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Abstract: This paper investigates the Bregman version of the Takahashi-type generic 2-generalized
nonspreading mapping which includes the generic 2-generalized Bregman nonspreading mapping
as a special case. Relative to the attractive points of nonlinear mapping, the Baillon-type nonlinear
mean convergence theorem for finite commutative generic 2-generalized Bregman nonspreading
mappings without the convexity assumption is proved in the setting of reflexive Banach spaces. Using
this result, some new and well-known nonlinear mean convergence theorems for the finite generic
generalized Bregman nonspreading mapping, the 2-generalized Bregman nonspreading mapping
and the normally 2-generalized hybrid mapping, among others, are established. Our results extend
and generalize many corresponding ones announced in the literature.

Keywords: attractive point; nonlinear mean convergence; generic 2-generalized Bregman nonspreading
mapping; generic 2-generalized nonspreading mapping; normally 2-generalized hybrid mapping
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1. Introduction

Let H be a real Hilbert space and C be a nonempty subset of H. Let M : C → H
be a nonlinear mapping and denote the sets of the fixed and attractive points of M by
F(M) and A(M), respectively, i.e., F(M) = {x ∈ C : Mx = x} and A(M) = {x ∈ H :
‖x−My‖ ≤ ‖x− y‖, ∀y ∈ C}. A mapping M of C onto H is called an (α, β)-generalized
hybrid mapping [1] if there exist α, β ∈ R such that

α‖Mx−My‖2 + (1− α)‖x−My‖2 ≤ β‖Mx− y‖2 + (1− β)‖x− y‖2, ∀ x, y ∈ C.

We call the mapping M nonexpansive if α = 1 and β = 0. We call the mapping M
hybrid [2,3] if α = 3

2 and β = 1
2 . In addition, if α = 2 and β = 1, the mapping M reduces

to nonspreading [2,4], i.e., 2‖Mx−My‖2 ≤ ‖Mx− y‖2 + ‖My− x‖2 ∀ x, y ∈ C. In 1975,
Bailon [5] proved the first nonlinear mean convergence theorem. He proved that a sequence
{Snx} of the Cesaro mean defined for all x ∈ C by

Snx =
1
n

n

∑
k=0

Mkx

converges weakly to an element u ∈ F(M), where M : C → H is known to be nonexpansive
with F(M) 6= ∅. Kocourek et al. [1] extended the work of Baillon by considering a larger
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class of mappings M more general than that of nonexpansive. They proved that for any
x ∈ C, a sequence {Snx} defined by

Snx =
1
n

n−1

∑
k=0

Mkx

converges weakly to an element v ∈ F(M), where M is a generalized hybrid mapping with
F(M) nonempty. It is worth mentioning that the nonempty subset C of H is assumed to be
closed and convex in the works of both Baillon [5] and Kocourek et al. [1]. However, not all
the cases are true in respect to C, for example, when C is a star-shaped (see Definition 1 below)
subset of H.

Takahashi and Takeuchi [6] introduced the concept of an attractive point of a nonlinear
mapping in the setting of Hilbert spaces. They proved the attractive point and nonlinear
mean convergence theorem without a convexity assumption for a generalized hybrid
mapping M : C → H in the space. In fact, they defined sequences {vn} and {bn} by

v1 ∈ C, vn+1 = Mvn, bn =
1
n

n

∑
k=1

vk,

for all n ∈ N and proved that if {vn} is bounded, then {bn} converges weakly to an element
u ∈ A(M). Takahashi et al. [7] defined a sequence {Snx} for all n ∈ N by

Snx =
1
n

n−1

∑
k=0

Mkx

and proved that {Snx} converges weakly to q ∈ A(M), where q = lim
n→∞

PMnx and P is a

metric projection. Another class of mappings which is said to include a special case, that of the
generalized hybrid, was introduced. By considering two commutative 2-generalized hybrid
mappings M, N : C → H, Hojo et al. [8] defined a sequence {Snx} by

Snx =
1

(n + 1)2

n

∑
k=0

n

∑
l=0

Mk Nl x

for all n ∈ N ∪ {0}. They proved that the sequence {Snx} converges weakly to an element
p ∈ A(M) ∩ A(N). By considering two commutative normally 2-generalized hybrid map-
pings M and N and a bounded sequence {xn}, Hojo et al. [9] defined a sequence {Snxn} by

Snxn =
1

(n + 1)2

n

∑
k=0

n

∑
l=0

Mk Nl xn

for all n ∈ N∪ {0} and proved that every cluster point of {Snxn} is a point in A(M)∩ A(M).
In 2013, Lin and Takahashi [10] extended the concept of the attractive point to smooth

Banach spaces. By considering a generalized nonspreading mapping M of a nonempty
subset C of a smooth and reflexive Banach space E onto itself, Lin et al. [11] defined a
sequence {Snx} by

Snx =
1
n

n−1

∑
k=0

Mkx

for all n ∈ N and proved that if a subsequence {Sni x} of {Snx} converges weakly to p then
p ∈ A(M). Takahashi et al. [12] defined a sequence {Snx} for all n ∈ N by

Snx =
1
n

n−1

∑
k=0

Mkx
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and proved that {Snx} converges weakly to q ∈ A(M), where q = lim
n→∞

RMnx and R is a

sunny generalized nonexpansive retraction. By considering two commutative 2-generalized
nonspreading mappings M and N of a nonempty subset C of a smooth, strictly convex
and reflexive Banach space E into itself, Takahashi et al. [13] (see also Alsulami et al. [14])
defined a sequence {Snx} by

Snx =
1

(n + 1)2

n

∑
k=0

n

∑
l=0

Mk Nl xn

for all n ∈ N∪ {0} and proved that {Snx} converges weakly to p ∈ A(M) ∩ A(N).
For the Bregman version of the generalized nonspreading mapping, the generic gener-

alized nonspreading mapping and the 2-generalized nonspreading mapping, see [15,16].
By considering two commutative generic 2-generalized nonspreading mappings M and
N of a nonempty subset C of a smooth, strictly convex and reflexive Banach space E into
itself, Hojo and Takahashi [17] defined a sequence {Snx} by

Snx =
1

(n + 1)2

n

∑
k=0

n

∑
l=0

Mk Nl xn

for all n ∈ N∪ {0} and proved that {Snx} converges weakly to a point in A(M) ∩ A(N).

1.1. Our Contributions

Motivated and inspired by the corresponding results in [1,5,7–9,11,13–15,17–19], our
contributions in this paper are:

• We first study the Bregman version of the Takahashi-type generic 2-generalized non-
spreading mapping, which includes as a special case the Ali and Haruna-type [15]
generic 2-generalized Bregman nonspreading mapping in reflexive Banach spaces.

• We then prove a nonlinear mean convergence theorem for finite commutative generic 2-
generalized Bregman nonspreading mappings without convexity assumptions in the space.

• As an application of our main results, we establish some new and well-known
mean convergence theorems for the finite generic generalized Bregman nonspread-
ing mapping [16], the 2-generalized Bregman nonspreading mapping [15] and the
normally 2-generalized hybrid mapping.

• Our results extend and generalize the corresponding ones in Ali and Haruna [15], Alsu-
lami et al. [14], Baillon [5], Hojo and Takahashi [9,17], Hojo et al. [8], Kocourek et al. [1],
Lin et al. [11] and Takahashi et al. [13].

1.2. Organization

We organize the rest of our paper as follows: Section 2 contains some basic definitions
and related results which are needed in other subsequent sections. In Section 3, we present
and discuss our main results.

2. Preliminaries

Definition 1. Let C be a nonempty subset of H. Then C is called star-shaped if there exists a z ∈ C
such that for any x ∈ C and λ ∈ (0, 1),

λz + (1− λ)x ∈ C.

Such a z ∈ C is called a center of the star-shaped set C.

A mapping M : C → H is called a normally generalized hybrid [7] if there exist
α, β, γ, δ ∈ R such that

α‖Mx−My‖2 + β‖x−My‖2 + γ‖Mx− y‖2 + δ‖x− y‖2 ≤ 0, ∀ x, y ∈ C,
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where (a) α + β + γ + δ ≥ 0 and (b) α + β > 0 or α + γ > 0. Observe that if α + β =
−γ− δ = 1, then M reduces to a generalized hybrid mapping.

A mapping M of C into H is called 2-generalized hybrid [20] if there exist α1, α2, β1, β2 ∈ R
such that

α1‖M2x−My‖2 + α2‖Mx−My‖2 + (1− α1 − α2)‖x−My‖2

≤ β1‖M2x− y‖2 + β2‖Mx− y‖2 + (1− β1 − β2)‖x− y‖2, ∀x, y ∈ C.

Observe that if α1 = β1 = 0, then the mapping reduces to a generalized hybrid.
As a unification of the normally generalized hybrid mapping and the 2-generalized

hybrid mapping, a new nonlinear mapping is introduced. A mapping M : C → H is called
a normally 2-generalized hybrid [21] if there exist α1, α2, α3, β1, β2, β3 ∈ R such that

α1‖M2x−My‖2 + α2‖Mx−My‖2 + α3‖x−My‖2

+ β1‖M2x− y‖2 + β2‖Mx− y‖2 + β3‖x− y‖2 ≤ 0, ∀ x, y ∈ C,

where ∑3
i=1(αi + βi) ≥ 0 and ∑3

i=1 αi > 0.
In another development, the class of generalized hybrid mappings was extended to

that of generalized nonspreading mappings in Banach spaces more general than Hilbert. Let
E be a smooth Banach space. A mapping M : C → E is called generalized nonspreading [22]
if there exist α, β, γ, δ ∈ R such that

αφ(Mx, My) + (1− α)φ(x, My) + γ{φ(My, Mx)− φ(My, x)}
≤ βφ(Mx, y) + (1− β)φ(x, y) + δ{φ(y, Mx)− φ(y, x)}, ∀ x, y ∈ C,

where a map φ : E× E→ R is a function defined by φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for
all x, y ∈ E and J : E → 2E∗ is a duality map defined by Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 =

‖ f ‖2}. Observe that if E = H, then we have φ(x, y) = ‖x− y‖2, and consequently, an
(α, β, γ, δ)-generalized nonspreading mapping reduces to an (α + γ, β + δ)-generalized
hybrid mapping.

A mapping M : C → E is called generic generalized nonspreading [12] if there exist
α, β, γ, δ, ε and ζ ∈ R such that

αφ(Mx, My) + βφ(x, My) + γφ(Mx, y) + δφ(x, y)

≤ ε{φ(My, Mx)− φ(My, x)}+ ζ{φ(y, Mx)− φ(y, x)}, ∀x, y ∈ C, (1)

where (i) α + β + γ + δ ≥ 0 and (ii) α + β > 0. Observe that a generic generalized
nonspreading mapping reduces to a generalized nonspreading mapping if α + β = −γ−
δ = 1.

A mapping M : C → E is called 2-generalized nonspreading [19] if there exist α1, α2, β1,
β2, γ1, γ2, δ1, δ2 ∈ R such that

α1φ(M2x, My) + α2φ(Mx, My) + (1− α1 − α2)φ(x, My)

+ γ1{φ(My, M2x)− φ(My, x)}+ γ2{φ(My, Mx)− φ(My, x)}
≤ β1φ(M2x, y) + β2φ(Mx, y) + (1− β1 − β2)φ(x, y)

+ δ1{φ(y, M2x)− φ(y, x)}+ δ2{φ(y, Mx)− φ(y, x)}, ∀x, y ∈ C.

Observe that if α1 = β1 = γ1 = δ1 = 0, then a 2-generalized nonspreading mapping
reduces to a generalized nonspreading.

A mapping M : C → E is called generic 2-generalized nonspreading [23] if there exist
α0, α1, α2, β0, β1, β2, γ0, γ1, γ2, δ0, δ1, δ2 ∈ R such that
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α2φ(M2x, My) + α1φ(Mx, My) + α0φ(x, My) + β2φ(M2x, y) + β1φ(Mx, y) + β0φ(x, y)

≤ γ2{φ(My, M2x)− φ(My, Mx)}+ γ1{φ(My, Mx)− φ(My, x)}+ γ0{φ(My, x)− φ(My, M2x)}
+ δ2{φ(y, M2x)− φ(y, Mx)}+ δ1{φ(y, Mx)− φ(y, x)}+ δ0{φ(y, x)− φ(y, M2x)}, ∀x, y ∈ C,

where α0 + α1 + α2 + β0 + β1 + β2 ≥ 0 and α0 + α1 + α2 > 0.
Let E be a real Banach space and f : E→ R be a function. The gradient of f at x is the

function ∇ f (x) : E→ (−∞,+∞] defined by 〈∇ f (x), y〉= f ◦(x, y), for any x ∈ int(dom( f ))
and y ∈ E, where f ◦(x, y) is the derivative of f at x in the direction y which is defined as

f ◦(x, y) := lim
t→0

f (x + ty)− f (x)
t

. (2)

The function f is said to be Gâteaux-differentiable at x if the limit in (2) exists for any
y. In addition, f is said to be Gâteaux-differentiable if it is Gâteaux-differentiable at every
x ∈ int(dom( f )). The function f is said to be Fréchet-differentiable at x if the limit in (2) is
attained uniformly in y with ‖y‖ = 1. In addition, f is said to be Fréchet-differentiable on
a subset C of X if the limit (2) is attained uniformly for x ∈ X and ‖y‖ = 1. It is known
from [24] that if a continuous convex function f is Fréchet-differentiable (resp. Gâteaux-
differentiable) in int(dom( f )), then ∇ f is continuous (resp. norm-to-weak∗ continuous) in
int(dom( f )).

Let f : E→ (−∞,+∞] be a convex and Gâteaux-differentiable function. The Bregman
distance with respect to f [25,26] denoted by D f is a function D f : dom f× int(dom( f ))→
[0,+∞), defined by

D f (x, y) := f (x)− f (y)− 〈∇ f (y), x− y〉. (3)

Remark 1. If E is a smooth Banach space and f (x) = ‖x‖2 for all x ∈ E, then the gradient∇ f (x)
of f reduces to 2Jx for all x ∈ E, and subsequently, D f (x, y) = φ(x, y). In addition, if E = H is a
real Hilbert space, then φ(x, y) = ‖x− y‖2, ∀x, y ∈ E.

For any x ∈ dom f and y, z ∈ int(dom( f )), the three-point identity can easily be
obtained from (3) and is given by

D f (x, z) = D f (x, y) + D f (y, z) + 〈∇ f (y)−∇ f (z), x− y〉. (4)

We now define the Bregman version of a Takahashi-type generic 2-generalized non-
spreading mapping [23] in a reflexive Banach space E.

Definition 2. A mapping M : C → E is called generic 2-generalized Bregman nonspreading if there
exist α0, α1, α2, β0, β1, β2, γ0, γ1, γ2, δ0, δ1, δ2 ∈ R such that α0 + α1 + α2 + β0 + β1 + β2 ≥ 0,
α0 + α1 + α2 > 0 and

α2D f (M2x, My) + α1D f (Mx, My) + α0D f (x, My) + β2D f (M2x, y) + β1D f (Mx, y) + β0D f (x, y)

≤ γ2{D f (My, M2x)− D f (My, Mx)}+ γ1{D f (My, Mx)− D f (My, x)}+ γ0{D f (My, x)− D f (My, M2x)}
+ δ2{D f (y, M2x)− D f (y, Mx)}+ δ1{D f (y, Mx)− D f (y, x)}+ δ0{D f (y, x)− D f (y, M2x)}, ∀x, y ∈ C.

Remark 2. Observe that by setting γ2 = δ2 = 0, the mapping in Definition 2 reduces to a generic
2-generalized Bregman nonspeading mapping in the sense of Ali and Haruna [16]. In addition, if E
is smooth and f (x) = ||x||2, then the mapping reduces to generic 2-generalized nonspreading in
the sense of Takahashi [23]. Furthermore, if E = H is a real Hilbert space, the mapping reduces to a
normally 2-generalized hybrid mapping in the sense of Kondo and Takahashi [21].



Mathematics 2022, 10, 1678 6 of 20

Example 1. Let E = R and C = [0, 2]. Let f (x) = x2 and M : C → C be defined by

Mx =

{
0, x ∈ [0, 2)
1, x = 2.

Observe that for the choice of real numbers α2 = α1 = α0 = 1, β2 = β1 = β0 = γ1 = γ0 =
δ1 = δ0 = −1 and γ2 = δ2 = 0, we see that ∑3

i=1 αi > 0; ∑3
i=1(αi + βi) ≥ 0 and h(x, y) ≤ 0,

for all x, y ∈ C, where

h(x, y) = α2(M2x−My)2 + α1(Mx−My)2 + α0(x−My)2 + β2(M2x− y)2 + β1(Mx− y)2 + β0(x− y)2

− γ2{(My−M2x)2 − (My−Mx)2} − γ1{(My−Mx)2 − (My− x)2} − γ0{(My− x)2 − (My−M2x)2}
− δ2{(y−M2x)2 − (y−Mx)2} − δ1{(y−Mx)2 − (y− x)2} − δ0{(y− x)2 − (y−M2x)2}.

Therefore, M is a generic 2-generalized Bregman nonspreading mapping.

Let E be a reflexive Banach space and T be a mapping of a nonempty subset C of
int(dom f ) into E. We denote the set of Bregman attractive points of T by A f (T) and
that of Bregman skew-attractive points [27] by B f T, i.e., A f (T) = {x ∈ E : D f (x, Ty) ≤
D f (x, y), ∀y ∈ C} and B f (T) = {x ∈ E : D f (Ty, x) ≤ D f (y, x), ∀y ∈ C}.

Lemma 1 ([27]). Let E be a reflexive Banach space and g : E→ (−∞,+∞] a convex, continuous,
strongly coercive and Gâteaux-differentiable function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let C be a nonempty subset of E and T : C → E be a
mapping. Then B f (T) is closed and convex.

Lemma 2 ([27]). Let E be a reflexive Banach space and g : E→ (−∞,+∞] a convex, continuous,
strongly coercive and Gâteaux-differentiable function which is bounded on bounded sets, uniformly
convex and uniformly smooth on bounded sets. Let C be a nonempty subset of E and T : C → E be
a mapping. Let T∗ : ∇ f C → E∗ be the duality mapping of T. Then the following assertions hold:

(1) ∇gB f (T) = A f (T∗);
(2) ∇gA f (T) = B f (T∗).

In particular, ∇gB f (T) is closed and convex.

Let C be a nonempty subset of a Banach space X. A mappingR of X into C is said to
be sunny [28] if

R(Rx + r(x−Rx)) = Rx,

for each x ∈ X and r ≥ 0. A mapping R : X → C is said to be retraction [28] if Rx = x
for all x ∈ C. A nonempty subset C of X is said to be a sunny Bregman generalized
nonexpansive retract (resp. a Bregman generalized nonexpansive retract) of X if there
exists a sunny Bregman generalized nonexpansive retraction (resp. a Bregman generalized
nonexpansive retraction) of X onto C, see [29] for details.

Lemma 3 ([30]). Let E be a reflexive Banach space and g : E → (−∞,+∞] a convex, continuous,
strongly coercive function which is bounded on bounded sets and uniformly convex and uniformly smooth
on bounded sets. Let C be a nonempty closed subset of E. Then the following statements are equivalent

(1) C is a sunny Bregman generalized nonexpansive retract of E;
(2) C is a Bregman generalized nonexpansive retract of E;
(3) ∇gC is closed and convex.

Using Lemma 3, the following result can be established.
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Lemma 4. Let E be a reflexive Banach space and let {Ci} be a family of sunny Bregman generalized
nonexpansive retracts of E such that ∩i∈ICi is nonempty. Then ∩i∈ICi is a sunny Bregman
generalized nonexpansive retract of E.

Proof. It is easy to see ∇g(∩i∈ICi) = ∩i∈I∇gCi. Indeed,

x ∈ ∇g(∩i∈ICi) ⇐⇒ (∇g)−1x ∈ ∩i∈ICi

⇐⇒ (∇g)−1x ∈ Ci, ∀i ∈ I

⇐⇒ x ∈ ∇gCi, ∀i ∈ I

⇐⇒ x ∈ ∩i∈I∇gCi.

Thus, from Lemma 3 above, ∇gCi is closed and closed for each i ∈ I. Therefore,
∩i∈I∇gCi is closed and closed. Hence, we have that ∩i∈ICi is a sunny Bregman generalized
nonexpansive retract of E.

Lemma 5 ([30]). Let E be a reflexive Banach space and g : E→ R be a strongly coercive Bregman
function. Let C be a nonempty closed subset of E and letR be a retraction from E onto C. Then the
following assertions are equivalent:

(1) R is sunny Bregman generalized nonexpansive;
(2) 〈x−Rx,∇g(y)−∇g(Rx)〉 ≤ 0, ∀(x, y) ∈ E× C.

Lemma 6 ([31]). Let E be a Banach space and r > 0. Let ρr be the gauge function of uniform
convexity of g where g : E→ R is a convex function which is uniformly convex on bounded subsets
of E. Then the following hold:

(1) For any x, y ∈ Br and α ∈ (0, 1), g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)
ρr(||x− y||);

(2) For any x, y ∈ Br, ρr(||x− y||) ≤ Dg(x, y).

Lemma 7 ([32], Theorem 7.3 (vi)). Suppose u ∈ dom f and v ∈ int(dom( f )). If f is strictly
convex, then D f (u, v) = 0⇔ u = v.

3. Main Results

In this section, we prove a nonlinear mean convergence theorem without convexity for
finite commutative generic 2-generalized Bregman nonspreading mappings. The following
lemma will play a vital role.

Lemma 8. Let f : E→ R be a convex and uniformly Fréchet-differentiable function which is bounded
on bounded subsets of E. Let C be a nonempty subset of int(dom( f )) and M1, M2, · · · , MN : C → C
be finite commutative generic 2-generalized Bregman nonspreading mappings such that the set
{Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded for some x ∈ C. Define a sequence

{Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and conve, then every weak cluster point of {Snx} is a
point of ∩N

l=1F(Ml).

Proof. Since M1 is a generic 2-generalized Bregman nonspreading mapping, then by
Definition 2, we have
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α2D f (M2
1x, M1y) + α1D f (M1x, M1y) + α0D f (x, M1y) + β2D f (M2

1x, y) + β1D f (M1x, y) + β0D f (x, y)

≤ γ2{D f (M1y, M2
1x)− D f (M1y, M1x)}+ γ1{D f (M1y, M1x)− D f (M1y, x)}

+ γ0{D f (M1y, x)− D f (M1y, M2
1x)}+ δ2{D f (y, M2

1x)− D f (y, M1x)}
+ δ1{D f (y, M1x)− D f (y, x)}+ δ0{D f (y, x)− D f (y, M2

1x)}, ∀x, y ∈ C.

Using the three-point identity (4), we obtain

α2{D f (M2
1x, y) + D f (y, M1y) + 〈∇ f (y)−∇ f (M1y), M2

1x− y〉}+ β2D f (M2
1x, y)

+ α1{D f (M1x, y) + D f (y, M1y) + 〈∇ f (y)−∇ f (M1y), M1x− y〉}+ β1D f (M1x, y)

+ α0{D f (x, y) + D f (y, M1y) + 〈∇ f (y)−∇ f (M1y), x− y〉}+ β0D f (x, y)

≤ γ2{D f (M1y, M2
1x)− D f (M1y, M1x)}+ γ1{D f (M1y, M1x)− D f (M1y, x)}

+ γ0{D f (M1y, x)− D f (M1y, M2
1x)}+ δ2{D f (y, M2

1x)− D f (y, M1x)}
+ δ1{D f (y, M1x)− D f (y, x)}+ δ0{D f (y, x)− D f (y, M2

1x)}, ∀x, y ∈ C.

This implies

(α2 + β2)D f (M2
1x, y) + (α1 + β1)D f (M1x, y) + (α0 + β0)D f (x, y) + (α2 + α1 + α0)D f (y, M1y)

+ 〈∇ f (y)−∇ f (M1y), α2(M2
1x− y) + α1(M1x− y) + α0(x− y)〉

≤ γ2{D f (M1y, M2
1x)− D f (M1y, M1x)}+ γ1{D f (M1y, M1x)− D f (M1y, x)} (5)

+ γ0{D f (M1y, x)− D f (M1y, M2
1x)}+ δ2{D f (y, M2

1x)− D f (y, M1x)}
+ δ1{D f (y, M1x)− D f (y, x)}+ δ0{D f (y, x)− D f (y, M2

1x)}, ∀x, y ∈ C.

Since −(α2 + β2 + α1 + β1) ≤ α0 + β0, we obtain from Inequality (5) that

(α2 + β2)
(

D f (M2
1x, y) − D f (x, y)

)
+ (α1 + β1)

(
D f (M1x, y)− D f (x, y)

)
+ (α2 + α1 + α0)D f (y, M1y)

+ 〈∇ f (y)−∇ f (M1y), α2(M2
1x− x) + α1(M1x− x) + (α2 + α1 + α0)(x− y)〉

≤ γ2{D f (M1y, M2
1x)− D f (M1y, M1x)}+ γ1{D f (M1y, M1x)− D f (M1y, x)} (6)

+ γ0{D f (M1y, x)− D f (M1y, M2
1x)}+ δ2{D f (y, M2

1x)− D f (y, M1x)}
+ δ1{D f (y, M1x)− D f (y, x)}+ δ0{D f (y, x)− D f (y, M2

1x)}, ∀x, y ∈ C.

Following the hypothesis, we can take x ∈ C such that the set {Mµ1
1 Mµ2

2 · · ·M
µN
N x :

µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded. Now, we replace x with Mµ1
1 Mµ2

2 · · ·M
µN
N x so that

from Inequality (6) we obtain

(α2 + α1 + α0)D f (y, M1y) + (α2 + β2)
(

D f (Mµ1+2
1 Mµ2

2 · · ·M
µN
N x, y)− D f (Mµ1

1 Mµ2
2 · · ·M

µN
N x, y)

)
+ (α1 + β1)

(
D f (Mµ1+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ1

1 Mµ2
2 · · ·M

µN
N x, y)

)
+ 〈∇ f (y)−∇ f (M1y), α2(Mµ1+2

1 Mµ2
2 · · ·M

µN
N x−Mµ1

1 Mµ2
2 · · ·M

µN
N x)

+ α1(Mµ1+1
1 Mµ2

2 · · ·M
µN
N x−Mµ1

1 Mµ2
2 · · ·M

µN
N x) + (α2 + α1 + α0)(Mµ1

1 Mµ2
2 · · ·M

µN
N x− y)〉

≤ γ2{D f (M1y, Mµ1+2
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mµ1+1

1 Mµ2
2 · · ·M

µN
N x)} (7)

+ γ1{D f (M1y, Mµ1+1
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mµ1

1 Mµ2
2 · · ·M

µN
N x)}

+ γ0{D f (M1y, Mµ1
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mµ1+2

1 Mµ2
2 · · ·M

µN
N x)}

+ δ2{D f (y, Mµ1+2
1 Mµ2

2 · · ·M
µN
N x)− D f (y, Mµ1+1

1 Mµ2
2 · · ·M

µN
N x)}

+ δ1{D f (y, Mµ1+1
1 Mµ2

2 · · ·M
µN
N x)− D f (y, Mµ1

1 Mµ2
2 · · ·M

µN
N x)}

+ δ0{D f (y, Mµ1
1 Mµ2

2 · · ·M
µN
N x)− D f (y, Mµ1+2

1 Mµ2
2 · · ·M

µN
N x)}, ∀y ∈ C.
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Summing Inequality (7) with respect to µ1 = 0, 1, · · · , n, we obtain

(α2 + α1 + α0)(n + 1)D f (y, M1y)

+ (α2 + β2)
(

D f (Mn+2
1 Mµ2

2 · · ·M
µN
N x, y) + D f (Mn+1

1 Mµ2
2 · · ·M

µN
N u, y)− D f (M1Mµ2

2 · · ·M
µN
N x, y)

− D f (Mµ2
2 · · ·M

µN
N x, y)

)
+ (α1 + β1)

(
D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+ 〈∇ f (y)−∇ f (M1y), α2

(
(Mn+2

1 Mµ2
2 · · ·M

µN
N x + Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− (M1Mµ2
2 · · ·M

µN
N x + Mµ2

2 · · ·M
µN
N x)

)
+ α1(Mn+1

1 Mµ2
2 · · ·M

µN
N x−M1Mµ2

2 · · ·M
µN
N x)

+ (α2 + α1 + α0)(
n

∑
µ1=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x− (n + 1)y)〉

≤ γ2{D f (M1y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, M1Mµ2

2 · · ·M
µN
N x)} (8)

+ γ1{D f (M1y, Mn+1
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mµ2

2 · · ·M
µN
N x)}

+ γ0{D f (M1y, Mµ2
2 · · ·M

µN
N x) + D f (M1y, M1Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (M1y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}+ δ2{D f (y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (y, M1Mµ2

2 · · ·M
µN
N x)}

+ δ1{D f (y, Mn+1
1 Mµ2

2 · · ·M
µN
N x)− D f (y, Mµ2

2 · · ·M
µN
N x)}

+ δ0{D f (y, Mµ2
2 · · ·M

µN
N x) + D f (y, M1Mµ2

2 · · ·M
µN
N x)− D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}, ∀y ∈ C.

Again, summing Inequality (8) with respect to µ2 = 0, 1, · · · , n, we obtain

(α2 + α1 + α0)(n + 1)2D f (y, M1y)

+ (α2 + β2)
n

∑
µ2=0

(
D f (Mn+2

1 Mµ2
2 · · ·M

µN
N x, y) + D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (M1Mµ2

2 · · ·M
µN
N x, y)

− D f (Mµ2
2 · · ·M

µN
N x, y)

)
+ (α1 + β1)

n

∑
µ2=0

(
D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+ 〈∇ f (y)−∇ f (M1y), α2

n

∑
µ2=0

(
(Mn+2

1 Mµ2
2 · · ·M

µN
N x + Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− (M1Mµ2
2 · · ·M

µN
N x−Mµ2

2 · · ·M
µN
N x)

)
+ α1

n

∑
µ2=0

(Mn+1
1 Mµ2

2 · · ·M
µN
N x−M1Mµ2

2 · · ·M
µN
N x)

+ (α2 + α1 + α0)(
n

∑
µ1=0

n

∑
µ2=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x− (n + 1)2y)〉
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≤ γ2

n

∑
µ2=0
{D f (M1y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, M1Mµ2

2 · · ·M
µN
N x)} (9)

+ γ1

n

∑
µ2=0
{D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, Mµ2

2 · · ·M
µN
N x)}

+ γ0

n

∑
µ2=0
{D f (M1y, Mµ2

2 · · ·M
µN
N x) + D f (M1y, M1Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (M1y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}+ δ2

n

∑
µ2=0
{D f (y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (y, M1Mµ2

2 · · ·M
µN
N x)}

+ δ1

n

∑
µ2=0
{D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (y, Mµ2

2 · · ·M
µN
N x)}

+ δ0

n

∑
µ2=0
{D f (y, Mµ2

2 · · ·M
µN
N x) + D f (y, M1Mµ2

2 · · ·M
µN
N x)− D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}, ∀y ∈ C.

We continue summing Inequality (9) until with respect to µN = 0, 1, · · · , n, and we
obtain

(α2 + α1 + α0)(n + 1)N D f (y, M1y)

+ (α2 + β2)
n

∑
µ2=0
· · ·

n

∑
µN=0

(
D f (Mn+2

1 Mµ2
2 · · ·M

µN
N x, y) + D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)

− D f (M1Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+ (α1 + β1)

n

∑
µ2=0
· · ·

n

∑
µN=0

(
D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+ 〈∇ f (y)−∇ f (M1y), α2

n

∑
µ2=0
· · ·

n

∑
µN=0

(
(Mn+2

1 Mµ2
2 · · ·M

µN
N x + Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− (M1Mµ2
2 · · ·M

µN
N x + Mµ2

2 · · ·M
µN
N x)

)
+ α1

n

∑
µ2=0
· · ·

n

∑
µN=0

(Mn+1
1 Mµ2

2 · · ·M
µN
N x−M1Mµ2

2 · · ·M
µN
N x)

+ (α2 + α1 + α0)(
n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x− (n + 1)Ny)〉

≤ γ2

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, M1Mµ2

2 · · ·M
µN
N x)} (10)

+ γ1

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, Mµ2

2 · · ·M
µN
N x)}

+ γ0

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mµ2

2 · · ·M
µN
N x) + D f (M1y, M1Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (M1y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}+ δ2

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (y, M1Mµ2

2 · · ·M
µN
N x)}

+ δ1

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (y, Mµ2

2 · · ·M
µN
N x)}

+ δ0

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mµ2

2 · · ·M
µN
N x) + D f (y, M1Mµ2

2 · · ·M
µN
N x)− D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}, ∀y ∈ C.
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Dividing both sides of Inequality (10) by (n + 1)N and letting Snx = 1
(n+1)N ∑n

µ1=0 ∑n
µ2=0

· · ·∑n
µN=0 Mµ1

1 Mµ2
2 · · ·M

µN
N x, we obtain

(α2 + α1 + α0)D f (y, M1y)

+
(α2 + β2)

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0

(
D f (Mn+2

1 Mµ2
2 · · ·M

µN
N x, y) + D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)

− D f (M1Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+

(α1 + β1)

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0

(
D f (Mn+1

1 Mµ2
2 · · ·M

µN
N x, y)− D f (Mµ2

2 · · ·M
µN
N x, y)

)
+ 〈∇ f (y)−∇ f (M1y),

α2

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0

(Mn+2
1 Mµ2

2 · · ·M
µN
N x + Mn+1

1 Mµ2
2 · · ·M

µN
N x

− M1Mµ2
2 · · ·M

µN
N x−Mµ2

2 · · ·M
µN
N x)

+
α1

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0

(Mn+1
1 Mµ2

2 · · ·M
µN
N x−M1Mµ2

2 · · ·M
µN
N x) + (α2 + α1 + α0)(Snx− y)〉

≤ γ2

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, M1Mµ2

2 · · ·M
µN
N x)} (11)

+
γ1

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (M1y, Mµ2

2 · · ·M
µN
N x)}

+
γ0

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (M1y, Mµ2

2 · · ·M
µN
N x) + D f (M1y, M1Mµ2

2 · · ·M
µN
N x)

− D f (M1y, Mn+1
1 Mµ2

2 · · ·M
µN
N x)− D f (M1y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)}

+
δ2

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mn+2

1 Mµ2
2 · · ·M

µN
N x)− D f (y, M1Mµ2

2 · · ·M
µN
N x)} (12)

+
δ1

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)− D f (y, Mµ2

2 · · ·M
µN
N x)}

+
δ0

(n + 1)N

n

∑
µ2=0
· · ·

n

∑
µN=0
{D f (y, Mµ2

2 · · ·M
µN
N x) + D f (y, M1Mµ2

2 · · ·M
µN
N x)− D f (y, Mn+1

1 Mµ2
2 · · ·M

µN
N x)

− D f (y, Mn+2
1 Mµ2

2 · · ·M
µN
N x)}, ∀y ∈ C.

Since E is reflexive and {Snx} is bounded, then there exists a subsequence {Snj x} of
{Snx} such that {Snj x} converges weakly to some point p ∈ E. Now, replacing n with nj in
Inequality (11) and allowing j→ ∞, we obtain

(α2 + α1 + α0)
(

D f (y, M1y) + 〈∇ f (y)−∇ f (M1y), p− y〉
)
≤ 0. (13)

Using Equation (4) and the fact that α2 + α1 + α0 ≥ 0, we obtain

D f (y, M1y) + D f (p, M1y)− D f (y, M1y)− D f (p, y) ≤ 0, ∀y ∈ C.

Thus,
D f (p, M1y) ≤ D f (p, y), ∀y ∈ C. (14)
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By the commutative nature of M1, M2, · · · , MN , we can replace M1 in (14) with any of
the M2 · · · , MN so that for all y ∈ C we obtain

D f (p, M2y) ≤ D f (p, y) (15)

...

D f (p, MNy) ≤ D f (p, y). (16)

Therefore, from (14)–(16), we have v ∈ ∩N
l=1 A f (Ml). Hence, every weak cluster point

of {Snx} is a point of ∩N
l=1 A f (Ml). Additionally, if f is strictly convex and C is closed and

convex, then we put y = v in (14)–(16) and we see that by Lemma 7, v ∈ ∩N
l=1F(Ml). Hence,

every weak cluster point of {Snx} is a point of ∩N
l=1F(Ml). This completes the proof.

Following a similar argument as in the proof of Lemma 8, the following new re-
sults with respect to finite generic 2-generalized nonspreading mappings and normally
2-generalized hybrid mappings can be established.

Lemma 9. Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty subset
of E. Let M1, M2, · · · , MN : C → C be finite commutative generic 2-generalized nonspreading
mappings such that the set {Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded for some

x ∈ C. Define a sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A(Ml). Additionally,

if C is closed and convex, then every weak cluster point of {Snx} is a point of ∩N
l=1F(Ml).

Proof. Let E be a smooth Banach space and f (x) = ||x||2. Then by Remark 2, the mapping
reduces to generic 2-generalized nonspreading in the sense of Takahashi [23]. Following a
similar argument as in the proof of Lemma 8 with the use of φ(x, y) = φ(x, z) + φ(z, y) +
2〈x− z, Jz− Jy〉 in the place where Equation (4) is applied, we obtain the desired results.
This completes the proof.

Lemma 10. Let E be a real Hilbert space and C be a nonempty subset of E. Let M1, M2, · · · , MN :
C → C be finite commutative normally 2-generalized hybrid mappings such that the set
{Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N ∪ {0}} is bounded for some x ∈ C. Define a se-

quence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A(Ml). Additionally,

if C is closed and convex, then every weak cluster point of {Snx} is a point of ∩N
l=1F(Ml).

Proof. Since E is a real Hilbert space, then the mapping reduces to normally 2-generalized
hybrid [21], i.e., there exist ᾱ2, ᾱ1, ᾱ0, β̄2, β̄1, β̄0 ∈ R such that

ᾱ2||M2x−My||2 + ᾱ1||Mx−My||2 + ᾱ0||x−My||2

≤ β̄2||M2x− y||2 + β̄1||Mx− y||2 + β̄0||x− y||2, ∀ x, y ∈ C,

where ᾱ2 = α2 − γ2 + γ0, ᾱ1 = α1 + γ2 − γ1, ᾱ0 = α0 + γ1 − γ0, β̄2 = β2 − δ2 + δ0,
β̄1 = β1 + δ2 − δ1 and β̄0 = β0 + δ1 − δ0 satisfying ᾱ2 + ᾱ1 + ᾱ0 + β̄2 + β̄1 + β̄0 ≥ 0 and
ᾱ2 + ᾱ1 + ᾱ0 > 0. Following similar argument as in the proof of Lemma 8 with the use
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of ||x − y||2 = ||x − z||2 + ||z − y||2 + 2〈x − z, z − y〉 in the place where Equation (4) is
applied, we obtain the desired results. This completes the proof.

As direct consequences of Lemmas 8–10, the following results corresponding to the
ones in Ali and Haruna [15], Hojo and Takahashi [17] and Hojo et al. [9] can be obtained
as corollaries.

Corollary 1 ([15], Theorem 3.3). Let f : E→ R be a convex and uniformly Fréchet-differentiable
function which is bounded on bounded subsets of E. Let C be a nonempty subset of int(dom( f ))
and M1, M2 : C → C be two commutative generic generalized Bregman nonspreading mappings
such that the set {Mµ1

1 Mµ2
2 x : µ1, µ2 ∈ N ∪ {0}} is bounded for some x ∈ C. Define a sequence

{Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0

Mµ1
1 Mµ2

2 x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩2
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and convex, then every weak cluster point of {Snx} is a
point of ∩2

l=1F(Ml).

Corollary 2 ([17], Lemma 3.1). Let E be a smooth, strictly convex and reflexive Banach space
and C a nonempty subset of E. Let M1, M2 : C → C be two commutative generic 2-generalized
nonspreading mappings such that the set {Mµ1

1 Mµ2
2 x : µ1, µ2 ∈ N ∪ {0}} is bounded for some

x ∈ C. Define a sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0

Mµ1
1 Mµ2

2 x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩2
l=1 A(Ml). Additionally,

if C is closed and convex, then every weak cluster point of {Snx} is a point of ∩2
l=1F(Ml).

Corollary 3 ([9], Lemma 3.1). Let E be a real Hilbert space and C be a nonempty subset of E. Let
M1, M2 : C → C be two commutative normally 2-generalized hybrid mappings such that the set
{Mµ1

1 Mµ2
2 x : µ1, µ2 ∈ N∪ {0}} is bounded for some x ∈ C. Define a sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0

Mµ1
1 Mµ2

2 x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩2
l=1 A(Ml). Additionally,

if C is closed and convex then every weak cluster point of {Snx} is a point of ∩2
l=1F(Ml).

In view of the fact that the generic 2-generalized Bregman nonspreading (simply
nonspreading) mapping unifies the generic generalized Bregman nonspreading (simply
nonspreading) mapping and the 2-generalized Bregman nonspreading (simply nonspread-
ing) mapping, the following results can be obtained from Lemmas 8 and 9 as corollar-
ies. These results correspond to the ones in Ali and Haruna [15], Alsulami et al. [14]
Takahashi et al. [12], Takahashi et al. [13] and Lin et al. [11] when one or two mappings
are considered.

Corollary 4 ([15]). Let f : E→ R be a convex and uniformly Fréchet-differentiable function which is
bounded on bounded subsets of E. Let C be a nonempty subset of int(dom( f )) and M1, M2, · · · , MN :
C → C be finite commutative generic generalized Bregman nonspreading mappings such that the set
{Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded for some x ∈ C. Define a sequence

{Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,
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for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and convex, then every weak cluster point of {Snx} is a
point of ∩N

l=1F(Ml).

Corollary 5 ([15]). Let f : E→ R be a convex and uniformly Fréchet-differentiable function which is
bounded on bounded subsets of X. Let C be a nonempty subset of int(dom( f )) and M1, M2, · · · , MN :
C → C be finite commutative 2-generalized Bregman nonspreading mappings such that the set
{Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded for some x ∈ C. Define a sequence

{Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and convex, then every weak cluster point of {Snx} is a
point of ∩N

l=1F(Ml).

Corollary 6 ([11,12]). Let E be a smooth, strictly convex and reflexive Banach space and C a
nonempty subset of E. Let M1, M2, · · · , MN : C → C be finite commutative generic generalized
nonspreading mappings such that the set {Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N ∪ {0}} is

bounded for some x ∈ C. Define a sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and convex, then every weak cluster point of {Snx} is a
point of ∩N

l=1F(Ml).

Corollary 7 ([13,14]). Let E be a smooth, strictly convex and reflexive Banach space and C a
nonempty subset of E. Let M1, M2, · · · , MN : C → C be finite commutative 2-generalized
nonspreading mappings such that the set {Mµ1

1 Mµ2
2 x : µ1, µ2 ∈ N ∪ {0}} is bounded for some

x ∈ C. Define a sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A f (Ml). Addition-

ally, if f is strictly convex and C is closed and convex, then every weak cluster point of {Snx} is a
point of ∩N

l=1F(Ml).

In addition, in view of the fact that the normally 2-generalized hybrid mapping unifies
the normally generalized hybrid mapping and 2-generalized hybrid mapping, we obtain
the following results from Lemma 10 as corollaries. These results correspond to the ones in
Hojo et al. [8], Takahashi et al. [7] and Takahashi et al. [33] when only one or two mappings
are considered.

Corollary 8 ([7]). Let E be a real Hilbert space and C be a nonempty subset of E. Let M1, M2, · · ·,
MN : C → C be finite commutative normally generalized hybrid mappings such that the set
{Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N∪ {0}} is bounded for some x ∈ C. Define a sequence

{Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A(Ml). Additionally,

if C is closed and convex, then every weak cluster point of {Snx} is a point of ∩N
l=1F(Ml).
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Corollary 9 ([8,33]). Let E be a real Hilbert space and C be a nonempty subset of E. Let
M1, M2, · · · , MN : C → C be finite commutative 2-generalized hybrid mappings such that
the set {Mµ1

1 Mµ2
2 · · ·M

µN
N x : µ1, µ2, · · · , µN ∈ N ∪ {0}} is bounded for some x ∈ C. Define a

sequence {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all n ∈ N∪ {0}. Then every weak cluster point of {Snx} is a point of ∩N
l=1 A(Ml). Additionally,

if C is closed and convex, then every weak cluster point of {Snx} is a point of ∩N
l=1F(Ml).

We now prove a nonlinear mean convergence theorem for finite commutative generic 2-
generalized Bregman nonspreading mappings in a reflexive Banach space E. Let
D = {(µ1, µ2, · · · , µN) : µ1, µ2, · · · , µN ∈ N ∪ {0}}. Then D is a directed set by the
binary relation:

(µ1, µ2, · · · , µN) ≤ (ν1, ν2, · · · , νN) if µ1 ≤ ν1, µ2 ≤ ν2, · · · , µN ≤ νN .

Theorem 1. Let E be a smooth, strictly convex and reflexive Banach space and f : E→ R a strongly
coercive Bregman function which is bounded, uniformly convex and uniformly smooth on bounded
sets. Let M1, M2, · · · , MN be finite commutative generic 2-generalized Bregman nonspreading
mappings of a nonempty subset C of int(dom( f )) into itself such that A f (Ml) = B f (Ml) 6= ∅,
for l = 1, 2, · · · , N. Let R be the sunny Bregman generalized nonexpansive retraction of E onto
∩N

l=1B f (Ml), and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Proof. Using Lemmas 1 and 2, we see that ∩N
l=1B f (Sl) and ∇ f (∩N

l=1 A f (Sl)) are closed
and convex, respectively. Thus, by Lemma 4, there exists a sunny Bregman generalized
nonexpansive retractionR of E on ∩N

l=1B f (Ml) which is characterized (see Lemma 5) by

0 ≤ 〈v−Rv,∇ f (Rv)−∇ f (u))〉, ∀u ∈ ∩N
l=1B f (Sl), v ∈ C. (17)

Adding D f (Rv, u) on both sides of Inequality (17), we obtain

D f (Rv, u) ≤ D f (Rv, u) + 〈v−Rv,∇ f (Rv)−∇ f (u))〉
= D f (Rv, u) + D f (v, u)− D f (v,Rv)− D f (Rv, u)

= D f (v, u)− D f (v,Rv). (18)

Since ∩N
l=1B f (Ml) 6= ∅, then for any u ∈ ∩N

l=1B f (Ml), D f (M1v, u) ≤ D f (v, u), D f
(M2v, u) ≤ D f (v, u) · · ·D f (MNv, u) ≤ D f (v, u). It follows that for any (µ1, µ2 · · · , µN),
(ν1, ν2 · · · , νN) ∈ D with (µ1, µ2 · · · , µN) ≤ (ν1, ν2 · · · , νN), we have

D f (Mν1
1 Mν2

2 · · ·M
νN
N x,RMν1

1 Mν2
2 · · ·M

νN
N x) ≤ D f (Mν1

1 Mν2
2 · · ·M

νN
N x,RMµ1

1 Mµ2
2 · · ·M

µN
N x)

≤ D f (Mµ1
1 Mµ2

2 · · ·M
µN
N x,RMµ1

1 Mµ2
2 · · ·M

µN
N x).

Therefore, the net D f (Mµ1
1 Mµ2

2 · · ·M
µN
N x,RMµ1

1 Mµ2
2 · · ·M

µN
N x) is nonincreasing. Putting

u = RMµ1
1 Mµ2

2 · · ·M
µN
N x and v = Mν1

1 Mν2
2 · · ·M

νN
N x in (18), we obtain from (2) of Lemma 6 that
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ρr(||RMν1
1 Mν2

2 · · ·M
νN
N x−RMµ1

1 Mµ2
2 · · · , MµN

N x||) ≤ D f (RMν1
1 Mν2

2 · · ·M
νN
N x,RMµ1

1 Mµ2
2 · · ·M

µN
N x)

≤ D f (Mν1
1 Mν2

2 · · ·M
νN
N x,RMµ1

1 Mµ2
2 · · ·M

µN
N x)− D f (Mν1

1 Mν2
2 · · ·M

νN
N x,RMν1

1 Mν2
2 · · ·M

νN
N x),

where ρr is a gauge function of uniform convexity. From the properties of ρr,
{RMµ1

1 Mµ2
2 · · ·M

µN
N } is a Cauchy net, see [34]. Hence, {RMµ1

1 Mµ2
2 · · ·M

µN
N } converges

strongly to q ∈ ∩N
l=1B f (Ml) since ∩N

l=1B f (Ml) is closed by Lemma 1.

Next, we consider a fixed x ∈ C and an arbitrary subsequence {Snj x} of {Snx} that
converges weakly to v. We know from Lemma 8 that v ∈ ∩N

l=1 A f (Ml). Rewriting the
characterization of the retraction, we have that for any u ∈ ∩N

l=1B f (Ml),

0 ≤ 〈Mµ1
1 Mµ2

2 · · ·M
µN
N x−RMµ1

1 Mµ2
2 · · ·M

µN
N x,∇ f (RMµ1

1 Mµ2
2 · · ·M

µN
N x)−∇ f (u)〉.

Thus,

〈Mµ1
1 Mµ2

2 · · ·M
µN
N x−RMµ1

1 Mµ2
2 · · ·M

µN
N x,∇ f (u)−∇ f (q)〉

≤ 〈Mµ1
1 Mµ2

2 · · ·M
µN
N x−RMµ1

1 Mµ2
2 · · ·M

µN
N x,∇ f (RMµ1

1 Mµ2
2 · · ·M

µN
N x)−∇ f (q)〉

≤ ||Mµ1
1 Mµ2

2 · · ·M
µN
N x−RMµ1

1 Mµ2
2 · · ·M

µN
N x|| · ||∇ f (RMµ1

1 Mµ2
2 · · ·M

µN
N x)−∇ f (q)||

≤ M||∇ f (RMµ1
1 Mµ2

2 · · ·M
µN
N x)−∇ f (q)||, (19)

where M is an upper bound for ||Mµ1
1 Mµ2

2 · · ·M
µN
N x−RMµ1

1 Mµ2
2 · · ·M

µN
N x||. Summing In-

equality (19) with respect to µ1 = 0, 1, 2, · · · , n, µ2 = 0, 1, 2, · · · , n up to µN = 0, 1, 2, · · · , n,
and dividing through by (n + 1)N , we obtain

〈Snx− 1
(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

RMµ1
1 Mµ2

2 · · ·M
µN
N x,∇ f (u)−∇ f (q)〉

≤ M
1

(n + 1)N

n

∑
µ1=0

n

∑
µ2=0
· · ·

n

∑
µN=0

||∇ f (RMµ1
1 Mµ2

2 · · ·M
µN
N x)−∇ f (q)||, (20)

where Snx = 1
(n+1)N ∑n

µ1=0 ∑n
µ2=0 · · ·∑n

µN=0 Mµ1
1 Mµ2

2 · · ·M
µN
N x. Replacing n with nj in (20)

and allowing j→ ∞, keeping in mind that ∇ f is continuous, we obtain

〈v− q,∇ f (u)−∇ f (q)〉 ≤ 0.

This inequality holds for any u ∈ ∩N
l=1B f (Ml). Thus,Rv = q. Since v ∈ ∩N

l=1B f (Ml),
then v = q. Therefore, the sequence {Snx} converges weakly to the point q. If, in addition, C
is closed and convex, then q ∈ C. Hence, {Snx} converges weakly to a point of ∩N

l=1F(Ml).
This completes the proof.

Following a similar argument as in Theorem 1, we can establish the following new
results for finite generic 2-generalized nonspreading mappings and normally 2-generalized
hybrid mappings.

Corollary 10. Let E be a uniformly convex Banach space with a Fréchet-differentiable norm and
C be a nonempty subset of E. Let M1, M2, · · · , MN be finite commutative generic 2-generalized
nonspreading mappings of the nonempty subset C of E into itself such that A f (Ml) = B f (Ml) 6= ∅,
for l = 1, 2, · · · , N. LetR be the sunny generalized nonexpansive retraction of E onto ∩N

l=1B f (Ml)
and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,
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for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Corollary 11. Let E be a real Hilbert space and M1, M2, · · · , MN be finite commutative normally
2-generalized hybrid mappings of a nonempty subset C of E into itself such that
A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2, · · · , N. Let R be the metric projection of E onto
∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

As direct consequences of Theorem 1, Corollary 10 and Theorem 11, the following
results can be obtained as corollaries. These results correspond to the ones in Ali and
Haruna [15], Hojo and Takahashi [17], Hojo et al. [9] and Kondo and Takahashi [21].

Corollary 12 ([15]). Let f : E→ R be a strongly coercive Bregman function which is bounded,
uniformly convex and uniformly smooth on bounded sets. Let M1, M2 be two commutative generic
2-generalized Bregman nonspreading mappings of a nonempty subset C of int(dom( f )) into itself
such that A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2. Let R be the sunny Bregman generalized
nonexpansive retraction of E onto ∩2

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1

Mµ1
1 Mµ2

2 x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩2
l=1 A f (Ml),

where q = lim(µ1,µ2)∈DRMµ1
1 Mµ2

2 x. Additionally, if C is closed and convex, then {Snx} con-
verges weakly to an element q ∈ ∩N

l=1F(Ml).

Corollary 13 ([17], Theorem 4.4). Let E be a uniformly convex Banach space with a Fréchet-
differentiable norm and C be a nonempty subset of E. Let M1, M2 be two commutative generic 2-
generalized nonspreading mappings of the nonempty subset C of E into itself such that
A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2. Let R be the sunny generalized nonexpansive retrac-
tion of E onto ∩2

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1

Mµ1
1 Mµ2

2 x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩2
l=1 A f (Ml),

where q = lim(µ1,µ2)∈DRMµ1
1 Mµ2

2 x.

Corollary 14 ([9], Theorem 3.2). Let E be a real Hilbert space and M1, M2 be two commutative
normally 2-generalized hybrid mappings of a nonempty subset C of E into itself such that A f (Ml) 6= ∅,
for l = 1, 2. LetR be the metric projection of E onto ∩2

l=1 A f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1

Mµ1
1 Mµ2

2 x,
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for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩2
l=1 A f (Ml),

where q = lim(µ1,µ2)∈DRMµ1
1 Mµ2

2 x. Additionally, if C is closed and convex, then {Snx} con-
verges weakly to an element q ∈ ∩N

l=1F(Ml).

In view of the fact that the generic 2-generalized Bregman nonspreading (simply
nonspreading) mapping unifies the generic generalized Bregman nonspreading (simply
nonspreading) mapping and the 2-generalized Bregman nonspreading (simply nonspread-
ing) mapping, we can prove the following results as corollaries which correspond to the
ones in Alsulami et al. [14], Lin et al. [11] and Takahashi et al. [12,13] when only one or
two mappings are considered.

Corollary 15. Let f : E→ R be a strongly coercive Bregman function which is bounded, uniformly
convex and uniformly smooth on bounded sets. Let M1, M2, · · · , MN be finite commutative generic
generalized Bregman nonspreading mappings of a nonempty subset C of int(dom( f )) into itself
such that A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2, · · · , N. LetR be the sunny Bregman generalized
nonexpansive retraction of E onto ∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Corollary 16. Let f : E→ R be a strongly coercive Bregman function which is bounded, uniformly
convex and uniformly smooth on bounded sets. Let M1, M2, · · · , MN be finite commutative 2-
generalized Bregman nonspreading mappings of a nonempty subset C of int(dom( f )) into itself
such that A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2, · · · , N. LetR be the sunny Bregman generalized
nonexpansive retraction of E onto ∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Corollary 17 ([11,12]). Let E be a uniformly convex Banach space with a Fréchet-differentiable
norm and C be a nonempty subset of E. Let M1, M2, · · · , MN be finite commutative generic general-
ized nonspreading mappings of the nonempty subset C of E into itself such that
A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2, · · · , N. Let R be the sunny generalized nonexpansive
retraction of E onto ∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Corollary 18 ([13,14]). Let E be a uniformly convex Banach space with a Fréchet-differentiable
norm and C be a nonempty subset of E. Let M1, M2, · · · , MN be finite commutative 2-generalized
nonspreading mappings of the nonempty subset C of E into itself such that A f (Ml) = B f (Ml) 6= ∅,
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for l = 1, 2, · · · , N. LetR be the sunny generalized nonexpansive retraction of E onto ∩N
l=1B f (Ml)

and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

In view of the fact that the class of normally 2-generalized hybrid mappings unifies
those of normally generalized hybrid and 2-generalized hybrid mappings, these results
correspond to the ones in [7,8] when only one or two mappings are considered.

Corollary 19 ([7]). Let E be a real Hilbert space and M1, M2, · · · , MN be finite commuta-
tive normally generalized hybrid mappings of a nonempty subset C of E into itself such that
A f (Ml) = B f (Ml) 6= ∅, for l = 1, 2, · · · , N. Let R be the metric projection of E onto
∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).

Corollary 20 ([8]). Let E be a real Hilbert space and M1, M2, · · · , MN be finite commutative 2-
generalized hybrid mappings of a nonempty subset C of E into itself such that A f (Ml) = B f (Ml) 6=
∅, for l = 1, 2, · · · , N. LetR be the metric projection of E onto ∩N

l=1B f (Ml) and define {Snx} by

Snx =
1

(n + 1)N

n

∑
µ1=1

n

∑
µ2=1
· · ·

n

∑
µN=1

Mµ1
1 Mµ2

2 · · ·M
µN
N x,

for all x ∈ C and n ∈ N ∪ {0}. Then {Snx} converges weakly to an element q ∈ ∩N
l=1 A f (Ml),

where q = lim(µ1,µ2,··· ,µN)∈DRMµ1
1 Mµ2

2 · · ·M
µN
N x. Additionally, if C is closed and convex, then

{Snx} converges weakly to an element q ∈ ∩N
l=1F(Ml).
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