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Abstract: Osteosarcoma is a malignant bone tumor that is extremely dangerous to human health.
Not only does it require a large amount of work, it is also a complicated task to outline the lesion
area in an image manually, using traditional methods. With the development of computer-aided
diagnostic techniques, more and more researchers are focusing on automatic segmentation techniques
for osteosarcoma analysis. However, existing methods ignore the size of osteosarcomas, making
it difficult to identify and segment smaller tumors. This is very detrimental to the early diagnosis
of osteosarcoma. Therefore, this paper proposes a Contextual Axial-Preserving Attention Network
(CaPaN)-based MRI image-assisted segmentation method for osteosarcoma detection. Based on
the use of Res2Net, a parallel decoder is added to aggregate high-level features which effectively
combines the local and global features of osteosarcoma. In addition, channel feature pyramid (CFP)
and axial attention (A-RA) mechanisms are used. A lightweight CFP can extract feature mapping and
contextual information of different sizes. A-RA uses axial attention to distinguish tumor tissues by
mining, which reduces computational costs and thus improves the generalization performance of the
model. We conducted experiments using a real dataset provided by the Second Xiangya Affiliated
Hospital and the results showed that our proposed method achieves better segmentation results than
alternative models. In particular, our method shows significant advantages with respect to small
target segmentation. Its precision is about 2% higher than the average values of other models. For
the segmentation of small objects, the DSC value of CaPaN is 0.021 higher than that of the commonly
used U-Net method.

Keywords: osteosarcoma aided detection; MRI image; preserving attention network; small object
detection; channel feature pyramid

MSC: 68T01

1. Introduction

Osteosarcoma is one of the most common malignant bone tumors [1]. The populations
in which it is most prevalent are adolescents and children, followed by the elderly [2].
Osteosarcoma accounts for 44% of all primary malignant tumors in orthopedics, with a
high incidence and a five-year survival rate of only 70% of patients [3]. The conventional
treatment in hospitals consists of a combination of limb-preserving surgery and neoad-
juvant chemotherapy. Patients have a high amputation rate and a poor prognosis [4].
Osteosarcoma can be better treated if it is diagnosed early and measures can be taken
accordingly. Currently, medical imaging used to examine osteosarcoma mainly includes
CT, X-ray, and MRI images [5]. MRI causes no radiological damage to brain tissue and its
results are more pronounced in tissue components such as tumors, muscles, and blood
vessels. Therefore, MRI is widely used for the detection of osteosarcoma [6].
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In most developed countries, the treatment of osteosarcoma has been studied mainly
by conducting epidemiological studies and designing clinical trials [7–10]. Treatment
results are better in developed than in developing countries, such as Africa, South America,
and South Asia, where it is difficult to conduct trials on a large scale due to limitations
of medical resources [7]. Furthermore, most cancer epidemiology studies involve only
North America and Europe and thus account for only a very small percentage of the global
population. Diets, lifestyles, and living environments in developing countries differ from
those of developed countries, as does genetic variation, which generates new factors that
cause cancer and provides valuable information for cancer prevention [8]. Therefore, many
of the data and much of the research from developed countries do not apply to the disease
conditions in developing countries. In addition, the pathology of osteosarcoma is complex
and the treatment period is long, such that many less developed countries and regions
experience difficulties in ensuring timely and effective treatment for all due to technical
limitations and economic shortages [9]. In China, for example, medical resources are
unevenly distributed, with a large rural population base which has access to less than
one-fifth of the medical resources available in urban areas [10].

In addition, there are also technical constraints. In clinical practice, accurate segmenta-
tion of focal areas from images is essential for the treatment of osteosarcoma, but manual
outlining of tumor areas requires high professionalism, is time-consuming and labor-
intensive, and is easily affected by the doctor’s subjective awareness and the surrounding
environment [11–13]. It is easy to misdiagnose the tumor area manually, especially when
there are small targets. Therefore, it is urgent to develop an automatic segmentation method
for osteosarcoma that does not require manual outlining by a physician.

With the development of computer-aided diagnosis technology, doctors have been
assisted in diagnosis by artificial intelligence, which has eased the medical predicament
in developing countries to a certain extent [14–17]. Especially in the field of medical
imaging, it has greatly alleviated the problem of tumor treatment in developing countries.
Automatic segmentation and segmentation techniques for small medical objects have not
only improved the efficiency of workflows in clinical scenarios and reduced the workloads
of radiologists, but, more importantly, they have enabled timely and effective treatment
of patients with osteosarcoma [18]. Currently, convolutional neural nets (CNNs) have
achieved greater success in vision tasks such as medical image classification, segmentation,
and target detection. CNN-based tools can learn the hierarchical structures of features
that gradually become complex directly from local regions of an image [19]. No manual
feature extraction is required and segmentation accuracy is significantly improved [20].
However, in MRI image segmentation of osteosarcoma, although the CNN-based approach
has good representation capability, it is difficult to establish a clear distant dependency to
solve the tumor multi-scale problem due to the limited acceptance range of convolutional
kernels [21]. Moreover, each convolutional kernel of a CNN only focuses on the feature
information itself and its boundary, and lacks a large range of feature fusion, which affects
the overall effect [22–24]. Therefore, CNN-based methods have a high miss rate for the
segmentation of small tumor objects.

To address the above problems, this study proposes a context-preserving attention
network-based MRI image segmentation method (CaPaN) for osteosarcoma. At its core, an
attention mechanism is utilized to improve the recognition ability and model generalization
performance for multi-scale osteosarcoma. The CaPaN uses parallel partial decoders to
aggregate high-level features to avoid the inability to balance local features with global
features and incorporates a channel feature pyramid (CFP) module as the context module to
obtain multi-scale feature information. In addition, two paths—axial attention and reverse
attention—are added to the attention module. Reverse attention is used to progressively
tap into the distinguished organizational regions by erasing foreground objects. Axial
attention is used to maintain global connectivity and efficient computation. This method
solves the redundant computation problem of CNN-based methods and reduces the waste
of resources.
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The contributions of this paper are listed as follows:

(1) A new MRI image segmentation method for osteosarcoma is proposed. Based on
the attention mechanism, it solves the problem of recognizing multi-scale tumors,
especially fine tumor regions, and effectively improves the processing accuracy of the
segmentation network.

(2) The use of a parallel partial decoder avoids the inability to balance local features with
global features. Axial attention also solves the redundant computation problem of
CNN-based methods and reduces the waste of resources. The CaPaN achieves a good
trade-off between segmentation performance and inference speed, and the model has
better performance than alternatives while requiring fewer parameters.

(3) Accurate segmentation of small tumor regions is achieved by using CFP as a contex-
tual module to obtain multi-scale information about tumors. The results of model
segmentation are used as a reference basis for doctors’ clinical diagnoses in order to
reduce the occurrence of missed and misdiagnoses, thus reducing the time and person-
nel cost associated with doctors’ repeated verifications when manually segmenting
tumor regions.

(4) In this experiment, an independent non-public dataset from the Second Xiangya
Hospital of Central South University was used for a validation analysis. The results
demonstrate that the CaPaN has a better performance in MRI image segmentation of
osteosarcomas, especially for small target objects.

The remainder of the paper is organized as follows: the second section introduces
related medical image segmentation research; the third section introduces related theoretical
concepts and algorithm models; and the fourth section verifies the model’s performance
according to various standards using simulation experiments. The material in its entirety is
discussed and summarized towards the conclusion of the article.

2. Related Work

With progress in medical intelligence, medical image segmentation and classification
has become a hot research problem. Regarding the segmentation of osteosarcoma, the
following are some of the algorithms that have been developed.

Nasor M. and Walid Obaid [25] proposed an MRI osteosarcoma segmentation tech-
nique that combined image processing techniques, such as K-means clustering, Chan-Vese
segmentation, iterative Gaussian filtering, and Canny edge detection, to segment tumors
and distinguish them from non-tumoral surrounding tissues such as bone. This technology
is particularly suited to helping doctors plan therapy for osteosarcoma patients since it can
segment osteosarcoma independent of its severity, texture, or location. Kayal et al. [26]
suggested an automatic clustering-based SLIC superpixel and fuzzy C-mean clustering
approach and a semi-automatic active contour method. The method has good robustness
in dealing with image noise, segmenting irregular regions, and segmenting heterogeneous
tumors. These methods have been shown to be successful not only in the segmentation
of osteosarcoma, but also in the segmentation of other medical images. Frangi et al. [27]
devised a method for segmenting osteosarcoma in dynamic perfusion MRI using cascaded
feedforward neural networks, categorizing pixels into surviving and non-surviving tumors,
as well as healthy tissue. Pharmacokinetic features were employed to train the classifier
model, which had a segmentation accuracy of 38–78% overall. The results show that the
most important features for distinguishing the tissues of interest are a multi-scale fuzzy
version of the parametric image and a multi-scale formulation of the local image entropy.
The mean or median method was used to weight the outputs of five bagged neural net-
works to determine the categorization of each pixel. The chance that a pixel belongs to a
given class in an MRI of osteosarcoma is not only connected to its characteristics, but also
to the information distribution of adjacent pixels. However, it is currently not possible to
detect osteosarcoma lesions and associated issues at the same time. W. -B. Huang et al. [28]
presented a completely automated MRI segmentation and identification system for os-
teosarcoma to overcome this challenge. It employs a conditional random field (CRF) model
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to fuse numerous characteristics, notably, texture context features, which are based on the
relative location of pixel textures and make a considerable impact in terms of improving
decisions about the class to which a given pixel belongs.

To intelligently separate osteosarcoma MRI images, Rajeswari et al. [29] suggested a
dynamic clustering method (DCHS) based on harmony search (HS) hybridization with
fuzzy C-means (FCM). At each iteration, the idea of variable length is used to encode
a variable number of candidate clustering centers in each harmony memory vector. In
addition, a new HS operator named the “null operator” is added to the harmony memory
vector to facilitate the selection of null decision variables. To fine-tune the segmentation
findings, FCM is incorporated into DCHS. Huang et al. [30] established a new strategy
based on Bayesian networks to deal with the complexity and ambiguity of medical imaging
diagnosis of osteosarcoma and used it to diagnose osteosarcoma for the first time. To build
a more accurate and trustworthy probabilistic model for osteosarcoma detection, a unique
multi-dimensional feature vector comprising biochemical markers and quantitative image
characteristics was defined and employed as the input to a Bayesian network. The experi-
mental findings confirmed the method’s efficiency, with results that were near to expert
diagnoses. In this limited dataset, the RCNN sequence model with strain normalization
described by Nabid et al. [31] showed superior accuracy with respect to the identifica-
tion of tumor, necrotic, and non-tumor cells than other traditional CNN structures. Early
HRC blocks detect low-level H&E picture characteristics, whereas later HRC blocks detect
high-level H&E image features. Cell nuclei, color, and shape sequence patterns are better
detected when Bi-GRU gates are used. With fewer parameters, the GRU addresses the
vanishing gradient problem. The use of relatively limited datasets for training is, however,
the work’s principal shortcoming. The model’s performance might be much better with
a larger dataset. This approach may be used in telemedicine and mobile health systems,
as well as to help professionals. Tumor response to chemotherapy is not assessed in the
treatment of osteosarcoma. The fundamental difficulty is that chemotherapy does not cause
osteosarcomas to shrink; instead, live tumors are replaced by necrotic tissue. Feng Hong
et al. [32] presented a segmentation approach based on blood perfusion EPI MRI sequence
analysis to accurately differentiate the interior portions of osteosarcoma. The EPI-MRI
data were analyzed using a similar mapping approach and the watershed method was
employed for segmentation. The method’s segmentation findings for patients were shown
and compared with surgical results.

The simultaneous localization and categorization of objects in medical pictures, also
known as medical object identification, is of significant clinical importance in medical
target detection. The time-consuming method configuration and iterative procedure are
the key research bottlenecks associated with this undertaking. Baumgartner et al. [33]
recently introduced nnU-Net, which has effectively overcome these difficulties for image
segmentation applications. We organize and automate the configuration process for medical
item detection in this study following the nnU-Net agenda. nnDetection, the resulting
self-configuring approach, adapts to any medical detection challenge without the need for
human involvement, achieving outcomes that are equivalent to or better than the state of
the art.

Automatic and precise lung nodule identification using 3D computed tomography
(CT) images is critical for effective lung cancer screening. Although convolutional neural
network (CNN)-based anchor-based detectors have recently achieved state-of-the-art per-
formance in this task, they require predetermined anchor parameters, such as anchor size,
number, and aspect ratio, and have limited robustness when dealing with lung nodules of
varying sizes. Luo Xiangde et al. [34] introduced a centroid matching detection network
(SCPM-Net) based on a 3D sphere representation that is anchorless and automatically pre-
dicts the position, radius, and offset of nodules without having to construct nodule/anchor
parameters manually. The SCPM-Net architecture outperforms existing anchor-based and
anchorless lung nodule identification algorithms with diverse datasets, according to ex-
perimental results. Furthermore, its 3D sphere representation of lung nodules has been
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confirmed to achieve greater detection accuracy than the traditional bounding box form.
Peng Haixin et al. [35] proposed two 3D multi-scale deep convolutional neural networks
for nodule candidate detection and false-positive reduction, respectively. This method is
mainly used to solve the problems posed by differences in the size of pulmonary nodules
and the visual similarity between pulmonary nodules and their surrounding structures,
such as blood vessels and shadows.

Regarding the problem of automatic segmentation of osteosarcoma, there have been
many studies in similar fields for different problems. For example, in image segmentation
and medical image processing, there are various challenges for different diseases, disease
sites, and types of medical images. In this paper, we investigate the segmentation of small
and medium-sized targets of osteosarcoma.

3. System Model Design

CNN-based medical image segmentation models have been emerging in recent years.
The high performance levels they exhibit also largely serve to meet medical needs. However,
most CNN network-based models focus on improving overall segmentation performance,
while neglecting segmentation performance for small medical objects. Since tumor re-
moval is required for response monitoring, it cannot be carried out during chemotherapy.
Furthermore, if a tumor is not removed immediately, the patient’s burden and medical
resource requirements will be increased as a result of future recurrent treatments. Therefore,
it is critical to be able to obtain a more accurate assessment of tumor area at once. The
detection of microscopic medical targets is important for the early detection of disease and
reduction of mortality and treatment and prognosis. Detecting tumors when they are small
or identifying tumor metastasis movement in time is crucial not only for the treatment of
osteosarcoma but also for other tumors. Although most segmentation algorithms perform
quite well in medical picture segmentation, when segmenting smaller medical targets,
there is a significant incidence of missed detection. Optimization of the segmentation
performance of small medical objects can better provide directions for early diagnosis of
osteosarcomas, such as sharper identification of early tumors and more accurate delineation
of smaller tumors of origin. To tackle this challenge, the Context Axial-Preserving Attention
Network (CaPaN) is a novel attention-based deep neural network that is employed in this
study. Figure 1 depicts the CaPaN architecture.

This section is divided into two sub-sections: in Section 3.1, the main architecture of
the CFP module is presented; and Section 3.2 contains an overall analysis of the CaPaN
module. In Section 3.1, we use the CFP to acquire multi-scale feature information. In
Section 3.2, we import MRI scans of osteosarcoma patients into the CaPaN, which allows
us to determine the position of tumors and perform accurate cutting of smaller objects. The
segmentation results can be used as an auxiliary basis for doctors’ clinical diagnoses.

3.1. CFP Module

Feature pyramids (FPs) are widely used in deep learning models for computer vision
tasks because of their ability to represent multi-scale features. Since osteosarcomas are
characterized by blurred boundaries and indeterminate shapes, the acquisition of more scale
features in a single image becomes an important condition for the accurate segmentation of
osteosarcomas. The CFP is employed in this model to reduce the number of parameters
and the model’s size while still obtaining multi-scale characteristics. In this section, we will
go over the fundamentals of the CFP module, such as the functional pyramid channel. The
construction of the CFP module is then explained.



Mathematics 2022, 10, 1665 6 of 25

Figure 1. Overview of the CaPaN. The system contains three contextual modules (the CFP) and the
axial reverse attention module (A-RA). “S” stands for the Sigmoid function. Ground truth consists of
the tumor regions manually annotated by radiologists—our label data.

3.1.1. Feature Pyramid Channel

The Feature Pyramid channel is a decomposed form of convolution operator, as shown
in Figure 2a,b, which decomposes the convolution of larger kernels into the convolution of
smaller kernels. To reduce the resource burden and increase the speed of segmentation, we
utilize the FP to decrease the number of parameters while maintaining processing accuracy
and ensuring the acquisition of enough features. For the FP channel, we provide two
versions of regular convolution and asymmetric convolution, as shown in Figure 2c,d. To
avoid too large kernels and too many parameters, we combine the convolution kernels
into a channel containing only 3 × 3 kernels. Then, as shown in Figure 2c, we decompose
the normal convolution into an asymmetric form to create a feature pyramid (FP) channel.
To create multi-scale feature maps, we use jump joints to connect the features extracted
from each asymmetric convolution block, allowing each channel to be considered as a
sub-pyramid. We choose regular convolution as the FP channel for the CaPaN. These sub-
pyramids are connected by a hierarchical feature fusion operation to obtain the overall FP.
As shown in Figure 3, the final FP contains four levels of feature stacks {leveli, i = 1, · · ·, 4}:

level1 = outFP1
level2 = level1 + outFP2
level3 = level2 + outFP3
level4 = level3 + outFP4

(1)

We calculate the final FP by ∑i leveli
Compared to the Inception-v2 implementation, the FP channel saves 67% of parame-

ters and reduces the computational resource consumption of the system. However, we can
still learn feature information from receptive fields of the same size, allowing us to obtain
the same quality of data with fewer resources. We must maintain the same dimensionality
of the input and output due to the cascading nature of each asymmetric convolutional
block by reordering the number of filters for each asymmetric convolutional block.
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3.1.2. CFP Module Structure

We use the CFP module to obtain multi-scale feature information, which allows
the network to capture small targets more sensitively. The CFP module can perform
calculations accurately and quickly when few parameters have been obtained, which
effectively improves the segmentation speed of the model. This is used as an auxiliary
basis for clinical diagnosis, and doctors can receive the processing results of the model
quickly, which greatly reduces the ineffective waiting time. K FP channels with varying
expansion rates {r1, r2, . . . , rK} are included in the CFP module. To decrease the input
dimension from M to M/K, the basic CFP module employs 1 × 1 convolutions. The first to
third asymmetric blocks’ dimensions are M/4K, M/4K, and M/2K, respectively.

More information regarding the CFP module may be found in Figure 4. To translate
high-dimensional characteristics into low-dimensional features, we employ 1 × 1 convolu-
tions. Different dilution rates are used to set up several FP channels as parallel structures.
Then we link all feature mappings to the input dimension and activate the result using
another 1 × 1 convolution. As illustrated in Figure 4a, this is the basic structure of the origi-
nal CFP module. The asymmetric convolution, on the other hand, increases the network’s
depth, making training more challenging.

Figure 2. Cont.
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Figure 2. (a) Naïve inception module. (b) Inception-v2. (c) FP channel with regular convolution.
(d) FP channel with asymmetric convolution.
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Figure 3. The final feature pyramid obtained from the CFP module.

Figure 4. (a) Original CFP module. (b) CFP module.

Furthermore, a basic fusion approach creates undesirable checkerboard or grid artifacts
which have a significant impact on the segmentation mask’s accuracy and quality. In
medical tasks, clear medical impact images are important for doctors to quickly analyze
conditions. When analyzed manually, artifacts in an image can have an impact on the
doctor’s analysis. However, for machines that learn everything from the input for analysis,
the impact of artifacts can be even worse. Artifacts can make a machine acquire unnecessary
feature information which can affect processing results, and MRI imaging itself is sensitive
to magnetic field inhomogeneities and therefore prone to unwanted artifacts. Furthermore,
poor magnetic field inhomogeneity at the air–tissue interface can result in substantial
sensitivity to artifacts [16], with a greater magnetic field intensity resulting in more severe
abnormalities. The segmentation of small objects is the acquisition of fewer features. When
the machine acquires unnecessary features, the segmentation results may be more harmful.
Therefore, we use residual connections to provide more feature information to remove
artifacts produced by this training process, resulting in better segmentation results. We
use hierarchical feature fusion (HFF) [36] to alleviate the influence of grid artifacts in the
de-grid. The summing procedure is used to progressively integrate the feature maps,
starting with the second channel, and then stitch them together into the final hierarchical
feature map. Finally, the impact of MRI grid artifacts is decreased, allowing the following
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models to more precisely capture image characteristics. Figure 4b depicts the final version
of the CFP module.

3.2. CaPaN Basic Structure

The architecture of the CaPaN is described in detail in this section. The system
generates high-level semantic global maps using a parallel partial decoder [37] and detects
global and local feature information using a variety of contextual and axial inverse attention
procedures. In this way, it solves the problem of better delineation of osteosarcoma lesion
regions in MRI imaging while capturing and segmenting small targets more precisely to
improve the accuracy of treatment by physicians and achieve tumor detection at the early
stages of tumor growth, enabling better treatment for patients. This section details the
architecture of the CaPaN. It uses a parallel partial decoder [37] to generate a high-level
semantic global graph and uses various contextual and axial reverse attention operations
to detect global and local feature information. Therefore, the CaPaN solves the problem of
better delineation of the osteosarcoma lesion area in MRI imaging and can more accurately
capture and segment small targets. The segmentation accuracy of CaPaN is high and the
results are used as an auxiliary basis for doctors’ diagnoses and treatments which can not
only provide doctors with a more accurate reference, but also reduce the time and labor
costs required for doctors to double-check the detection. We will introduce the components
of this network in the following subsections.

Parallel Partial Decoder:

Currently, the most popular segmentation models are based on U-Net, which aggre-
gates all levels of the encoder’s feature maps. Most of these segmentation models cannot
achieve accurate segmentation of small targets. U-Net using a simple jump-connection
scheme is also still a challenge for modeling global multi-scale problems as not every
jump-connection setting is effective due to incompatible codec stage feature sets and some
jump connections can negatively affect segmentation performance. The U-Net without skip
connections performs worse, but the original U-Net performs worse segmentation on some
datasets. The proposers of the U-Net++ model, Zhou and Zongwei [38], also stated in their
paper that for the feature extraction phase, the downsampling process performed by U-Net
returns only after four layers. However, the importance of features at different levels is
different for different datasets, and the four-layer U-Net structure cannot guarantee that
it is optimal for the segmentation problem of all datasets. Based on the characteristics
of large changes in the shape of osteosarcomas and blurred boundaries, the system can
accurately segment small osteosarcomas, not only providing good auxiliary support for
radiologists’ diagnoses and treatments, but also improving the efficiency of the manual
division of lesion areas. This reduces the time and personnel cost of repeated inspections
by doctors to ensure the accuracy of the test.

Experiments have shown that low-level features are more computationally intensive
but contribute less to improving segmentation performance. Therefore, we combined
high-level features using the parallel partial decoder illustrated in Figure 5 to increase
segmentation accuracy for the improved acquisition of smaller objects. To extract low-level
and high-level characteristics, we used Res2Net [31] as the backbone network. With this,
we can retrieve five different levels of features {fi, i = 1, . . . , 5} with a resolution which
is formulated as h

2i−1 , w
2i−1 by feeding the original picture of size h × w × c (h, w, c signify

height, width, and channel, respectively) into Res2Net. To aggregate the high-level features,
we used the partial decoder PD (·). To generate the global map Sg, partial decoding features
were extracted using PD = pd (f 3, f 4, f 5).

Context Module:

Due to the limited annotation available for osteosarcomas, the obtainment of more
valid information from the limited information already obtained becomes a critical issue.
To obtain contextual information from high-level features, we applied a channel-based
feature pyramid (CFP) module to obtain multi-scale feature information to achieve target
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refinement and to lay the foundation for identifying and segmenting small targets. We
set the CFP dilation rate d = 8, so the dilation rate of each channel is {1, 2, 4, 8}. After the
context module, we can obtain the multi-scale high-level features {f 3′, f 4′, f 5′}.

Figure 5. Overview of the partial parallel decoder.

Axial Reverse Attention:

The axial attention path and the reverse attention path make up the Axial Reverse
Attention module. The globe map simply depicts the organization’s basic location and
lacks structural specifics [39]. As a result, we use reverse attention to gradually mine the
distinct tissue areas by eliminating foreground items. While acquiring structural details, the
prerequisites for the enhanced acquisition of small targets are met. For the segmentation of
osteosarcomas in MRI scans, more comprehensive information is gathered. The inverse
operation is written as:

Ri = 1− Sigmoid(Si) (2)

For the other route, we use axial attention to maintain global connectivity and efficient
computation [9], allowing improved accuracy while effectively simulating the original self-
attentive mechanism for better capture of small targets of osteosarcomas. In axial attention,
by computing the horizontal and vertical axes, the network can extract global dependencies
and local representations. The output of the A-RA module can be expressed as:

ARAi = AAiΘRi (3)

Θ is based on the multiplication of elements, while AAi is a feature of the axial attention path.

Axial Reverse Attention:

Since osteosarcoma MRI imaging has disadvantages, such as fewer available anno-
tations, we weighted each feature for calculation. A weighted intersection set (IOU) and
weighted binary cross-entropy (BCE) are used as loss functions for calculating global loss
and local loss that is pixel-level so that a single characteristic does not have too much of
an impact on the loss numbers. The stability and accuracy of the learning process are
guaranteed. This lays the foundation for acquiring more and more accurate features for
osteosarcoma MRI imaging [40]. To prevent the overfitting problem, it is necessary to make
sure that the model does not learn in the direction of a certain feature. The loss function
may be written as follows:

L = Lw
IoU + Lw

BCE (4)

LW
BCE =

∑ (weit × wbce)

∑ weit
(5)
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weit is calculated as:

weit = 1 + 5× | 1
k2

k

∑
m=0

k

∑
n=0

input(Nj, Cj, s× h + m, s× w + n)−m| (6)

where k, kernel_size, is the pooling kernel size; Ni is the batch size of the input ground
truth, which is the size of the osteosarcoma MRI image; Cj denotes the number of channels
in the input ground-truth signal; s, stride, is the step size of the pooling layer; and m is the
ground truth, which is the osteosarcoma region.

wbce is calculated as:

wbce =
∑(weit × [max (p, 0)− p×m + log(1 + e−||p||)])

∑ weit
(7)

Here, p is the output of the linear layer and does not need to go through the sigmoid
layer; m is the ground truth.

LW
IOU denoted as:

LW
IOU = 1 − ∑ inter + 1

∑ union− inter + 1
(8)

where inter is the overlap between the systematically divided tumor area and the correct
lesion area. It is calculated as follows:

inter = ∑ ((p×m)× weit) (9)

union, the area of the demarcated osteosarcoma region and the area of the accurate
osteosarcoma region added together, uses the formula to compute:

union = ∑ ((p + m)× weit) (10)

The output of the linear layer after being processed by the sigmoid function is p.
To train the CaPaN, we perform deep supervision on the three sub outputs (S1, S2, S3)

and the global mapping Sg. We upsample the losses to the same magnitude as the ground
truth before computing them. As a result, the total loss may be written as:

Ltotal = L(G, Sup
g ) +

5

∑
i=3

L(G, Sup
i ) (11)

Small Object Segmentation Analysis:

The size of an object is defined by the number of pixels in the object (m) and the number
of total pixels in the picture (N) since the size of all images submitted to the segmentation
model must be fixed. As a result, we use the size ratio (scale) = m/N to consider the object’s
size. Then, the performance of the segmentation model is assessed depending on the size
of the item. We are particularly interested in smaller regions with area ratios less than 5%.

For the segmentation model, we first obtain the average dice coefficients and size
ratios for the segmentation from the test dataset. Similar to computing a histogram, we
plot the results on a curve whose y-axis is the average dice coefficient and whose x-axis is
the progressively ordered size ratio. To smooth the curve, we take the interval-averaged
average dice coefficients by sorting according to size ratio: we divide the entire range
of size ratios into a continuous, non-overlapping sequence of equal-length intervals and
then calculate the average dice coefficient for each interval’s size ratio. The interval-
averaged coefficients have smooth curves and are more stable in the presence of noise. This
demonstrates the robustness of our model when segmenting osteosarcoma MRI imaging
and the segmentation of small targets is not affected by noise. In this way, the effect of
MRI imaging results on the segmentation effect due to the variable performance of medical
instruments obtained in developing countries is also addressed.
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This study adopts a novel attention-based deep neural network, Res2Net, as the
backbone network to obtain multi-scale representations of features. It solves the problem
of blurred image features caused by increased signals in MRI imaging of osteosarcomas,
thinning, interruption or loss of bone cortex, and soft tissue mass. To overcome the difficulty
to balancing local and global features and to better collect tumor feature information in
osteosarcoma MRI imaging, a parallel partial decoder is utilized to aggregate advanced
features. The CFP module is used as a contextual module to acquire multi-scale feature
information. By applying reverse attention to progressively mine the differentiated tissue
regions by erasing foreground objects, the inability to accurately capture osteosarcoma
features due to the development of the disease and the appearance of other interfering
features in MRI imaging is avoided. For the other path, we use axial attention to maintain
global connectivity and efficient computation [9]. The redundant computation problem of
CNN-based methods is solved, and the waste of resources is reduced. The above features
ensure that our model has a good generalization ability and that it solves the generalization
problem in practical applications and clinical-level validations. The learning process is
not disturbed by image quality and has low data requirements. It makes the application
cost of the model low and facilitates expansion in developing countries. Automated and
accurate tumor delineation eliminates the personnel and time costs incurred in the manual
delineation of tumor areas and avoids the influence of subjective consciousness and the
irresistible environmental factors that can accompany manual delineation. It reduces the
workload of doctors and provides doctors with better and more accurate auxiliary diagnoses
and treatment bases. For patients, more accurate tumor area delineation and small target
capture can avoid the stress of follow-up treatments caused by incomplete tumor excision
and repeated chemotherapy, which can cause great stress, reducing treatment costs and
benefitting the patient’s body and mind.

4. Experimental Results
4.1. Datasets

The Department of Mobile Health Information, Ministry of Education—China Mobile
Joint Laboratory, and the Second Xiangya Hospital, Central South University, contributed
the data for this work [23]. In addition, we gathered more than 80,000 MRI osteosarcoma
pictures and other metrics data from 204 osteosarcoma patients. We placed each picture into
the network segmentation system after making image changes, such as rotation, highlight-
ing, flipping, color-changing, and zooming in and out, to acquire the final segmentation
results and to make the model segmentation results more accurate and robust. After dataset
enhancement, the total training dataset was 4~6 times that of the original dataset, which
assists the feature learning and training of the model. In the training process, we first di-
vided the dataset into four subcategories according to disease region, as shown in Figure 6:
single leg lateral MRI imaging with tumor present in the leg; single-leg knee lateral MRI
imaging with a tumor present in the knee; thigh transverse section MRI imaging with a
tumor present in the section; and double leg frontal MRI imaging with a tumor present in
one of the legs. Eighty percent of the images in each category were used for training and
20% for testing. After the first round of training, we classified the data with unsatisfactory
segmentation results in each class again according to the degree of similarity for the second
round of training. Finally, 204 patients with osteosarcoma MRI imaging were classified into
six categories to obtain the data used in this study.

4.2. Training Strategies

CaPaN models require large amounts of data to train. Therefore, the dataset must be
enhanced before training to improve the model’s resilience. We extended the dataset by
rotating and flipping the images or increasing their brightness. In the training process, the
optimizer is ADAM, the initial learning rate is 1 × 10−4, the decay rate of the learning rate
is 0.1, the epoch is 200, each epoch contains 10 batches, and the learning rate is decayed
once every 50 epochs.



Mathematics 2022, 10, 1665 14 of 25

Figure 6. The first classification results. (a) Class 1: Single leg lateral MRI imaging with a tumor
present in the leg. (b) Class 2: Single leg lateral MRI imaging of the knee with a tumor present in
the knee. (c) Class 3: MRI imaging of the thigh in the transverse section with a tumor in the section.
(d) Class 4: Frontal MRI imaging of both legs with a tumor in one of the legs.

In the training process, because the CaPaN model requires a certain number of data, we
enhanced the dataset by rotating, highlighting, flipping, changing the color, and zooming
in or out of images to meet the data volume requirement of the model before training. To
begin the training process, we created a class of MRI pictures with the same tumor location
(e.g., both leg MRI images) and tumor shapes comparable to those of the ground truth
images, then selected 80% for training and the remaining 20% for validation. After the
performance of one segmentation procedure, unsatisfactory segmentation results were then
separated out for secondary classification and the experiments and classification operations
were repeated until satisfactory results were obtained.

In addition, to optimize the performance of the CaPaN model and better obtain
contextual information from the MRI images, we analyzed the expansion rate of the channel-
based feature pyramid (CFP), namely, the hyper-parameter, to achieve the refinement of
target lesions. By changing the size of the dilated convolution, the receptive field of the
model output can be changed. As shown in Figure 7, both the precision and recall of the
CaPaN model changes as the dilation rate changes. When the expansion rate is less than
or equal to 2, although the recall value is higher, the precision value is lower. When the
expansion rate is greater than 8, the recall rate of the CaPaN is higher. When the expansion
rate d = 8, the performance of the CaPaN is optimal, and the CFP can better obtain multi-
scale information at this time. Therefore, this study set d = 8 for the experimental analysis.
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Figure 7. Relationship between the CaPaN model’s performance and hyper-parameters.

4.3. Algorithm Comparison

We compared the CaPaN with eight of the most common image segmentation methods:
FCN [41], FPN [42], MSFCN [43], PSPNet [44], U-Net [45], MSRN [46], SVseg [47], and
Ga-CNN [48].

Fully Convolutional Network (FCN): The network employs a jump structure to per-
form precise segmentation and classifies pictures at the pixel level [41]. The fully connected
network is replaced by a convolutional network, which solves the problem of image seg-
mentation at the semantic level. The FCN-16S network that performs 16 upsampling is
chosen in this paper.

Pyramid Scene Parsing Network (PSPNet): At the network’s heart is the pyramid pool-
ing module, which collects contextual information from several locations to produce good
outcomes in acquiring global information [44]. It can effectively obtain global contextual
information for pixel-level scene annotation and the pyramid pooling module it employs
has better feature representation capabilities than global pooling.

MSFCN: This model consists of a multi-supervised output layer complete convolu-
tional network for automated tumor segmentation [43]. Its complete convolutional network
has supervised side output layers that allow it to collect both global and local picture
characteristics. In the upsampling phase, several feature channels are employed to collect
more contextual information, ensuring precise tumor segmentation and low contrast of
surrounding soft tissues. The final tumor borders are determined by fusing the findings of
all side outputs [43].

Multi-scale Residual Network (MSRN): Using residual binning, convolution kernels of
various sizes are added to adaptively identify picture characteristics at various scales [46].
The MSRN employs MSRBs to capture visual features at multiple scales and integrates
the output of each MSRB for global feature fusion. The utilization of LR image features is
maximized by combining local multi-scale features with global features.

U-Net: The U-shaped structure of this network was proposed to tackle the challenge of
medical picture segmentation. The network employs convolution for encoding followed by
upsampling for decoding [45]. It consists of two parts—feature extraction and higher-layer
adoption. It is one of the most often used and simplest segmentation models. U-net is a
basic, efficient, easy-to-understand, and simple-to-build neural network that can be trained
using tiny datasets.

Feature Pyramid Network (FPN): This network is a feature extractor that aims to boost
speed and accuracy. It creates higher-quality feature graph pyramids by replacing the
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feature extractor in detectors. By merging these distinct levels of features, both the high
resolution of the lower-level features and the high semantic information of the higher-level
features are used to accomplish prediction [42].

SVseg: This is an automatic segmentation method for vertebral CT images which
is mainly based on the Stacked Sparse Autoencoder (SSAE). SVseg includes SSAE and
sigmoid classifiers. Among them, SSAE learns raw features from CT images. Sigmoid
completes patch classification based on class probabilities [47].

Ga-CNN: A liver CT image segmentation model, which is mainly a lightweight convo-
lutional neural network composed of three convolutional layers and two fully connected
layers [48].

4.4. Evaluation Indicators

To better assess the model’s efficacy in segmenting osteosarcomas, as an assessment
criterion, we employed the following indexes, as given in Table 1.

Table 1. Evaluation indexes and corresponding descriptions of the experiment.

Indicator Name Description

Params Number of participants
Pr Precision [49], Pr =

tp
tp+fp

FLOPs The number of calculations required by the model
MAE Average absolute error [50], MAE = 1

n

n
∑

i=1
|ŷi − yi|

F1-score
A combination of precision and recall,

F1 = (
r−1+ p−1

2 )−1 = 2× p · r
p + r

DSC Average DSC value
IoU Average IOU value
test_mean Specificity Average specificity at test, Spec = tn

tn+fp
test_mean Sensitivity Average sensitivity during testing, Sens =

tp
tp+fn

Structure measure Structural metrics [51]

First, four terms are clarified: true positive (tp) denotes an instance that belongs to a
positive class and is predicted to belong to a positive class, also known as a true class; false
positive (fp), also known as false detection, denotes an instance that belongs to a negative
class but is predicted to belong to a positive class, also known as a false-positive class; true
negative (tn) denotes a positive class that is projected to be a negative class, also known as
a true negative class; false negative (fn) denotes a positive class that is predicted to be a
negative class, also known as a false-negative class.

IoU (Intersection over Union) is a basic metric for determining the accuracy of finding
an item corresponding to a given item in a given dataset [52]. It may be used for any
task that produces bounding boxes as a result. The correlation between real and expected
values is measured using this criterion; the stronger the correlation, the higher the value.
The result of dividing the overlapping portion of two parts by the pooled part of the two
regions yields the IoU, which is then compared against the result of this IoU computation
using a defined threshold. The following is the formula for calculating it:

IoU =
tp

tp + fp + fn
(12)

The Dice Similarity Coefficient (DSC) is the most commonly used evaluation criterion
in the segmentation process [53]. The dice coefficient is a type of set similarity measure,
usually used to measure the correlation of two samples with a value range of [0, 1], with
the best segmentation results when the value is 1 and the worst when the value is 0. It is
defined as follows:

DSC =
2|P ∩ G|
|P|+ |G| (13)
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P is the result predicted by the model and G is the picture manually labeled by the
doctor. Since the size of all pictures submitted to the segmentation model must be fixed, the
size of the object is defined by the number of pixels in the object and the size of the entire
image [54]. To determine the size of an item, we utilize the ratio (proportion) of the number
of pixels in the object to the total number of pixels in the picture. The segmentation model’s
performance is then assessed in relation to the object’s size. We pay special attention to
smaller regions, those with a ratio of less than 5%, as shown in Figure 8.

Figure 8. (a) An example of a small area focused on in the experiment. (b) A non-small area.

4.5. Results

Figure 9 shows a comparison of the model segmentation effects before and after the
dataset improvement. The left column represents the ground truth, the center column
shows the segmentation result graph of the model before the enhancement of the dataset,
and the right column shows the segmentation result of the model after the optimization.
When the MRI image was not optimized, the results of the model segmentation shoed
fuzzy segmentation and wrong segmentation. The optimized results were closer to the true
labels and the completeness and accuracy of the model’s predictions were improved. The
model’s performance was greatly enhanced as a result of dataset tuning. We performed a
quantitative analysis, shown in Table 2. For the dataset without enhanced processing, the
DSC value of the system was only 0.467, the F1 value was only 0.341, and the MAE value
reached 0.018. After the dataset was enhanced four times and six times, various indicators
were significantly improved, especially after six enhancements. The DCS value increased
by 93%, the F1 value increased by 161.58%, and the MAE decreased by 61.2%.

In addition to the dataset enhancement, we also classified different kinds of images in
the dataset and then performed training for them separately to improve the segmentation
results. The results after different classifications are shown in Figure 10.

Figure 11 shows the segmentation results of different models for osteosarcoma MRI
images. From Figure 11a, it can be seen that the CaPaN can outperform most models in
the segmentation of large objects; the DSC value is above the average of the other eight
models. It is more accurate in terms of tumor localization and reflecting the nuances of
tumor boundaries, without under-segmentation or over-segmentation. When the MSFCN
network divides a tumor area, the localization of the lesions is not accurate enough. Both
PSPNet and SVseg models suffer from significant over-segmentation. The Ga-CNN network
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has insufficient segmentation. At the same time, for the segmentation of small objects, the
segmentation results of the CaPaN model are also better than those of other models. Its DSC
value exceeds that of other models by more than 0.01. The FPN, U-Net, MSFCN, MSRN,
PSPNet, and SVseg models all suffer from over-segmentation. In particular, the PSPNet
model is not accurate enough to be used to locate small lesions. Compared with these
models, Ga-CNN has a better effect but its division of edge parts is still not accurate enough.

Figure 9. Before and after the dataset was upgraded: a comparison of the model segmentation effect
was made.

Table 2. Variation in training model performance with four enhancements and six enhancements vs.
no enhancements for the overall dataset.

Degree of Dataset
Enhancement Average DSC F1 MAE

No enhancement 0.467 0.341 0.018
Four kinds of
enhancements 0.871 0.843 0.010

Six kinds of
enhancements 0.901 0.892 0.007

Figure 10. Comparison of the segmentation results of the first classification and the final classification
of data in the dataset. (a) The ground truth. (b) The first classification segmentation result. (c) The
final result.

In order to conduct a clearer comparative analysis of the evaluation indicators, we
quantified the segmentation results of different models for small target objects. Table 3
compares the performance of different methods on the small target osteosarcoma dataset.
Compared with other models, the CaPaN model has more significant advantages than other
models in terms of Pr, IOU, and F1 values. Specifically, the Pr value of the CaPaN model
is 0.014 times higher than the accuracy of the second-ranked FCN16 and U-Net models.
The F1 and DSC values represented improvements of 0.98% and 2.36%, respectively, in
relation to U-Net, and of 3.6% and 6.29% in relation to FCN16. Although the Pr and F1
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values of the FPN model are relatively high, its variance is large and the performance of
the model is unstable. The variance of the CaPaN model on Pr, F1, and DSC is the smallest,
indicating that the data fluctuation of the model is small during the training process, and
the CaPaN model has good data stability. In terms of system parameters, the params value
of PSPNet is the smallest, but the segmentation accuracy of this model is low. Compared
with other models, CaPaN has fewer parameters, indicating that the complexity of the
CaPaN model is lower. Although the FLOPs value of CaPaN is slightly higher than that
of the MSFCN, MSRN, and U-Net models, the params of CaPaN are much lower than
those of the MSFCN and MSRN networks. The segmentation effect and variance of CaPaN
are more advantageous than U-Net, and the stability is higher. Overall, the segmentation
performance of CaPaN on small target objects outperforms other models in the experiments.
In terms of complexity, CaPaN is less complex and has a faster computation rate. It achieves
a balance of segmentation accuracy and speed.

Figure 11. Different segmentation methods’ effects on segmentation are compared. (a) Small target
segmentation vs. non-small target segmentation. (b) Small target segmentation vs. non-small
target segmentation.
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Table 3. Quantitative comparison of MRI performance of patients with osteosarcoma by different
methods for small subject segmentation (segmentation target percentage less than 5%).

MODEL PR F1 DSC FLOPS PARAMS

FCN-16S 0.922 ± 0.09 0.900 ± 0.08 0.859 ± 0.07 190.35 G 134.3 M
PSPNET 0.856 ± 0.09 0.872 ± 0.03 0.870 ± 0.06 101.55 G 49.07 M
MSFCN 0.881 ± 0.06 0.906 ± 0.05 0.874 ± 0.03 1524.34 G 20.38 M
MSRN 0.893 ± 0.03 0.918 ± 0.04 0.887 ± 0.03 1431.23 G 14.27 M
FPN 0.914 ± 0.11 0.919 ± 0.07 0.888 ± 0.08 141.14 G 88.63 M

U-NET 0.922 ± 0.09 0.923 ± 0.05 0.892 ± 0.04 160.16 G 17.26 M
CAPAN 0.936 ± 0.03 0.932 ± 0.02 0.913 ± 0.05 144.41 G 86.38 M

Further, in Figure 12, the DSC values of the segmentation results for small target tumor
objects (objects with tumor proportion sizes <5%) are compared for each model. It is easy to
see that for the segmentation of small targets, the DSC values of CatraNet’s segmentation
results are significantly higher than those of the other models and show good segmentation
stability: the difference between the lowest DSC value and the highest DSC for different
objects is small and smaller than that of other models.

Figure 12. Comparison of DSC values for the CaPaN with those of different models in small target
segmentation. The x-axis represents the proportional size of the tumor (%); the y-axis represents the
average dice coefficient.

In order to more intuitively compare the relationship between the segmentation
performance and complexity of different models for small target objects, we compared the
DSC values, params, and FLOPs of the algorithms. It can be seen more intuitively from
Figure 13 that CaPaN has a high DSC value without requiring large numbers of parameters
and calculations. That is, within an acceptable range, CaPaN can improve segmentation
accuracy while avoiding redundancy and heavy computational costs. This means that
CaPaN can achieve the desired segmentation results faster and better than other models
under the requirement of fast processing of practical large-capacity images.

Next, we quantified the differences between the various metrics of CaPaN for the
overall dataset and the small target dataset. From Table 4, we can see that CaPaN had
a good segmentation performance on the whole dataset; it shows better segmentation
performance with respect to small target objects than ordinary objects. Although the effect
on the overall dataset is worse than that of small target objects, the values of its recall rate,
DSC, and other indicators reached more than 0.9. In actual clinical testing, the recall rate is
of much greater concern than the accuracy rate. The results show, therefore, that CaPaN is
suitable as an auxiliary basis for a doctor’s diagnosis.
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Figure 13. Performance comparison of DSC values, params, FLOPs for each model.

Table 4. Comparison of the segmentation effect of CaPaN on the whole dataset and small target
object data (small target object means that the proportion of segmented targets is less than 5%).

Divided Objects PR F1 DSC IOU Recall

Whole dataset 0.913 0.897 0.901 0.842 0.905
Small target objects 0.936 0.932 0.913 0.865 0.927

Due to differences in the performance of CaPaN on the overall dataset with small
target objects, we compared the segmentation performance of CaPaN with other models
on the overall dataset. Figure 11a shows the overall result; Figure 14 shows the overall
performance of CaPaN compared to other models for the entire osteosarcoma MRI dataset.
The worst segmentation performance was shown by the PSPNet model, whose precision,
F1, and DSC values were all below 0.88. The MSFCN network has been significantly
improved in all aspects; the precision and F1 values, in particular, have been significantly
improved. Although FCN-16 has higher Pr and F1 values, it has the lowest DCS value
and is not suitable for the segmentation of osteosarcoma MRI images. Ga-CNN and SVseg
outperform other models. The DSC value and F1 value of Ga-CNN are only lower than
CaPaN; the DSC value reaches 0.907 and the F1 value reaches 0.929. The indicators for
SVseg are relatively low. Although the precision value of SVseg is only 0.908, this is far
from those of other models, such as MSFCN and MSRN. Our CaPaN model achieved a
value above 0.9, even though the Pr and F1 values are not the highest. The DSC value of
CaPaN, however, is the highest, so, in general, the performance of CaPaN is the best. In
addition to the results shown in the figure, the structural metric value of CaPaN in the
experiment reached 0.942, the average specificity during the test reached 0.924, and the
average sensitivity reached 0.934.

4.6. Discussion

Our proposed Axial-Preserving Attention Network-Based Osteosarcoma Segmenta-
tion Model (CaPaN) combines backward attention and a feature pyramid (FP). From the
results in Section 4.4, it can be seen that each model has its own advantages. When using the
overall dataset for experiments, Ga-CNN and SVseg perform better. When experimenting
with a small target object dataset, U-Net’s metrics are high. However, in general, CaPaN
shows better performance in the segmentation of osteosarcoma MRI images. Whether
facing the overall MRI dataset or the dataset of small targets, the advantages of CaPaN are
very significant, especially when it comes to the segmentation of small lesion areas or the
subtleties of tumors, the DSC value reaching 0.913. Although there is still a certain gap
between this and the lesion area manually marked by radiologists, the segmentation results
of CaPaN can be used as an auxiliary basis for doctors’ clinical diagnoses.
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Figure 14. Comparison of CaPaN’s performance with the performances of other models for the
whole dataset.

Although CaPaN has achieved good segmentation results for MRI images of osteosar-
coma, it still faces great challenges in practical environments. On the one hand, CaPaN has
many limitations. For example, due to differences in different medical imaging equipment,
the brightness of MRI images is not uniform. If our dataset does not undergo data enhance-
ment processing, the segmentation effect is relatively poor. Furthermore, our method is only
applicable to 2D images, and there has been no discussion of validating its segmentation
performance with respect to 3D images. In actual clinical diagnosis, 3D visualization can
provide a more intuitive and comprehensive understanding of tumor information, which
is helpful for doctors to judge and analyze a patient’s condition. On the other hand, clinical
equipment is determined by medical institutions after multiple selections and comparisons
and our model has not been systematically trained. In addition, the complex conditions of
different patients, tumors of different scales in the same patient, and different magnetic
resonance instruments will lead to differences in the results of the system. Therefore, the
model segmentation results can only be used as an auxiliary basis for diagnoses and cannot
replace doctors for clinical diagnosis and treatment.

5. Conclusions

The CaPaN segmentation model presented in this study is composed of axial backward
attention and channel feature pyramid (CFP) modules. Small medical object segmenta-
tion can be improved using this innovative technology. CaPaN effectively improves the
segmentation accuracy of small osteosarcoma objects with an appropriate increase in com-
putational power. CaPaN can more accurately identify smaller tumor targets and it can
provide a more accurate auxiliary basis for doctors to detect and diagnose disease.

In the future, with the development of artificial intelligence in the medical field and
people’s attention to health, we will add dataset enhancement algorithms or use multi-scale
training strategies to improve the model. By these means, the workload before training
will be reduced and more time and economic costs will be saved for medical auxiliary
diagnosis. Furthermore, to address the problem of models relying on prior knowledge, we
will continue to investigate the learning of high-level features from unlabeled MRI images
in an unsupervised manner.
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