

Article A Mean Convergence Theorem without Convexity for Finite Commutative Nonlinear Mappings in Reflexive Banach Spaces

Lawal Yusuf Haruna ^{1,†}, Bashir Ali ^{2,†}, Yekini Shehu ^{3,*,†} and Jen-Chih Yao ^{4,5,†}

- ¹ Department of Mathematical Sciences, Kaduna State University, Kaduna P.M.B. 2339, Nigeria; lawal.yusuf@kasu.edu.ng
- ² Department of Mathematical Sciences, Bayero University, Kano 700006, Nigeria; bashiralik@yahoo.com
- ³ College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
- ⁴ Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; yaojc@mail.cmu.edu.tw
- ⁵ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- * Correspondence: yekini.shehu@zjnu.edu.cn
- + These authors contributed equally to this work.

Abstract: This paper investigates the Bregman version of the Takahashi-type generic 2-generalized nonspreading mapping which includes the generic 2-generalized Bregman nonspreading mapping as a special case. Relative to the attractive points of nonlinear mapping, the Baillon-type nonlinear mean convergence theorem for finite commutative generic 2-generalized Bregman nonspreading mappings without the convexity assumption is proved in the setting of reflexive Banach spaces. Using this result, some new and well-known nonlinear mean convergence theorems for the finite generic generalized Bregman nonspreading mapping, the 2-generalized Bregman nonspreading mapping and the normally 2-generalized hybrid mapping, among others, are established. Our results extend and generalize many corresponding ones announced in the literature.

Keywords: attractive point; nonlinear mean convergence; generic 2-generalized Bregman nonspreading mapping; generic 2-generalized nonspreading mapping; normally 2-generalized hybrid mapping

MSC: 47H09; 47H25; 47J25

1. Introduction

Let *H* be a real Hilbert space and *C* be a nonempty subset of *H*. Let $M : C \to H$ be a nonlinear mapping and denote the sets of the fixed and attractive points of *M* by F(M) and A(M), respectively, i.e., $F(M) = \{x \in C : Mx = x\}$ and $A(M) = \{x \in H : \|x - My\| \le \|x - y\|, \forall y \in C\}$. A mapping *M* of *C* onto *H* is called an (α, β) -generalized hybrid mapping [1] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \|Mx - My\|^2 + (1 - \alpha)\|x - My\|^2 \le \beta \|Mx - y\|^2 + (1 - \beta)\|x - y\|^2, \quad \forall \ x, y \in C.$$

We call the mapping *M* nonexpansive if $\alpha = 1$ and $\beta = 0$. We call the mapping *M* hybrid [2,3] if $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$. In addition, if $\alpha = 2$ and $\beta = 1$, the mapping *M* reduces to nonspreading [2,4], i.e., $2||Mx - My||^2 \le ||Mx - y||^2 + ||My - x||^2 \forall x, y \in C$. In 1975, Bailon [5] proved the first nonlinear mean convergence theorem. He proved that a sequence $\{S_nx\}$ of the Cesaro mean defined for all $x \in C$ by

$$S_n x = \frac{1}{n} \sum_{k=0}^n M^k x$$

converges weakly to an element $u \in F(M)$, where $M : C \to H$ is known to be nonexpansive with $F(M) \neq \emptyset$. Kocourek et al. [1] extended the work of Baillon by considering a larger

Citation: Haruna, L.Y.; Ali, B.; Shehu, Y.; Yao, J.-C. A Mean Convergence Theorem without Convexity for Finite Commutative Nonlinear Mappings in Reflexive Banach Spaces. *Mathematics* **2022**, *10*, 1678. https://doi.org/10.3390/ math10101678

Academic Editor: Luigi Rodino

Received: 28 March 2022 Accepted: 10 May 2022 Published: 13 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). class of mappings *M* more general than that of nonexpansive. They proved that for any $x \in C$, a sequence $\{S_n x\}$ defined by

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} M^k x$$

converges weakly to an element $v \in F(M)$, where M is a generalized hybrid mapping with F(M) nonempty. It is worth mentioning that the nonempty subset C of H is assumed to be closed and convex in the works of both Baillon [5] and Kocourek et al. [1]. However, not all the cases are true in respect to C, for example, when C is a star-shaped (see Definition 1 below) subset of H.

Takahashi and Takeuchi [6] introduced the concept of an attractive point of a nonlinear mapping in the setting of Hilbert spaces. They proved the attractive point and nonlinear mean convergence theorem without a convexity assumption for a generalized hybrid mapping $M : C \rightarrow H$ in the space. In fact, they defined sequences $\{v_n\}$ and $\{b_n\}$ by

$$v_1 \in C, v_{n+1} = Mv_n, b_n = \frac{1}{n} \sum_{k=1}^n v_k,$$

for all $n \in \mathbb{N}$ and proved that if $\{v_n\}$ is bounded, then $\{b_n\}$ converges weakly to an element $u \in A(M)$. Takahashi et al. [7] defined a sequence $\{S_nx\}$ for all $n \in \mathbb{N}$ by

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} M^k x$$

and proved that $\{S_n x\}$ converges weakly to $q \in A(M)$, where $q = \lim_{n \to \infty} PM^n x$ and P is a metric projection. Another class of mappings which is said to include a special case, that of the generalized hybrid, was introduced. By considering two commutative 2-generalized hybrid mappings $M, N : C \to H$, Hojo et al. [8] defined a sequence $\{S_n x\}$ by

$$S_n x = \frac{1}{(n+1)^2} \sum_{k=0}^n \sum_{l=0}^n M^k N^l x$$

for all $n \in \mathbb{N} \cup \{0\}$. They proved that the sequence $\{S_nx\}$ converges weakly to an element $p \in A(M) \cap A(N)$. By considering two commutative normally 2-generalized hybrid mappings *M* and *N* and a bounded sequence $\{x_n\}$, Hojo et al. [9] defined a sequence $\{S_nx_n\}$ by

$$S_n x_n = \frac{1}{(n+1)^2} \sum_{k=0}^n \sum_{l=0}^n M^k N^l x_l$$

for all $n \in \mathbb{N} \cup \{0\}$ and proved that every cluster point of $\{S_n x_n\}$ is a point in $A(M) \cap A(M)$.

In 2013, Lin and Takahashi [10] extended the concept of the attractive point to smooth Banach spaces. By considering a generalized nonspreading mapping M of a nonempty subset C of a smooth and reflexive Banach space E onto itself, Lin et al. [11] defined a sequence $\{S_n x\}$ by

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} M^k x$$

for all $n \in \mathbb{N}$ and proved that if a subsequence $\{S_{n_i}x\}$ of $\{S_nx\}$ converges weakly to p then $p \in A(M)$. Takahashi et al. [12] defined a sequence $\{S_nx\}$ for all $n \in \mathbb{N}$ by

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} M^k x$$

and proved that $\{S_nx\}$ converges weakly to $q \in A(M)$, where $q = \lim_{n \to \infty} RM^n x$ and R is a sunny generalized nonexpansive retraction. By considering two commutative 2-generalized nonspreading mappings M and N of a nonempty subset C of a smooth, strictly convex and reflexive Banach space E into itself, Takahashi et al. [13] (see also Alsulami et al. [14]) defined a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^2} \sum_{k=0}^n \sum_{l=0}^n M^k N^l x_n$$

for all $n \in \mathbb{N} \cup \{0\}$ and proved that $\{S_n x\}$ converges weakly to $p \in A(M) \cap A(N)$.

For the Bregman version of the generalized nonspreading mapping, the generic generalized nonspreading mapping and the 2-generalized nonspreading mapping, see [15,16]. By considering two commutative generic 2-generalized nonspreading mappings M and N of a nonempty subset C of a smooth, strictly convex and reflexive Banach space E into itself, Hojo and Takahashi [17] defined a sequence $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^2} \sum_{k=0}^n \sum_{l=0}^n M^k N^l x_l^{kl}$$

for all $n \in \mathbb{N} \cup \{0\}$ and proved that $\{S_n x\}$ converges weakly to a point in $A(M) \cap A(N)$.

1.1. Our Contributions

Motivated and inspired by the corresponding results in [1,5,7–9,11,13–15,17–19], our contributions in this paper are:

- We first study the Bregman version of the Takahashi-type generic 2-generalized nonspreading mapping, which includes as a special case the Ali and Haruna-type [15] generic 2-generalized Bregman nonspreading mapping in reflexive Banach spaces.
- We then prove a nonlinear mean convergence theorem for finite commutative generic 2generalized Bregman nonspreading mappings without convexity assumptions in the space.
- As an application of our main results, we establish some new and well-known mean convergence theorems for the finite generic generalized Bregman nonspreading mapping [16], the 2-generalized Bregman nonspreading mapping [15] and the normally 2-generalized hybrid mapping.
- Our results extend and generalize the corresponding ones in Ali and Haruna [15], Alsulami et al. [14], Baillon [5], Hojo and Takahashi [9,17], Hojo et al. [8], Kocourek et al. [1], Lin et al. [11] and Takahashi et al. [13].

1.2. Organization

We organize the rest of our paper as follows: Section 2 contains some basic definitions and related results which are needed in other subsequent sections. In Section 3, we present and discuss our main results.

2. Preliminaries

Definition 1. Let *C* be a nonempty subset of *H*. Then *C* is called star-shaped if there exists a $z \in C$ such that for any $x \in C$ and $\lambda \in (0, 1)$,

$$\lambda z + (1 - \lambda)x \in C.$$

Such a $z \in C$ is called a center of the star-shaped set C.

A mapping $M : C \to H$ is called a normally generalized hybrid [7] if there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$\alpha \|Mx - My\|^{2} + \beta \|x - My\|^{2} + \gamma \|Mx - y\|^{2} + \delta \|x - y\|^{2} \le 0, \ \forall \ x, y \in C,$$

where (a) $\alpha + \beta + \gamma + \delta \ge 0$ and (b) $\alpha + \beta > 0$ or $\alpha + \gamma > 0$. Observe that if $\alpha + \beta = -\gamma - \delta = 1$, then *M* reduces to a generalized hybrid mapping.

A mapping *M* of *C* into *H* is called 2-generalized hybrid [20] if there exist $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

$$\begin{split} \alpha_1 \|M^2 x - My\|^2 &+ \alpha_2 \|Mx - My\|^2 + (1 - \alpha_1 - \alpha_2) \|x - My\|^2 \\ &\leq \beta_1 \|M^2 x - y\|^2 + \beta_2 \|Mx - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2, \quad \forall x, y \in C. \end{split}$$

Observe that if $\alpha_1 = \beta_1 = 0$, then the mapping reduces to a generalized hybrid.

As a unification of the normally generalized hybrid mapping and the 2-generalized hybrid mapping, a new nonlinear mapping is introduced. A mapping $M : C \to H$ is called a normally 2-generalized hybrid [21] if there exist $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \in \mathbb{R}$ such that

$$\begin{split} \alpha_1 \|M^2 x - My\|^2 &+ \alpha_2 \|Mx - My\|^2 + \alpha_3 \|x - My\|^2 \\ &+ \beta_1 \|M^2 x - y\|^2 + \beta_2 \|Mx - y\|^2 + \beta_3 \|x - y\|^2 \leq 0, \quad \forall \ x, y \in C, \end{split}$$

where $\sum_{i=1}^{3} (\alpha_i + \beta_i) \ge 0$ and $\sum_{i=1}^{3} \alpha_i > 0$.

In another development, the class of generalized hybrid mappings was extended to that of generalized nonspreading mappings in Banach spaces more general than Hilbert. Let *E* be a smooth Banach space. A mapping $M : C \to E$ is called generalized nonspreading [22] if there exist α , β , γ , $\delta \in \mathbb{R}$ such that

$$\begin{aligned} \alpha\phi(Mx, My) &+ (1-\alpha)\phi(x, My) + \gamma\{\phi(My, Mx) - \phi(My, x)\} \\ &\leq \beta\phi(Mx, y) + (1-\beta)\phi(x, y) + \delta\{\phi(y, Mx) - \phi(y, x)\}, \quad \forall x, y \in C, \end{aligned}$$

where a map $\phi : E \times E \to \mathbb{R}$ is a function defined by $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$, for all $x, y \in E$ and $J : E \to 2^{E^*}$ is a duality map defined by $Jx = \{f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2\}$. Observe that if E = H, then we have $\phi(x, y) = ||x - y||^2$, and consequently, an $(\alpha, \beta, \gamma, \delta)$ -generalized nonspreading mapping reduces to an $(\alpha + \gamma, \beta + \delta)$ -generalized hybrid mapping.

A mapping $M : C \to E$ is called generic generalized nonspreading [12] if there exist $\alpha, \beta, \gamma, \delta, \epsilon$ and $\zeta \in \mathbb{R}$ such that

$$\begin{aligned} \alpha\phi(Mx, My) &+ \quad \beta\phi(x, My) + \gamma\phi(Mx, y) + \delta\phi(x, y) \\ &\leq \quad \epsilon\{\phi(My, Mx) - \phi(My, x)\} + \zeta\{\phi(y, Mx) - \phi(y, x)\}, \quad \forall x, y \in C, \end{aligned}$$
(1)

where (i) $\alpha + \beta + \gamma + \delta \ge 0$ and (ii) $\alpha + \beta > 0$. Observe that a generic generalized nonspreading mapping reduces to a generalized nonspreading mapping if $\alpha + \beta = -\gamma - \delta = 1$.

A mapping $M : C \to E$ is called 2-generalized nonspreading [19] if there exist $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2, \delta_1, \delta_2 \in \mathbb{R}$ such that

$$\begin{aligned} \alpha_1 \phi(M^2 x, My) &+ & \alpha_2 \phi(Mx, My) + (1 - \alpha_1 - \alpha_2) \phi(x, My) \\ &+ & \gamma_1 \{ \phi(My, M^2 x) - \phi(My, x) \} + \gamma_2 \{ \phi(My, Mx) - \phi(My, x) \} \\ &\leq & \beta_1 \phi(M^2 x, y) + \beta_2 \phi(Mx, y) + (1 - \beta_1 - \beta_2) \phi(x, y) \\ &+ & \delta_1 \{ \phi(y, M^2 x) - \phi(y, x) \} + \delta_2 \{ \phi(y, Mx) - \phi(y, x) \}, \quad \forall x, y \in C. \end{aligned}$$

Observe that if $\alpha_1 = \beta_1 = \gamma_1 = \delta_1 = 0$, then a 2-generalized nonspreading mapping reduces to a generalized nonspreading.

A mapping $M : C \to E$ is called generic 2-generalized nonspreading [23] if there exist $\alpha_0, \alpha_1, \alpha_2, \beta_0, \beta_1, \beta_2, \gamma_0, \gamma_1, \gamma_2, \delta_0, \delta_1, \delta_2 \in \mathbb{R}$ such that

 $\begin{aligned} &\alpha_{2}\phi(M^{2}x, My) + \alpha_{1}\phi(Mx, My) + \alpha_{0}\phi(x, My) + \beta_{2}\phi(M^{2}x, y) + \beta_{1}\phi(Mx, y) + \beta_{0}\phi(x, y) \\ &\leq &\gamma_{2}\{\phi(My, M^{2}x) - \phi(My, Mx)\} + \gamma_{1}\{\phi(My, Mx) - \phi(My, x)\} + \gamma_{0}\{\phi(My, x) - \phi(My, M^{2}x)\} \\ &+ &\delta_{2}\{\phi(y, M^{2}x) - \phi(y, Mx)\} + \delta_{1}\{\phi(y, Mx) - \phi(y, x)\} + \delta_{0}\{\phi(y, x) - \phi(y, M^{2}x)\}, \quad \forall x, y \in C, \end{aligned}$

where $\alpha_0 + \alpha_1 + \alpha_2 + \beta_0 + \beta_1 + \beta_2 \ge 0$ and $\alpha_0 + \alpha_1 + \alpha_2 > 0$.

Let *E* be a real Banach space and $f : E \to \mathbb{R}$ be a function. The gradient of *f* at *x* is the function $\nabla f(x) : E \to (-\infty, +\infty]$ defined by $\langle \nabla f(x), y \rangle = f^{\circ}(x, y)$, for any $x \in int(dom(f))$ and $y \in E$, where $f^{\circ}(x, y)$ is the derivative of *f* at *x* in the direction *y* which is defined as

$$f^{\circ}(x,y) := \lim_{t \to 0} \frac{f(x+ty) - f(x)}{t}.$$
 (2)

The function f is said to be Gâteaux-differentiable at x if the limit in (2) exists for any y. In addition, f is said to be Gâteaux-differentiable if it is Gâteaux-differentiable at every $x \in \text{int}(\text{dom}(f))$. The function f is said to be Fréchet-differentiable at x if the limit in (2) is attained uniformly in y with ||y|| = 1. In addition, f is said to be Fréchet-differentiable on a subset C of X if the limit (2) is attained uniformly for $x \in X$ and ||y|| = 1. It is known from [24] that if a continuous convex function f is Fréchet-differentiable (resp. Gâteaux-differentiable) in int(dom(f)), then ∇f is continuous (resp. norm-to-weak* continuous) in int(dom(f)).

Let $f : E \to (-\infty, +\infty]$ be a convex and Gâteaux-differentiable function. The Bregman distance with respect to f [25,26] denoted by D_f is a function $D_f : \text{dom} f \times \text{int}(\text{dom}(f)) \to [0, +\infty)$, defined by

$$D_f(x,y) := f(x) - f(y) - \langle \nabla f(y), x - y \rangle.$$
(3)

Remark 1. If *E* is a smooth Banach space and $f(x) = ||x||^2$ for all $x \in E$, then the gradient $\nabla f(x)$ of *f* reduces to 2J*x* for all $x \in E$, and subsequently, $D_f(x, y) = \phi(x, y)$. In addition, if E = H is a real Hilbert space, then $\phi(x, y) = ||x - y||^2$, $\forall x, y \in E$.

For any $x \in domf$ and $y, z \in int(dom(f))$, the three-point identity can easily be obtained from (3) and is given by

$$D_f(x,z) = D_f(x,y) + D_f(y,z) + \langle \nabla f(y) - \nabla f(z), x - y \rangle.$$
(4)

We now define the Bregman version of a Takahashi-type generic 2-generalized nonspreading mapping [23] in a reflexive Banach space *E*.

Definition 2. A mapping $M : C \to E$ is called generic 2-generalized Bregman nonspreading if there exist $\alpha_0, \alpha_1, \alpha_2, \beta_0, \beta_1, \beta_2, \gamma_0, \gamma_1, \gamma_2, \delta_0, \delta_1, \delta_2 \in \mathbb{R}$ such that $\alpha_0 + \alpha_1 + \alpha_2 + \beta_0 + \beta_1 + \beta_2 \ge 0$, $\alpha_0 + \alpha_1 + \alpha_2 > 0$ and

$$\begin{split} &\alpha_2 D_f(M^2 x, My) + \alpha_1 D_f(Mx, My) + \alpha_0 D_f(x, My) + \beta_2 D_f(M^2 x, y) + \beta_1 D_f(Mx, y) + \beta_0 D_f(x, y) \\ &\leq & \gamma_2 \{ D_f(My, M^2 x) - D_f(My, Mx) \} + \gamma_1 \{ D_f(My, Mx) - D_f(My, x) \} + \gamma_0 \{ D_f(My, x) - D_f(My, M^2 x) \} \\ &+ & \delta_2 \{ D_f(y, M^2 x) - D_f(y, Mx) \} + \delta_1 \{ D_f(y, Mx) - D_f(y, x) \} + \delta_0 \{ D_f(y, x) - D_f(y, M^2 x) \}, \quad \forall x, y \in C. \end{split}$$

Remark 2. Observe that by setting $\gamma_2 = \delta_2 = 0$, the mapping in Definition 2 reduces to a generic 2-generalized Bregman nonspeading mapping in the sense of Ali and Haruna [16]. In addition, if E is smooth and $f(x) = ||x||^2$, then the mapping reduces to generic 2-generalized nonspreading in the sense of Takahashi [23]. Furthermore, if E = H is a real Hilbert space, the mapping reduces to a normally 2-generalized hybrid mapping in the sense of Kondo and Takahashi [21].

Example 1. Let $E = \mathbb{R}$ and C = [0, 2]. Let $f(x) = x^2$ and $M : C \to C$ be defined by

$$Mx = \begin{cases} 0, \ x \in [0, 2) \\ 1, \ x = 2. \end{cases}$$

Observe that for the choice of real numbers $\alpha_2 = \alpha_1 = \alpha_0 = 1$, $\beta_2 = \beta_1 = \beta_0 = \gamma_1 = \gamma_0 = \delta_1 = \delta_0 = -1$ and $\gamma_2 = \delta_2 = 0$, we see that $\sum_{i=1}^3 \alpha_i > 0$; $\sum_{i=1}^3 (\alpha_i + \beta_i) \ge 0$ and $h(x, y) \le 0$, for all $x, y \in C$, where

$$\begin{split} h(x,y) &= \alpha_2 (M^2 x - My)^2 + \alpha_1 (Mx - My)^2 + \alpha_0 (x - My)^2 + \beta_2 (M^2 x - y)^2 + \beta_1 (Mx - y)^2 + \beta_0 (x - y)^2 \\ &- \gamma_2 \{ (My - M^2 x)^2 - (My - Mx)^2 \} - \gamma_1 \{ (My - Mx)^2 - (My - x)^2 \} - \gamma_0 \{ (My - x)^2 - (My - M^2 x)^2 \} \\ &- \delta_2 \{ (y - M^2 x)^2 - (y - Mx)^2 \} - \delta_1 \{ (y - Mx)^2 - (y - x)^2 \} - \delta_0 \{ (y - x)^2 - (y - M^2 x)^2 \}. \end{split}$$

Therefore, M is a generic 2-generalized Bregman nonspreading mapping.

Let *E* be a reflexive Banach space and *T* be a mapping of a nonempty subset *C* of *int*(*domf*) into *E*. We denote the set of Bregman attractive points of *T* by $A_f(T)$ and that of Bregman skew-attractive points [27] by B_fT , i.e., $A_f(T) = \{x \in E : D_f(x, Ty) \leq D_f(x, y), \forall y \in C\}$ and $B_f(T) = \{x \in E : D_f(Ty, x) \leq D_f(y, x), \forall y \in C\}$.

Lemma 1 ([27]). Let *E* be a reflexive Banach space and $g : E \to (-\infty, +\infty]$ a convex, continuous, strongly coercive and Gâteaux-differentiable function which is bounded on bounded subsets and uniformly convex on bounded subsets of E. Let C be a nonempty subset of E and $T : C \to E$ be a mapping. Then $B_f(T)$ is closed and convex.

Lemma 2 ([27]). Let *E* be a reflexive Banach space and $g : E \to (-\infty, +\infty]$ a convex, continuous, strongly coercive and Gâteaux-differentiable function which is bounded on bounded sets, uniformly convex and uniformly smooth on bounded sets. Let *C* be a nonempty subset of *E* and $T : C \to E$ be a mapping. Let $T^* : \nabla f C \to E^*$ be the duality mapping of *T*. Then the following assertions hold:

- (1) $\nabla g B_f(T) = A_f(T^*);$
- (2) $\nabla g A_f(T) = B_f(T^*).$

In particular, $\nabla g B_f(T)$ is closed and convex.

Let *C* be a nonempty subset of a Banach space *X*. A mapping \mathcal{R} of *X* into *C* is said to be sunny [28] if

$$\mathcal{R}(\mathcal{R}x + r(x - \mathcal{R}x)) = \mathcal{R}x,$$

for each $x \in X$ and $r \ge 0$. A mapping $\mathcal{R} : X \to C$ is said to be retraction [28] if $\mathcal{R}x = x$ for all $x \in C$. A nonempty subset *C* of *X* is said to be a sunny Bregman generalized nonexpansive retract (resp. a Bregman generalized nonexpansive retract) of *X* if there exists a sunny Bregman generalized nonexpansive retraction (resp. a Bregman generalized nonexpansive retraction) of *X* onto *C*, see [29] for details.

Lemma 3 ([30]). Let *E* be a reflexive Banach space and $g : E \to (-\infty, +\infty]$ a convex, continuous, strongly coercive function which is bounded on bounded sets and uniformly convex and uniformly smooth on bounded sets. Let *C* be a nonempty closed subset of *E*. Then the following statements are equivalent

- (1) *C* is a sunny Bregman generalized nonexpansive retract of *E*;
- (2) *C* is a Bregman generalized nonexpansive retract of *E*;
- (3) ∇gC is closed and convex.

Using Lemma 3, the following result can be established.

Lemma 4. Let *E* be a reflexive Banach space and let $\{C_i\}$ be a family of sunny Bregman generalized nonexpansive retracts of *E* such that $\bigcap_{i \in I} C_i$ is nonempty. Then $\bigcap_{i \in I} C_i$ is a sunny Bregman generalized nonexpansive retract of *E*.

Proof. It is easy to see $\nabla g(\cap_{i \in I} C_i) = \cap_{i \in I} \nabla g C_i$. Indeed,

$$\begin{aligned} x \in \nabla g(\cap_{i \in I} C_i) & \iff (\nabla g)^{-1} x \in \cap_{i \in I} C_i \\ & \iff (\nabla g)^{-1} x \in C_i, \forall i \in I \\ & \iff x \in \nabla g C_i, \forall i \in I \\ & \iff x \in \cap_{i \in I} \nabla g C_i. \end{aligned}$$

Thus, from Lemma 3 above, ∇gC_i is closed and closed for each $i \in I$. Therefore, $\bigcap_{i \in I} \nabla gC_i$ is closed and closed. Hence, we have that $\bigcap_{i \in I} C_i$ is a sunny Bregman generalized nonexpansive retract of *E*. \Box

Lemma 5 ([30]). Let *E* be a reflexive Banach space and $g : E \to \mathbb{R}$ be a strongly coercive Bregman function. Let *C* be a nonempty closed subset of *E* and let \mathcal{R} be a retraction from *E* onto *C*. Then the following assertions are equivalent:

- (1) \mathcal{R} is sunny Bregman generalized nonexpansive;
- (2) $\langle x \mathcal{R}x, \nabla g(y) \nabla g(\mathcal{R}x) \rangle \leq 0, \forall (x, y) \in E \times C.$

Lemma 6 ([31]). Let *E* be a Banach space and r > 0. Let ρ_r be the gauge function of uniform convexity of *g* where $g: E \to \mathbb{R}$ is a convex function which is uniformly convex on bounded subsets of *E*. Then the following hold:

- (1) For any $x, y \in B_r$ and $\alpha \in (0, 1)$, $g(\alpha x + (1 \alpha)y) \le \alpha g(x) + (1 \alpha)g(y) \alpha(1 \alpha)$ $\rho_r(||x - y||);$
- (2) For any $x, y \in B_r$, $\rho_r(||x y||) \le D_g(x, y)$.

Lemma 7 ([32], Theorem 7.3 (vi)). Suppose $u \in domf$ and $v \in int(dom(f))$. If f is strictly convex, then $D_f(u, v) = 0 \Leftrightarrow u = v$.

3. Main Results

In this section, we prove a nonlinear mean convergence theorem without convexity for finite commutative generic 2-generalized Bregman nonspreading mappings. The following lemma will play a vital role.

Lemma 8. Let $f : E \to \mathbb{R}$ be a convex and uniformly Fréchet-differentiable function which is bounded on bounded subsets of E. Let C be a nonempty subset of int(dom(f)) and $M_1, M_2, \dots, M_N : C \to C$ be finite commutative generic 2-generalized Bregman nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A_f(M_l)$. Additionally, if f is strictly convex and C is closed and conve, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Proof. Since M_1 is a generic 2-generalized Bregman nonspreading mapping, then by Definition 2, we have

$$\begin{split} \alpha_2 D_f(M_1^2 x, M_1 y) &+ \alpha_1 D_f(M_1 x, M_1 y) + \alpha_0 D_f(x, M_1 y) + \beta_2 D_f(M_1^2 x, y) + \beta_1 D_f(M_1 x, y) + \beta_0 D_f(x, y) \\ &\leq \gamma_2 \{ D_f(M_1 y, M_1^2 x) - D_f(M_1 y, M_1 x) \} + \gamma_1 \{ D_f(M_1 y, M_1 x) - D_f(M_1 y, x) \} \\ &+ \gamma_0 \{ D_f(M_1 y, x) - D_f(M_1 y, M_1^2 x) \} + \delta_2 \{ D_f(y, M_1^2 x) - D_f(y, M_1 x) \} \\ &+ \delta_1 \{ D_f(y, M_1 x) - D_f(y, x) \} + \delta_0 \{ D_f(y, x) - D_f(y, M_1^2 x) \}, \quad \forall x, y \in C. \end{split}$$

Using the three-point identity (4), we obtain

$$\begin{split} \alpha_{2} \{ D_{f}(M_{1}^{2}x,y) &+ D_{f}(y,M_{1}y) + \langle \nabla f(y) - \nabla f(M_{1}y), M_{1}^{2}x - y \rangle \} + \beta_{2} D_{f}(M_{1}^{2}x,y) \\ &+ \alpha_{1} \{ D_{f}(M_{1}x,y) + D_{f}(y,M_{1}y) + \langle \nabla f(y) - \nabla f(M_{1}y), M_{1}x - y \rangle \} + \beta_{1} D_{f}(M_{1}x,y) \\ &+ \alpha_{0} \{ D_{f}(x,y) + D_{f}(y,M_{1}y) + \langle \nabla f(y) - \nabla f(M_{1}y), x - y \rangle \} + \beta_{0} D_{f}(x,y) \\ &\leq \gamma_{2} \{ D_{f}(M_{1}y,M_{1}^{2}x) - D_{f}(M_{1}y,M_{1}x) \} + \gamma_{1} \{ D_{f}(M_{1}y,M_{1}x) - D_{f}(M_{1}y,x) \} \\ &+ \gamma_{0} \{ D_{f}(M_{1}y,x) - D_{f}(M_{1}y,M_{1}^{2}x) \} + \delta_{2} \{ D_{f}(y,M_{1}^{2}x) - D_{f}(y,M_{1}x) \} \\ &+ \delta_{1} \{ D_{f}(y,M_{1}x) - D_{f}(y,x) \} + \delta_{0} \{ D_{f}(y,x) - D_{f}(y,M_{1}^{2}x) \}, \quad \forall x,y \in C. \end{split}$$

This implies

$$\begin{aligned} (\alpha_{2} + \beta_{2})D_{f}(M_{1}^{2}x, y) &+ (\alpha_{1} + \beta_{1})D_{f}(M_{1}x, y) + (\alpha_{0} + \beta_{0})D_{f}(x, y) + (\alpha_{2} + \alpha_{1} + \alpha_{0})D_{f}(y, M_{1}y) \\ &+ \langle \nabla f(y) - \nabla f(M_{1}y), \alpha_{2}(M_{1}^{2}x - y) + \alpha_{1}(M_{1}x - y) + \alpha_{0}(x - y) \rangle \\ &\leq \gamma_{2}\{D_{f}(M_{1}y, M_{1}^{2}x) - D_{f}(M_{1}y, M_{1}x)\} + \gamma_{1}\{D_{f}(M_{1}y, M_{1}x) - D_{f}(M_{1}y, x)\} \\ &+ \gamma_{0}\{D_{f}(M_{1}y, x) - D_{f}(M_{1}y, M_{1}^{2}x)\} + \delta_{2}\{D_{f}(y, M_{1}^{2}x) - D_{f}(y, M_{1}x)\} \\ &+ \delta_{1}\{D_{f}(y, M_{1}x) - D_{f}(y, x)\} + \delta_{0}\{D_{f}(y, x) - D_{f}(y, M_{1}^{2}x)\}, \quad \forall x, y \in C. \end{aligned}$$

$$(5)$$

Since $-(\alpha_2 + \beta_2 + \alpha_1 + \beta_1) \le \alpha_0 + \beta_0$, we obtain from Inequality (5) that

$$\begin{aligned} (\alpha_{2} + \beta_{2}) \big(D_{f}(M_{1}^{2}x, y) &- D_{f}(x, y) \big) + (\alpha_{1} + \beta_{1}) \big(D_{f}(M_{1}x, y) - D_{f}(x, y) \big) + (\alpha_{2} + \alpha_{1} + \alpha_{0}) D_{f}(y, M_{1}y) \\ &+ \langle \nabla f(y) - \nabla f(M_{1}y), \alpha_{2}(M_{1}^{2}x - x) + \alpha_{1}(M_{1}x - x) + (\alpha_{2} + \alpha_{1} + \alpha_{0})(x - y) \rangle \\ &\leq \gamma_{2} \{ D_{f}(M_{1}y, M_{1}^{2}x) - D_{f}(M_{1}y, M_{1}x) \} + \gamma_{1} \{ D_{f}(M_{1}y, M_{1}x) - D_{f}(M_{1}y, x) \} \\ &+ \gamma_{0} \{ D_{f}(M_{1}y, x) - D_{f}(M_{1}y, M_{1}^{2}x) \} + \delta_{2} \{ D_{f}(y, M_{1}^{2}x) - D_{f}(y, M_{1}x) \} \\ &+ \delta_{1} \{ D_{f}(y, M_{1}x) - D_{f}(y, x) \} + \delta_{0} \{ D_{f}(y, x) - D_{f}(y, M_{1}^{2}x) \}, \quad \forall x, y \in C. \end{aligned}$$

Following the hypothesis, we can take $x \in C$ such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \cdots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded. Now, we replace x with $M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x$ so that from Inequality (6) we obtain

$$\begin{aligned} (\alpha_{2} + \alpha_{1} + \alpha_{0})D_{f}(y, M_{1}y) + (\alpha_{2} + \beta_{2}) (D_{f}(M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, y) - D_{f}(M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, y)) \\ + (\alpha_{1} + \beta_{1}) (D_{f}(M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, y) - D_{f}(M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, y)) \\ + (\nabla f(y) - \nabla f(M_{1}y), \alpha_{2}(M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) \\ + \alpha_{1}(M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) + (\alpha_{2} + \alpha_{1} + \alpha_{0})(M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - y)) \\ \leq \gamma_{2}\{D_{f}(M_{1}y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \gamma_{1}\{D_{f}(M_{1}y, M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \gamma_{0}\{D_{f}(M_{1}y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{1}\{D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{1}+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\} \\ + \delta_{0}\{D_{f}(y, M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D$$

$$\begin{split} &(\alpha_{2} + \alpha_{1} + \alpha_{0})(n+1)D_{f}(y, M_{1}y) \\ &+ (\alpha_{2} + \beta_{2})\left(D_{f}(M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, y) + D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}u, y) - D_{f}(M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, y) \right) \\ &- D_{f}(M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, y)\right) + (\alpha_{1} + \beta_{1})\left(D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, y) - D_{f}(M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, y)\right) \\ &+ (\nabla f(y) - \nabla f(M_{1}y), \alpha_{2}\left((M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x + M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x\right) \\ &- (M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x + M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)) \\ &+ \alpha_{1}(M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x - M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \\ &+ (\alpha_{2} + \alpha_{1} + \alpha_{0})\left(\sum_{\mu_{1}=0}^{n} M_{1}^{\mu_{1}}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x - (n+1)y)\right) \\ &\leq \gamma_{2}\{D_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)\} \\ &+ \gamma_{1}\{D_{f}(M_{1}y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)\} \\ &+ \gamma_{0}\{D_{f}(M_{1}y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) + D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)\} \\ &+ \delta_{1}\{D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)\} \\ &+ \delta_{0}\{D_{f}(y, M_{2}^{\mu_{1}} \cdots M_{N}^{\mu_{N}}x) + D_{f}(y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \\ &- D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x)\}, \quad \forall y \in C. \end{split}$$

Again, summing Inequality (8) with respect to $\mu_2 = 0, 1, \dots, n$, we obtain

$$\begin{split} &(\alpha_{2}+\alpha_{1}+\alpha_{0})(n+1)^{2}D_{f}(y,M_{1}y) \\ &+ (\alpha_{2}+\beta_{2})\sum_{\mu_{2}=0}^{n}\left(D_{f}(M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) + D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) - D_{f}(M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) \right) \\ &- D_{f}(M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) + (\alpha_{1}+\beta_{1})\sum_{\mu_{2}=0}^{n}\left(D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) - D_{f}(M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y)\right) \\ &+ \langle \nabla f(y) - \nabla f(M_{1}y), \alpha_{2}\sum_{\mu_{2}=0}^{n}\left((M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x + M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right) \\ &- (M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)) \\ &+ \alpha_{1}\sum_{\mu_{2}=0}^{n}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) \\ &+ (\alpha_{2}+\alpha_{1}+\alpha_{0})(\sum_{\mu_{1}=0}^{n}\sum_{\mu_{2}=0}^{n}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - (n+1)^{2}y)\rangle \end{split}$$

$$\leq \gamma_{2} \sum_{\mu_{2}=0}^{n} \{ D_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$+ \gamma_{1} \sum_{\mu_{2}=0}^{n} \{ D_{f}(M_{1}y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$+ \gamma_{0} \sum_{\mu_{2}=0}^{n} \{ D_{f}(M_{1}y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) + D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$- D_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \} + \delta_{2} \sum_{\mu_{2}=0}^{n} \{ D_{f}(y, M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$+ \delta_{1} \sum_{\mu_{2}=0}^{n} \{ D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$+ \delta_{0} \sum_{\mu_{2}=0}^{n} \{ D_{f}(y, M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) + D_{f}(y, M_{1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}$$

$$- D_{f}(y, M_{1}^{n+2}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) \}, \quad \forall y \in C.$$

We continue summing Inequality (9) until with respect to $\mu_N = 0, 1, \cdots, n$, and we obtain

$$\begin{split} &(\alpha_{2}+\alpha_{1}+\alpha_{0})(n+1)^{N}D_{f}(y,M_{1}y)\\ &+ (\alpha_{2}+\beta_{2})\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left(D_{f}(M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) + D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y)\right)\\ &- D_{f}(M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) - D_{f}(M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y))\\ &+ (\alpha_{1}+\beta_{1})\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left(D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) - D_{f}(M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y)\right)\\ &+ (\alpha_{1}+\beta_{1})\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left(D_{f}(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y) - D_{f}(M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x,y)\right)\\ &+ (\alpha_{1}+\beta_{1})\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left((M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x + M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right)\\ &- (M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x + M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)) + \alpha_{1}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right)\\ &- (M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x + M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)) + \alpha_{1}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left(M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - (n+1)^{N}y)\right)\\ &\leq \gamma_{2}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left\{D_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right\}\\ &+ \gamma_{1}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left\{D_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(M_{1}y, M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right)\\ &+ \mathcal{O}_{f}(M_{1}y, M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) + D_{f}(M_{1}y, M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right)\\ &+ \delta_{1}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left\{D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right\}\\ &+ \delta_{0}\sum_{\mu_{2}=0}^{n}\cdots\sum_{\mu_{N}=0}^{n}\left\{D_{f}(y, M_{1}^{\mu+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) + D_{f}(y, M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - D_{f}(y, M_{1}^{n+1}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x)\right)\\ &+ D_{f}(y, M_{1}^{n+2}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) + D_{f}(y, M_{1}M_{2}^{\mu_{2}}\cdots M_{N}^{$$

$$\begin{aligned} \text{Dividing both sides of Inequality (10) by } (n+1)^N \text{ and letting } S_n x &= \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^{m} \dots \sum_{\mu_{N=0}=0}^{m} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x, \text{ we obtain} \\ (a_2 + a_1 + a_0) D_f(y, M_1y) \\ &+ \frac{(a_2 + \beta_2)}{(n+1)^N} \sum_{\mu_{N=0}=0}^n \dots \sum_{\mu_N=0}^n \left(D_f(M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) + D_f(M_1^{n+1} M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) \right) \\ &- D_f(M_1 M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) - D_f(M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) - D_f(M_2^{\mu_2} \cdots M_N^{\mu_N} x, y)) \\ &+ \frac{(a_1 + \beta_1)}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left(D_f(M_1^{n+1} M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) - D_f(M_2^{\mu_2} \cdots M_N^{\mu_N} x, y) \right) \\ &+ (\nabla f(y) - \nabla f(M_1y), \frac{a_2}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left(M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x + M_1^{n+1} M_2^{\mu_2} \cdots M_N^{\mu_N} x \right) \\ &+ \frac{a_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left(M_1^{n+1} M_2^{\mu_2} \cdots M_N^{\mu_N} x - M_1 M_2^{\mu_2} \cdots M_N^{\mu_N} x) + (a_2 + a_1 + a_0)(S_n x - y) \right) \\ &\leq \frac{\gamma}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(M_1y, M_1M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\gamma}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(M_1y, M_1M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\gamma}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(M_1y, M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(M_1y, M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(y, M_1M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(y, M_1M_2^{\mu_2} \cdots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(y, M_1^{\mu_2} \dots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}{(n+1)^N} \sum_{\mu_{N=0}}^n \dots \sum_{\mu_{N=0}}^n \left\{ D_f(M_1y, M_1^{n+2} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - D_f(y, M_1^{\mu_2} \dots M_N^{\mu_N} x) \right\} \\ &+ \frac{\delta_1}$$

<u> - -</u>

Since *E* is reflexive and $\{S_nx\}$ is bounded, then there exists a subsequence $\{S_{n_j}x\}$ of $\{S_nx\}$ such that $\{S_{n_j}x\}$ converges weakly to some point $p \in E$. Now, replacing *n* with n_j in Inequality (11) and allowing $j \to \infty$, we obtain

$$(\alpha_2 + \alpha_1 + \alpha_0) \left(D_f(y, M_1 y) + \langle \nabla f(y) - \nabla f(M_1 y), p - y \rangle \right) \le 0.$$
(13)

Using Equation (4) and the fact that $\alpha_2 + \alpha_1 + \alpha_0 \ge 0$, we obtain

$$D_f(y, M_1y) + D_f(p, M_1y) - D_f(y, M_1y) - D_f(p, y) \le 0, \forall y \in C.$$

Thus,

$$D_f(p, M_1 y) \le D_f(p, y), \forall y \in C.$$
(14)

-11

1

By the commutative nature of M_1, M_2, \dots, M_N , we can replace M_1 in (14) with any of the $M_2 \dots, M_N$ so that for all $y \in C$ we obtain

:

$$D_f(p, M_2 y) \leq D_f(p, y) \tag{15}$$

$$D_f(p, M_N y) \leq D_f(p, y).$$
(16)

Therefore, from (14)–(16), we have $v \in \bigcap_{l=1}^{N} A_f(M_l)$. Hence, every weak cluster point of $\{S_n x\}$ is a point of $\bigcap_{l=1}^{N} A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then we put y = v in (14)–(16) and we see that by Lemma 7, $v \in \bigcap_{l=1}^{N} F(M_l)$. Hence, every weak cluster point of $\{S_n x\}$ is a point of $\bigcap_{l=1}^{N} F(M_l)$. This completes the proof. \Box

Following a similar argument as in the proof of Lemma 8, the following new results with respect to finite generic 2-generalized nonspreading mappings and normally 2-generalized hybrid mappings can be established.

Lemma 9. Let *E* be a smooth, strictly convex and reflexive Banach space and *C* a nonempty subset of *E*. Let $M_1, M_2, \dots, M_N : C \to C$ be finite commutative generic 2-generalized nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A(M_l)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Proof. Let *E* be a smooth Banach space and $f(x) = ||x||^2$. Then by Remark 2, the mapping reduces to generic 2-generalized nonspreading in the sense of Takahashi [23]. Following a similar argument as in the proof of Lemma 8 with the use of $\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle$ in the place where Equation (4) is applied, we obtain the desired results. This completes the proof. \Box

Lemma 10. Let *E* be a real Hilbert space and *C* be a nonempty subset of *E*. Let M_1, M_2, \dots, M_N : $C \rightarrow C$ be finite commutative normally 2-generalized hybrid mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A(M_l)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Proof. Since *E* is a real Hilbert space, then the mapping reduces to normally 2-generalized hybrid [21], i.e., there exist $\bar{\alpha_2}, \bar{\alpha_1}, \bar{\alpha_0}, \bar{\beta_2}, \bar{\beta_1}, \bar{\beta_0} \in \mathbb{R}$ such that

$$\begin{split} \bar{\alpha_2}||M^2x - My||^2 &+ \bar{\alpha_1}||Mx - My||^2 + \bar{\alpha_0}||x - My||^2 \\ &\leq \bar{\beta_2}||M^2x - y||^2 + \bar{\beta_1}||Mx - y||^2 + \bar{\beta_0}||x - y||^2, \quad \forall \, x, y \in C, \end{split}$$

where $\bar{\alpha_2} = \alpha_2 - \gamma_2 + \gamma_0$, $\bar{\alpha_1} = \alpha_1 + \gamma_2 - \gamma_1$, $\bar{\alpha_0} = \alpha_0 + \gamma_1 - \gamma_0$, $\bar{\beta_2} = \beta_2 - \delta_2 + \delta_0$, $\bar{\beta_1} = \beta_1 + \delta_2 - \delta_1$ and $\bar{\beta_0} = \beta_0 + \delta_1 - \delta_0$ satisfying $\bar{\alpha_2} + \bar{\alpha_1} + \bar{\alpha_0} + \bar{\beta_2} + \bar{\beta_1} + \bar{\beta_0} \ge 0$ and $\bar{\alpha_2} + \bar{\alpha_1} + \bar{\alpha_0} > 0$. Following similar argument as in the proof of Lemma 8 with the use of $||x - y||^2 = ||x - z||^2 + ||z - y||^2 + 2\langle x - z, z - y \rangle$ in the place where Equation (4) is applied, we obtain the desired results. This completes the proof. \Box

As direct consequences of Lemmas 8–10, the following results corresponding to the ones in Ali and Haruna [15], Hojo and Takahashi [17] and Hojo et al. [9] can be obtained as corollaries.

Corollary 1 ([15], Theorem 3.3). Let $f : E \to \mathbb{R}$ be a convex and uniformly Fréchet-differentiable function which is bounded on bounded subsets of E. Let C be a nonempty subset of int(dom(f)) and $M_1, M_2 : C \to C$ be two commutative generic generalized Bregman nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}x : \mu_1, \mu_2 \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 F(M_l)$.

Corollary 2 ([17], Lemma 3.1). Let *E* be a smooth, strictly convex and reflexive Banach space and *C* a nonempty subset of *E*. Let $M_1, M_2 : C \to C$ be two commutative generic 2-generalized nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}x : \mu_1, \mu_2 \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 A(M_l)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 F(M_l)$.

Corollary 3 ([9], Lemma 3.1). Let *E* be a real Hilbert space and *C* be a nonempty subset of *E*. Let $M_1, M_2 : C \to C$ be two commutative normally 2-generalized hybrid mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}x : \mu_1, \mu_2 \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 A(M_l)$. Additionally, if C is closed and convex then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^2 F(M_l)$.

In view of the fact that the generic 2-generalized Bregman nonspreading (simply nonspreading) mapping unifies the generic generalized Bregman nonspreading (simply nonspreading) mapping and the 2-generalized Bregman nonspreading (simply nonspreading) mapping, the following results can be obtained from Lemmas 8 and 9 as corollaries. These results correspond to the ones in Ali and Haruna [15], Alsulami et al. [14] Takahashi et al. [12], Takahashi et al. [13] and Lin et al. [11] when one or two mappings are considered.

Corollary 4 ([15]). Let $f : E \to \mathbb{R}$ be a convex and uniformly Fréchet-differentiable function which is bounded on bounded subsets of E. Let C be a nonempty subset of int(dom(f)) and M_1, M_2, \dots, M_N : $C \to C$ be finite commutative generic generalized Bregman nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^N A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^N F(M_l)$.

Corollary 5 ([15]). Let $f : E \to \mathbb{R}$ be a convex and uniformly Fréchet-differentiable function which is bounded on bounded subsets of X. Let C be a nonempty subset of int(dom(f)) and M_1, M_2, \dots, M_N : $C \to C$ be finite commutative 2-generalized Bregman nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Corollary 6 ([11,12]). Let *E* be a smooth, strictly convex and reflexive Banach space and *C* a nonempty subset of *E*. Let $M_1, M_2, \dots, M_N : C \to C$ be finite commutative generic generalized nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x_n^{\mu_N}$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Corollary 7 ([13,14]). Let *E* be a smooth, strictly convex and reflexive Banach space and *C* a nonempty subset of *E*. Let $M_1, M_2, \dots, M_N : C \to C$ be finite commutative 2-generalized nonspreading mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}x : \mu_1, \mu_2 \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^N A_f(M_l)$. Additionally, if f is strictly convex and C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\cap_{l=1}^N F(M_l)$.

In addition, in view of the fact that the normally 2-generalized hybrid mapping unifies the normally generalized hybrid mapping and 2-generalized hybrid mapping, we obtain the following results from Lemma 10 as corollaries. These results correspond to the ones in Hojo et al. [8], Takahashi et al. [7] and Takahashi et al. [33] when only one or two mappings are considered.

Corollary 8 ([7]). Let *E* be a real Hilbert space and *C* be a nonempty subset of *E*. Let $M_1, M_2, \dots, M_N : C \to C$ be finite commutative normally generalized hybrid mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x_n$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A(M_l)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

Corollary 9 ([8,33]). Let E be a real Hilbert space and C be a nonempty subset of E. Let $M_1, M_2, \dots, M_N : C \to C$ be finite commutative 2-generalized hybrid mappings such that the set $\{M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x : \mu_1, \mu_2, \cdots, \mu_N \in \mathbb{N} \cup \{0\}\}$ is bounded for some $x \in C$. Define a sequence $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $n \in \mathbb{N} \cup \{0\}$. Then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N A(M_l)$. Additionally, if C is closed and convex, then every weak cluster point of $\{S_nx\}$ is a point of $\bigcap_{l=1}^N F(M_l)$.

We now prove a nonlinear mean convergence theorem for finite commutative generic 2generalized Bregman nonspreading mappings in a reflexive Banach space *E*. Let $D = \{(\mu_1, \mu_2, \dots, \mu_N) : \mu_1, \mu_2, \dots, \mu_N \in \mathbb{N} \cup \{0\}\}$. Then *D* is a directed set by the binary relation:

$$(\mu_1, \mu_2, \cdots, \mu_N) \le (\nu_1, \nu_2, \cdots, \nu_N)$$
 if $\mu_1 \le \nu_1, \mu_2 \le \nu_2, \cdots, \mu_N \le \nu_N$.

Theorem 1. Let *E* be a smooth, strictly convex and reflexive Banach space and $f : E \to \mathbb{R}$ a strongly coercive Bregman function which is bounded, uniformly convex and uniformly smooth on bounded sets. Let M_1, M_2, \dots, M_N be finite commutative generic 2-generalized Bregman nonspreading mappings of a nonempty subset *C* of int(dom(f)) into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let *R* be the sunny Bregman generalized nonexpansive retraction of *E* onto $\bigcap_{l=1}^{N} B_f(M_l)$, and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R}M_1^{\mu_1}M_2^{\mu_2} \cdots M_N^{\mu_N}x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Proof. Using Lemmas 1 and 2, we see that $\bigcap_{l=1}^{N} B_f(S_l)$ and $\nabla f(\bigcap_{l=1}^{N} A_f(S_l))$ are closed and convex, respectively. Thus, by Lemma 4, there exists a sunny Bregman generalized nonexpansive retraction \mathcal{R} of E on $\bigcap_{l=1}^{N} B_f(M_l)$ which is characterized (see Lemma 5) by

$$0 \le \langle v - \mathcal{R}v, \nabla f(\mathcal{R}v) - \nabla f(u) \rangle, \quad \forall u \in \bigcap_{l=1}^{N} B_{f}(S_{l}), v \in C.$$
(17)

Adding $D_f(\mathcal{R}v, u)$ on both sides of Inequality (17), we obtain

$$D_{f}(\mathcal{R}v, u) \leq D_{f}(\mathcal{R}v, u) + \langle v - \mathcal{R}v, \nabla f(\mathcal{R}v) - \nabla f(u) \rangle$$

= $D_{f}(\mathcal{R}v, u) + D_{f}(v, u) - D_{f}(v, \mathcal{R}v) - D_{f}(\mathcal{R}v, u)$
= $D_{f}(v, u) - D_{f}(v, \mathcal{R}v).$ (18)

Since $\cap_{l=1}^{N} B_f(M_l) \neq \emptyset$, then for any $u \in \cap_{l=1}^{N} B_f(M_l)$, $D_f(M_1v, u) \leq D_f(v, u)$, $D_f(M_2v, u) \leq D_f(v, u) \cdots D_f(M_Nv, u) \leq D_f(v, u)$. It follows that for any $(\mu_1, \mu_2 \cdots, \mu_N)$, $(\nu_1, \nu_2 \cdots, \nu_N) \in D$ with $(\mu_1, \mu_2 \cdots, \mu_N) \leq (\nu_1, \nu_2 \cdots, \nu_N)$, we have

$$\begin{array}{lll} D_f(M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x,\mathcal{R}M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x) &\leq & D_f(M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x,\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x) \\ &\leq & D_f(M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x,\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x). \end{array}$$

Therefore, the net $D_f(M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x, \mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x)$ is nonincreasing. Putting $u = \mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x$ and $v = M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x$ in (18), we obtain from (2) of Lemma 6 that

$$\begin{split} \rho_r(||\mathcal{R}M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x-\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots,M_N^{\mu_N}x||) &\leq D_f(\mathcal{R}M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x,\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x) \\ &\leq D_f(M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x,\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x) - D_f(M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x,\mathcal{R}M_1^{\nu_1}M_2^{\nu_2}\cdots M_N^{\nu_N}x), \end{split}$$

where ρ_r is a gauge function of uniform convexity. From the properties of ρ_r , $\{\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}\}$ is a Cauchy net, see [34]. Hence, $\{\mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}\}$ converges strongly to $q \in \bigcap_{l=1}^N B_f(M_l)$ since $\bigcap_{l=1}^N B_f(M_l)$ is closed by Lemma 1.

Next, we consider a fixed $x \in C$ and an arbitrary subsequence $\{S_{n_j}x\}$ of $\{S_nx\}$ that converges weakly to v. We know from Lemma 8 that $v \in \bigcap_{l=1}^N A_f(M_l)$. Rewriting the characterization of the retraction, we have that for any $u \in \bigcap_{l=1}^N B_f(M_l)$,

$$0 \leq \langle M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x - \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x, \nabla f(\mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x) - \nabla f(u) \rangle.$$

Thus,

$$\begin{aligned} \langle M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - \mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, \nabla f(u) - \nabla f(q) \rangle \\ &\leq \langle M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - \mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x, \nabla f(\mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - \nabla f(q) \rangle \\ &\leq ||M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x - \mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x|| \cdot ||\nabla f(\mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - \nabla f(q)|| \\ &\leq M||\nabla f(\mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}}\cdots M_{N}^{\mu_{N}}x) - \nabla f(q)||, \end{aligned} \tag{19}$$

where *M* is an upper bound for $||M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x - \mathcal{R}M_1^{\mu_1}M_2^{\mu_2}\cdots M_N^{\mu_N}x||$. Summing Inequality (19) with respect to $\mu_1 = 0, 1, 2, \cdots, n, \mu_2 = 0, 1, 2, \cdots, n$ up to $\mu_N = 0, 1, 2, \cdots, n$, and dividing through by $(n + 1)^N$, we obtain

$$\langle S_{n}x - \frac{1}{(n+1)^{N}} \sum_{\mu_{1}=0}^{n} \sum_{\mu_{2}=0}^{n} \cdots \sum_{\mu_{N}=0}^{n} \mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x, \nabla f(u) - \nabla f(q) \rangle$$

$$\leq M \frac{1}{(n+1)^{N}} \sum_{\mu_{1}=0}^{n} \sum_{\mu_{2}=0}^{n} \cdots \sum_{\mu_{N}=0}^{n} ||\nabla f(\mathcal{R}M_{1}^{\mu_{1}}M_{2}^{\mu_{2}} \cdots M_{N}^{\mu_{N}}x) - \nabla f(q)||, \quad (20)$$

where $S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=0}^n \sum_{\mu_2=0}^n \cdots \sum_{\mu_N=0}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Replacing *n* with n_j in (20) and allowing $j \to \infty$, keeping in mind that ∇f is continuous, we obtain

$$\langle v-q, \nabla f(u) - \nabla f(q) \rangle \leq 0.$$

This inequality holds for any $u \in \bigcap_{l=1}^{N} B_f(M_l)$. Thus, $\mathcal{R}v = q$. Since $v \in \bigcap_{l=1}^{N} B_f(M_l)$, then v = q. Therefore, the sequence $\{S_n x\}$ converges weakly to the point q. If, in addition, C is closed and convex, then $q \in C$. Hence, $\{S_n x\}$ converges weakly to a point of $\bigcap_{l=1}^{N} F(M_l)$. This completes the proof. \Box

Following a similar argument as in Theorem 1, we can establish the following new results for finite generic 2-generalized nonspreading mappings and normally 2-generalized hybrid mappings.

Corollary 10. Let *E* be a uniformly convex Banach space with a Fréchet-differentiable norm and *C* be a nonempty subset of *E*. Let M_1, M_2, \dots, M_N be finite commutative generic 2-generalized nonspreading mappings of the nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let *R* be the sunny generalized nonexpansive retraction of *E* onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R}M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if C is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 11. Let *E* be a real Hilbert space and M_1, M_2, \dots, M_N be finite commutative normally 2-generalized hybrid mappings of a nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the metric projection of *E* onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_nx\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R}M_1^{\mu_1}M_2^{\mu_2} \cdots M_N^{\mu_N}x$. Additionally, if C is closed and convex, then $\{S_nx\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

As direct consequences of Theorem 1, Corollary 10 and Theorem 11, the following results can be obtained as corollaries. These results correspond to the ones in Ali and Haruna [15], Hojo and Takahashi [17], Hojo et al. [9] and Kondo and Takahashi [21].

Corollary 12 ([15]). Let $f : E \to \mathbb{R}$ be a strongly coercive Bregman function which is bounded, uniformly convex and uniformly smooth on bounded sets. Let M_1, M_2 be two commutative generic 2-generalized Bregman nonspreading mappings of a nonempty subset C of int(dom(f)) into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for l = 1, 2. Let \mathcal{R} be the sunny Bregman generalized nonexpansive retraction of E onto $\bigcap_{l=1}^2 B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = rac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^2 A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2) \in D} \mathcal{R}M_1^{\mu_1}M_2^{\mu_2}x$. Additionally, if C is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 13 ([17], Theorem 4.4). Let *E* be a uniformly convex Banach space with a Fréchetdifferentiable norm and *C* be a nonempty subset of *E*. Let M_1, M_2 be two commutative generic 2generalized nonspreading mappings of the nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for l = 1, 2. Let \mathcal{R} be the sunny generalized nonexpansive retraction of *E* onto $\cap_{l=1}^2 B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^2 A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2) \in D} \mathcal{R}M_1^{\mu_1} M_2^{\mu_2} x$.

Corollary 14 ([9], Theorem 3.2). Let *E* be a real Hilbert space and M_1 , M_2 be two commutative normally 2-generalized hybrid mappings of a nonempty subset *C* of *E* into itself such that $A_f(M_l) \neq \emptyset$, for l = 1, 2. Let \mathcal{R} be the metric projection of *E* onto $\bigcap_{l=1}^2 A_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n M_1^{\mu_1} M_2^{\mu_2} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^2 A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2) \in D} \mathcal{R}M_1^{\mu_1}M_2^{\mu_2}x$. Additionally, if C is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

In view of the fact that the generic 2-generalized Bregman nonspreading (simply nonspreading) mapping unifies the generic generalized Bregman nonspreading (simply nonspreading) mapping and the 2-generalized Bregman nonspreading (simply nonspreading) mapping, we can prove the following results as corollaries which correspond to the ones in Alsulami et al. [14], Lin et al. [11] and Takahashi et al. [12,13] when only one or two mappings are considered.

Corollary 15. Let $f : E \to \mathbb{R}$ be a strongly coercive Bregman function which is bounded, uniformly convex and uniformly smooth on bounded sets. Let M_1, M_2, \dots, M_N be finite commutative generic generalized Bregman nonspreading mappings of a nonempty subset C of int(dom(f)) into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the sunny Bregman generalized nonexpansive retraction of E onto $\bigcap_{l=1}^{N} B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 16. Let $f : E \to \mathbb{R}$ be a strongly coercive Bregman function which is bounded, uniformly convex and uniformly smooth on bounded sets. Let M_1, M_2, \dots, M_N be finite commutative 2-generalized Bregman nonspreading mappings of a nonempty subset C of int(dom(f)) into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the sunny Bregman generalized nonexpansive retraction of E onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 17 ([11,12]). Let *E* be a uniformly convex Banach space with a Fréchet-differentiable norm and *C* be a nonempty subset of *E*. Let M_1, M_2, \dots, M_N be finite commutative generic generalized nonspreading mappings of the nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the sunny generalized nonexpansive retraction of *E* onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x_n$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 18 ([13,14]). Let *E* be a uniformly convex Banach space with a Fréchet-differentiable norm and *C* be a nonempty subset of *E*. Let M_1, M_2, \dots, M_N be finite commutative 2-generalized nonspreading mappings of the nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$,

for $l = 1, 2, \dots, N$. Let \mathcal{R} be the sunny generalized nonexpansive retraction of E onto $\bigcap_{l=1}^{N} B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

In view of the fact that the class of normally 2-generalized hybrid mappings unifies those of normally generalized hybrid and 2-generalized hybrid mappings, these results correspond to the ones in [7,8] when only one or two mappings are considered.

Corollary 19 ([7]). Let *E* be a real Hilbert space and M_1, M_2, \dots, M_N be finite commutative normally generalized hybrid mappings of a nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the metric projection of *E* onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Corollary 20 ([8]). Let *E* be a real Hilbert space and M_1, M_2, \dots, M_N be finite commutative 2generalized hybrid mappings of a nonempty subset *C* of *E* into itself such that $A_f(M_l) = B_f(M_l) \neq \emptyset$, for $l = 1, 2, \dots, N$. Let \mathcal{R} be the metric projection of *E* onto $\bigcap_{l=1}^N B_f(M_l)$ and define $\{S_nx\}$ by

$$S_n x = \frac{1}{(n+1)^N} \sum_{\mu_1=1}^n \sum_{\mu_2=1}^n \cdots \sum_{\mu_N=1}^n M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x,$$

for all $x \in C$ and $n \in \mathbb{N} \cup \{0\}$. Then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N A_f(M_l)$, where $q = \lim_{(\mu_1, \mu_2, \dots, \mu_N) \in D} \mathcal{R} M_1^{\mu_1} M_2^{\mu_2} \cdots M_N^{\mu_N} x$. Additionally, if *C* is closed and convex, then $\{S_n x\}$ converges weakly to an element $q \in \bigcap_{l=1}^N F(M_l)$.

Author Contributions: All authors contributed equally to this work which included mathematical theory and analysis. All authors have read and agreed to the published version of the manuscript.

Funding: The research of J.-C.Y. was supported by the grant MOST 108-2115-M-039-005-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Kocourek, P.; Takahashi, W.; Yao, J.-C. Fixed Point Theorems and Weak Convergence Theorems for Generalized Hybrid Mappings in Hilbert Spaces. *Taiwan. J. Math.* 2010, 14, 2497–2511. [CrossRef]
- Kohsaka, F.; Takahashi, W. Fixed Point Theorems for a Class of Nonlinear Mappings Related to a Maximal Monotone Operators in Banach Spaces. Arch. Math. 2008, 19, 166–177. [CrossRef]
- 3. Takahashi, W. Fixed Point Theorems for New Nonlinear Mappings in Hilbert Space. J. Nonlinear Convex Anal. 2010, 11, 79–88.
- 4. Kohsaka, F.; Takahashi, W. Existence and Approximation of Fixed Point of Firmly Nonexpansive-Type Mappings in Banach Spaces. *SIAM J. Optim.* **2008**, *19*, 824–835. [CrossRef]
- 5. Baillon, J.B. Un theoreme de type ergodique pour less contractions nonlinears dans un espaces de Hilbert. *C. R. Acad. Sci. Paris Ser. A–B* 1975, *280*, 1511–1541.

- 6. Takahashi, W.; Takeuchi, Y. Nonlinear Ergodic Theorem Without Convexity for Generalized Hybrid Mappings in Hilbert Spasces. *J. Nonlinear Convex Anal.* **2011**, *12*, 399–406.
- Takahashi, W.; Wong, N.-C.; Yao, J.-C. Attractive Point and Weak Convergence Theorem for New Generalized Hybrid Mappings in Hilbert Spaces. J. Nonlinear Convex Anal. 2012, 13, 745–757.
- 8. Hojo, M.; Takahashi, S.; Takahashi, W. Attractive Point and Ergodic Theorems for Two Nonlinear Mappings in Hilbert Spaces. *Linear Nonlinear Anal.* 2017, 3, 275–286.
- 9. Hojo, M.; Kondo, A.; Takahashi, W. Weak and Strong Convergence Theorems for Commutative Normally 2-Generalized Hybrid Mappings in Hilbert Spaces. *Linear Nonlinear Anal.* **2018**, *4*, 117–134.
- 10. Lin, L.J.; Takahashi, W. Attractive Point for Generalized Nonspreading Mappings in Banach Spasces. J. Convex Anal. 2013, 20, 265–284.
- 11. Lin, L.-J.; Takahashi, W.; Yu, Z.-T. Attractive Point Theorems and Ergodic Theorems for 2-generalized Nonspreading Mappings in Banach Spaces. J. Nonlinear Convex Anal. 2013, 14, 1–20.
- Takahashi, W.; Wong, N.-C.; Yao, J.-C. Attractive Point and Mean Convergence Theorem for New Generalized Nonspreading Mappings in Banach Spaces, Infinite Products of Operators and Their Applications. *Am. Math. Soc.* 2015, 636, 225–245.
- Takahashi, W.; Wen, C.-F.; Yao, J.-C. Attractive Point and Mean Convergence Theorems for Two Commutative Nonlinear Mappings in Banach Spaces. Dyn. Syst. Appl. 2017, 26, 327–346.
- 14. Alsulami, S.M.; Latif, A.; Takahashi, W. Weak and Strong Convergence Theorems for commutative 2-Generalized nonspreading Mappings in Banach Spaces. J. Nonlinear Convex Anal. 2018, 2, 345–364.
- 15. Ali, B.; Haruna, L.Y. Attractive Point and Nonlinear Ergodic Theorems without Convexity in Reflexive Banach Spaces. *Rend. Circ. Mat. Palermo Ser. II* **2021**, *70*, 1527–1540. [CrossRef]
- 16. Ali, B.; Haruna, L.Y. Fixed Point Approximations of Noncommutative Generic 2-Generalized Bregman Nonspreading Mappings with Equilibriums. *J. Nonlinear Sci. Appl.* **2020**, *13*, 303–316. [CrossRef]
- 17. Hojo, M.; Takahashi, W. A Nonlinear Mean Convergence Theorem for Generic 2-Generalized nonspreading Mappings in Banach Spaces. *Linear Nonlinear Anal.* **2019**, *5*, 33–49.
- Hirano, N.; Kido, K.; Takahashi, W. Nonexpansive Retractions and Nonlinear Ergodic Theorems in Banach Spaces. *Nonlinear Anal.* 1988, 12, 1269–1281. [CrossRef]
- 19. Takahashi, W.; Wong, N.-C.; Yao, J.-C. Fixed point Theorems for Three New Nonlinear Mappings in Banach Spaces. J. Nonlinear Convex Anal. 2012, 13, 368–381.
- Maruyama, T.; Takahashi, W.; Yao, M. Fixed Point and Ergodic Theorems for New Nonlinear Mappings in Hilbert Spasces. J. Nonlinear Convex Anal. 2011, 12, 185–197.
- Kondo, A.; Takahashi, W. Attractive points and weak convergence theorems for normally N-generalized hybrid mappings in Hilbert spaces. *Linear Nonlinear Anal.* 2017, 3, 297–310.
- 22. Kocourek, P.; Takahashi, W.; Yao, J.-C. Fixed Point Theorems and Ergodic Theorems for Nonlinear Mappings in Banach Space. *Adv. Math. Econ.* **2011**, *15*, 67–88.
- 23. Takahashi, W. Fixed Point and Weak Convergence Theorems for New Generic Generalized Nonspreading Mappings in Banach Spaces. J. Nonlinear Convex Anal. 2019, 20, 337–361.
- 24. Asplund, E.; Rockafella, R.T. Gradient of Convex Functions. Trans. Am. Math. Soc. 1969, 139, 443–467. [CrossRef]
- Bregman, L.M. The Relaxation Method for Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming. USSR Comput. Math. Math. Phys. 1967, 7, 200–217. [CrossRef]
- Censor, Y.; Lennt, A. An Iterative Row-action Method Interval Convex Programming. J. Optim. Theory Appl. 1981, 34, 321–353. [CrossRef]
- 27. Eslamizadeh, L.; Naraghirad, E. Bregman Common Skew-Attractive Point Theorems for Semigroups of Nonlinear Mappings in Banach spaces. *Appl. Set-Valued Anal. Optim.* 2020, *2*, 235–253.
- Ibaraki, T.; Takahashi, W. A new projection and convergence theorems for projections in Banach spaces. J. Approx. Theory 2007, 149, 1–14. [CrossRef]
- Naraghirad, E. Halpern's Iteration for Bregman Relatively Nonexpansive Mappings in Banach Spaces. Numer. Funct. Anal. Optim. 2013, 34, 1129–1155. [CrossRef]
- Naraghirad, E.; Takahashi, W.; Yao, J.-C. Generalized Retractions and Fixed Point Theorems Using Bregman Functions in a Banach Space. J. Nonlinear Convex Anal. 2012, 13, 141–156.
- Naraghirad, E.; Yao, J.-C. Bregman Relatively Nonexpansive Mappings in Banach Spaces. *Fixed Point Theory Appl.* 2013, 2013, 141. [CrossRef]
- 32. Bauschke, H.H.; Borwein, J.M.; Combettes, P.L. Essentially Smoothness, Essentially Strict Convexity and Legendre Functions in Banach Space. *Commun. Contemp. Math.* **2001**, *3*, 615–647. [CrossRef]
- Takahashi, W. Weak and Strong Convergence Theorems for Noncommutative 2-Generalized Hybrid Mappings in Hilbert Spaces. J. Nonlinear Convex Anal. 2018, 19, 867–880.
- 34. Lau, A.T.; Takahashi, W. Weak Convergence and Nonlinear Ergodic Theorems for reversible Semigroups of Nonexpansive Mappings. *Pac. J. Math.* **1987**, *126*, 277–294. [CrossRef]