
Citation: Huang, T.-C.; Huang, G.-H.;

Tsai, M.-F. Improving the

Performance of MapReduce for

Small-Scale Cloud Processes Using a

Dynamic Task Adjustment

Mechanism. Mathematics 2022, 10,

1736. https://doi.org/10.3390/

math10101736

Academic Editors: Mikhail Zymbler

and Sachin Kumar

Received: 7 April 2022

Accepted: 18 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improving the Performance of MapReduce for Small-Scale
Cloud Processes Using a Dynamic Task Adjustment Mechanism
Tzu-Chi Huang 1, Guo-Hao Huang 1 and Ming-Fong Tsai 2,*

1 Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan 333, Taiwan;
tzuchi@gm.lhu.edu.tw (T.-C.H.); erichuang@aenrich.com.tw (G.-H.H.)

2 Department of Electronic Engineering, National United University, Miaoli 360, Taiwan
* Correspondence: mftsai@nuu.edu.tw

Abstract: The MapReduce architecture can reliably distribute massive datasets to cloud worker
nodes for processing. When each worker node processes the input data, the Map program generates
intermediate data that are used by the Reduce program for integration. However, as the worker nodes
process the MapReduce tasks, there are differences in the number of intermediate data created, due to
variation in the operating-system environments and the input data, which results in the phenomenon
of laggard nodes and affects the completion time for each small-scale cloud application task. In this
paper, we propose a dynamic task adjustment mechanism for an intermediate-data processing cycle
prediction algorithm, with the aim of improving the execution performance of small-scale cloud
applications. Our mechanism dynamically adjusts the number of Map and Reduce program tasks
based on the intermediate-data processing capabilities of each cloud worker node, in order to mitigate
the problem of performance degradation caused by the limitations on the Google Cloud platform
(Hadoop cluster) due to the phenomenon of laggards. The proposed dynamic task adjustment
mechanism was compared with a simulated Hadoop system in a performance analysis, and an
improvement of at least 5% in the processing efficiency was found for a small-scale cloud application.

Keywords: dynamic task adjustment mechanism; intermediate-data processing cycle prediction
algorithm; small-scale cloud application

MSC: 03B70; 08A70

1. Introduction

In view of the rapid progress and vigorous development of decentralised parallel
processing technology, the Hadoop MapReduce framework proposed by Google has grad-
ually become the basic architecture of cloud computing [1–3]. Since it benefits from the
advantages of cloud computing technology in terms of dispersing a load for processing
by multiple computers, it can be used to realise massive data analysis [4–6]. The cloud
architecture based on the MapReduce framework is shown in Figure 1. Its operating prin-
ciple is derived from the distributed parallel computing technology. Multiple computers
cooperatively perform a large amount of data calculation for a specific target at the same
time in order to realize a high-efficiency calculation amount dispersion function. A cloud
architecture running the MapReduce framework uses a master node to control the decen-
tralised operation and to manage multiple slave nodes, in order to process huge numbers
of data in a collaborative way. In a MapReduce cloud architecture system, slave nodes
are controlled to allow them to execute tasks involving the Map and Reduce functions.
The slave nodes execute a fixed number of Map tasks in order to process the input data,
generate intermediate data and then execute a fixed number of Reduce tasks to unify the
resulting information. When the main node obtains the cloud computing task from the
client, it assigns priorities based on the number of idle Map tasks and then allocates some

Mathematics 2022, 10, 1736. https://doi.org/10.3390/math10101736 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10101736
https://doi.org/10.3390/math10101736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10101736
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10101736?type=check_update&version=1

Mathematics 2022, 10, 1736 2 of 17

input data to the slave nodes to facilitate the generation of intermediate data. When a slave
node executes a Reduce task, it obtains the intermediate data from the corresponding slave
node, and, finally, the main node integrates the data from each slave node and processes
the intermediate data to give a result in the form of information.

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 17

data, generate intermediate data and then execute a fixed number of Reduce tasks to unify
the resulting information. When the main node obtains the cloud computing task from
the client, it assigns priorities based on the number of idle Map tasks and then allocates
some input data to the slave nodes to facilitate the generation of intermediate data. When
a slave node executes a Reduce task, it obtains the intermediate data from the correspond-
ing slave node, and, finally, the main node integrates the data from each slave node and
processes the intermediate data to give a result in the form of information.

Because each cloud application has a different algorithm, after running the Map task
to process the input data, different types and quantities of intermediate data are generated
to potentially affect the data transmission time of the runtime system and the computing
performance of the slave node. If one of the slave nodes in the small-scale MapReduce
cloud architecture receives a large number of intermediate data or the data type is more
complex, resulting in a long computing time, this phenomenon is called the intermediate-
data skew problem in the MapReduce cloud architecture. Therefore, differences in the
type and quantity of intermediate data affect the performance of the slave nodes in terms
of performing the Reduce task, resulting in the problem of skew in the intermediate data,
which affects the processing efficiency of the MapReduce cloud architecture [7–10].

Figure 1. MapReduce parallel computing framework.

The problem of stragglers can also reduce the processing performance of this archi-
tecture. When the cloud computing task imposed by the client involves uneven input data,
most of the slave nodes complete their portions of the work and then need to wait for the
remaining ones, which causes delays. Due to the limited number of slave nodes in the
small-scale MapReduce cloud architecture, utilizing the computing resources of idle slave
nodes that have completed their work greatly improves the overall MapReduce cloud ar-
chitecture processing efficiency. Solving the problem of intermediate-data skew is espe-
cially important in small-scale MapReduce cloud architectures. In order to solve the prob-
lem of intermediate-data skew, studies in the related literature have used load balancing
methods [11], and some works have used the slave nodes to process skewed data in order
to improve performance [12]. The contributions of this paper are as follows:
• In this paper, we propose an algorithm called Dynamic Task Adjustment Mechanism

(DTAM) with Intermediate-Data Processing Cycle Prediction (IDPCP) to improve the
processing efficiency;

Figure 1. MapReduce parallel computing framework.

Because each cloud application has a different algorithm, after running the Map task
to process the input data, different types and quantities of intermediate data are generated
to potentially affect the data transmission time of the runtime system and the computing
performance of the slave node. If one of the slave nodes in the small-scale MapReduce
cloud architecture receives a large number of intermediate data or the data type is more
complex, resulting in a long computing time, this phenomenon is called the intermediate-
data skew problem in the MapReduce cloud architecture. Therefore, differences in the type
and quantity of intermediate data affect the performance of the slave nodes in terms of
performing the Reduce task, resulting in the problem of skew in the intermediate data,
which affects the processing efficiency of the MapReduce cloud architecture [7–10].

The problem of stragglers can also reduce the processing performance of this archi-
tecture. When the cloud computing task imposed by the client involves uneven input
data, most of the slave nodes complete their portions of the work and then need to wait
for the remaining ones, which causes delays. Due to the limited number of slave nodes
in the small-scale MapReduce cloud architecture, utilizing the computing resources of
idle slave nodes that have completed their work greatly improves the overall MapReduce
cloud architecture processing efficiency. Solving the problem of intermediate-data skew
is especially important in small-scale MapReduce cloud architectures. In order to solve
the problem of intermediate-data skew, studies in the related literature have used load
balancing methods [11], and some works have used the slave nodes to process skewed data
in order to improve performance [12]. The contributions of this paper are as follows:

• In this paper, we propose an algorithm called Dynamic Task Adjustment Mechanism
(DTAM) with Intermediate-Data Processing Cycle Prediction (IDPCP) to improve the
processing efficiency;

• Our approach predicts the number of intermediate data that are to be generated by
each slave node in the future and dynamically adjusts the number of Map and Reduce
tasks assigned to the slave nodes in order to avoid the problem of performance decline
due to stragglers;

Mathematics 2022, 10, 1736 3 of 17

• Our adjustment mechanism also avoids exceeding the limit on the number of tasks
set by the manager in each slave node. The proposed DTAM was compared with
the simulated Hadoop (Google Cloud platform) system for a processing efficiency
analysis. The experimental results show that at least 5% of the performance efficiency
can be improved.

The rest of this paper is organized as follows: The first section of this paper introduces
the motivation for this research work. The second section of this paper discusses works
in the literature that have focused on solving the problem of intermediate-data skew; the
third section describes the operational details of the DTAM with IDPCP; and the fourth
section describes the implementation details for small-scale cloud applications. The fifth
section carries out an analysis of the effectiveness of the proposed system framework and
presents a comparison with a scheme in the literature. Finally, the sixth section summarises
the paper.

2. Related Work

We use a traditional small-scale cloud architecture running the MapReduce software
framework as an example. It has one master node and four slave nodes, as shown in
Figure 2. In this schedule allocation scheme, each slave node periodically reports the Map
and Reduce operations to the master node. At the point shown in the figure, the master
node knows that Slave Node 2 has four available Map tasks, while Slave Node 3 has six.
The master node, therefore, gives priority to the unprocessed input-data files for Slave
Node 3 to process. At the same time, the master node knows that Slave Node 1 has two
available Reduce tasks, Slave Node 2 has two and Slave Node 3 has one; therefore, it
notifies the slave node with available Reduce tasks to process intermediate-data files. Each
slave node running the MapReduce framework traditionally has limits on the maximum
numbers of Map and Reduce tasks that can be run, in order to prevent the numbers of
tasks exceeding the computer processing load. If the number of intermediate data to be
processed in the Reduce task by Slave Node 4 causes it to lag behind the other slave nodes,
the problem of intermediate-data skew occurs.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 17

nodes. If this network transmission operation is relatively large, the efficiency drops. One
approach in the literature applied type awareness to Map tasks with the aim of allocating
the same slave nodes to process the Reduce tasks, in order to reduce the network trans-
mission time. However, this scheme only solved the problem of network transmission
delay and was not able to solve the problem of intermediate-data skew.

Figure 2. A traditional small-scale cloud system.

To address the problem of skew in large numbers of intermediate data generated by
the Map task, one study [14] proposed a flexible-slot mechanism to dynamically adjust
the execution time of the Map task, in order to digest and process large numbers of inter-
mediate data. Since the intermediate data generated by the execution of the Map task are
not necessarily evenly distributed among different slave nodes, this approach analysed
the Map task in terms of the skew in the intermediate data according to the execution
progress and efficiency of the Map task and used a periodic-updating method to dynam-
ically adjust the execution time required for the Map task. However, this scheme only
adjusted the execution time for a large number of intermediate data from the Map task
and did not consider the problem of skew in the intermediate data for the Reduce task.

Another study [15] focused on the different execution speeds and efficiency of the
slave nodes when processing Reduce tasks and proposed a node performance load bal-
ancing algorithm to digest and process a large number of intermediate data. The perfor-
mance of each slave node was considered in order to digest the Reduce task and allocate
the number of executions. However, this approach only adjusted the number of execu-
tions to minimise the skew in the intermediate data for the Reduce task and did not con-
sider the skew in the intermediate data for the Map task. The DTAM should change the
response time delay caused by the same number of traditional fixed Map and Reduce
tasks. Moreover, comprehensive performance prediction should be considered for all
slave nodes, not just for slave nodes with abnormal Map and Reduce task performance.

Figure 2. A traditional small-scale cloud system.

Mathematics 2022, 10, 1736 4 of 17

Works in the related literature [13] have proposed the use of support vector machines
for performance prediction to solve the problem of intermediate-data skew and to avoid
the problem of performance degradation caused by using only the hashing function to
allocate intermediate data to the Reduce task. This approach also avoids skew in the input
intermediate data of the Map task and uses virtual segmentation technology to divide the
area. One proposal in the literature used machine learning to predict abnormal performance
in the Reduce task by the slave nodes. It used a heterogeneity-aware partition algorithm to
divide a Map task with a large number of input intermediate data and then implemented
a load balancing process to solve the problem of intermediate-data skew. However, this
scheme only dealt with abnormal performance of the slave nodes. The DTAM algorithm
proposed in this paper predicts the workload for all the slave nodes in a small-scale cloud
architecture to avoid the problem of delay in response times.

Another prior study [12] discussed the problem of performance degradation caused by
delays in the network transmission of intermediate data and used intermediate-data-type
perception to determine the network transmission requirements between the slave nodes
that processed Map and Reduce tasks. A communication-oriented Reduce assignment
method was used to decrease the network transfer time in order to solve the problem of
intermediate-data skew. Since the intermediate data generated from a given Map task may
not necessarily be used to execute the Reduce task on the same slave node, the network
transmission of the intermediate data must be performed between different slave nodes. If
this network transmission operation is relatively large, the efficiency drops. One approach
in the literature applied type awareness to Map tasks with the aim of allocating the same
slave nodes to process the Reduce tasks, in order to reduce the network transmission time.
However, this scheme only solved the problem of network transmission delay and was not
able to solve the problem of intermediate-data skew.

To address the problem of skew in large numbers of intermediate data generated by
the Map task, one study [14] proposed a flexible-slot mechanism to dynamically adjust
the execution time of the Map task, in order to digest and process large numbers of
intermediate data. Since the intermediate data generated by the execution of the Map
task are not necessarily evenly distributed among different slave nodes, this approach
analysed the Map task in terms of the skew in the intermediate data according to the
execution progress and efficiency of the Map task and used a periodic-updating method to
dynamically adjust the execution time required for the Map task. However, this scheme
only adjusted the execution time for a large number of intermediate data from the Map
task and did not consider the problem of skew in the intermediate data for the Reduce task.

Another study [15] focused on the different execution speeds and efficiency of the slave
nodes when processing Reduce tasks and proposed a node performance load balancing
algorithm to digest and process a large number of intermediate data. The performance of
each slave node was considered in order to digest the Reduce task and allocate the number
of executions. However, this approach only adjusted the number of executions to minimise
the skew in the intermediate data for the Reduce task and did not consider the skew in
the intermediate data for the Map task. The DTAM should change the response time
delay caused by the same number of traditional fixed Map and Reduce tasks. Moreover,
comprehensive performance prediction should be considered for all slave nodes, not just
for slave nodes with abnormal Map and Reduce task performance.

3. Materials and Methods

The concept underlying the DTAM algorithm proposed in this paper is shown in
Figure 3. The system periodically analyses the user input-data information, such as the
sizes and numbers of files. The IDPCP algorithm uses the change in the intermediate-data
volume assigned to each slave node to predict the number of Map and Reduce tasks in the
future and dynamically adjust the schedule. The master node analyses the digestibility of
the user input data, and as each slave node periodically returns information on the Map and
Reduce operations, the algorithm predicts the number of Map and Reduce tasks required

Mathematics 2022, 10, 1736 5 of 17

by each slave node in the future. In addition, the number of dynamic tasks is adjusted
according to the limit on the number of tasks, which is set by the system administrator.
The DTAM algorithm is based on the assumption that the sum of the upper limits on the
numbers of Map and Reduce tasks remains unchanged.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 17

3. Materials and Methods
The concept underlying the DTAM algorithm proposed in this paper is shown in

Figure 3. The system periodically analyses the user input-data information, such as the
sizes and numbers of files. The IDPCP algorithm uses the change in the intermediate-data
volume assigned to each slave node to predict the number of Map and Reduce tasks in
the future and dynamically adjust the schedule. The master node analyses the digestibility
of the user input data, and as each slave node periodically returns information on the Map
and Reduce operations, the algorithm predicts the number of Map and Reduce tasks re-
quired by each slave node in the future. In addition, the number of dynamic tasks is ad-
justed according to the limit on the number of tasks, which is set by the system adminis-
trator. The DTAM algorithm is based on the assumption that the sum of the upper limits
on the numbers of Map and Reduce tasks remains unchanged.

Figure 3. Overview of the dynamic task allocation mechanism.

In the example shown in Figure 3, the DTAM algorithm adjusts the upper limits on
the numbers of Map and Reduce tasks for Slave Node 1 to five and seven, respectively,
while for Slave Node 2, these values are adjusted to seven and five. The maximum num-
bers of Map and Reduce tasks for Slave Node 3 are adjusted to seven and five, respec-
tively, and the values for Slave Node 4 are adjusted to three and nine. The DTAM algo-
rithm can dynamically adjust the number of Map and Reduce tasks to allocate the cloud
computing resource requirements without affecting the computer processing load and
can solve the problem of intermediate-data skew in the operation of the cloud MapReduce
framework. In the example in Figure 3, the DTAM adjusts the upper limit on the number
of Reduce tasks for Slave Node 4 to nine. The number of Reduce tasks executed by Slave
Node 4 is six, which is higher than for the other slave nodes; hence, in order to prevent
Slave Node 4 from becoming a laggard in the future, which would prolong the completion
time of small-scale cloud application tasks, the DTAM increases the number of Reduce
tasks to speed up the completion time and decreases the number of Map tasks to lessen
the computer processing load. The DTAM also increases the number of other slave nodes
processing Map tasks, to avoid a reduction in the input-data digestibility.

Figure 3. Overview of the dynamic task allocation mechanism.

In the example shown in Figure 3, the DTAM algorithm adjusts the upper limits on the
numbers of Map and Reduce tasks for Slave Node 1 to five and seven, respectively, while
for Slave Node 2, these values are adjusted to seven and five. The maximum numbers
of Map and Reduce tasks for Slave Node 3 are adjusted to seven and five, respectively,
and the values for Slave Node 4 are adjusted to three and nine. The DTAM algorithm can
dynamically adjust the number of Map and Reduce tasks to allocate the cloud computing
resource requirements without affecting the computer processing load and can solve the
problem of intermediate-data skew in the operation of the cloud MapReduce framework.
In the example in Figure 3, the DTAM adjusts the upper limit on the number of Reduce
tasks for Slave Node 4 to nine. The number of Reduce tasks executed by Slave Node 4 is six,
which is higher than for the other slave nodes; hence, in order to prevent Slave Node 4 from
becoming a laggard in the future, which would prolong the completion time of small-scale
cloud application tasks, the DTAM increases the number of Reduce tasks to speed up the
completion time and decreases the number of Map tasks to lessen the computer processing
load. The DTAM also increases the number of other slave nodes processing Map tasks, to
avoid a reduction in the input-data digestibility.

The IDPCP algorithm calculates the wave number, Wn, for the number of digested
user input data in the future based on the quantity of user input data and the upper limit on
the number of Map tasks for each slave node. The volume of intermediate data generated
by the Map tasks in each slave node in the future is shown in Equation (1), where Fn is
the total number of files inputted by the user; Sn is the total number of slave nodes; Mdn
is the upper limit on the number of Map tasks for each slave node; and n represents a
specific cloud application process. The IDPCP algorithm periodically predicts the wave
number for input-data processing in order to adjust the numbers of Map and Reduce tasks
appropriately. The algorithm uses an exponential smoothing method to predict the number

Mathematics 2022, 10, 1736 6 of 17

of intermediate data for each slave node, as shown in Equation (2). Based on the actual
intermediate-data volume, It, generated by each slave node in the current cycle, we set a
smoothing coefficient α to predict the intermediate-data volume, Ip+1, for the next cycle and
assign a smoothing coefficient (1 − α) for the predicted intermediate-data volume, Ip, for
the current cycle. In order to prevent the fixed value of the smoothing coefficient affecting
the convergence speed and causing drastic changes, the IDPCP algorithm uses Equation (3)
to limit the dynamic adjustment range of α.

Wn =
Fn

Mdn × Sn
(1)

Ip+1 = α × It + (1 − α)× Ip (2)

0 < α =

∣∣∣∣ Ip − It

It

∣∣∣∣ < 1 (3)

Iσ =

√
∑N

i=1(xi − µ)2

N
(4)

Pi =
xi − µ

Iσ
× 10 + 50 (5)

Rvnp =
(Mdn + Rdn)× Pi

100
+

[
Fds(Rdn − Rvn)

Fapp

]
(6)

Mvnp = (Mdn + Rdn)− Rvnp +

[
Fds(Rdn − Rvn)

Fapp

]
(7)

The DTAM predicts the intermediate-data volumes and uses the formula for the
deviation value to calculate the upper limits on the numbers of Map and Reduce tasks
required. The algorithm calculates the average intermediate-data volume that each slave
node in the small-scale MapReduce cloud architecture system must process and obtains
the standard deviation, Iσ, for the number of intermediate data, as shown in Equation (4)
(where xi is the predicted volume of continuous intermediate data for each slave node; µ is
the average number of intermediate data that must be processed by all slave nodes; and N
is the total number of slave nodes). The DTAM algorithm finds the percentage Pi of the
intermediate-data volume deviation that each slave node needs to process in the next cycle
based on the standard deviation of the intermediate-data volume, as shown in Equation (5).
The method used in the DTAM to calculate the adjustment to the number of Reduce tasks
is shown in Equation (6). The maximum number of Map tasks, Mdn, for each slave node
and the maximum number of Reduce tasks, Rdn, are added together to give a total limit.

The algorithm, then, calculates the ratio between this sum and the deviation in the
number of intermediate data, obtained from Equation (5), to give the adjusted value. Since
each slave node handles different input data, we also adjust the buffer parameters. For
each slave-node system default Fds and MapReduce application default Fapp input-data
size, we integrate the ratio of the difference between the estimated number of Reduce tasks,
Rvn, and the system default number of Reduce tasks, Rdn, as a buffer parameter. In this way,
we obtain the upper limit, Rvnp, on the number of Reduce tasks for each slave node in the
next cycle. The calculation method used in the DTAM for the adjustment to the number
of Map tasks is shown in Equation (7); this gives a value for Mvnp, which represents the
upper limit on the number of Map tasks for each slave node in the next cycle and which
is used to dynamically adjust the number of Map and Reduce program tasks to improve
the performance degradation caused by laggard nodes. The DTAM proposed in this paper
conducts a comprehensive performance prediction consideration for n slave nodes. Each
slave node predicts its number of Map and Reduce tasks, respectively. Therefore, the time
complexity of the dynamic task volume adjustment mechanism is O(n).

Mathematics 2022, 10, 1736 7 of 17

4. Implementation of the DTAM Algorithm

In this work, we systematically implemented a traditional MapReduce software ar-
chitecture for small-scale cloud applications based on the recommendations in the litera-
ture [16–19]. Refer to Hadoop MapReduce framework for small-scale cloud architecture
implementation of the DTAM in the PHP and C programming languages. In the small-scale
cloud system used in this paper, a PHP program was used to realise the deployment task
module, and a C program was used as the runtime system to transmit data and execute the
cloud application tasks. The same system was installed on each slave node of the system,
and the same environmental parameters were used. The implementation of the system is
illustrated in Figure 4.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 17

this way, we obtain the upper limit, Rvnp, on the number of Reduce tasks for each slave
node in the next cycle. The calculation method used in the DTAM for the adjustment to
the number of Map tasks is shown in Equation (7); this gives a value for Mvnp, which rep-
resents the upper limit on the number of Map tasks for each slave node in the next cycle
and which is used to dynamically adjust the number of Map and Reduce program tasks
to improve the performance degradation caused by laggard nodes. The DTAM proposed
in this paper conducts a comprehensive performance prediction consideration for n slave
nodes. Each slave node predicts its number of Map and Reduce tasks, respectively. There-
fore, the time complexity of the dynamic task volume adjustment mechanism is O(n).

4. Implementation of the DTAM Algorithm
In this work, we systematically implemented a traditional MapReduce software ar-

chitecture for small-scale cloud applications based on the recommendations in the litera-
ture [16–19]. Refer to Hadoop MapReduce framework for small-scale cloud architecture
implementation of the DTAM in the PHP and C programming languages. In the small-
scale cloud system used in this paper, a PHP program was used to realise the deployment
task module, and a C program was used as the runtime system to transmit data and exe-
cute the cloud application tasks. The same system was installed on each slave node of the
system, and the same environmental parameters were used. The implementation of the
system is illustrated in Figure 4.

Figure 4. Flowchart showing the implementation of a traditional small-scale cloud system.

Before the system can execute a small-scale cloud application using the MapReduce
framework, it must determine the relevant parameter settings and the content of the con-
figuration file, which contains settings such as the location of the input-data source, the
number of operating slave nodes, the maximum numbers of Map and Reduce tasks for
each slave node, the application to be executed, the number of intermediate data and the
key value of the intermediate-data partition to start the Reduce task. The master module
on the master node reads the configuration file to determine the initial settings; it then
communicates with the runtime system of each slave node to confirm that it can operate
the application program normally, and at the same time, clears the input data for each
slave node to ensure that there are no remaining unprocessed input data. The master mod-
ule confirms the name of the input file and receives periodic information from each slave

Figure 4. Flowchart showing the implementation of a traditional small-scale cloud system.

Before the system can execute a small-scale cloud application using the MapReduce
framework, it must determine the relevant parameter settings and the content of the
configuration file, which contains settings such as the location of the input-data source, the
number of operating slave nodes, the maximum numbers of Map and Reduce tasks for
each slave node, the application to be executed, the number of intermediate data and the
key value of the intermediate-data partition to start the Reduce task. The master module
on the master node reads the configuration file to determine the initial settings; it then
communicates with the runtime system of each slave node to confirm that it can operate
the application program normally, and at the same time, clears the input data for each slave
node to ensure that there are no remaining unprocessed input data. The master module
confirms the name of the input file and receives periodic information from each slave node
that indicates the number of available Map tasks. The master module sends commands
to its Map function, based on the IP location of each slave node, to perform the Map task.
Since each slave node periodically returns the number of available Map tasks to the master
module, the runtime system is used as a bridge to share the IP address of each node with
the others. The Map tasks of each slave node use the IP address information of the runtime
system to distribute the input file of the master module to the Map tasks of each slave node
as input data. The Map task of each slave node processes the Map function application
after receiving the above input data and generates intermediate data.

After the Map task is processed by each slave node, the master module is notified that
the task is complete. The master module delivers to each specific slave node the available
Reduce tasks for subsequent processing based on the K value of the intermediate data.
The data are allocated to each slave node as the intermediate data of the Reduce task to

Mathematics 2022, 10, 1736 8 of 17

process the Reduce function program. When the Reduce task has been processed by each
slave node, a result file is generated and sent to the master module for integration. On
completion of the Reduce task, the master module of the system notifies each slave node
to return the result file, which is used to generate the output file. We implemented our
algorithm, called DTAM with IDPCP, based on a traditional MapReduce architecture for
small-scale cloud applications, as shown in Figure 5. The system uses the IDPCP algorithm
to obtain the information on the input file and to integrate the maximum number of Map
tasks for each slave node to calculate the wave number of future digestion input files. The
intermediate-data information generated by the runtime system of each slave node for
its Map task is recorded by the master module (‘Record Intermediate Data’ in Figure 5).
The system implementation uses the size of the memory space as the intermediate-data
accumulation record and predicts the volume of intermediate data to be generated by each
slave node in the next cycle. The master module of the system uses this information to
set upper limits on the numbers of Map and Reduce tasks for each slave node, in order to
improve the processing efficiency and avoid the problem of performance degradation due
to laggard nodes.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 17

node that indicates the number of available Map tasks. The master module sends com-
mands to its Map function, based on the IP location of each slave node, to perform the
Map task. Since each slave node periodically returns the number of available Map tasks
to the master module, the runtime system is used as a bridge to share the IP address of
each node with the others. The Map tasks of each slave node use the IP address infor-
mation of the runtime system to distribute the input file of the master module to the Map
tasks of each slave node as input data. The Map task of each slave node processes the Map
function application after receiving the above input data and generates intermediate data.

After the Map task is processed by each slave node, the master module is notified
that the task is complete. The master module delivers to each specific slave node the avail-
able Reduce tasks for subsequent processing based on the K value of the intermediate
data. The data are allocated to each slave node as the intermediate data of the Reduce task
to process the Reduce function program. When the Reduce task has been processed by
each slave node, a result file is generated and sent to the master module for integration.
On completion of the Reduce task, the master module of the system notifies each slave
node to return the result file, which is used to generate the output file. We implemented
our algorithm, called DTAM with IDPCP, based on a traditional MapReduce architecture
for small-scale cloud applications, as shown in Figure 5. The system uses the IDPCP algo-
rithm to obtain the information on the input file and to integrate the maximum number
of Map tasks for each slave node to calculate the wave number of future digestion input
files. The intermediate-data information generated by the runtime system of each slave
node for its Map task is recorded by the master module (‘Record Intermediate Data’ in
Figure 5). The system implementation uses the size of the memory space as the interme-
diate-data accumulation record and predicts the volume of intermediate data to be gener-
ated by each slave node in the next cycle. The master module of the system uses this in-
formation to set upper limits on the numbers of Map and Reduce tasks for each slave
node, in order to improve the processing efficiency and avoid the problem of performance
degradation due to laggard nodes.

Figure 5. Flowchart for the implementation of a small-scale cloud system with DTAM.

5. Results and Discussion
The experimental environment was based on nine identical computers with the fol-

lowing specifications: AMD Athlon II X6 1055T CPU, 4 GB memory, 500 GB hard disk and

Figure 5. Flowchart for the implementation of a small-scale cloud system with DTAM.

5. Results and Discussion

The experimental environment was based on nine identical computers with the fol-
lowing specifications: AMD Athlon II X6 1055T CPU, 4 GB memory, 500 GB hard disk and
an Ethernet card. Because the CPU had six cores, we assign six to Mdn and Rdn, respectively,
in all experiments. The cloud applications used in the experiment were Word Count, All
Unique Combinations, Inverted Index, Radix Sort and Session Mean Value calculations.
The input-data types of the Word Count and All Unique Combinations applications were
from 001 to 008; the numbers of data files were 96, 144, 192 and 240; files of sizes 4, 8,
12 and 16 MB were used. We analysed the performance of our system and compared it
with a simulation of a traditional Hadoop (Google Cloud platform) MapReduce framework.
The Word Count application counts the number of all words in the input-data file. The
Map task program generates intermediate data (such as Key = a, Value = 1) and records the
information, and the Reduce task program processes all the intermediate-data files from
each slave node. The summation calculation generates partial output files, and, finally, the
master node unifies all of the partial output files from the slave nodes to obtain the final
result file.

Mathematics 2022, 10, 1736 9 of 17

As shown in Figure 6, for files of size 4 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 9.54%, 6.58%, 4.46% and 10.73%,
respectively, and the overall average was better than that of the traditional method by
7.83%. As shown in Figure 6, for files of size 8 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 3.34%, 4.48%, 6.08% and 7.93%,
respectively, and the overall average was better than that of the traditional method by
5.48%. As shown in Figure 6, for files of size 12 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 4.81%, 5.50%, 3.50% and 15.53%,
respectively, and the overall average was better than that of the traditional method by
10.33%. As shown in Figure 6, for files of size 16 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by −7.01%, 4.20%, 17.08% and
12.61%, respectively, and the overall average was better than that of the traditional method
by 6.72%. It can be seen from the experimental results that the proposed DTAM algorithm
can reduce the problem of end time delay by dynamically adjusting the number of Map
and Reduce tasks to disperse the workload of a busy slave node.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 17

an Ethernet card. Because the CPU had six cores, we assign six to Mdn and Rdn, respectively,
in all experiments. The cloud applications used in the experiment were Word Count, All
Unique Combinations, Inverted Index, Radix Sort and Session Mean Value calculations.
The input-data types of the Word Count and All Unique Combinations applications were
from 001 to 008; the numbers of data files were 96, 144, 192 and 240; files of sizes 4, 8, 12
and 16 MB were used. We analysed the performance of our system and compared it with
a simulation of a traditional Hadoop (Google Cloud platform) MapReduce framework.
The Word Count application counts the number of all words in the input-data file. The
Map task program generates intermediate data (such as Key = a, Value = 1) and records
the information, and the Reduce task program processes all the intermediate-data files
from each slave node. The summation calculation generates partial output files, and, fi-
nally, the master node unifies all of the partial output files from the slave nodes to obtain
the final result file.

As shown in Figure 6, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by 9.54%, 6.58%, 4.46% and 10.73%, re-
spectively, and the overall average was better than that of the traditional method by
7.83%. As shown in Figure 6, for files of size 8 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 3.34%, 4.48%, 6.08% and 7.93%,
respectively, and the overall average was better than that of the traditional method by
5.48%. As shown in Figure 6, for files of size 12 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 4.81%, 5.50%, 3.50% and 15.53%,
respectively, and the overall average was better than that of the traditional method by
10.33%. As shown in Figure 6, for files of size 16 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by −7.01%, 4.20%, 17.08% and 12.61%,
respectively, and the overall average was better than that of the traditional method by
6.72%. It can be seen from the experimental results that the proposed DTAM algorithm
can reduce the problem of end time delay by dynamically adjusting the number of Map
and Reduce tasks to disperse the workload of a busy slave node.

Figure 6. Word Count with one busy slave node. Figure 6. Word Count with one busy slave node.

As shown in Figure 7, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by −7.09%, 19.63%, 18.85% and 22.51%,
respectively, and the overall average was better than that of the traditional method by
13.48%. As shown in Figure 7, for files of size 8 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by −4.06%, 18.49%, 21.15% and
23.37%, respectively, and the overall average was better than that of the traditional method
by 14.74%. As shown in Figure 7, for files of size 12 MB, the performance of the DTAM
on 96, 144, 192 and 240 files was better than that of Hadoop by −5.49%, 13.74%, 25.99%
and 25.76%, respectively, and the overall average was better than that of the traditional
method by 15.00%. As shown in Figure 7, for files of size of 16 MB, the performance of the
DTAM on 96, 144, 192 and 240 files was better than that of Hadoop by 2.83%, 7.52%, 17.87%
and 22.36%, respectively, and the overall average was better than that of the traditional
method by 12.65%. From our results, it can be observed that the DTAM can increase the

Mathematics 2022, 10, 1736 10 of 17

workload of idle slave nodes by dynamically adjusting the number of Map and Reduce
program tasks to reduce the problem of end time delay.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 17

As shown in Figure 7, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by −7.09%, 19.63%, 18.85% and 22.51%,
respectively, and the overall average was better than that of the traditional method by
13.48%. As shown in Figure 7, for files of size 8 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by −4.06%, 18.49%, 21.15% and
23.37%, respectively, and the overall average was better than that of the traditional
method by 14.74%. As shown in Figure 7, for files of size 12 MB, the performance of the
DTAM on 96, 144, 192 and 240 files was better than that of Hadoop by −5.49%, 13.74%,
25.99% and 25.76%, respectively, and the overall average was better than that of the tradi-
tional method by 15.00%. As shown in Figure 7, for files of size of 16 MB, the performance
of the DTAM on 96, 144, 192 and 240 files was better than that of Hadoop by 2.83%, 7.52%,
17.87% and 22.36%, respectively, and the overall average was better than that of the tradi-
tional method by 12.65%. From our results, it can be observed that the DTAM can increase
the workload of idle slave nodes by dynamically adjusting the number of Map and Reduce
program tasks to reduce the problem of end time delay.

Figure 7. Word Count with one idle slave node.

The All Unique Combinations application obtains a non-repetitive combination of all
input-data numbers. The Map program generates intermediate data (such as Key = 1,
Value = 1) and records this information. In the Reduce program, all non-repetitive values
in all the intermediate-data files from the slave nodes are combined to generate all per-
mutations and combinations and to create some output files. Finally, the master node uni-
fies all the partial output files from the slave nodes and deletes identical entries to obtain
the final result file.

As shown in Figure 8, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by 5.86%, 3.23%, 9.92% and 8.88%, re-
spectively, and the overall average was better than that of the traditional method by
6.97%. As shown in Figure 8, for files of size 8 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 11.54%, 17.51%, 12.37% and
15.40%, respectively, and the overall average was better than that of the traditional
method by 14.20%. As shown in Figure 8, for files of size 12 MB, the performance of the

Figure 7. Word Count with one idle slave node.

The All Unique Combinations application obtains a non-repetitive combination of
all input-data numbers. The Map program generates intermediate data (such as Key = 1,
Value = 1) and records this information. In the Reduce program, all non-repetitive values
in all the intermediate-data files from the slave nodes are combined to generate all permu-
tations and combinations and to create some output files. Finally, the master node unifies
all the partial output files from the slave nodes and deletes identical entries to obtain the
final result file.

As shown in Figure 8, for files of size 4 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 5.86%, 3.23%, 9.92% and 8.88%,
respectively, and the overall average was better than that of the traditional method by
6.97%. As shown in Figure 8, for files of size 8 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by 11.54%, 17.51%, 12.37% and
15.40%, respectively, and the overall average was better than that of the traditional method
by 14.20%. As shown in Figure 8, for files of size 12 MB, the performance of the DTAM
on 96, 144, 192 and 240 files was better than that of Hadoop by 5.87%, 14.95%, 8.97% and
7.11%, respectively, and the overall average was better than that of the traditional method
by 9.23%. As shown in Figure 8, for files of size 16 MB, the performance of the DTAM
on 96, 144, 192 and 240 files was better than that of Hadoop by 7.30%, 10.56%, 6.53% and
15.27%, respectively, and the overall average was better than that of the traditional method
by 9.92%.

As shown in Figure 9, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by −3.73%, 20.97%, 18.99% and 16.92%,
respectively and the overall average was better than c the traditional method by 13.29%.
As shown in Figure 9, for files of size 8 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by −1.80%, 28.80%, 32.37% and 27.63%,
respectively and the overall average was better than that of the traditional method by

Mathematics 2022, 10, 1736 11 of 17

21.75%. As shown in Figure 9, for files of size 12 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by 18.61%, 10.30%, 30.41% and
34.61%, respectively and the overall average was better than that of the traditional method
by 23.48%. As shown in Figure 9, for files of size 16 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by −1.98%, 20.85%, 16.51% and
20.97%, respectively and the overall average was better than that of the traditional method
by 14.09%. It can be seen from the experimental results that the proposed DTAM algorithm
can reduce the overall end time delay by dynamically adjusting the number of Map and
Reduce program tasks to evenly distribute the workloads of the slave nodes.

The Inverted Index application finds the locations of specific strings in the input file.
In the Map task, the position information between the input-data words and the words
is processed, and an intermediate-data file is generated. In the Reduce task program, the
string position is recorded in a partial output file. Finally, the master node unifies all
partial output files from the slave nodes to obtain the final search result file. As shown in
Figure 10, the DTAM performed better than Hadoop by 8.70%, 9.17, 7.76% and 8.03% for
files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in Figure 11, the DTAM performed
better than Hadoop by 7.13%, 9.89, 8.75% and 11.56% for files of sizes 0.5, 1, 1.5 and
2 MB, respectively. From the experimental results, it can be seen that the proposed DTAM
algorithm can mitigate the performance degradation for small-scale cloud applications
caused by the phenomenon of laggards, by dynamically adjusting the number of Map
and Reduce program tasks. The Radix Sort application sorts input-data content, which
process the input-data content value segmentation in the Map program and generates
intermediate-data files. When the Reduce program has completed the sorting job for each
content value, the master node unifies all partial output files from the slave nodes to give
the final result file.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 17

DTAM on 96, 144, 192 and 240 files was better than that of Hadoop by 5.87%, 14.95%,
8.97% and 7.11%, respectively, and the overall average was better than that of the tradi-
tional method by 9.23%. As shown in Figure 8, for files of size 16 MB, the performance of
the DTAM on 96, 144, 192 and 240 files was better than that of Hadoop by 7.30%, 10.56%,
6.53% and 15.27%, respectively, and the overall average was better than that of the tradi-
tional method by 9.92%.

Figure 8. All Unique Combinations with one busy slave node.

As shown in Figure 9, for files of size 4 MB, the performance of the DTAM on 96, 144,
192 and 240 files was better than that of Hadoop by −3.73%, 20.97%, 18.99% and 16.92%,
respectively and the overall average was better than c the traditional method by 13.29%.
As shown in Figure 9, for files of size 8 MB, the performance of the DTAM on 96, 144, 192
and 240 files was better than that of Hadoop by −1.80%, 28.80%, 32.37% and 27.63%, re-
spectively and the overall average was better than that of the traditional method by
21.75%. As shown in Figure 9, for files of size 12 MB, the performance of the DTAM on 96,
144, 192 and 240 files was better than that of Hadoop by 18.61%, 10.30%, 30.41% and
34.61%, respectively and the overall average was better than that of the traditional method
by 23.48%. As shown in Figure 9, for files of size 16 MB, the performance of the DTAM on
96, 144, 192 and 240 files was better than that of Hadoop by −1.98%, 20.85%, 16.51% and
20.97%, respectively and the overall average was better than that of the traditional method
by 14.09%. It can be seen from the experimental results that the proposed DTAM algo-
rithm can reduce the overall end time delay by dynamically adjusting the number of Map
and Reduce program tasks to evenly distribute the workloads of the slave nodes.

Figure 8. All Unique Combinations with one busy slave node.

Mathematics 2022, 10, 1736 12 of 17Mathematics 2022, 10, x FOR PEER REVIEW 12 of 17

Figure 9. All Unique Combinations with one idle slave node.

The Inverted Index application finds the locations of specific strings in the input file.
In the Map task, the position information between the input-data words and the words is
processed, and an intermediate-data file is generated. In the Reduce task program, the
string position is recorded in a partial output file. Finally, the master node unifies all par-
tial output files from the slave nodes to obtain the final search result file. As shown in
Figure 10, the DTAM performed better than Hadoop by 8.70%, 9.17, 7.76% and 8.03% for
files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in Figure 11, the DTAM per-
formed better than Hadoop by 7.13%, 9.89, 8.75% and 11.56% for files of sizes 0.5, 1, 1.5
and 2 MB, respectively. From the experimental results, it can be seen that the proposed
DTAM algorithm can mitigate the performance degradation for small-scale cloud appli-
cations caused by the phenomenon of laggards, by dynamically adjusting the number of
Map and Reduce program tasks. The Radix Sort application sorts input-data content,
which process the input-data content value segmentation in the Map program and gener-
ates intermediate-data files. When the Reduce program has completed the sorting job for
each content value, the master node unifies all partial output files from the slave nodes to
give the final result file.

Figure 9. All Unique Combinations with one idle slave node.
Mathematics 2022, 10, x FOR PEER REVIEW 13 of 17

Figure 10. Inverted Index with one busy slave node.

Figure 11. Inverted Index with one idle slave node.

As shown in Figure 12, the DTAM performed better than Hadoop by 5.72%, 6.90%,
6.69% and 7.36% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in Figure 13,
the DTAM performed better than Hadoop by 14.82%, 14.75%, 13.04% and 14.58% for files
of sizes 0.5, 1, 1.5 and 2 MB, respectively. The experimental results indicate that our DTAM
with IDPCP algorithm successfully adjusts the numbers of Map and Reduce tasks to mit-

Figure 10. Inverted Index with one busy slave node.

Mathematics 2022, 10, 1736 13 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 17

Figure 10. Inverted Index with one busy slave node.

Figure 11. Inverted Index with one idle slave node.

As shown in Figure 12, the DTAM performed better than Hadoop by 5.72%, 6.90%,
6.69% and 7.36% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in Figure 13,
the DTAM performed better than Hadoop by 14.82%, 14.75%, 13.04% and 14.58% for files
of sizes 0.5, 1, 1.5 and 2 MB, respectively. The experimental results indicate that our DTAM
with IDPCP algorithm successfully adjusts the numbers of Map and Reduce tasks to mit-

Figure 11. Inverted Index with one idle slave node.

As shown in Figure 12, the DTAM performed better than Hadoop by 5.72%, 6.90%,
6.69% and 7.36% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in Figure 13,
the DTAM performed better than Hadoop by 14.82%, 14.75%, 13.04% and 14.58% for
files of sizes 0.5, 1, 1.5 and 2 MB, respectively. The experimental results indicate that our
DTAM with IDPCP algorithm successfully adjusts the numbers of Map and Reduce tasks
to mitigate the performance degradation of small-scale cloud applications caused by the
phenomenon of laggards. The Session Mean Value application averages the input data.
The Map task involves processing the sum of the same values and counting them, while
in the Reduce task, the results of all the intermediate-data files from the slave nodes are
directly summed up. Finally, the files are unified and averaged by the master node to
give the final result. As shown in Figure 14, the DTAM performed better than Hadoop by
13.92%, 13.92%, 12.27% and 15.06% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As
shown in Figure 15, the DTAM performed better than Hadoop by 4.47%, 6.00%, 4.21% and
5.96% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. Our experimental results show
that the DTAM with IDPCP algorithm can give an improvement and can avoid exceeding
the maximum number of tasks set for each slave node. It is limited by the phenomenon of
laggard nodes, which degrades the performance of small-scale cloud applications.

Mathematics 2022, 10, 1736 14 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 17

igate the performance degradation of small-scale cloud applications caused by the phe-
nomenon of laggards. The Session Mean Value application averages the input data. The
Map task involves processing the sum of the same values and counting them, while in the
Reduce task, the results of all the intermediate-data files from the slave nodes are directly
summed up. Finally, the files are unified and averaged by the master node to give the final
result. As shown in Figure 14, the DTAM performed better than Hadoop by 13.92%,
13.92%, 12.27% and 15.06% for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. As shown in
Figure 15, the DTAM performed better than Hadoop by 4.47%, 6.00%, 4.21% and 5.96%
for files of sizes 0.5, 1, 1.5 and 2 MB, respectively. Our experimental results show that the
DTAM with IDPCP algorithm can give an improvement and can avoid exceeding the
maximum number of tasks set for each slave node. It is limited by the phenomenon of
laggard nodes, which degrades the performance of small-scale cloud applications.

Figure 12. Radix Sort with one busy slave node. Figure 12. Radix Sort with one busy slave node.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 17

Figure 13. Radix Sort with one idle slave node.

Figure 14. Session Mean Value with one busy slave node.

Figure 13. Radix Sort with one idle slave node.

Mathematics 2022, 10, 1736 15 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 17

Figure 13. Radix Sort with one idle slave node.

Figure 14. Session Mean Value with one busy slave node. Figure 14. Session Mean Value with one busy slave node.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 17

Figure 15. Session Mean Value with one idle slave node.

6. Conclusions
In view of the problem of intermediate-data skew affecting the processing efficiency

of the MapReduce cloud architecture, we propose an algorithm called DTAM with IDPCP,
which predicts the number of intermediate data that is expected to be produced by each
slave node in the future by dividing the input data into a number of processing wave-
number periods. The algorithm dynamically adjusts the number of Map and Reduce tasks
allocated to the slave nodes and avoids exceeding the maximum number of tasks set by
the manager of each slave node. The workload is evenly distributed over the slave nodes
to reduce the problem of end time delay. The DTAM algorithm proposed in this paper
was compared with a simulated Hadoop (Google Cloud platform) system in a perfor-
mance analysis and was shown to achieve an increase in processing efficiency of at least
5%. The algorithm proposed in this paper dynamically adjusts the number of Map and
Reduce tasks according to the size of the intermediate-data and input-data files generated
by each slave node. In the future, data type analysis should be performed on the input
data and intermediate data to completely solve the problem of intermediate-data skew in
the MapReduce cloud architecture.

Author Contributions: Supervision, T.-C.H. and M.-F.T.; Writing—original draft, T.-C.H., G.-H.H.
and M.-F.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research study was funded by National United University and Bureau of Industry,
Ministry of Economic Affairs, Taiwan.

Institutional Review Board Statement: This article does not contain any studies with human par-
ticipants or animals performed by any of the authors.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest. We certify that the
submission is original work and is not under review at any other publication.

Figure 15. Session Mean Value with one idle slave node.

Mathematics 2022, 10, 1736 16 of 17

6. Conclusions

In view of the problem of intermediate-data skew affecting the processing efficiency
of the MapReduce cloud architecture, we propose an algorithm called DTAM with IDPCP,
which predicts the number of intermediate data that is expected to be produced by each
slave node in the future by dividing the input data into a number of processing wavenum-
ber periods. The algorithm dynamically adjusts the number of Map and Reduce tasks
allocated to the slave nodes and avoids exceeding the maximum number of tasks set by the
manager of each slave node. The workload is evenly distributed over the slave nodes to
reduce the problem of end time delay. The DTAM algorithm proposed in this paper was
compared with a simulated Hadoop (Google Cloud platform) system in a performance
analysis and was shown to achieve an increase in processing efficiency of at least 5%. The
algorithm proposed in this paper dynamically adjusts the number of Map and Reduce tasks
according to the size of the intermediate-data and input-data files generated by each slave
node. In the future, data type analysis should be performed on the input data and interme-
diate data to completely solve the problem of intermediate-data skew in the MapReduce
cloud architecture.

Author Contributions: Supervision, T.-C.H. and M.-F.T.; Writing—original draft, T.-C.H., G.-H.H.
and M.-F.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research study was funded by National United University and Bureau of Industry,
Ministry of Economic Affairs, Taiwan.

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest. We certify that the
submission is original work and is not under review at any other publication.

References
1. Kalia, K.; Gupta, N. Analysis of Hadoop MapReduce Scheduling in Heterogeneous Environment. Elsevier Ain Shams Eng. J. 2021,

12, 1101–1110. [CrossRef]
2. Dong, J.; Goebel, R.; Hu, J.; Lin, G.; Su, B. Minimizing Total Job Completion Time in MapReduce Scheduling. Elsevier Comput. Ind.

Eng. J. 2021, 158, 107387–107396. [CrossRef]
3. Singh, G.; Sharma, A.; Jeyaraj, R.; Paul, A. Handling Non-Local Executions to Improve MapReduce Performance Using Ant

Colony Optimization. IEEE Access J. 2021, 9, 96176–96188. [CrossRef]
4. Kadkhodaei, H.; Moghadam, A.; Dehghan, M. Big Data Classification using Heterogeneous Ensemble Classifiers in Apache Spark

based on MapReduce Paradigm. Elsevier Expert Syst. Appl. J. 2021, 183, 115369–115386. [CrossRef]
5. Shieh, C.; Huang, S.; Sun, L.; Tsai, M.; Chilamkurti, N. A Topology-based Scaling Mechanism for Apache Storm. Wiley Int. J. Netw.

Manag. 2016, 27, e1933. [CrossRef]
6. Huang, T.; Shieh, C.; Chilamkurti, N.; Tsai, M.; Rho, S. Architecture for Speeding up Program Execution with Cloud Technology.

Springer J. Supercomput. 2016, 72, 3601–3618. [CrossRef]
7. Tang, Z.; Lv, W.; Li, K.; Li, K. An Intermediate Data Partition Algorithm for Skew Mitigation in Spark Computing Environment.

IEEE Trans. Cloud Comput. J. 2021, 9, 461–474. [CrossRef]
8. Liu, G.; Zhu, X.; Wang, J.; Guo, D.; Bao, W.; Guo, H. SP-Partitioner: A Novel Partition Method to Handle Intermediate Data Skew

in Spark Streaming. Elsevier Future Gener. Comput. Syst. J. 2018, 89, 1054–1063. [CrossRef]
9. Li, C.; Zhang, Y.; Luo, Y. Intermediate Data Placement and Cache Replacement Strategy under Spark Platform. Elsevier J. Parallel

Distrib. Comput. 2022, 163, 114–135. [CrossRef]
10. Irandoost, M.; Rahmani, A.; Setayeshi, S. A Novel Algorithm for Handling Reducer Side Data Skew in MapReduce based on a

Learning Automata Game. Elsevier Inf. Sci. J. 2019, 501, 662–679. [CrossRef]
11. Chen, Q.; Yao, J.; Xiao, Z. LIBRA: Lightweight Data Skew Mitigation inMapReduce. IEEE Trans. Parallel Distrib. Syst. J. 2015,

26, 2520–2533. [CrossRef]
12. Tang, Z.; Ma, W.; Li, K.; Li, K. A Data Skew Oriented Reduce Placement Algorithm Based on Sampling. IEEE Trans. Cloud Comput.

J. 2016, 8, 1149–1161. [CrossRef]
13. Fan, Y.; Wu, W.; Xu, Y.; Chen, H. Improving MapReduce Performance by Balancing Skewed Loads. J. China Commun. 2014, 11, 85–108.

[CrossRef]

http://doi.org/10.1016/j.asej.2020.06.009
http://doi.org/10.1016/j.cie.2021.107387
http://doi.org/10.1109/ACCESS.2021.3091675
http://doi.org/10.1016/j.eswa.2021.115369
http://doi.org/10.1002/nem.1933
http://doi.org/10.1007/s11227-016-1715-x
http://doi.org/10.1109/TCC.2018.2878838
http://doi.org/10.1016/j.future.2017.07.014
http://doi.org/10.1016/j.jpdc.2022.01.020
http://doi.org/10.1016/j.ins.2018.11.007
http://doi.org/10.1109/TPDS.2014.2350972
http://doi.org/10.1109/TCC.2016.2607738
http://doi.org/10.1109/CC.2014.6911091

Mathematics 2022, 10, 1736 17 of 17

14. Guo, Y.; Rao, J.; Jiang, C.; Zhou, X. Moving Hadoop into the Cloud with Flexible Slot Management and Speculative Execution.
IEEE Trans. Parallel Distrib. Syst. J. 2017, 28, 798–812. [CrossRef]

15. Vinutha, D.; Raju, G. Node Performance Load Balancing Algorithm for Hadoop Cluster. In Proceedings of the IEEE International
Conference on Intelligent Sustainable Systems, Palladam, India, 21–22 February 2019; pp. 468–473.

16. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM J. 2008, 51, 107–113. [CrossRef]
17. Krishnan, S.; Baru, C.; Crosby, C. Evaluation of MapReduce for Gridding LIDAR Data. In Proceedings of the IEEE International

Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30 November–3 December 2010; pp. 33–40.
18. Huang, T.; Chu, K.; Lee, W.; Ho, Y. Adaptive Combiner for MapReduce on cloud computing. Clust. Comput. J. 2014, 17, 1231–1252.

[CrossRef]
19. Shih, J.; Liao, C.; Chang, R. Simplifying MapReduce Data Processing. In Proceedings of the IEEE International Conference on

Utility and Cloud Computing, Melbourne, Australia, 5–8 December 2011; pp. 366–370.

http://doi.org/10.1109/TPDS.2016.2587641
http://doi.org/10.1145/1327452.1327492
http://doi.org/10.1007/s10586-014-0362-3

	Introduction
	Related Work
	Materials and Methods
	Implementation of the DTAM Algorithm
	Results and Discussion
	Conclusions
	References

