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Abstract: In this article, we investigate sufficient conditions for the existence and stability of solutions
to a coupled system of ψ-Caputo hybrid fractional derivatives of order 1 < υ ≤ 2 subjected to Dirichlet
boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of the
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1. Introduction

Fractional calculus has a long history, going all the way back to Leibniz’s 17th-century
explanation of the derivative order in 1965. Mathematicians use fractional calculus to study
how derivatives and integrals of noninteger order work and how they change over time.
Since then, the new theory has proven to be very appealing to mathematicians, biologists,
chemists, economists, engineers, and physicists. Subsequently, the subject attracted the
interest of numerous famous mathematicians, including Fourier, Laplace, Abel, Liouville,
Riemann, and Letnikov. For current and wide-ranging analyses of fractional derivatives and
their applications, we recommend the monographs [1–4]. In [5], the authors investigated
new results of the existence and uniqueness of systems of nonlinear coupled DEs and
inclusions involving Caputo-type sequential derivatives of fractional order and new kinds
of boundary conditions. In [6], the authors investigated a new type of SFDE and inclusions
involving ψ-Hilfer fractional derivatives, associated with integral multi-point BCs.

Fractional derivatives have played a very important role in mathematical modeling in
many diverse applied sciences, see [7]. In [8], the authors applied a new technique called
“local fractional Laplace homotopy perturbation method” (LFLHPM) on Helmholtz and
coupled Helmholtz equations to obtain analytical approximate solutions. In [9], the authors
present a new analytical method called the “local fractional Laplace variational iteration
method” (LFLVIM) for solving the two-dimensional Helmholtz and coupled Helmholtz
equations. In [10], the authors find the solution of the LFFPE on the Cantor set. They make
a comparison between the RDTM and LFSEM used in LFFPE. For example, the authors
in [11] employed the LFLVIM and LFLDM to obtain approximate solutions for solving
the damped wave equation and dissipative wave equation within LFDOs. The authors
in [12] employed the fractional derivative of the ψ-Caputo type in modeling the logistic
population equation, through which they were able to show that the model with the
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fractional derivative led to a better approximation of the variables than the classical model.
In addition, the authors in [13] employ the fractional derivative of the ψ-Caputo type,
and use the kernel Rayleigh, to improve the model again in modeling the logistic population
equation. Various research has studied the existence and uniqueness of solutions to initial
and boundary value problems utilizing ψ-fractional derivatives, see [14–18].

Fractional differential equations have been used to describe a wide variety of occur-
rences in a number of different engineering and scientific areas. Differential equations
of fractional order are suitable for critical aspects in finance, electromagnetics, acoustics,
viscoelasticity, biochemistry, and material science, see [19–21].

Additionally, it is essential to examine coupled systems through the use of fractional
differential equations, as these systems are found in a wide range of applications. A number
of scholars have also investigated coupled fractional differential equation systems. Some
theoretical work on coupled fractional differential equations is included in this article,
see [22–24].

The fractional derivatives of an unknown function are included in hybrid differential
equations, as is the nonlinearity that relies on them. This class of equations arises in a
wide variety of applications and physical science areas, for example, in the redirection of
a bent pillar with a constant or variable cross-area, a three-layer shaft, electromagnetic
waves, or gravity-driven streams. In the literature, hybrid FDEs have been examined
by employing a variety of different forms of fractional derivatives; see [23,25,26]. Some
recent results on the existence and uniqueness of initial and boundary value problems
and Ulam–Hyers stability can be found in [27–29] and the references therein. For recent
results from the ψ-Caputo hybrid fractional derivatives (CHFDs), we refer to [22,23,30,31]
and the references cited therein. Choukri Derbazi et al. recently investigated the existence of
extremal solutions to the nonlinear coupled system in [32]. Using the so-called “monotone
iterative technique” together with the method of upper and lower solutions, the authors
investigate the existence of extremal solutions of the following BVP that involves the
ψ-Caputo derivative with ICs.

CDυ,ψ
a+ ϕ(ω) = f(ω, ϕ(ω), ζ(ω)), ω ∈ J [a, b];

CDυ,ψ
a+ ζ(ω) = g(ω, ϕ(ω), ζ(ω)), ω ∈ J [a, b];

ϕ(a) = ϕa ζ(b) = ζb,

where CDυ;ψ
a+ denote the ψ-Caputo fractional derivatives (CFDs) of order υ and f, g : [a, b]×

R2
e → Re are continuous functions and ϕa, ζb ∈ Re with ϕa ≤ ζb.

Mohamed I Abbas [30] investigated the uniqueness of solutions for the following
coupled system of fractional differential equations (CSFDEs). Based on the Leray–Schauder
alternative and Banach’s fixed point theorem, the authors investigated the existence and
uniqueness of the following BVP associated with four-point BCs.

CDυ,ψ
0+ ϕ(ω) = f(ω, ϕ(ω), ζ(ω)), ω ∈ [0, 1] 1 < υ < 2;

CDβ,ψ
0+ ζ(ω) = g(ω, ϕ(ω), ζ(ω)), ω ∈ [0, 1] 1 < β < 2;

ϕ(0) = ζ(0) = 0,
ϕ(1) = λϕ(η), ζ(1) = µζ(ζ), 0 < η < ζ < 1, λ, µ > 0,

where CDυ;ψ
0+ , CDβ;ψ

0+ denote the ψ-CFDs of order υ, β and f, g : [0, 1]×R2
e → Re are contin-

uous functions.
In 2020, the authors of [33] studied the existence and uniqueness of the following BVP

associated with multi-point BCs, with results obtained via topological degree theory and
Banach’s contraction principle:
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CDα;ψ

a+ z(τ) + h(τ, z(τ)) = 0, 2 < α ≤ 3, a ≤ τ ≤ b,

z(a) = z′(a) = 0, z(b) =
n

∑
k=1

δkz(µk), a < µk < b,

where CDα;ψ
a+ denotes ψ-Caputo fractional derivatives, h : [a, b]×Re → Re is assumed to

be continous and δk ∈ Re, k = 1, 2, . . . , n.
In previous works, researchers investigated the existence and uniqueness of linear

fractional differential equations involving ψ-Caputo.
This work is devoted to investigating the existence and uniqueness of the solutions for

the following system of equations with Dirichlet BCs. Adding to this, we show that BVP is
stable via the Ulam–Hyers technique.

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0,

ζ(ξ) = ζ(T ) = 0,

(1)

where CDυi ,ψ
0+ , i = 1, 2. is the ψ-CFDs of order υi, and f, g : [ξ, T ]×R2

e → Re are continuous
functions. To be valuable, the findings of this paper must be novel and generalize several
earlier findings that are important to the research. To the best of our knowledge, there
are no articles that discuss boundary value problems for systems of fractional differential
equations with ψ-Caputo and no articles that investigate Ulam–Hyers stability for differ-
ential equations that contain ψ-Caputo derivatives. This paper is organized as follows. In
Section 2, we will briefly recall some basic definitions and some preliminary concepts about
fractional calculus and auxiliary results used in the following sections. In Section 3, we
establish the existence of solutions to the ψ-Caputo fractional hybrid differential equation
by using the Leray–Schauder alternative and Banach’s fixed point theorem. In Section 4,
the stability of Ulam–Hyers solutions is shown. In Section 5, we finally give an example to
illustrate the application of the results obtained and we give our conclusion in Section 6.

2. Preliminaries

There are some basic definitions, lemmas and results of the ψ-CFDs with regard to
another function ([1–4]).

Definition 1. Let υ > 0, f ∈ L′([ξ, T ],Re) and ψ : [ξ, T ]→ Re such that ψ′(ω) > 0
∀ ω ∈ [ξ, T ]. The ψ-Riemann–Liouville fractional integral of order υ for the function f is given by

Iυ;ψ
ξ

f(ω) =
1

Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f(s)ψ′(s)ds, (2)

where Γ denotes the standard Euler gamma function.

Definition 2. Let υ > 0, f ∈ Cm−1([ξ, T ],Re) and ψ ∈ Cm([ξ, T ],Re) such that φ′(ω) > 0
∀ω ∈ ([ξ, T ],Re). The ψ-Caputo fractional derivative (CFD) of order υ for the function f is
given by

CDυ;ψ
ξ f(ω) =

1
Γ(n− υ)

∫ ω

ξ
ψ′(s)(ψ(ω)− ψ(s))n−υ−1f

[n]
ψ (s)ds, (3)

where

f
[n]
ψ (s) =

(
1

ψ′(s)

d
ds

)n
f(s) and n = [υ] + 1,
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and [υ] denotes the integer part of the real number υ.

Remark 1. If υ ∈ (0, 1), then Equation (3) can be written as follows:

CDυ;ψ
ξ f(ω) =

1
Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f′(s)ds.

In another way, we have

CDυ;ψ
ξ f(ω) = I1−υ,ψ

(
f′(ω)

ψ′(ω)

)
.

Remark 2. Note that if ψ(ω) = ω and ψ(ω) = log(ω), then Equation (2) is reduced to the
Riemann–Liouville and Hadamard fractional integrals, respectively.

Remark 3. In particular, note that if ψ(ω) = ω and ψ(ω) = log(ω), then Equation (3) is
reduced to the CFDs and Caputo–Hadamard fractional integrals, respectively.

Definition 3. Let υ > 0 and an increasing function ψ : [ξ, T ] → Re satisfy ψ′(ω) 0 for all
ω ∈ [ξ, T ]. We define the left-side ψ-Riemann–Liouville integral of an integrable function f on
[ξ, T ] in the fractional framework with regard to another differentiable function ψ as

(ξIυ;ψf)(ω) =
1

Γ(υ)

∫ ω

ξ
(ψ(ω)− ψ(s))υ−1f(s)ψ′(s)ds,

where Γ denotes the standard Euler gamma function.

Definition 4. Let m ∈ N with m = [υ] + 1. The left-sided ψ-Riemann–Liouville fractional
derivative of an existing function f ∈ Cm([ξ, T ],Re) with regard to a nondecreasing function ψ
such that ψ′(ω) = 0, for all ω ∈ [ξ, T ] in the functional framework, is represented as follows:

Dυ;ψ
ξ+

f(ω) =

(
1

ψ′(ω)

d

dt

)m
(Im−υ;ψ

ξ f)(ω),

=
1

Γ(m− υ)

(
1

ψ′(ω)

d

dt

)m ∫ ω

ξ
(ψ(ω)− ψ(s))m−υ−1f(s)ψ′(s)ds.

Definition 5. Let m ∈ N with m = [υ] + 1. The left-sided ψ-Caputo fractional derivative of
an existing function f ∈ Cm([ξ, T ],Re) with regard to a nondecreasing function ψ such that
ψ′(ω) = 0, for all ω ∈ [ξ, T ] in the functional framework, is represented as follows:

cDυ;ψ
ξ+

f(ω) =Im−υ;ψ
ξ+

(
1

ψ′(ω)

d

dt

)m
f(ω),

=
1

Γ(m− υ)

(
1

ψ′(ω)

d

dt

)m ∫ ω

ξ
(ψ(ω)− ψ(s))m−υ−1f(s)ψ′(s)ds.

Definition 6. Let ψ ∈ Cn([ξ, T ]) be such that ψ′(ω) > 0 on [ξ, T ]. Then,

ACm;ψ([ξ, T ]) =
{
f : [ξ, T ]→ C and f[m−1] =

(
1

ψ′(ω)

d

dt

)m−1
f

}
.

Proposition 1. Let υ > 0 and β > 0, then

(1) Iυ;ψ
ξ+

(ψ(ω)− ψ(ξ))β−1 = Γ(β)
Γ(υ+β)

(ψ(ω)− ψ(ξ))υ+β−1,

(2) CDυ;ψ
ξ+

(ψ(ω)− ψ(ξ))β−1 = Γ(β)
Γ(β−υ)

(ψ(ω)− ψ(ξ))β−υ−1,

(3) CDυ;ψ
ξ+

(ψ(ω)− ψ(ξ))k = 0, for any k = 0, . . . , m− 1; m ∈ N.
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Proposition 2. Let υ > 0, if f ∈ Cm−1([ξ, T ],Re), then we have

(1) CDυ,ψ
ξ+
Iυ,ψ

ξ+
f(ω) = f(ω),

(2) Iυ,ψ
ξ+

CDυ,ψ
ξ+

f(ω) = f(ω)−∑n−1
J=0

f[k]ψ(0)
k! (ψ(ω)− ψ(0))k.

(3) Iυ,ψ
ξ+

is linear and bounded from C([ξ, T ],Re) to C([ξ, T ],Re).

Lemma 1 (Hybrid Fixed Point Theorem). Let X be a convex, bounded and closed set contained
in the Banach algebra Y and the operators P ,S : Y → Y and Q : X → Y be such that:

(1) P and S are Lipschitz maps with Lipschitz constant LP and LS , respectively;
(2) Q is continuous and compact;
(3) ϕ = PϕQζ + Sϕ ∀ ζ ∈ X =⇒ ϕ ∈ X ; and
(4) LPMQ + LS < 1, whereMQ = ||Q(X )|| = sup{||Qϕ|| : ϕ ∈ X}, then the operator

equation ϕ = Pϕ + Sϕ possesses a solution in X .

Theorem 1. A contraction mapping T : Ω → Ω possesses a unique fixed point where Ω is a
nonempty closed set contained in a Banach space Y .

Theorem 2 (Banach Contraction Mapping Principle). A contraction mapping on a complete
metric space has exactly one fixed point.

Theorem 3 (Arzelà–Ascoli Theorem). A set of functions in C([a, b]) with supremum norm is
relatively compact if, and only if, it is uniformly bounded and equicontinuous on [a, b].

Before presenting our main results, the following auxiliary lemma is presented.

Lemma 2. The solution of the following boundary value problem (BVP):

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= H1(ω), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= H2(ω), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0,
ζ(ξ) = ζ(T ) = 0,

(4)

is given by

ϕ(ω) =f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ς)dς

)
(5)

− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ς)dς,

and

ζ(ω) =g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ς)dς

)
(6)

− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ς)dς.

Proof. First, we apply the fractional integral ψIυ1
ξ+

to the equation

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= H1(ω),

and we obtain(
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= ψIυ1

ξ+
H1(ω) + b0 + b1(ψ(ω)− ψ(ξ)), (7)
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the first boundary condition ϕ(ξ) = 0, which yields

b0 = 0,

and the second boundary condition ϕ(T ), which implies

b1 =
−ψIυ1

ξ+
H1(T )

(ψ(ω)− ψ(ξ))
.

Substituting the obtained values of b0 and b1 in Equation (7), we have(
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= ψIυ1

ξ+
H1(ω)− 1

(ψ(ω)− ψ(ξ))
ψIυ1

ξ+
H1(T ),

(
ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
=

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ς)dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ς)dς,

which completes the proof.

3. Main Result

Defining the space B = {(ϕ(ω), ζ(ω)) : (ϕ, ζ) ∈ C([ξ, T ],Re)× C([ξ, T ],Re)}, it is
obvious that B is a Banach space. Furthermore, this space is endowed with the norm

||(ϕ, ζ)||B = ||ϕ||+ ||ζ|| ∀(ϕ, ζ) ∈ B.

By Lemma 2, we define an operator Φ : B → B as

Φ(ϕ, ζ)(ω) =

{
Φ1(ϕ, ζ)(ω),
Φ2(ϕ, ζ)(ω),

(8)

where

Φ1((ϕ, ζ)(ω))

= f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
(9)

− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς,

and

Φ2((ϕ, ζ)(ω))

= g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
(10)

− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς.

Now, let us assume that the following assumptions hold true:
(A1) ϕ, ζ are assumed to be continuous and bounded, and there exist ∂f, ∂g > 0

such that

|f(ω, ϕ, ζ)| ≤ ∂f, and |g(ω, ϕ, ζ)| ≤ ∂g, ∀(ω, ϕ, ζ) ∈ [ξ, T ]×R2
e .
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(A2) Both H1 and H2 are assumed to be continuous and there exist δi, εi > 0, i = 1, 2
such that

|H1(ω, ϕ1, ζ1)−H1(ω, ϕ2, ζ2)| ≤δ1|ϕ1 − ϕ2|+ δ2|ζ1 − ζ2|,
|H2(ω, ϕ1, ζ1)−H2(ω, ϕ2, ζ2)| ≤ε1|ϕ1 − ϕ2|+ ε2|ζ1 − ζ2|,

∀ ω ∈ [ξ, T ], ϕi, ζi ∈ Re, i = 1, 2.
(A3) There exist λ0, µ0 > 0, and λi, µi ≤ 0, i = 1, 2 such that

|H1(ω, ϕ, ζ)| ≤λ0 + λ1|ϕ|+ λ2|ζ|,
|H2(ω, ϕ, ζ)| ≤µ0 + µ1|ϕ|+ µ2|ζ|, ∀ω ∈ [ξ, T ], ϕ, ζ ∈ Re.

(A4) Let S ⊂ B be a bounded set, then there exist Ki > 0, i = 1, 2 such that

|H1(ω, ϕ(ω), ζ(ω))| ≤K1,

|H2(ω, ϕ(ω), ζ(ω))| ≤K2, ∀ ω ∈ [ξ, T ], ∀ϕ, ζ ∈ S .

Using A4, observe that ∀ i = 1, 2.∣∣∣∣( 1
Γ(υi)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υi−1Hi(ς, ϕ(ς), ζ(ς))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υi)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υi−1H1(ς, ϕ(ς), ζ(ς))dς

∣∣∣∣,
≤2Ki(ψ(T )− ψ(ξ))υi

Γ(υi + 1)
.

For computational convenience, we let

Li =
(ψ(T )− ψ(ξ))υi

Γ(υi + 1)
. (11)

Next, we introduce our main result by setting two theorems with their proofs.

Theorem 4. If the assumptions A1 and A2 hold, and

P = 2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2)) < 1, (12)

then the BVP in (1) has a unique solution on [ξ, T ].

Proof. Considering the operator given by (1), let

B̂r = {(ϕ, ζ) ∈ B : ||(ϕ, ζ)|| ≤ r}

be closed ball in B with

r ≥
2
(
∂fL1(NH1) + ∂gL2(NH2)

)
1− [2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2))]

,

where

NH1 = sup
ξ≤ω≤T

|H1(ω, 0, 0)| and NH2 = sup
ξ≤ω≤T

|H2(ω, 0, 0)|.

Observe that

|H1(ω, ϕ, ζ)| =|H1(ω, ϕ, ζ)−H1(ω, 0, 0) +H1(ω, 0, 0)|,
≤ δ1‖ϕ‖+ δ2‖ζ‖+NH1 ,
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≤ (δ1 + δ2)r+NH1 .

Now, we demonstrate that ΦB̂r ⊂ B̂r, ∀ (ϕ, ζ) ∈ B̂r, ω ∈ [ξ, T ], then

|Φ1((ϕ, ζ)(ω))|

=

∣∣∣∣f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

∣∣∣∣,
≤∂f sup

ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

≤∂f
(
(δ1 + δ2)r+NH1

)
sup

ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1dς

}
,

|Φ1((ϕ, ζ)(ω))| ≤∂f(2L1)
[
(δ1 + δ2)r+NH1

]
,

and

‖Φ1((ϕ, ζ)(ω))‖ ≤ ∂f(2L1)
[
(δ1 + δ2)r+NH1

]
, (13)

similarly,

‖Φ2((ϕ, ζ)(ω))‖ ≤ ∂g(2L1)
[
(ε1 + ε2)r+NH2

]
. (14)

Equations (13) and (14) yield

||Φ(ϕ, ζ)|| ≤ r.

Next, we show that Φ is a contraction. Let (ϕ1, ζ1), (ϕ2, ζ2) ∈ B, then

|Φ1(ϕ1, ζ1)(ω)−Φ1(ϕ2, ζ2)(ω)|

≤∂f sup
ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1

|H1(ω, ϕ1(ω), ζ1(ω))−H1(ω, ϕ2(ω), ζ2(ω))|dς)

+
(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1

|H1(ω, ϕ1(ω), ζ1(ω))−H1(ω, ϕ2(ω), ζ2(ω))|dς, },
≤∂f(δ1||ϕ1 − ϕ2||+ δ2||ζ1 − ζ2||)(2L1),

||Φ1(ϕ1, ζ1)−Φ1(ϕ2, ζ2)||
≤ ∂f(δ1 + δ2)(||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)(2L1). (15)

Similarly,

||Φ2(ϕ1, ζ1)−Φ2(ϕ2, ζ2)||
≤ ∂g(ε1 + ε2)(||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)(2L2). (16)
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Equations (15) and (16) give

||Φ(ϕ1, ζ1)−Φ(ϕ2, ζ2)|| (17)

≤ [∂f(2L1)(δ1 + δ2) + ∂g(2L2)(ε1 + ε2)](||ϕ1 − ϕ2||+ ||ζ1 − ζ2||)
≤||ϕ1 − ϕ2||+ ||ζ1 − ζ2||.

Operator Φ is a contraction, and the Banach contraction mapping principle applies,
that is, on [ξ, T ], the BVP (1) has a unique solution.

Theorem 5. If (A1), (A3) and (A4) are satisfied, and if

2(∂fL1λ1 + ∂gL2µ1) < 1

and
2(∂fL1λ2 + ∂gL2µ2) < 1,

then the proposed problem given by (1) has at least one solution on [ξ, T ].

Proof. To begin, we show that Φ is (c.c), if H1,H2, f and g are both continuous, which
implies that Φ is continuous.

By A4, for any (f, g) ∈ S , we have

|Φ1((ϕ, ζ)(ω))|

≤ ∂f sup
ξ≤ω≤T

{(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

that is

‖Φ1(ϕ, ζ)‖ ≤ ∂f(2L1)K1, (18)

similarly,

‖Φ2(ϕ, ζ)‖ ≤ ∂g(2L2)K2, (19)

and, from (18) and (19), we obtain

‖Φ(ϕ, ζ)‖ ≤ ∂f(2L1)K1 + ∂g(2L2)K2, (20)

which implies that our operator Φ is uniformly bounded.
Next, we investigate the equicontinuity of our operator to see this, ∀ω1, ω2 ∈ [ξ, T ]

with ω1 < ω2, i = 1, 2. We have

|Φ1((ϕ, ζ)(ω2))−Φ1((ϕ, ζ)(ω1))|

≤∂f

{(
1

Γ(υ1)

∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ1−1 − (ψ(ω2)− ψ(ς))υ1−1

]
|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(
1

Γ(υ1)

∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ1−1

]
|H1(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω2)− ψ(ω1))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

}
,

≤
∂fK1

Γ(υ1)

{(∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ1−1 − (ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+

(∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+
(ψ(ω2)− ψ(ω1))

(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1dς

}
,
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and

|Φ2((ϕ, ζ)(ω2))−Φ2((ϕ, ζ)(ω1))|

≤∂g

{(
1

Γ(υ2)

∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ2−1 − (ψ(ω2)− ψ(ς))υ2−1

]
|H2(ω, ϕ(ω), ζ(ω))|dς

)
+

(
1

Γ(υ2)

∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ2−1

]
|H2(ω, ϕ(ω), ζ(ω))|dς

)
+

(ψ(ω2)− ψ(ω1))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1|H2(ω, ϕ(ω), ζ(ω))|dς

}
,

≤ ∂gK2
Γ(υ2)

{(∫ ω1

ξ
ψ′(ς)

[
(ψ(ω1)− ψ(ς))υ2−1 − (ψ(ω2)− ψ(ς))υ1−1

]
dς

)
+

(∫ ω2

ω1

ψ′(ς)
[
(ψ(ω2)− ψ(ς))υ2−1

]
dς

)
+
(ψ(ω2)− ψ(ω1))

(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1dς

}
.

Note that the above inequality approaches zero and is independent of (f, g), that is, Φ
is equicontinuous. Finally, we let ∆ = {(ϕ, ζ) ∈ B : (ϕ, ζ) = rΦ(ϕ, ζ), r ∈ [0, 1]}∀ ω ∈ [0, 1]
and we obtain ϕ(ω) = rΦ1(ϕ, ζ)(ω) and ζ(ω) = rΦ2(ϕ, ζ)(ω). By (A3), we obtain

||ϕ|| ≤ ∂f(2L1)(λ0 + λ1||ϕ||+ λ2||ζ||) (21)

||ζ|| ≤ ∂g(2L2)(µ0 + µ1||ϕ||+ µ2||ζ||), (22)

and adding (21) and (22), we obtain

||ϕ||+ ||ζ|| ≤(∂f(2L1)λ0 + ∂g(2L2)µ0)

+ (∂f(2L1)λ1 + ∂g(2L2)µ1)||ϕ||
+ (∂f(2L1)λ2 + ∂g(2L2)µ2)||ζ||. (23)

Equation (23) can be rewritten as

||(ϕ, ζ)|| ≤ (∂f(2L1)λ0 + ∂g(2L2)µ0)

min{1− (∂f(2L1)λ1 + ∂g(2L2)µ1), 1− (∂f(2L1)λ2 + ∂g(2L2)µ2)}
, (24)

which shows that the defined subset ∆ is bounded. Now, applying the Leray–Schauder
alternative, the problem (1) has at least one solution on [ξ, T ].

4. Ulam–Hyers Stability

This section is devoted to the investigation of Hyers–Ulam stability for our system.
Consider the following equations:

ϕ(ω) =Φ1(ϕ, ζ)(ω), (25)

ζ(ω) =Φ2(ϕ, ζ)(ω),

where Φ1 and Φ2 are given by (9) and (10), respectively. Consider the following definitions
of nonlinear operators h1, h2 ∈ C([ξ, T ],Re)× C([ξ, T ],Re)→ C([ξ, T ],Re) :

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
− h1(ω, ϕ(ω), ζ(ω)) = H1(ω, ϕ(ω), ζ(ω)), ω ∈ [a, T ],

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
− h2(ω, ϕ(ω), ζ(ω)) = H2(ω, ϕ(ω), ζ(ω)), ω ∈ [a, T ].

Considering the following inequalities for some Λ̂1 and Λ̂2,

||H1(ω, ϕ(ω), ζ(ω))|| ≤Λ̂1, (26)
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||H2(ω, ϕ(ω), ζ(ω))|| ≤Λ̂2.

Definition 7. The coupled system 1 is said to have Hyers–Ulam stability, if there existM1,M2 >
0, showing that, for every solution (ϕ′, ζ ′) ∈ C([ξ, T ],Re)×C([ξ, T ],Re) of the inequalities (26),

||ϕ(ω)− ϕ′(ω)|| ≤M1Λ̂1,

||ζ(ω)− ζ ′(ω)|| ≤M2Λ̂2, and ω ∈ [ξ, T ].

Theorem 6. If all conditions of Theorem 4 are satisfied, the CSFDEs given by (1) are U-H stable.

Proof. Let C([ξ, T ],Re)× C([ξ, T ],Re) be the solution to (1).
Let (ϕ, ζ) be any solution that meets the condition (26):

CDυ1;ψ
(

ϕ(ω)

f(ω, ϕ(ω), ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)) +H1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ],

CDυ2;ψ
(

ζ(ω)

g(ω, ϕ(ω), ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)) +H2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ],

so,

ϕ(ω)

= ϕ′(ω) + f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1H1(ω, ϕ(ω), ζ(ω))dς,

|ϕ(ω)− ϕ′(ω)|

= f(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ1)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ1)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ1−1|H1(ω, ϕ(ω), ζ(ω))|dς,

≤ (ψ(T )− ψ(ξ))υ1

Γ(υ1 + 1)
Λ̂1

≤L1Λ̂1, (27)

and

ζ(ω)

= ζ ′(ω) + g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς,

|ζ(ω)− ζ ′(ω)|

= g(ω, ϕ(ω), ζ(ω))

(
1

Γ(υ2)

∫ ω

ξ
ψ′(ς)(ψ(ω)− ψ(ς))υ2−1H2(ω, ϕ(ω), ζ(ω))dς

)
− (ψ(ω)− ψ(ξ))

Γ(υ2)(ψ(T )− ψ(ξ))

∫ T
ξ

ψ′(ς)(ψ(T )− ψ(ς))υ2−1|H2(ω, ϕ(ω), ζ(ω))|dς,

≤ (ψ(T )− ψ(ξ))υ2

Γ(υ2 + 1)
Λ̂2

≤L2Λ̂2, (28)

where L1 and L2 are defined in (11). Hence, Definition (7) is verified, with the help of
(27) and (28). Hence, the problem (1) is Ulam–Hyers stable.
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5. Example

Example 1. Let us consider the following CSFDEs:

CDυ1;ψ
(

ϕ(ω)
f(ω,ϕ(ω),ζ(ω))

)
= h1(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ1 ≤ 2;

CDυ2;ψ
(

ζ(ω)
g(ω,ϕ(ω),ζ(ω))

)
= h2(ω, ϕ(ω), ζ(ω)), ω ∈ [ξ, T ] 1 < υ2 ≤ 2;

ϕ(ξ) = ϕ(T ) = 0;
ζ(ξ) = ζ(T ) = 0.

(29)

The problem (29) has a coupled system of hybrid FDEs (1), where υ1 = 1
2 , υ2 = 1

3 ,
T = 1, ψ(ω) = ω, ξ = 0. To prove Theorem 4 , let ω ∈ [ξ, T ] and ϕ, ζ ∈ Re, then we have

h1(ω, ϕ(ω), ζ(ω)) =
1
99

(
ωζ(ω)

2 + ζ(ω)
− ζ(ω)

2 + ζ(ω)

)
,

h2(ω, ϕ(ω), ζ(ω)) =
e−ω

87

(
ω2 − ϕ(ω)ζ(ω)

2 + ζ(ω)ϕ(ω)

)
,

f(ω, ϕ(ω), ζ(ω)) =
1
99

(
ωζ(ω)

3
+

ωϕ(ω)

2
+

5
6

)
,

g(ω, ϕ(ω), ζ(ω)) =
1
98

(
ζ(ω)

5
+ ωϕ(ω) + 6

)
,

|f(ω, ϕ, ζ)| ≤ 2
97

, |g(ω, ϕ, ζ)| ≤ 1
87

,

|h1(ω, ϕ, ζ)− h1(ω, ϕ̂, ζ̂| ≤ 1
99
{|ϕ− ϕ̂|+ |ζ − ζ̂|},

|h2(ω, ϕ, ζ)− h2(ω, ϕ̂, ζ̂| ≤ 1
98
{|ϕ− ϕ̂|+ |ζ − ζ̂|}.

Moreover, we have

L1 = 1.183791995,L2 = 1.1193470177,

∂f = 0.02061855676, ∂g = 0.0114942528,

δi = 0.01010101, εi = 0.010200816,

(30)

as i = 1, 2. We substitute values in Equation (12), and we obtain

2(∂fL1(δ1 + δ2) + ∂gL2(ε1 + ε2)) ≈ 0.0014651668 < 1.

Based on the computations mentioned above, all conditions of Theorem 4 are satisfied. Therefore,
the BVP given by (29) guaranteed a unique solution on [ξ, T ] (Table 1 and Figure 1) .

Table 1. The impact of fractional order (υ) on the condition P given by (12).

T υ = 0.15 υ = 0.30 υ = 0.45 υ = 0.60 υ = 0.75 υ = 0.90

P
0.3 0.00169289 0.00164105 0.00156982 0.00148344 0.00138603 0.00128146

1.3 0.00338579 0.00364173 0.00386534 0.00405286 0.00420167 0.00431029

2.3 0.00507868 0.00580513 0.00654797 0.00729616 0.00803837 0.00876327

4.3 0.00677158 0.0080815 0.00951759 0.0110728 0.0127371 0.014498

5.3 0.00677158 0.0104457 0.0127207 0.0153029 0.0182023 0.0214241

6.3 0.0101574 0.0128824 0.016123 0.0199337 0.0243678 0.029476

7.3 0.0118503 0.015381 0.0197005 0.0249265 0.0311839 0.0386034
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Figure 1. The impact of fractional order (υ) on the condition P given by (12) is represented graphically.
Based on the P value given by (12) and the conditions A1 and A2, the graph shown above describes
the behavior of the solution of problem (29) for different values of υ ∈ (0, 1). It is noted that as T
increases, the value of P increases as well and, with an increase in time, the condition P increases
gradually for all values of υ ∈ (0, 1), and the P is clearly less than 1, satisfying the condition obtained
in Theorem 4. An important observation to be made is that when order (υ) is small, the value of P
decreases with increasing time. As the order (υ) increases, this trend changes with the value of P
increasing with time. The figure describes the behavior of the solution.

6. Conclusions

In previous works, researchers investigated the existence and uniqueness of linear
fractional differential equations involving ψ-Caputo. The legacy of this work lies in veri-
fying the existence and uniqueness of solutions to a coupled system of ψ-Caputo hybrid
fractional differential equations with Dirichlet boundary conditions. Our major findings are
demonstrated using the Banach fixed point theorem and the alternative of Leray–Schauder.
The stability of the solutions involved in the Hyers–Ulam type was investigated. We
provide an example to demonstrate the study results. ψ-fractional calculus has its own
prominence. For example, some researchers showed that by considering different ψs,
a particular natural phenomenon can be remodeled with more accuracy. For replacing the
fractional calculus by ordinary calculus, see [34]. In future studies, researchers can verify
the existence, uniqueness and stability of the solutions for the system of equations given
by Equation (1) using the ψ-Hilfer fractional derivative or any other derivatives such as
the fractional Katugambula derivative. In addition, this system can be used in practical
applications of the subject by taking our results as proven facts.
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