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Abstract: In this paper, a novel algorithm is proposed for reducing a banded symmetric generalized
eigenvalue problem to a banded symmetric standard eigenvalue problem, based on the sequentially
semiseparable (SSS) matrix techniques. It is the first time that the SSS matrix techniques are used
in such eigenvalue problems. The newly proposed algorithm only requires linear storage cost and
O(n2) computation cost for matrices with dimension n, and is also potentially good for parallelism.
Some experiments have been performed by using Matlab, and the accuracy and stability of algorithm
are verified.
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1. Introduction

In this paper, we consider how to reduce the following generalized eigenvalue problem
(GEP) to a standard eigenvalue problem,

AQ = BQΛ, (1)

with banded Hermitian matrices A, B ∈ Cn×n and B positive definite. In the real case, A
and B would be symmetric instead of Hermitian. The classical way is first to compute the
Cholesky factorization of B = LLH with a lower triangular matrix L, and then multiply (1)
with L−1, and it yields a standard eigenvalue problem,

L−1 AL−H · LHQ = LHQΛ. (2)

The problem with this approach is that C := L−1 AL−H is dense though A and L are
banded, since L−1 is fully triangular in general. In this paper, we consider how to reduce
matrix C to a symmetric banded form efficiently.

The LAPACK library [1] includes some routines for reducing the banded GEP to
banded SEP, named XHBGST and XSBGST, which X denotes different precision, S (single pre-
cision), D (double precision), C (single complex precision) and Z (double complex precision).
We use the real double case to introduce the main process. First, it (DPBSTF) computes a split
Cholesky factorization [2] of the real symmetric banded positive definite matrix B, B = STS,
where the leading p× p submatrix of S an upper banded matrix with bandwidth bB and
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the lowers n− p rows form a lower banded matrix with bandwidth bB. This factorization
is also called the ‘twisted factorization’ [3]. Then, the routine PSBGST updates A = XT AX,
where X = S−1Q and Q is an orthogonal matrix chosen to preserve the bandwidth of A.
The matrix S is treated as a product of elementary matrices:

S = SmSm−1 . . . S2S1Sm+1 . . . Sn−1Sn,

where Si is determined by the i-th row of S. For each value of i, the current matrix A
is updated by forming S−1

i AS−T
i , and the introduced bulge is chased out by applying

plane rotations.
Some approaches have been proposed to reduce the generalized eigenvalue problem

to the tridiagonal-diagonal form [4,5], which directly reduce B to the diaognal form and
A to the tridiagonal form, respectively. In 1973, Crawford [6] proposed a new reduction
method for the real symmetric case with bA = bB. Different from LAPACK, the method
is based on a decomposition of the matrices into bB × bB blocks and the bulge is removed
immediately by using matrix-matrix multiplications. Lang [7] combined the good features
of Crawford’s scheme with LAPACK routines, which proceeds by blocks and can also
handle different bandwidths bB < bA. A distributed parallel version [8] is included in
ELPA [9].

In this work we present a new reduction algorithm that is completely different from
previous algorithm, and the tool that we use is the sequentially semiseparable matrix (SSS)
techniques. The SSS matrix was introduced in [10,11], which is a kind of rank-structured
matrices, see the next section. Since a symmetric banded matrix can be seen as a special
block tridiagonal matrix, L is a block bidiagonal matrix and it is well-known that the
inverse of L is a lower triangular SSS matrix, see the next section and [12]. The matrix
C = L−1 AL−T can be proved to be an SSS matrix, see the next section. Different from
Crawford’s method [6] and LAPACK [1], we compute C explicitly, but express it in SSS
form. The computation and storage do not increase much. Like Crawford’s method,
the advantage of our approach is that the matrices are partitioned into blocks, almost all
operations are (small) matrix-matrix multiplications, and some of these small matrix-matrix
multiplications can be computed in parallel by using dynamic modeling. For the task-
based implementation of matrix operations, we can leverage the CHAMELEON library [13,14]
to implement a parallel version of our algorithm, which is one potential advantage of our
algorithm. This will be our future work.

In this paper we reduce the original problem to the block tridiagonalization problem
of an SSS matrix. Some fast algorithms for tridiagonalizing a diagonal plus semiseparable
matrix was introduced in [15,16] which costs O(n2) flops. We generalize the tridiagonal-
ization approach in [15] to the (block) SSS matrix case, and show how to further get its
banded form, and the complexity is O(nr2) flops, where n is the dimension of matrix,
and r = bA = bB. The disadvantage of our algorithm proposed in this work is that it
requires the semi-bandwidths of A and B to be equal, bA = bB. The procedure is shown in
Algorithm 1, and it works on the SSS generators of matrix C = L−1 AL−H and the outputs
are also some small matrices. The memory and computation costs are in the same order as
the algorithms in LAPACK, and our algorithm is easy to be implemented in parallel.

The following sections of this paper are organized as follows. Section 2 gives a brief
introduction to semiseparable and SSS matrices, and fast matrix multiplication of two SSS
matrices is also included. Section 3 describes how to express matrix C into an SSS matrix
and how to recompress its generators. The banded reduction process for symmetric SSS
matrix is shown in Section 4 and the complexity analysis is included. All the performance
results are summarized in Section 5. Conclusions are drawn in Section 6.

2. Semiseparable and SSS Matrices

Rank structured matrices have attracted much attention in recent years. In [17], Raf
Vandevril, Marc Van Barel, and Nicola, Mastronardi present a comprehensive overview of
the mathematical and numerical properites of one class of these matrices: semiseparable ma-
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trices, which is the simplest case. The rank-structured matrices include H -matrices [18–21],
H 2-matrices [22,23], quasiseparable matrices [24,25], semiseparable matrices [17,26], se-
quentially semiseparable matrices [11], hierarchically semiseparable matrices [27–29], etc.
Current machine learning and big data analysis are research hotspots [30], and rank-
structured matrix techniques can also be used in these areas [31–34].

The semiseparable structure is a matrix analog of the semiseparable integral kernels as
described by Kailath in [35]. The semiseparable matrix has been referred as the inverse of
unreducible tridiagonal matrix, and Green matrix, one-pair matrix, and single-pair matrix,
see [36–38]. Semiseparable matrices appear in several types of applications, e.g., the field of
integral equations, boundary value problems, Gauss-Markov process, time-varying linear
systems, statistics, acoustic and electromagnetic scattering theory, rational interpolation,
and so on.

The sequentially semiseparable matrices (SSS) matrices exploit the off-diagonal low-
rank property: the off-diagonal blocks are represented as product of a sequence low-rank
matrices. For an n× n matrix A with block partitioning

A =


A11 A12 · · · A1N
A21 A22 · · · A2N

...
...

...
AN1 AN2 · · · ANN

, (3)

where Aij ∈ Rmi×mj and n = m1 + · · ·+ mN , it can be represented by

Aij =


Aii if i = j,
UiWi+1 · · ·Wj−1VT

j if j > i,
PiRi−1 · · · Rj+1QT

j if j < i.
(4)

For a symmetric matrix A, Pk = Vk, Rk = WT
k and Qk = Uk for each k. The dimensiosn

of these generator matrices {Ui}N−1
i=1 , {Vi}N

i=2, {Wi}N−1
i=2 , {Pi}N

i=2, {Qi}N−1
i=1 , {Ri}N−1

i=2 and
{Di}N

i=1 are shown in Table 1. The empty products are defined to be the identity matrix.
For N = 4, the matrix A has the following form,

A =


D1 U1VT

2 U1W2VT
3 U1W2W3VT

4
P2QT

1 D2 U2VT
3 U2W3VT

4
P3R2QT

1 P3QT
2 D3 U3VT

4
P4R3R2QT

1 P4R3QT
2 P4QT

3 D4

. (5)

Table 1. Dimensions of the generators of the SSS matrix shown in Equation (4), ki and li are column
dimensions of Ui and Pi, respectively.

Matrix Ui Vi Wi Pi Qi Ri

Dimension mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

Fast Matrix-Matrix Multiplication

A fast algorithm for multiplying an SSS matrix (4) with any given vector or matrix has
been presented in [10,39]. This subsection only introduces the case that both A and B are
SSS matrices [10]. Let A and B be matrices in SSS form that are conformally partitioned.
The forward and backward recursions are defined as

G1 = 0, Gi+1 = QT
i (A)Ui(B) + Ri(A)GiWi(B), i = 1, . . . , n− 1,

Hn = 0, Hi−1 = VT
i (A)Pi(B) + Wi(A)HiRi(B), i = n, . . . , 2.

We have the following theorem.
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Theorem 1 (see [40]). The SSS form of matrix C = AB can be computed through the following
recursions:

Di(C) = Di(A)Di(B) + Pi(A)GiVT
i (B) + Ui(A)HiQT

i (B),

Pi(C) =
[
Di(A)Pi(B) + Ui(A)HiRi(B) Pi(A)

]
Ri(C) =

[
Ri(B)

QT
i (A)Pi(B) Ri(A)

]
Qi(C) =

[
Qi(B) DT

i (B)Qi(A) + Vi(B)GT
i RT

i (A)
]

Ui(C) =
[
Di(A)Ui(B) + Pi(A)GiWi(B) Ui(A)

]
Wi(C) =

[
Wi(B)

VT
i (A)Ui(B) Wi(A)

]
Vi(C) =

[
Vi(B) DT

i (B)Vi(A) + Qi(B)HT
i WT

i (A)
]
.

(6)

This algorithm is an order of magnitude faster than the general matrix-matrix multi-
plication algorithms. Notice that after multiplication the ranks of generators will increase.
Dewilde and van der veen [39] present a technique to compress the generators. A simple,
efficient and numerically stable method is further proposed in [11] to compress a given
SSS representation to a predefined tolerance τ, and this method is further introduced in
Section 3.2 for completeness.

3. The Reduction Algorithm

Assume the bandwidth of matrix B is bB, N = dn/bBe, and L can be seen as a lower
block bidiagonal matrix and each block is a bB × bB small matrix. Without loss of any
generality, we assume n = N· bB. From Gaussian elimination, we know

L = L1 · · · LN , (7)

where Li is an identity matrix except for the bB × bB diagonal block Lii and the bB × bB
subdiagonal block Li,i−1 or Li+1,i from L. There are two form of L: the ‘row-wise’ and
‘column-wise’ forms. If N = 3, the row-wise form, i.e., Li,i−1 is nonzero, is written as

L =

L11
L21 L22

L32 L33

 =

L11
I

I

 I
L21 L22

I

I
I

L32 L33

 ≡ L1L2L3.

Then, its inverse yields

L−1 =

I
I

−L−1
33 L32 L−1

33

 I
−L−1

22 L21 L−1
22

I

L−1
11

I
I


≡

 L̃11
L̃21 L̃11 L̃22

L̃32 L̃21 L̃11 L̃32 L̃22 L̃33

, where L̃i,i−1 = −L−1
ii Li,i−1.

If N = 3 and the column-wise form is written as

L =

L11
L21 L22

L32 L33

 =

L11
L21 I

I

I
L22
L32 I

I
I

L33

 ≡ L1L2L3.
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Then, the inverse yields

L−1 =

I
I

L−1
33

I
L−1

22
−L32L−1

22 I

 L−1
11

−L21L−1
11 I

I


≡

 L̃11
L̃22 L̃21 L̃22

L̃33 L̃32 L̃21 L̃33 L̃32 L̃33

, where L̃i,i−1 = −Li,i−1L−1
ii .

It can be seen that L−1 is exactly the sequentially semiseparable (SSS) matrix defined
in [11]. The exact formulae for the entries of L−1 are given as, see also [12],

(
L−1

)
ij
= (−1)i+j

[
j+1

∏
k=i

(
L−1

kk Lk+1,k

)]
L−1

jj ,

for i = 2, · · · , N and j = 1, · · · , i− 1. It is easy to see that the off-diagonal blocks of L−1 are
low-rank, and its rank is bB, see [11,17]. The SSS generators of L−1 are

Di(L−1) = L−1
ii , Pi = −Di(L−1)Li,i−1, Ri(L−1) = Pi−1(L−1), Qi(L−1) = Di(L−1).

The complexity of computing these generators is N· (r3 + 2
3 r3) = O( 5

3 nr2), where Lii
and Li,i−1 are upper and lower triangular of dimension r = bB, respectively. To represent
L−1 in SSS form, we only need {Di} and {Pi}, and their numbers are N and N − 1, respec-
tively. For more complex operations, we introduce the other two generators {Ri} and {Qi}.

3.1. The SSS Representation of C

In this subsection, we show that matrix C = L−1 AL−H is also an SSS matrix. It is
well-known that L−1 is an SSS matrix. If A is a symmetric block tridiagonal matrix, it is
also an SSS matrix, see Equation (5), with generators,

Di(A) = Aii, Pi(A) = Vi(A) = Ai+1,i, Ri(A) = Wi(i)T = 0, Qi(A) = Ui(A) = I.

According to Theorem 1, if we multiply L−1 with A, the forward and backward
recursions, {Gi} and {Hi}, are

G1 = 0, Gi+1 = QT
i (L−1)Ui(A) = QT

i (L−1), i = 1, . . . , N − 1,

Hn = 0, Hi−1 = VT
i (L−1)Pi(A) = VT

i (L−1)Ai+1,i = 0, i = N, . . . , 2.

It is because Ri(A) = Wi(A) = 0, and Vi(L−1) = 0 (L is lower triangular). Then,
the generators of C̄ = L−1 A are

Di(C̄) = Di(L−1)Di(A) + Pi(L−1)GiVT
i (A),

Pi(C̄) =
[
Di(L−1)Pi(A) Pi(L−1)

]
Ri(C̄) =

[
0

QT
i (L−1)Pi(A) Ri(L−1)

]
Qi(C̄) =

[
Qi(A) DT

i (A)Qi(L−1) + Vi(A)GT
i RT

i (L−1)
]

Ui(C̄) =
[
Di(L−1) 0

]
≡ Di(L−1)

Wi(C̄) =
[

0
0

]
≡ 0

Vi(C̄) =
[
Vi(A) 0

]
≡ Vi(A).

(8)
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The ranks of Pi(C̄), Ri(C̄) and Qi(C̄) are all bB. We can use the recompression tech-
niques [10] to compress them into compact form, which is also introduced in Section 3.2.
After obtaining the compact form of C̄, we can further compute C = C̄· L−H and express it
in SSS form. The forward and backward recursions are computed as

Ḡ1 = 0, Ḡi+1 = QT
i (C̄)Ui(L−H) + Ri(C̄)ḠiWi(L−H), i = 1, . . . , N − 1,

H̄n = 0, H̄i−1 = VT
i (C̄)Pi(L−H) + Wi(C̄)H̄iRi(L−H) ≡ 0, i = N, . . . , 2.

Since the generators of L−T are the same as those of L−1, i.e., Di(L−T) = Di(L−1)T ,
Vi(L−T) = Pi(L−1), Wi(L−T) = Ri(L−1)T , Ui(L−T) = Qi(L−1), Ḡi can be computed as

Ḡ1 = 0, Ḡi+1 = QT
i (C̄)Qi(L−1) + Ri(C̄)ḠiRi(L−1)T , i = 1, . . . , N − 1,

and the generators of C are computed as

Di(C) = Di(C̄)DT
i (L−1) + Pi(C̄)ḠiPT

i (L−1),

Pi(C) = Pi(C̄),

Ri(C) = Ri(C̄),

Qi(C) = Di(L−1)Qi(C̄) + Pi(L−1)ḠT
i RT

i (C̄).

(9)

All the generators of C are computed and their ranks are also bB. Since C is symmetric,
only the generators of the diagonals and lower triangular part are needed. The generators
of C are already in compact form. To summarize, we have the following proposition.

Proposition 1. Assume that A and B are Hermitian matrices with bandwidth bA = bB, and B is fur-
ther positive definite, and its Cholesky factorization is B = LLH . Then, the matrix C = L−1 AL−H

is an SSS matrix and the ranks of its off-diagonal generators are all bB.

It is easy to see that the complexity of computing the generators of C̄ is O( 31
3 nr2)

floating point operations (flops), and similarly, the complexity of computing the generators
of C from C̄ is another O(10nr2) flops.

3.2. Recompression of C

From Equation (8), we know that the SSS representation of C̄ is not compact. We can
use the techniques proposed in Section 3.7 of [11] and Section 10.6 of [10], to compress
them into compact forms. Furthermore, since C = L−1 AL−T is symmetric, we only need to
compress the generators of the lower triangular part, {Pi}, {Ri} and {Qi}. For a symmetric
SSS matrix, its generators satisfy Vi = Pi, Ui = Qi and Wi = RT

i . Therefore, we only need to
consider the lower triangular part of C̄.

For completeness, we recall the recompression process in [11]. To be consistent with
the context of this paper, we introduce the process by using the generators of the lower
triangular part. The recompression method is split into two stages in [11]. In this paper, we
reverse the stages. In the first stage, the representation is converted into the right proper
form; that is, now all the row bases Gi of the Hankel-blocks (The term Hankel-block is taken
from [39]. In this paper it denotes the off-diagonal blocks that extend from the diagonal to
the southwest corner), where

GN = PN ,

Gi =

(
Pi

Gi+1Ri

)
, for i = N − 1, · · · , 2.
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will have orthonormal columns. In the second stage, the representation is converted into
the left proper form. By left proper form they mean that all the column bases Ci of the
Hankel-blocks, where

C1 = QT
1 ,

Ci =
(

RiCi−1 QT
i
)
,

should have orthonormal columns. The second stage recursions will essentially be first-
stage recursions in the opposite order. Note that the Hankel-block Hi = Gi+1Ci.

We follow the notation used in [11], and use hats to denote the representation in right
proper form. Consider the following recursions:(

Pi
R̃i

)
≈
(

P̂i
R̂i

)
ΣiFH

i , τ-accurate SVD,

R̃i−1 = ΣiFH
i Ri−1,

Q̂i−1 = Qi−1FiΣH
i ,

(10)

with the understanding that R̃N and R̂N are empty matrices. Then it is easy to check that
the new row bases

Ĝn = P̂n,

Ĝi =

(
P̂i

Ĝi+1R̂i

)
,

have orthonormal columns and that the hatted sequences form a valid SSS representation
for the given matrix. The generators {P̂i}, {R̂i} and {Q̂i} are all r × r matrices. For our
problem, our main goal is to have a compact form of generators and the orthonormality
does not matter much. Therefore, we only need the first stage. We do not introduce the
next stage, and the interested readers can refer to Section 3.7 of [11].

In Equation (10), it uses truncated SVD to compute low-rank approximations of gen-
erators {Pi}. For accuracy, we can let τ be small or zero. We can also use RRQR [41] or
interpolative decomposition (ID) [42] to find a low-rank approximation. In our implemen-
tation, we used ID and the computed generators {P̂i} are not orthonormal.

Complexity

The recompression consists of three steps:

1. Compute a low-rank approximation of
(

Pi
R̃i

)
of dimensions r× 2r or 2r× 2r. If using

ID, it costs 2r3 + (N − 2)4r3 = O(4nr2) flops.
2. Compute R̃i−1 = XiRi−1, where X is an r× 2r matrix and Ri−1 is of dimension 2r× 2r.

It costs (N − 2)· 2r× 2r2 = O(4nr2) flops.
3. Compute Q̂i−1 = Qi−1·XT , where XT is of dimension 2r× r and Qi−1 is of dimension

r× 2r. It costs (N − 1)· 2r× 2r2 = O(4nr2) flops.

We use the fact that ID costs O(mnk) flops for computing a rank k approximation of a
m× n matrix, Therefore, the recompression of matrix C̄ costs O(12nr2) flops in total. Thus,
computing the SSS representation of C = L−1 AL−T totally costs ( 5

3 + 31
3 + 10 + 12)nr2 =

O(34nr2) flops.

4. Banded Reduction for Symmetric SSS Matrix

We know that matrix C is an SSS matrix and we can use the method in Section 3.2 to
get its compact SSS representation. In this section, we introduce how to tridiagonalize C by
using its SSS representations.
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For clearness, we assume that C is a 4× 4 SSS matrix, the same as Equation (5),

C =


D1 U1VT

2 U1W2VT
3 U1W2W3VT

4
P2QT

1 D2 U2VT
3 U2W3VT

4
P3R2QT

1 P3QT
2 D3 U3VT

4
P4R3R2QT

1 P4R3QT
2 P4QT

3 D4

. (11)

Since matrix C is symmetric, we have Pi = Vi, Qi = Ui and Ri = WT
i .

We perform the following steps and see how to convert C into a block tridiagonal form
by working on the generators of C.

1. Work on the last two block rows. The off-diagonal block is[
P3R2QT

1 P3QT
2

P4R3R2QT
1 P4R3QT

2

]
=

[
P3

P4R3

]
�
[

R2QT
1 QT

2
R2QT

1 QT
2

]
,

where � means to multiply in the same block row. Find an orthogonal matrix Q ∈

C2r×2r such that Q·
[

P3
P4R3

]
=

[
P̂3
0

]
. Compute Q·

[
D3 Q3PT

4
P4QT

3 D4

]
·QT =

[
D̂3 Q̂T

3
Q̂3 D̂4

]
,

and define R̂3 = 0, P̂4 = I, and update D̂3, Q̂3. Now, we have

C =


D1 U1VT

2 U1W2V̂T
3 0

P2QT
1 D2 U2V̂T

3 0
P̂3R2QT

1 P̂3QT
2 D̂3 Û3

0 0 Q̂T
3 D4

.

2. Work on the 2-nd and 3-rd block rows. The off-diagonal block is[
P2QT

1
P̂3R2QT

1

]
=

[
P2

P̂3R2

]
�
[

QT
1

QT
1

]
.

We can compute an orthogonal matrix with dimension 2r such that

Q·
[

P2
P̂3R2

]
=

[
P̂2
0

]
. Compute Q·

[
D2 Q2P̂T

3
P̂3QT

2 D̂3

]
·QT =

[
D̂2 Q̂T

2
Q̂2 D̂3

]
, and define

R̂2 = 0, P̂3 = Ir, and update D̂2, Q̂2. Now, we will introduce a bulge at positions
(2, 4) and (4, 2), and C looks like

C =


D1 U1V̂T

2 0 0
P̂2QT

1 D̂2 Û2 X
0 Q̂T

2 D̂3 Û3
0 XT Q̂T

3 D4

.

The bulge is computed as
[
0 Q̂T

3
]
·QT =

[
X Q̂T

3
]
, and Q̂3 is updated. We can use

the standard chasing algorithm [43] to eliminate the bulge. The bulge chasing process
does not affect the top-left part of matrix C which is represented in SSS form. We
draw attention to the fact that Pi = Vi ⇒ Ir, Ri = WT

i ⇒ 0, for i = 3, 4, and the block
tridiagonal matrix is defined by D̂i and Q̂i or Ûi. Finally, matrix C has the following
form after bulge chasing,

C =


D1 U1V̂T

2 0 0
P̂2QT

1 D̂2 Û2 0
0 Q̂T

2 D̂3 Û3
0 0 Q̂T

3 D̂4

.
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3. Define Q̂T
1 = P̂2QT

1 , D̂1 = D1 and P̂2 = Ir. Finally, we get the block tridiagonal matrix

C =


D̂1 Û1 0 0
Q̂T

1 D̂2 Û2 0
0 Q̂T

2 D̂3 Û3
0 0 Q̂T

3 D̂4

.

The whole procedure is summarized in Algorithm 1. The procedure starts from the
last row (k = N) and ends at the second row (k = 2), i.e., Step 11 computes the off-diagonal
block Q̂1 of matrix C above.

Algorithm 1: (Symmetric banded reduction algorithm for symmetric SSS matrix)
Assume that C is an N × N block symmetric SSS matrix, and its generators are
{Pi}, {Ri}, {Qi} and {Di}, for i = 1, · · · , N and each generator is a r× r matrix.

Inputs: generators {Pi}, {Ri}, {Qi} and {Di}, for i = 1, · · · , N

Outputs: a block tridiagonal matrix defined in {Di} and {Qi}.

1. DO k = N : −1 : 3

2. Compute orthogonal matrix Hk such that Hk·
[

Pk−1
PkRk−1

]
=

[
P̂k−1

0

]
, and

update Pk−1 = P̂k−1.

3. Compute Hk·
[

Dk−1 Qk−1PT
k

PkQT
k−1 Dk

]
HT

k =

[
D̂k−1 Ûk−1
Q̂k−1 D̂k

]
, and define

Rk−1 = 0, Pk = Ir, and update Dk−1 = D̂k−1, Qk−1 = Q̂k−1 and Dk = D̂k.
4. if k < N %(it will introduce a bulge.)

5. Compute the bulge X by computing Hk·
[

0
Qk

]
=

[
X
Q̂k

]
, and

update Qk = Q̂k;
6. for i = k, N − 1
7. Apply the standard chasing procedure and chase the bulge down;
8. end for
9. end if
10. END DO
11. when k = 2, compute Q̂T

1 = P̂2QT
1 and update Q1 = Q̂1.

Remark 1. By further computing the QR factorization of Qi = Q̂R̂i for i = 2, · · · , N, we can
get an symmetric banded matrix, and its off-diagonal blocks are R̂i and its diagonal blocks are
D̂i = Q̂T

i DiQ̂i.

Remark 2. For an N × N block SSS matrix, the number of Di is N, the number of Pi is N-1, Qi
is N-1, and Ri is N-2, and the total number of generators is 4(N − 1). The lower triangular part of
C has N(N+1)

2 blocks. When N ≥ 6, the generators require less storage than storing C explicitly as
a dense matrix.

Remark 3. Algorithm 1 is based on eliminating block rows and columns one by one from the
bottom. We can get a similar algorithm by reducing the block rows and columns from the top.

Complexity

For a symmetric SSS matrix, we assume that all its generators are r× r matrices. We
follow the steps of Algorithm 1 to estimate its computational cost.

1. Step 2: QR factorization of a 2r × r tall matrix costs 2r2(2r − r
3 ) = 10

3 r3. It totally
executes N − 2 times, and thus it costs O( 10

3 nr2) flops.
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2. Step 3: Computing PkQT
k−1 costs 2r3 and the product of Hk and HT

k with
[

Dk−1 Qk−1PT
k

PkQT
k−1 Dk

]
costs 2· 2(2r)3 = 32r3 flops. Since it executes N − 2 times, it costs O(34nr2) flops
in total.

3. Step 4:

• Computing the bulge costs 2· 2r × 2r × r = 8r3. There are N − 2 times, and it
costs 8nr2 flops in total.

• Each bulge chasing costs 10
3 r3 + 2× (2r)× (2r)× (3r) + 2× (2r)× (2r)× (2r) =

( 10
3 + 24 + 16)r3 = ( 10

3 + 40)r3.
• For k-th step, it requires N − k bulge chasing steps. Since ∑3

k=N−1(N − k) =

∑N−3
`=1 ` = (N−3)(N−2)

2 , it totally costs O(( 10
3 + 40) 1

2 (N2 − 5N)r3 = O( 65
3 (n2r −

5nr2)) flops.

4. Step 11: it costs 2r3 flops.

Therefore, the block tridiagonalization of a symmetric SSS matrix totally costs O( 65
3 n2r+

(34 + 10
3 −

325
3 + 8)nr2) = O( 65

3 n2r− 188
3 nr2) flops.

5. Numerical Results

In this section we test the accuracy of the banded matrix obtained by using SSS matrix
techniques. We further compare the accuracy of the proposed algorithms in computing
the eigenvalues of symmetric banded positive generalized eigenvalue matrices. All the
numerical results are obtained by using Matlab 2017(b) on a laptop with 16GB memory.

Example 1. Assume that A and B are two randomized symmetric banded matrices and B is further
positive definite, which are constructed by using the following Matlab codes

• A = rand(n); B = rand(n);
• A = (A + A’)/2; B = (B + B’)/2 + α∗eye(n);
• A = triu(tril(A,r), −r); B = triu(tril(B,r), −r);

where n is the dimension of matrix and r is the semi-bandwidth, α is a constant to make sure B
positive, which is 10 in our experiments. We compute matrix C = L−1 AL−T explicitly and L is
the lower Cholesky factor of matrix B. Then, we compute ‖C− Ĉ‖F where Ĉ = Q′ST̂QS, T̂ is the
symmetric banded matrix computed by Algorithm 1, and QS is accumulated orthogonal matrix
in Algorithm 1. The results are shown in Table 2. For simplicity we assume n = N· r, i.e., n is
divisible by r.

We let N = 16, 64, 256, 512 and r = 8, 16, 32, respectively. The backward errors of
Algorithm 1 are shown in Table 2, and the times cost by Algorithm 1 are shown in Table 3.
When N = 512 and r = 32, it is out of memory on the computer used for experiments with
16GB memory, and the result is not included in the following tables. The results show that
the proposed algorithm is numerically stable.

Table 2. Backward errors of the computed banded matrix by Algorithm 1.

r = 8 r = 16 r = 32

N = 16 2.23× 10−15 4.74× 10−15 1.39× 10−14

N = 64 8.83× 10−15 1.89× 10−14 5.82× 10−14

N = 256 3.40× 10−14 7.44× 10−14 2.27× 10−13

N = 512 6.69× 10−14 1.46× 10−13 -
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Table 3. The times in second cost by Algorithm 1.

r = 8 r = 16 r = 32

N = 16 5.33× 10−2 2.78× 10−2 4.04× 10−2

N = 64 1.34× 10−1 3.00× 10−1 2.18× 100

N = 256 4.87× 100 3.37× 101 1.40× 102

N = 512 3.91× 101 2.77× 102 -

Example 2. In this example we compare the accuracy of the computed generalized eigenvalues
by the SSS approach. After obtaining the symmetric banded matrix T̂ from Algorithm 1, we call
the Matlab routine eig to compute the eigenvalues of T̂, and then compare with the eigenvalues
computed directly from A and B (by using eig(A,B,’chol’)). The relative errors are measured as

maxn
i=1

|λ̂i−λi |
λi

, where λ̂i is the eigenvalue computed by using Algorithm 1, and λi is the eigenvalue
computed directly from A and B. The maximum errors and maximum relative errors are shown in
Tables 4 and 5, respectively. Matrices A and B are constructed as in Example 1, and the meanings
of parameters are the same.

Table 4. The maximum errors of eigenvalues computed by Algorithm 1.

r = 8 r = 16 r = 32

N = 16 2.55× 10−15 4.44× 10−15 1.73× 10−14

N = 64 3.11× 10−15 9.99× 10−15 3.71× 10−14

N = 256 1.76× 10−14 1.87× 10−14 1.51× 10−13

N = 512 2.93× 10−14 7.79× 10−14 -

Table 5. The maximum relative errors of eigenvalues computed by Algorithm 1.

r = 8 r = 16 r = 32

N = 16 7.29× 10−14 6.25× 10−14 5.15× 10−14

N = 64 9.15× 10−14 3.89× 10−11 3.80× 10−13

N = 256 3.92× 10−13 5.36× 10−11 2.73× 10−12

N = 512 1.12× 10−12 1.70× 10−12 -

6. Conclusions

In this paper, the rank-structured matrix techniques are first used to reduce a banded
generalized eigenvalue problem to a banded standard eigenvalue problem, and it is the
first time that rank-structured matrix is used for such eigenvalue problems. Note that there
are some works for reducing a rank-structured matrix to its tridiagonal or Hessenberg
forms [25], which is different from this work. We in this work focus on the symmetric
banded matrices which are sparse, not one particular rank-structured matrix such as
quasiseparable, semiseparable and so on. In particular, we use the fast algorithms based on
the sequentially semiseparable (SSS) matrix to reduce the banded symmetric generalized
eigenvalue problems. The whole process of the proposed algorithm is shown in Algorithm 1,
and the complexity analysis is also included. Comparing with the classical algorithms in
LAPACK, the algorithm proposed in this paper requires the same order of storage and
computation cost. The newly proposed algorithm consists of many small matrix-matrix
multiplications which can be potentially executed in parallel. We plan to implement our
algorithm by leveraging CHAMELEON library [13,14] and even extend it to the distributed
parallel computing case by combining some data redistribution techniques such as [44] in
near future.
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