keywords: digital signatures; hash-based cryptography; designated verifier signatures; homomor-
phic hash function; preimage resistance; random oracle model

MSC: 94A60; 94A62

1. Introduction

Digital signatures play a vital role in the security of internet and IT infrastructures.
Message integrity, authenticity, and non-repudiation are all provided by digital signatures.
Traditional digital signatures can be verified by the public. However, in certain circum-
stances, the signer ought not uncover his signature to different gatherings, for example
when signing individual well-being records, a financial statement, or a proposal of a vendor
in an electronic auction. Henceforth, Chaum et al. [1] proposed an undeniable signature
scheme in which the signature validation by a verifier requires an interactive confirmation
protocol with the signer. Hence, the signer has complete full control over his signature.
However, if the signer refuses to take part in the verification, then the signatures are consid-
ered to be invalid. To address this problem, Jakobsson et al. presented a new sort of digital
signature called Designated Verifier Signature (DVS) [2], which replaces the interactive
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verification of an undeniable signature scheme by a non-interactive verification and thereby
reduces the burden on the signer. The DVS system enables the designated verifier to create
signatures that are indistinguishable from the signer’s. Subsequently, no outsider can
identify the genuine signer of DVS. Although DVS achieves non-transferability, it does
not prevent an outsider from checking the correctness of the scheme and being convinced
that the signature is generated either by the signer or by the verifier. These significant
features allow DVS to be more useful in scenarios such as electronic voting, tendering,
and so on, where it is important for the signer to designate who has to be convinced by
his/her signature.

1.1. Related Work

Saeednia et al. introduced the notion of Strong Designated Verifier Signature (SDVS)
in [3] that requires the private key of the designated verifier to verify the signature. Hence,
the signature can only be verified by the chosen verifier and not by an outsider. Followed
by the author, Huang et al. [4] and Kang et al. [5] proposed identity-based strong desig-
nated verifier signature (IBSDVS) schemes and under the Bilinear Diffie–Hellman (BDH)
assumption, the schemes are unforgeable. In [6], Laguillaumie and Vergnaud presented a
multi-designated verifier signature technique that allows the signer to prove the authen-
ticity of a statement to a chosen group of verifiers and allows the verifiers to create an
identical signature by having cooperation among themselves. The authors also emphasized
the concept of signer’s identity privacy in SDVS and established that without knowing the
secret keys, it is impossible to tell the difference between the signer’s and the verifier’s
signatures. Li et al. [7] introduced the concept of non-delegatability to the DVS scheme,
which ensures that the signer and verifier cannot entrust the generation of their signatures
to a third party without disclosing their secret keys. Zhang and Mao proposed an IBSDVS
scheme in [8] and claimed that their scheme is non-delegatable. De Almeida et al. [9]
presented a protocol that uses DVS in a context of packet-switching networks. Attracted by
the applications of DVS, many researchers proposed different DVS schemes. The majority
of DVS schemes use certificate-based or identity-based cryptography, with only a few using
certificateless cryptography [10–12].

According to Shor’s algorithm [13], the emergence of quantum computers would
make integer factorization and discrete logarithm issues insecure, which offer a stable
foundation for the above-mentioned schemes. As a result, alternate strategies that are
resistant to quantum computer attacks must be devised. Despite the fact that quantum
computers are still in their early stages of development [14,15], their theoretical ability to
compromise present cryptographic techniques has motivated the development of post-
quantum cryptographic schemes. Thanalakshmi et al. [16] proposed the DVS scheme and
Assar et al. [17] and Ren et al. [18] Shooshtari [19] proposed SDVS schemes based on
the hard problem bounded syndrome decoding in coding theory that are believed to be
quantum resistant [20,21]. However, it is demonstrated in [16] that the systems proposed
by Ren et al. and Shooshtari et al. fail to meet non-transferability. Wang et al. [22], Li et al.
[7], Noh and Jeong [23], and Cai et al. [24] proposed SDVS schemes based on the hard
problems in lattices and claimed the schemes are quantum secure. However, the above
schemes are based on trapdoor one-way functions and are considered to be more complex
than the schemes based on one-way functions.

As hash functions are one-way and sufficient to have an efficient and secure transmis-
sion of data, the hash-based cryptosystem is considered as another promising quantum
immune cryptosystem. In [25], the authors introduce hash-based signature schemes in the
IoT ecosystem. For convenient transmission, a large file can be broken into smaller blocks
and transmitted. One can receive a subset of blocks sequentially and finally be able to
reconstruct the original file. Until the original file is decoded, one cannot check whether
an intermediate block is valid or not. By using a homomorphic hash function, one can
solve such a situation as follows. Compute the hash value of individual blocks and send
the list of hash values to the user. The user can use it to verify the incoming blocks as they
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come and can compute the hash of the original file from the hashes of individual blocks.
Chen presented a PDP protocol based on an algebraic signature and a hash function with
homomorphic property [26]. The homomorphic hash function is proven to enable rapid and
efficient content retrieval as well as proved data possession and data integrity protection in
cloud storage. Thanalakshmi et al.[27] proposed a quantum-resistant chameleon signature
scheme with homomorphic hash functions and homomorphic pseudorandom generators
and without using complex algebraic computation. Hence, to build identification schemes
and special signatures such as DVS in a quantum world, quantum-resistant homomorphic
hash functions are essential.

Lamport’s one-time signature scheme in [28] laid a foundation for introducing the
hash-based signature scheme by Merkle in [29]. Various extensions and improvements were
made in Lamport’s original scheme either by iterating the application of one-way functions
several times or revealing the intermediate values of one-way functions as signatures. All
of these methods can be thought of as variations on the approach proposed by Bleichen-
bacher and Maurer in [30]. As the security proofs of their schemes are left open, Hevia
and Micciancio in [31] proposed a modification in [30] and proved the proposed signature
is provably hard to break since the underlying functions are a hash function and a pseu-
dorandom generator. A novel one-time signature scheme NOTS, which offers minimum
key and signature sizes from existing OTS/FTS schemes, is presented in [32]. However,
the above signature schemes are universally verifiable. Hence, they are unsuitable for
applications where the intended verifier alone has to verify the signature. In addition, they
are one-time—that is, each time when a signer wants to sign a document, he has to generate
a new key pair, which in turn increases the key generation time. This motivates us to design
a multi-time privacy providing DVS scheme based on hash functions. Although SDVS
protects the privacy of signers, there are specific situations in which SDVS is ineffective
and only DVS is appropriate. DVS is beneficial in electronic commerce applications such
as the sale of digital products, for example. If Cindy buys a digital product from vendor
Bob over the internet, she needs a digital receipt that ensures the product’s quality, validity,
and legality. Cindy would be convinced that the product is genuinely manufactured by
Alice and sold by Bob if the receipt is bound with the identities of Bob and the product’s
manufacturer, say Alice. In this situation, Alice can create a DVS as a digital receipt for Bob.
When Cindy buys a goods and receives a receipt from Bob, she may verify the signature
using Bob’s and Alice’s public keys and be convinced of the merchandise. Under certain
conditions, such as when the product requires service during the warranty period, Bob
can provide it and issue a DVS receipt to satisfy the customer and build goodwill with the
customer. In addition, DVS is preferable to SDVS, since Cindy will be unable to validate
the signature if she receives SDVS as a receipt because SDVS requires Bob’s private key
for verification. Hence, in this paper, a DVS scheme is designed using a homomorphic
hash function such that the signer can sign many documents with one private key, and
the intended verifier can alone verify the validity of the signature. The scheme is proven
to be existentially unforgeable under the chosen message attack in the random oracle
model under the assumption of the preimage resistance of hash functions. The proposed
technique further retains the non-transferability property by allowing the verifier to gen-
erate signatures that are indistinguishable from those issued by the signer. The proposed
scheme satisfies the non-delegatability property, which is a desirable property for many
applications of DVS such as the hypothetical e-voting protocol and the online subscription
system.

1.2. Paper Organization

The following is a breakdown of the paper’s structure. Cryptographic primitives,
the specification of designated verifier signature schemes, and the security model are
all covered in Section 2. In Section 3, a novel hash-based designated verifier signature
mechanism is presented. In Section 4, the scheme’s security is demonstrated using the
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provided security definitions. Section 5 discusses the suggested scheme’s performance as
well as a comparison study. Finally, Section 6 brings the paper to a close.

2. Preliminaries

This section recalls the standard definition of a cryptographic hash function. It also
introduces the concept and security requirements of a designated verifier signature scheme.

2.1. Cryptographic Primitives

Hash function is a powerful tool which is a crucial ingredient for many applications. It
is typically used to ensure the data integrity, reduce the quantity of the data to be processed,
and develop safe signature methods in the random oracle model.

Definition 1. (Cryptographic Hash Function) A cryptographic hash function h : {0, 1}∗ →
{0, 1}n is a mathematical function that has the following properties:

(i) Computability or One-way: For any given message, it is easy to compute the hash value but
practically impossible to invert.

(ii) Preimage resistance: It is computationally infeasible to find a message M that is hashed to y
for any hash value y.

(iii) Second-preimage resistance: For a given message M, it is computationally infeasible to find
another message M′, which hashes to the same value as the message M, i.e., h(M) = h(M′).

(iv) Collision resistance: It is computationally infeasible to find another message M′ that hashes to
the same value as the message M, i.e., h(M) = h(M′) for a given message M.

Definition 2. (Homomorphic hash function). Let (R,+) be a group. A homomorphic hash
function is a cryptographic hash function H : R2 → R that satisfies homomorphic property. Hence,
H(x + y) = H(x) + H(y) for every x, y ∈ R2.

A post-quantum homomorphic hash function is a homomorphic hash function that is
resistant against quantum attacks. It is proposed by Micciancio in [33]. Chen et al. in [26]
have proved that the hash familyHR,m = {H : Rm → R | R is a ring and H is homomorphic}
is a post-quantum homomorphic hash family where the ring R is Zp[x]/ < f > for an
irreducible monic polynomial f ∈ Zp[x] of degree n and for some prime p.

The formal definition of a designated verifier signature scheme and its security re-
quirements as in [2] are given in the following subsection.

2.2. Designated Verifier Signature Schemes

A DVS scheme consists of the following four polynomial-time algorithms:
Key Generation (1κ): The key generation algorithm is a probabilistic polynomial-time

algorithm which takes the security parameter κ as input and generates public/private key
pairs (pki, ski), i = S, V where S ,V stands for the signer and verifier, respectively.

Sign: The signature generation algorithm outputs a designated verifier signature σ
based on the input of a message M from the message space, the signing secret key skS, and
the verifying public keys pkS and pkV . Either a probabilistic or deterministic algorithm can
be used.

Verify: The signature verification algorithm is a deterministic algorithm that takes as
inputs and outputs a bit string σ, a message M, and the verifying public keys pkS and pkV .
If σ is a valid designated verifier signature on M, accept it; otherwise, reject it.

Sim: Transcript simulation is an algorithm that creates an identically distributed
transcript σ′ that is indistinguishable from the signature issued by the signer when given
the designated verifier’s secret key skV , the verifying public keys pkS and pkV , and a
message M.

In public key infrastructure, everyone shields his/her private key and advertises
his/her public key with the help of digital certificates. Otherwise, an attacker might use a
signer’s or verifier’s information to create a new key pair in the signer’s or verifier’s name



Mathematics 2022, 10, 1642 5 of 12

and place a copy of the public key on a public key server. Assume a signer generates a DVS
using a verifier’s public key that has been placed by an attacker. The DVS property then
allows the verifier to generate the signature. The attacker in this case is the verifier, who can
easily generate the signature. To overcome this issue, a digital certificate should be used.
It is a method of associating public keys with their owner. Certificate Authorities (CAs)
issue these to validate the owners of public keys. The CA accomplishes this by validating
(via various processes) the identity of the public key’s owner. After that, it will bind the
public key to a digital certificate and sign it with its private key to ensure its authenticity.
All parties who need to validate the CA’s assertion of public key ownership have access to
the CA’s public key.

2.3. Designated Verifier Signature Schemes’ Security Model

The following important properties of a designated verifier signature scheme should
be met: correctness, unforgeability, non-transferability, and non-delegatability.

Definition 3. (Correctness) For any pkS, skS,pkV , skV and any message M ∈ {0, 1}∗, the correct-
ness of the algorithm requires that

Pr

Veri f y

 pkS, pkV , M,
σ = sign(skS,
pkS, pkV , M)

 = Accept

 = 1

and

Pr

Veri f y

 pkS, pkV , M,
σ
′
= sim(skV ,

pkS, pkV , M)

 = Accept

 = 1.

Unforgeability
A valid DVS cannot be produced with non-negligible probability by anyone other than

the signer and the designated verifier. Formally, we define unforgeability as the following
game between a challenger C and a Probabilistic Polynomial-Time (PPT) adversary A:

(a) C produces (pkS, skS) and (pkV , skV) key pairs for the signer S and the verifier V,
respectively, and gives pkS, pkV to the adversary A.

(b) Oh: For the appropriate inputs, A can query the hash oracle Oh.
(c) OSign: A can ask the signing oracle OSign for a signature on a message M for the signer

S and the chosen verifier V. The oracle responds by returning a signature σ on M,
where σ is valid with regard to pkS and pkV .

(d) Finally, A outputs a forgery σ∗ on a message M∗ without querying OSign. A wins the
game if the signature is valid for M∗ in terms of pkS and pkV and it did not query
OSign on input M∗.

Definition 4. (Unforgeability). (T, qh, qs, ε) is a DVS scheme that is existentially unforgeable
against adaptive selected message attack if there is no adversary A who runs in time at most T,
sends at mosqh queries to Oh, qs queries to Osign and wins the game with a probability of at least ε,
as specified in [34].

Non-transferability
Any probabilistic polynomial-time algorithm cannot distinguish the signature σ on a

message M generated by either the signer or the designated verifier given a valid message–
signature pair (M, σ). As a result, the signer’s signature cannot be conveyed to a third
party by a designated verifier. Its formal definition is as follows:

Definition 5. (Non-transferability). If the signature generated by the designated verifier is indis-
tinguishable from the original signature generated by the signer on the same message, the DVS
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method is non-transferable. It holds for any PPT, distinguisher D, and message M ∈ {0, 1}∗ for
any (pkS, skS), (pkV , skV)∣∣∣∣∣∣∣∣∣∣

Pr


σ0 ← Sign(skS, pkS, pkV , M),
σ1 ← Sim(skV , pkS, pkV , M),

b← {0, 1},
b′ ← D(skS, pkS, skV , pkV , σb)

: b′ = b

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ ε( κ )

where the probability is taken over the randomness used in Sign and Sim, as well as the random
coins used by D and ε(κ) are a negligible function in the security parameter kappa. If the likelihood
is 1

2 , the DVS scheme achieves perfect non-transferability, as stated in [17].

Non-delegatability
Non-delegatability means that in order to generate a valid signature on a message,

one must ’know’ the signer’s or designated verifier’s secret key. Its formal definition is
as follows:

Definition 6. (Non-delegatability) (t, ε, t′, ε′) is a non-delegatable DVS scheme if a knowledge
extractor K can extract the private key skS or skV in time t with a probability of AdvND

DVS(κ) ≥
ε against a forger algorithm F, a valid signature can be constructed on M with probability ε′

in time t′, where ε > poly1(ε
′) and t < poly2(t′) for two polynomial functions poly1 and

poly2, respectively.

3. Proposed Hash-Based Quantum-Resistant Designated Verifier Signature Scheme

The proposed Hash-Based Designated Verifier Signature Scheme (HBDVS) scheme
is constructed using homomorphic hash function H : F2k

2 → Fk
2 and a hash function

h : Fk
2 × Fk

2 × Fk
2 → Fl

2, which are modeled as random oracles.

Construction of a Quantum-Resistant Hash-Based Designated Verifier Signature
Scheme (HBDVS)

The scheme is made up of the polynomial-time algorithms listed below.
Signer S and verifier V with the input matrices X and Z of size l run Algorithm 1

and obtain the output matrices H(X) and H(Z). The signer and the verifier publish their
public/private key pairs (pkS, skS) as (H(X), X) and (H(Z), Z), respectively.

Algorithm 1 Key Generation (1κ)

Input : H and a matrix X of size l where Xi ∈ F2k
2 for i = 1, ..., l

Output : (pk, sk)
Initialize pk of size l values as 0
Initialize sk as X
For i = 1 to l : do

pk[i] = H(X[i])
EndFor
return (pk, sk)

The signer S chooses y1,t1 ∈ F2k
2 r1 ∈ Fl

2 and message M and runs Algorithm 2 and
obtains the signature σ for M as (r1, t1, r2, t2).

When a signature σ = (r1, t1, r2, t2) is received with the message M, the verifier runs
Algorithm 3 and checks the validity of the signature. If the output is True, the verifier
Accepts the signature σ for M and if the output is False, he Rejects the signature.

The verifier V randomly chooses y2,t2 ∈ F2k
2 and r2 ∈ Fl

2 and runs Algorithm 4 to
simulate a signature σ for M.
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Algorithm 2 Signing

Input : y1,t1 ∈ F2k
2 ,r1 ∈ Fl

2, pkV , skS, h, H and M
Output : (r1, t1, r2, t2)
Y1 = H(y1)
T1 = H(t1)
Y2 = pkV ∗ r1 ⊕ T1
r = h(M, Y1, Y2)
r2 = r⊕ r1
t2 = skS ∗ r2 ⊕ y1
return (r1, t1, r2, t2)

Algorithm 3 Verify
Input : signature σ = (r1, t1, r2, t2), pkS, skV , M, h and H
Output : Boolean (True or False)
T1 = H(t1)
T2 = H(t2)
r = r1 ⊕ r2
Y1 = pkS ∗ r2 ⊕ T2 , Y2 = pkV ∗ r1 ⊕ T1.
If r = h(M, Y1, Y2) do:

return “True”
Endif
Else do

return “False”
EndElse

Algorithm 4 Sim

Input : y2,t2 ∈ F2k
2 ,r2 ∈ Fl

2, pkS, skV , h, H and M
Output : (r1, t1, r2, t2)
Y2 = H(y2)
T2 = H(t2)
Y1 = pkS ∗ r2 ⊕ T2
r = h(M, Y1, Y2)
r1 = r⊕ r2
t1 = skV ∗ r1 ⊕ y2.
return (r1, t1, r2, t2)

Correctness
A valid signature’s correctness is determined as follows:

pkS ∗ r2 ⊕ T2 = H(skS) ∗ r2 ⊕ H(t2)

= H(skS ∗ r2)⊕ H(t2)

= H(skS ∗ r2 ⊕ t2)

= H(y1) = Y1

Similarly, one can verify pkV ∗ r1 ⊕ T1 = Y2. In addition, r1 ⊕ r2 = r, according to
the definition of r. As a result, h(M, Y1, Y2) = r. The correctness for a simulated signature
follows the similar steps of correctness for a legitimate signature.

4. Security Analysis

The unforgeability of the proposed signature scheme is analyzed as follows:
EUF-CMA security: Pointcheval and Stern’s [35] generic signatures are of the format

σ = (σ0, h1, σ1), where σ0 is randomly sampled from a huge set; h1 = h(M, σ0) with a hash
function h that is characterized as a random oracle, and M is the message to be signed; σ1
depends merely on σ0 and h1. The signature on the message M that results is indicated by
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(σ0, h1, σ1). Pointcheval and Stern showed that their schemes were existentially unforgeable
in the random oracle model by the novel forking lemma.

The General Forking Lemma by Pointcheval and Stern [35] for a generic digital signa-
ture scheme is as follows:

The General Forking Lemma: Let κ be a security parameter for a generic digital
signature system called Key Gen, Sign, Verify. Let A be a probabilistic polynomial-time
Turing machine that takes public data as input and uses qh and qs queries to query the
random oracle and the signer, respectively. Assume that within a time bound T, A creates a
valid signature (σ1, h1, σ2) on M with the probability ε ≥ 10(qs+1)(qs+qh)

2κ . When the triples
(σ1, h1, σ2) can be simulated with an indistinguishable distribution probability without
using the secret key, there exists another machine that has control over the machine A,
replaces the interaction with the signer with simulation, and produces two valid signatures
(σ1, h1, σ2) and (σ1, h

′
1, σ

′
2) on M such that h1 6= h

′
1, in expected time T

′ ≤ 120686qhT
ε .

It is interesting to note that the proposed signature (r1, t1, r2, t2) on a message M meets
the definition of Pointcheval and Stern’s generic signatures. If r1, t1 and y1 are sampled
from big sets, r2 can be easily derived from the hash output, and t2 depends only on r2
and the r1, t1 and y1 inputs. The signature is supplied as (r1, t1, r2, t2), ignoring y1, because
the DVS scheme must have anonymity and the value of y1 can be readily obtained from
(r2, t2) when required. As a result, the Forking Lemma is used to assess the proposed
scheme’s security.

Theorem 1. The signature (r1, t1, r2, t2) of the proposed scheme can be simulated using the hash
oracle without knowing the private keys skS and skV , making it indistinguishable from the original
signature unless the adversary can solve the hash function’s preimage.

Proof. A valid four-tuple (r1, t1, r2, t2), either original or simulated signature, must satisfy
pkS ∗ r2 ⊕ T2 = Y1 and pkV ∗ r1 ⊕ T1 = Y2. Hence, simulation of the signature without
the private keys skS and skV can be made as follows: choose randomly t1, t2 in F2k

2 , r1,
r2 in Fl

2 and compute T1 = H(t1) and T2 = H(t2), Y1 = pkS ∗ r2 ⊕ T2 and Y2 =
pkV ∗ r1 ⊕ T1 and set h(M, Y1, Y2) = r1 ⊕ r2. Therefore, the simulated signature satisfies
either Y1 = H(y1) or Y2 = H(y2) where y1 = skS ∗ r2 ⊕ t2 and y2 = skV ∗ r1 ⊕ t1.
However, all original signatures (r1, t1, r2, t2) satisfy both Y1 = H(y1) and Y2 = H(y2)
with h(M, Y1, Y2) = r1 ⊕ r2 and y1 = skS ∗ r2 ⊕ t2 and y2 = skV ∗ r1 ⊕ t1. Only with
the knowledge of the secret keys skS and skV one can differentiate the simulated signature
from a legitimate one. Therefore, telling a simulated signature from an original signature is
the same as determining the secret keys from the public keys. It is the same as solving the
hash function’s preimage.

Theorem 2. Let A be an adversary who queries the hash and sign oracles with at most qh and qs
queries, respectively, and performs an existential forgery under chosen message attack against the
proposed HBDVS scheme with probability ε ≥ 10(qs+1)(qs+qh)

2κ , within time bound T; then, the
preimage of the hash function H can be computed within the expected time T

′ ≤ 120686qhT
ε . As a

result, in the random oracle model, the HBDVS scheme is (T, qh, qs, ε)—existentially unforgeable.

Proof. If an adversary A forges an HBDVS scheme with probability ε, an algorithm C exists
that computes a preimage of the hash function H as follows: To construct a homomorphic
hash function H, the challenger C executes the setup process on a security parameter κ.
Then, C chooses randomly pkS and pkV as k × l matrices over F2 and sets them as the
signer’s and verifier’s public key, respectively. C invokes A on parameters, pkS and pkV .

Let A query the hash oracle and sign oracle with at most qh and qs queries, respectively,
and it wins the unforgeability game with probability ε. In Theorem 1, it is shown that
the four-tuple (r1, t1, r2, t2) can be simulated without using the secret key with an indistin-
guishable distribution probability. According to General Forking Lemma, C that controls A
replaces the interaction with the signer by simulation and produces two valid signatures



Mathematics 2022, 10, 1642 9 of 12

in expected time T
′ ≤ 120686qhT

ε . The two valid signatures (r1, t1, r2, t2) and (r1, t1, r
′
2, t
′
2) on

M∗ gives y1 = skS ∗ r2 ⊕ t2 = skS ∗ r
′
2 ⊕ t

′
2

⇒ skS =
t
′
2⊕t2

r2⊕r′2
. Thus, C determines the secret key skS, which is the preimage of the public

key pkS. In a similar manner, C computes the secret key skV for the public key pkV . Thus,
C succeeds in finding the preimages of hash function for two instances pkS and pkV within
the expected time T

′ ≤ 120686qhT
ε .

The following theorem proves non-transferability, which is an important property of
the proposed DVS.

Theorem 3. The distributions of the transcripts simulated by the verifier using the Sim algorithm
are the same as the distributions of the transcripts received from the signer using the Sign algorithm.
Hence, the proposed scheme is non-transferable.

Proof. It is sufficient to establish that any valid designated verifier signature (r1, t1, r2, t2)
on a message M created by a simulation algorithm is indistinguishable from one produced
by a signing method to prove non-transferability. That is, the likelihood of the signing
algorithm producing a signature is the same as the probability of the simulation algorithm
producing a signature. For randomly selected y1, t1 ∈ F2k

2 and r1 ∈ Fl
2, the signature

(r1, t1, r2, t2) produced by a signing algorithm is
r1

R← Fl
2

t1
R← F2k

2

h(M, H(y1), pkV ∗ r1 ⊕ H(t1))⊕ r1 : y1
R← F2k

2
skS ∗ r2 ⊕ y1


For randomly selected y2, t2 ∈ F2k

2 and r2 ∈ Fl
2, the signature (r1, t1, r2, t2) produced

by a simulation algorithm is
h(M, pkS ∗ r2 ⊕ H(t2), H(y2))⊕ r2, : y2

R← F2k
2

skV ∗ r1 ⊕ y2

r2
R← Fl

2

t2
R← F2k

2


Let θ be a valid signature picked at random from among all the designated verifier

signatures. The probability of a signature being formed by a signing algorithm is Pr[θ =

θ] = 1
24k+l , while the probability of a signature θ

′
being produced by a simulation algorithm

is Pr[θ = θ
′
] = 1

24k+l . When the random vectors and probabilities are compared, it is
clear that the signatures produced by the signing and simulation algorithms have the
same probability. As a result, the suggested signature system satisfies the property of
non-transferability.

Theorem 4. The proposed HBDVS scheme cannot be delegated.

Proof. We use the “General Forking Lemma” to show that the proposed HBDVS is non-
delegatable. Assume that ε > κ = 1/2l with 1/2l representing the chance that F correctly
predicts the hash value without consulting the random oracle h. We must prove that a
knowledge extractor K exists that extracts the secret key of either the signer skS or the
designated verifier skV with probability 1 using input σ and black-box oracle access to
algorithm F. Let K choose randomly pkS and pkV as k× l matrices over F2 and establish
them as the public keys of the signer and the verifier, respectively, and send to F. K supplies
sign and hash oracles in the same manner as Theorem 2 does. K selects a message M∗



Mathematics 2022, 10, 1642 10 of 12

and sends it to F, which produces a signature on M∗. By General Forking Lemma, two
signatures (r1, t1, r2, t2) and (r1, t1, r

′
2, t
′
2) on M∗ are obtained.

This⇒ y1 = skS ∗ r2 ⊕ t2 = skS ∗ r
′
2 ⊕ t

′
2 ⇒ skS =

t
′
2⊕t2

r2⊕r′2
. Thus, K computes the secret

key skS for the public key pkS. Similarly, K computes the secret key skV for the public key
pkV .

5. Results and Discussion

In the proposed scheme, the signature generation requires three time computations of
the hash function. Hence, the signature generation has the time complexity 3(O(1)) = O(1).
The time complexity of verification is O(1), since the verification process also requires three
time computations of hash evaluation.

Table 1 shows the comparison results of the proposed method with a few current
post-quantum DVS techniques for 256-bit security. We consider hash functions given by
Ajtai’s construction of hash functions based on regular lattices for the proposed HBDVS.
As a result, the HBDVS parameters, k = nlog, q and l = log, q, select the values of n and
q, as cited in [33]. The other schemes compared in Table 1 are lattice-based schemes in
ideal lattices. As a result, the parameters of those schemes are regarded as in [24]. Table
1 indicates that the proposed scheme’s signature length is shorter than that of previous
quantum secure techniques.

Table 1. Comparison of HBDVS scheme with existing DVS schemes.

Scheme System Hard Problem Signature Size in Bits

Wang et al. (2012) [22] Lattice-based LWE-SIS 3.3× 106

Noh and Jeong (2016) [23] Lattice-based LWE-SIS 9.7× 104

Cai et al. (2019) [24] Lattice-based R-SIS 1.6× 104

Proposed HBDVS Hash-based PR 7.1× 103

SIS: short integer solution; LWE: learning with errors; R-SIS: ring-based analogue of SIS problem; PR: preimage
resistance.

6. Conclusions

A DVS scheme is designed to preserve the signer’s privacy, which is a requirement for
many applications such as electronic voting, tender calls, and so on. As the attacks of the
quantum computer threatens most of the existing designated verifier signature schemes, in
this paper, a provably secure hash-based designated verifier signature scheme is proposed.
The scheme is constructed with a minimal resource of homomorphic hash function. It is
a many-time scheme without using the Merkle tree structure. It is a feasible replacement
to number-theoretic techniques. The scheme’s EUF-CMA security is demonstrated in the
random oracle. It also meets the security requirements for a designated verifier signature
technique, such as non-transferability and non-delegatability. This work will enhance the
potential of one-way functions in public key cryptography. This study’s scope could be
expanded to include various types of hash-based designated verifier signatures, such as
strong designated verifier signatures, proxy signatures, designated confirmer signatures,
and so on.

Author Contributions: Conceptualization, P.T.; Data curation, P.T.; Formal analysis, P.T. and R.A.;
Funding acquisition, G.P.J. and C.S.; Investigation, N.A. and C.P.; Methodology, R.A.; Project adminis-
tration, G.P.J.; Resources, G.P.J. and C.S.; Software, N.A. and C.P.; Supervision, C.S.; Validation, R.A.;
Visualization, N.A. and C.P.; Writing—original draft, P.T.; Writing—review and editing, G.P.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) Grant by the Korean Government through the MSIT (Development of



Mathematics 2022, 10, 1642 11 of 12

Highly Efficient PQC Security and Performance Verification for Constrained Devices) under Grant
2021-0-00400.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Anbazhagan would like to thank RUSA Phase 2.0 ( F 24-51/2014-U), DST-
FIST (SR/FIST/MS-I/2018/17), DST-PURSE 2nd Phase programme (SR/PURSE Phase 2/38) and
UGC-SAP(DRS-I) (F.510/8/DRS-I/2016(SAP-I)), Govt. of India.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chaum, D.; Antwerpen, H.V. Undeniable signatures. In Proceedings of the Conference on the Theory and Application of Cryptology,

LNCS; Springer, New York, NY, USA, 1989; Volume 435, pp. 212–216.
2. Jakobsson, M.; Sako, K.; Impagliazzo, R. Designated verifier proofs and their applications. In Advances in Cryptology EURO-

CRYPT96; Springer: Berlin/Heidelberg, Germany, 1996; pp. 143–154.
3. Saeednia, S.; Kremer, S.; Markowitch, O. An efficient strong designated verifier signature scheme. In Proceedings of the

International Conference on Information Security and Cryptology, Seoul, Korea, 27–28 November 2003; pp. 40–54.
4. Huang, X.; Susilo, W.; Mu, Y.; Zhang, F. Short (identity-based) strong designated verifier signature schemes. In Proceedings of the

International Conference on Information Security Practice and Experience, Hangzhou, China, 11–14 April 2006; pp. 214–225.
5. Kang, B.; Boyd, C.; Dawson, E. A novel identity-based strong designated verifier signature scheme. J. Syst. Softw., 2009, 82,

270–273. [CrossRef]
6. Laguillaumie, F.; Vergnaud, D. Designated verifier signatures: Anonymity and efficient construction from any bilinear map.

In Proceedings of the International Conference on Security in Communication Networks, Amalfi, Italy, 8–10 September 2004;
pp. 105–119.

7. Li, Y.; Lipmaa, H.; Pei, D. On delegatability of four designated verifiersignatures. In Proceedings of the International Conference
on Information and Communications Security, Beijing, China, 10–13 December 2005; pp. 61–71.

8. Zhang, J.; Mao, J. A novel id-based designated verifier signature scheme. Inf. Sci. 2008, 178, 766–773. [CrossRef]
9. De Almeida, M.P.; de Sousa, Júnior, R.T.; García, Villalba, L.J.; Kim, T.H. New DoS defense method based on strong designated

verifier signatures. Sensors 2008, 18, 2813. [CrossRef] [PubMed]
10. Chen, Y.; Zhao, Y.; Xiong, H.; Yue, F. A certificateless strong designated verifier signature scheme with non-delegatability. IJ Netw.

Secur. 2017, 19, 573–582.
11. Lin, H.Y. A new Certificateless strong designated verifier signature scheme: Non delegetable and SSA-KCA Secure. IEEE Access

2018, 6, 50765–50775. [CrossRef]
12. Han, S.; Xie, M.; Yang, B.; Lu, R.; Bao, H.; Lin, J.; Han, S. A certificateless verifiable strong designated verifier signature scheme.

IEEE Access 2019, 7, 126391–126408. [CrossRef]
13. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. 1997. [CrossRef]
14. Chang, W.L.; Vasilakos, A.V. Fundamentals of Quantum Programming in IBM’s Quantum Computers; Springer: Berlin/Heidelberg,

Germany, 2021.
15. Chang, W.L.; Chen, J.C.; Chung, W.Y.; Hsiao, C.Y.; Wong, R.; Vasilakos, A.V. Quantum Speedup and Mathematical Solutions from

Implementing Bio-molecular Solutions for the Independent Set Problem on IBM’s Quantum Computers. IEEE Trans. NanoBiosci.
2021, 20, 354–376. [CrossRef]

16. Thanalakshmi, P.; Anitha, R. A new code-based designated verifier signature scheme. International J. Commun. Syst. 2018,
31, e3803. [CrossRef]

17. Asaar, M.R.; Salmasizadeh, M.; Aref, M.R. Code-based Strong Designated Verifier Signatures: Security Analysis and a New
Construction. IACR Cryptol. ePrint Arch. 2016, 779, 1–15

18. Ren, Y.; Wang, H.; Du, J.; Ma, L. Code-based authentication with designated verifier. Int. J. Grid Util. Comput. 2016, 7, 61–67.
[CrossRef]

19. Shooshtari, M.K.; Ahmadian-Attari, M.; Aref, M.R. Provably secure strong designated verifier signature scheme based on coding
theory. Int. J. Commun. Syst. 2016, 30, e3162. [CrossRef]

20. Daniel; A; Lejla; B.; Bernstein, D.J.; Bos, J.; Buchmann, J.; Castryck, W.; Dunkelman, O.; Guneysu, T.; Gueron, S.; Hulsing, A.; et al.
Initial Recommendations of Long-Term Secure Post-Quantum Systems. PQCRYPTO. EU. Horizon 2020 2015. Available online:
https://pqcrypto.eu.org/docs/initial-recommendations.pdf (accessed on 1 February 2020).

21. Process, S.P. Third Round Candidate Announcement; NIST Computer Security Resource Center (CSRC): Gaithersburg, MD, USA,
2020.

http://doi.org/10.1016/j.jss.2008.06.014
http://dx.doi.org/10.1016/j.ins.2007.07.005
http://dx.doi.org/10.3390/s18092813
http://www.ncbi.nlm.nih.gov/pubmed/30149678
http://dx.doi.org/10.1109/ACCESS.2018.2809437
http://dx.doi.org/10.1109/ACCESS.2019.2938898
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1109/TNB.2021.3075733
http://dx.doi.org/10.1002/dac.3803
http://dx.doi.org/10.1504/IJGUC.2016.073779
http://dx.doi.org/10.1002/dac.3162
https://pqcrypto.eu.org/docs/initial-recommendations.pdf


Mathematics 2022, 10, 1642 12 of 12

22. Wang, F.; Hu, Y.; Wang, B. Lattice-based strong designate verifier signature and its applications. Malays. J. Comput. Sci. 2012,
25, 11–22.

23. Noh, G.; Jeong, I.R. Strong designated verifier signature scheme from lattices in the standard model. Secur. Commun. Netw. 2016,
9, 6202–6214. [CrossRef]

24. Cai, J.; Jiang, H.; Zhang, P.; Zheng, Z.; Lyu, G.; Xu, Q. An Efficient Strong Designated Verifier Signature Based on R—SIS
Assumption. IEEE Access 2019, 7, 3938–3947. [CrossRef]

25. Suhail, S.; Hussain, R.; Khan, A.; Hong, C.S. On the role of hash-based signatures in quantum-safe internet of things: Current
solutions and future directions. IEEE Internet Things J. 2020, 8, 1–17. [CrossRef]

26. Chen, L.; Han, L.; Jing, J.; Hu, D. A post quantum provable data possession protocol in cloud. Secur. Commun. Netw. 2013,
6, 658–667. [CrossRef]

27. Thanalakshmi, P.; Anitha, R.; Anbazhagan, N.; Cho, W.; Joshi, G.P.; Yang, E. A Hash-Based Quantum-Resistant Chameleon
Signature Scheme. Sensors 2021, 21, 8417. [CrossRef]

28. Lamport, L. Constructing Digital Signatures from a One-Way Function; Technical Report CSL-98; SRI International: Menlo Park, CA,
USA, 1979; Volume 238.

29. Merkle, R.C. A digital signature based on a conventional encryption function. In Proceedings of the Conference on the Theory
and Application of Cryptographic Techniques, Davos, Switzerland, 25–27 May 1988; pp. 369–378.

30. Bleichenbacher, D.; Maurer, U.M. Directed acyclic graphs, one-way functions and digital signatures. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 21–25 August 1994; pp. 75–82.

31. Hevia, A.; Micciancio, D. The provable security of graph-based one-time signatures and extensions to algebraic signature
schemes. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security,
Queenstown, New Zealand, 1–5 December 2002; pp. 379–396.

32. Shahid, F.; Ahmad, I.; Imran, M.; Shoaib, M. Novel one time Signatures (NOTS): A compact post-quantum digital signature
scheme. IEEE Access 2020, 8, 15895–15906. [CrossRef]

33. Micciancio, D.; Regev, O. Lattice-based cryptography. In Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany,
2009; pp. 147–191.

34. Feng, D.; Xu, J.; Chen, W. Generic Constructions for Strong Designated Verifier Signature. J. Inf. Process. Syst. 2011, 7, 159–172.
[CrossRef]

35. Pointcheval, D.; Stern, J. Security arguments for digital signatures and blind signatures. J. Cryptol. 2000, 13, 361–396. [CrossRef]

http://dx.doi.org/10.1002/sec.1766
http://dx.doi.org/10.1109/ACCESS.2018.2889242
http://dx.doi.org/10.1109/JIOT.2020.3013019
http://dx.doi.org/10.1002/sec.691
http://dx.doi.org/10.3390/s21248417
http://dx.doi.org/10.1109/ACCESS.2020.2966259
http://dx.doi.org/10.3745/JIPS.2011.7.1.159
http://dx.doi.org/10.1007/s001450010003

	Introduction
	Related Work
	Paper Organization

	Preliminaries
	Cryptographic Primitives
	Designated Verifier Signature Schemes
	Designated Verifier Signature Schemes' Security Model

	Proposed Hash-Based Quantum-Resistant Designated Verifier Signature Scheme 
	Security Analysis
	Results and Discussion
	Conclusions
	References

