
Citation: Fernández Coronado, N.A.;

García-García, J.I.; Arredondo, E.H.;

Araya Naveas, I.A. Epistemic

Configurations and Holistic Meaning

of Binomial Distribution. Mathematics

2022, 10, 1748. https://doi.org/

10.3390/math10101748

Academic Editors: José Miguel

Contreras García and Elena

Molina Portillo

Received: 12 April 2022

Accepted: 18 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Epistemic Configurations and Holistic Meaning of
Binomial Distribution
Nicolás Alonso Fernández Coronado * , Jaime I. García-García , Elizabeth H. Arredondo
and Ismael Andrés Araya Naveas

Departamento de Ciencias Exactas, Universidad de Los Lagos, Osorno 5290000, Chile;
jaime.garcia@ulagos.cl (J.I.G.-G.); elizabeth.hernandez@ulagos.cl (E.H.A.);
ismaelandres.araya@alumnos.ulagos.cl (I.A.A.N.)
* Correspondence: nicolasalonso.fernandez@alumnos.ulagos.cl

Abstract: The competencies that today’s citizen must possess have led to a transformation of the
teaching of probability, which has been repositioned on the school curriculum from an algorithmic
view to a practical one based on the understanding of the concepts and their application in daily life. In
this task, the understanding of the binomial distribution is essential as it allows the analysis of discrete
data, the modeling of random situations, and the learning of other notions. However, weaknesses are
identified in teachers and students with respect to the binomial distribution attributed to the lack of
knowledge of its origin and meaning throughout history. For this reason, our work consists of the
identification of its partial meanings and essential components as well as its relationships from a
historical epistemological study and its analysis, based on the notions of the Ontosemiotic Approach
(OSA) to Mathematical Knowledge and Instruction and the specialized literature on statistics and
probability. As a result of our work, we present a reconstruction of the holistic meaning of the
binomial distribution from the elements that compose it, which are essential for didactic purposes
such as the identification and resolution of learning conflicts, the design or evaluation criteria, and
teacher education.

Keywords: binomial distribution; primary objects; probabilistic culture; partial meanings; holistic
meaning; epistemology; configurations
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1. Introduction

Probability allows human beings to better understand the random events of everyday
life by identifying possible outcomes, calculating the probabilities of occurrence of ran-
dom events, and modeling random phenomena, among other uses. The above, together
with the increase in probabilistic information available and the current development of
technology, raises the need to train probabilistically educated students, considering the
knowledge and dispositions they need to develop to be able to face a wide range of daily
situations that involve the interpretation or generation of probabilistic messages as well as
decision making [1]. Consequently, the teaching of probability has taken an important role
in the mathematics curriculum, as well as in its didactics and research. Within the latter,
weaknesses have been identified in the training process and the probabilistic reasoning
of students and teachers, such as regarding the knowledge and notions of the different
meanings of probability [2], conditional probabilistic reasoning [3], and the notions ev-
idenced when facing a problem situation without previous formal instruction [4]. This
makes probability a relevant discipline of study, with challenges such as the search and
construction of didactic resources, the promotion of its learning at early ages, and the
change of its teaching approach from one based on the application of formulas to one
focused on experimentation, complemented by the theory and its understanding [5,6].
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The binomial distribution, as one of the most important in probability and statistics by
allowing the analysis of random phenomena [7], is part of the components of probabilistic
literacy [8] and of the research on its didactics. For example, Taufiq et al. [9] conducted
an analysis on the structuring of its learning in secondary textbooks and identified an
incomplete discussion by not addressing essential prior concepts such as the discrete
random variable or discrete probability distribution and not addressing probabilistic and
statistical concepts related to the binomial, such as mean and variance. Other authors
have focused on the study of the development of probabilistic reasoning associated with
the binomial in teachers and students, identifying worrisome weaknesses in aspects such
as modeling, the perception of randomness and variability, the illusion of linearity, case-
counting tasks, and the application of constructs such as combinatorics [10–15]. These
research lines evidence a link between the general study of probability didactics and the
one focused on binomial distribution by seeking the understanding of its meaning from
its essential components and the solution of learning conflicts by identifying its origins.
However, despite being closely related to the mentioned aspects, the historical nature of
the latter as a historical construct—that is, from the ideas and concepts that gave rise to
it and how they have evolved throughout history—has not been effectively addressed.
Consequently, the need to propose a holistic meaning of the binomial distribution that
facilitates the study of its understanding and the way it is proposed in learning planification
is evident and is stated with the following questions: What is the holistic meaning of
the binomial distribution? What are the essential elements that compose the binomial
distribution, and how are they related to the construction of its meaning? Accordingly,
Batanero [16] indicated that to ensure meaningful learning of a mathematical object, it is
necessary to know its fundamental components and those that give it meaning.

For identification of the essential elements of mathematical constructs, the Ontosemi-
otic Approach (OSA) of Mathematical Knowledge and Instruction [17] provides theoretical
and methodological notions that address diverse aspects of the problematic in didactics in
mathematics, such as the epistemological, (How does mathematics emerge and develop?)
ontological, (What is a mathematical object, and what types intervene in the mathematical
activity) semiotic-cognitive, (What does it mean to know a mathematical object given a time
and circumstance?) and educational-instructional. (What are teaching and learning?) With
this approach, the meanings of statistic, probabilistic, algebraic, arithmetic, and calculus
objects have been addressed [18–22] and studied from different products of human math-
ematical practice, such as a specialized bibliography, the answers of students or experts
to mathematical problem situations, and the history of the mathematical construct. To
address the epistemic and historical aspect in this task, the Historical Epistemological Study
(HES) [23] has been a prevalent tool in investigation based on the OSA, consisting of the
study of the nature, genesis, and consolidation of, in this case, mathematical concepts and
their development through history. By identifying the situation problems that gave rise to
a mathematical concept, its solutions, and the dialectical nature of its evolutionary process,
we would approach its holistic meaning, which is delivered partially and in different ways
in the educational process.

As a consequence, to answer the questions proposed about the binomial distribution,
in this paper, we present the reconstruction of its holistic meaning from the analysis of
an HES and specialized bibliography in statistics and probability, based on the theoretical
notions of the practice, object, and configuration of the OSA. Regarding the results that will
be presented, we can preview that we identify five historical periods in which concepts and
ideas related to binomial distribution are approached from different levels of complexity
that gave origin to four partial meanings: (1) approximation for case-counting problems,
(2) the study of particular binomial situations, (3) the study of general or complex binomial
phenomena, and (4) approximation to other probabilistic mathematical ideas such as normal
distribution, the law of large numbers, and multinomial distribution. In addition, for each
of the first three meanings, essential elements are identified, such as the concepts of chance,
numerical patterns, combinatorics, binomial, summation, mean, and hope; procedures
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such as direct counting of cases, representation by means of the tree diagram, creation
and validation of mathematical models, and the use of the binomial distribution formula;
the use of properties to link chance with mathematics, link mathematics with probability,
and link binomial distribution with the rest of mathematics and probability; inductive,
recursive, and deductive arguments; and different levels of formality and complexity in the
language. Finally, we reflect on the relationship between these elements, identifying, for
example, that the evolution of the binomial distribution is closely related to that of other
notions, such as probability and the expectation of a random phenomenon.

2. Theoretical Framework

To reconstruct the holistic meaning of the binomial distribution, we rely on the notions
of the Ontosemiotic Approach (OSA) to Mathematical Knowledge and Instruction [24–27].
This theoretical approach articulates various theoretical perspectives related to the learning
and teaching of mathematics, with the aim of addressing problematics of dimensions
such as the epistemological, (What is mathematics?) ontological, (What is a mathematical
object, and how does it intervene in the mathematical activity?) semiotic-cognitive, (What
does it mean to know a mathematical object?) and educational [28]. (What are teaching
and learning mathematics?) In the search to facilitate its learning, by answering the cited
questions, the OSA defines mathematics as a human activity centered on the resolution of
problem situations whose global understanding requires understanding of the different
elements that are generated in it and how these are presented in the content and the
reasoning of teachers and students. Furthermore, to facilitate its analysis and promote its
learning, it organizes and systematizes the identifiable elements in mathematical activity,
introducing notions such as practice, object, and configuration, which we will explore in
more detail below.

A mathematical practice corresponds to “any action or expression (verbal, graphic,
etc.) carried out by someone to solve mathematical problems, communicate the solu-
tion obtained to others, validate it or generalize it to other contexts and problems” [29]
(p. 334). Thus, when trying to solve a problem, a person puts into play various practices
that generate sequences, either of a personal nature or that are shared within an institution,
which correspond to the meaning attributed to the notion or knowledge that the problem
addresses, known as partial meaning. Based on this, global or holistic meaning is consid-
ered to be the potential systems of practices that a subject can manifest which, due to the
historical nature of mathematics, are closely related to those of the past. Therefore, if we
wish to foster an adequate understanding of mathematics and its notions, it will be neces-
sary to consider the historical and epistemic components that gave rise to it and allowed
it to evolve into what it is known as today. Consequently, for promoting the learning of
the binomial distribution from the OSA, it is first necessary to address its epistemic aspect
(What is the binomial distribution?) from the different systems of practices generated to
answer the problem situations that refer to it and the different meanings that these have
generated throughout history, addressing its historical and epistemological aspects and
serving as a basis for extending its study to the personal meanings of students or teachers
and how it is promoted in the curriculum by answering questions such as the following:
What are the institutional mathematical-probabilistic practices necessary to answer a certain
type of task of a binomial nature? What are the principles that allow the construction of the
binomial distribution and facilitate its application to the resolution of problem situations?

The notion of object is more specific than the practice and derives from it. Formally, an
object is any identifiable entity in the resolution of a practice [25], fulfilling an instrumental
or representational, regulative, explanatory, or justificatory role. In this study, we rely on
the main elements (primary objects) identified and described by Batanero [16] in the study
of the meaning of probability from a historical perspective:

• Problem situations: A problem field from which the object emerges, usually in an informal
state that is formalized over time and generalized for application to similar situations.
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• Processes: These correspond to the resolutive methods, such as algorithms and opera-
tions, associated with the resolution of the problem situation. These evolve over time,
becoming refined and generating complementary or alternative approaches, such as
demonstration or verification.

• Definitions-concepts: Descriptions with which the different probabilistic ideas are
evoked. To each concept corresponds its definition, which may vary depending on the
problem situation and in which a set of properties is presented.

• Properties-propositions. Properties correspond to the attributes possessed by the men-
tioned objects, expressed by means of propositions which allow linking or associating
them with others. For example, the multiplicative principles of probability allow
linking probability with calculus.

• Arguments: Statements used to validate refutable objects (propositions and proce-
dures). In current mathematics, deductive arguments predominate. However, those
of antiquity, with which the first problematic situations were modeled, were mostly
inductive or recursive.

• Linguistic elements: These correspond to the terms, expressions, notations, graphs,
and tables evidenced in different registers through which data, solutions, and ideas
are expressed and represented. Vásquez and Alsina [2] point out the following es-
sential linguistic elements for probability: common language, probabilistic language,
representation in tables and graphs, numerical representation, and the tree diagram.
In the answers studied in our work, to facilitate their analysis, we will consider the
categories of common (words), symbolic (purely mathematical expressions, such as
equations), tabular, and graphical language.

The dimensions and elements proposed in the OSA have been used in the investigation
of mathematics and the promotion of its learning. For example, Vásquez and Alsina [2]
elaborated upon a model for the analysis of probabilistic objects in Chilean textbooks of
primary education, focused on some of the elements mentioned (problematic situations,
linguistic elements, and concepts) and identifying essential aspects such as the notions of
chance and probability, their application in daily life, the experimentation, and distinction
between theoretical and empirical probability. Beltrán-Pellicer et al. [30], using the OSA
notion of suitability, elaborated upon the indicators of didactic suitability in probability
teaching in secondary school, considering as elements to improve the consideration of a
greater number of registers and representations, allowing students to generate their own
modeling and compare them, and approaching the content from an intuitive approach over
a transmissive one. Gómez et al. [19] analyzed the meaning of probability evidenced in
textbooks for primary education in Andalusia (Spain), identifying that although the four
meanings of probability suggested by the curriculum are partially developed, most of the
concepts and their properties are not explicitly defined, and this, added to the fact that
simulation, frequential meaning, and subjective meaning are not sufficiently mentioned,
gives space to the generation of semiotic conflicts, biases, or incorrect heuristics when
trying to apply them to situations in real life.

From the notions and investigations presented, we consider the concept of binomial
distribution as a probabilistic mathematical object, originating from the solving practices of
problem situations of a binomial nature and, with that, being approachable by OSA notions
to facilitate the design of its teaching and the resolving of learning conflicts. However, to
meaningfully analyze its understanding or competence in its use in different practices [26]
and identify its essential elements (primary objects), it is necessary to analyze the relation-
ships that exist between them. To this end, OSA introduces the notion of configuration,
which represents the relationship between the elements of a practice (Figure 1) and is
dependent on different factors, such as the institution’s vision of the objects in question
and the subject’s level of theoretical training. Knowledge of this configuration, which can
be reconstructed from different perspectives such as the historical one, is a facilitator of
decision making focused on its teaching and learning.
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In relation with the OSA and our object of study, Alvarado and Batanero [32] showed
how engineering students approach a normal distribution by meanings of binomial distri-
bution, evidencing that it is a complex task mostly because, although the group of students
recognized essential the aspects of the binomial distribution, they presented numerous con-
flicts such as the confusion of its variance, mean, and proportion and its convergence with
the general statement of the central limit theorem. This incomplete comprehension of the
meaning of the binomial distribution can be associated with the disregard of its epistemic
aspect and how the mathematical objects mentioned are related through its history.

The HES, as part of the OSA, allows for addressing this aspect of mathematical objects
by allowing the identification of diverse conceptions of a mathematical object, its elements,
and their development throughout history, providing the members of the educational
world a system of knowledge about the mathematical object that considers its nature as a
social construct and the result of a human need and intense theory. This is evidenced in
investigations such as the ones presented by Batanero [16] and Gordillo and Pino-Fan [17],
consisting of the reconstruction of the holistic meaning of probability and antiderivative,
respectively. The first one articulates the different meanings of the probability identified
and, using OSA notions, analyzes how the elements identified generate the holistic mean-
ing of probability, also facilitating the analysis of how these are presented in an educative
institution, the student learning, and the students’ errors when solving probability prob-
lems. In a similar way, Gordillo and Pino-Fan [17] identified the practices approached
by mathematicians in different historical periods, which gave way to the emergence and
evolution of the notion of antiderivative, evidencing its relationship with two essential
mathematical objects—the derivative and the integral—and four partial meanings: tangent
quadratures, fluxion fluents, summation differences, and elementary functions.

In conclusion, the HES is evidenced to be an effective study in the didactics of math-
ematics investigation, especially for objects that are usually taught purely in a technical
or operative way, since it facilitates resolving learning conflicts attributed to its episte-
mological aspects while also allowing its integration with the rest of the mathematics
objects. As part of the theorical-methodological framework of the OSA, the HES would
allow us to identify the essential elements in the origin and development of the binomial
distribution throughout history and how they are related, which has not been addressed
yet, and to reconstruct its holistic meaning and address its epistemic aspect, facilitating its
investigation in today’s education with the diverse perspectives of the OSA.
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3. Methodology

Our study is of the qualitative [33] and documentary [34] types with an exploratory-
descriptive design [35], dealing with the identification, analysis, and description of the
essential elements of the binomial distribution and its relationships, collected and organized
from a HES and the literature specialized in statistics and probability with the objective of
thoroughly understanding the binomial distribution and the principles behind it in order
to promote its adequate learning. For this, in the context of our work, the descriptive-
exploratory design implies a series of tasks: (1) a previous work, in which the elements to
be studied regarding the understanding of the binomial distribution are diagnosed and
the modality of analysis of the components of the meaning of the binomial distribution are
selected, (2) the recollection and synthesis of information about the binomial distribution,
and (3) the identification, synthesis, and representation of new ideas regarding the meaning
of the binomial distribution. These tasks are considered and resolved in the three phases of
our research, which are further elaborated upon below.

For the first phase, we decided on the type of elements to be identified for a mathemat-
ical or probabilistic object to address its epistemological aspect with educational purposes.
For this, in the investigation of didactics in the mathematics cited, we identified a consider-
ation of problem situations and how people resolve them as essential, since the elements of
a historic origin can be associated with the student learning that happens in the classroom.
However, these are generic terms and would not, by themselves, allow the analysis of the
epistemic aspect of the binomial distribution with educational purposes (i.e., proposing
essential elements (such as combinatorics) that need to be considered in the planning of its
teaching). For this reason, we selected the OSA as the theorical-methodological background
of our analysis since, thanks to its notions and the HES, it facilitates the identification of
essential components (objects) related to the resolution of problem situations (practices)
and how they are articulated (configuration) while also considering their historical nature.

In the second phase, we compiled the historical elements and the problems that gave
origin and development to the binomial distribution from the literature that addresses their
history or teaching as a part of the field of statistics and probability [36–39]. The results
of this documentary work were subsequently organized into periods, depending on the
complexity of the problems they addressed and the way in which the binomial distribution
was presented, in order to facilitate the identification of families or fields of problems that
gave rise to the rest of the primary objects and were key in the process of the theoretical
construction of the binomial distribution.

The third phase was approached on two levels. On the first one, we propose partial
meanings from the identified problem families and their resolution practices based on the
OSA notions of practice and object, thus making a first approach to the holistic meaning of
the binomial distribution and its essential components without yet delving into how these
are related. On a second level, using the literature designed for statistics and probability
learning [40–45], we deepen the relationships between the primary objects of each of the
partial meanings and the way in which they are configured to give way to the solution
practices referred. These analyses were performed individually by every author and then
contrasted, yielding to a triangulation of experts and the reaching of a consensus. By
relying on OSA notions and the configuration from a historical perspective, in addition to
complementing the elements identified thanks to cited bibliography, we propose a deeper
level of analysis of the mathematical activity associated with the binomial distribution
that addresses its history and epistemology and should be considered in the design of its
learning and its epistemic configuration.

The phases presented resemble the methodology used by other authors for the re-
construction of the holistic meaning of other mathematical notions such as the derivative,
antiderivative, and random variable from history [28,46,47]. These, once formalized, were
extended, enriched, and strengthened by the authors in their use for the analysis of answers
given by experts or students, the construction of evaluative instruments, the analysis of
curricular documents, and the development of training strategies.
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4. Historical Periods of Binomial Distribution Development Identified by the HES

The historical epistemological study allowed us to identify five periods, in which
a specific family of problem situations associated with the binomial distribution were
addressed with practices that increased in complexity and the number of applications.

4.1. 600 B.C.–14th Century: Case Counting and Informal Numerical Patterns

In Porphyry’s Isagoge (234–305), one of the first questions of a combinatorial nature
is identified: In how many ways can two things be selected from n different things? This
was solved by analyzing the specific case n = 5 through direct case counting and recursive
reasoning [38]. Similarly, problems related to case counting and combinations applied
in other areas such as geometry are identified and solved by case counting or graphical
representations.

This type of methodology and reasoning is applicable to the study of the number of
possible, favorable, and unfavorable cases of phenomena of a binomial nature (e.g., coin
tossing) and is also associated with primitive notions of probability [37]. In Dante’s Divine
Comedy, the first hints of probability, in the form of ratios, are identified [36].

4.2. 15th–17th Century: Formalization of Numerical Patterns and Probability as a
Numerical Concept

During this period, mathematical patterns that could be associated with the binomial
phenomenon were formalized, giving way to constructs such as Pascal’s Triangle (Table 1),
and game of chance phenomena were studied by means of probability in the form of
ratios [35]. In the referred construction, figurative numbers, binomial coefficients, and
combinatorics are related in a simple way.

Table 1. Pascal’s triangle values (adapted from [38]).

r/c 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8
2 1 3 6 10 15 21 28 36
3 1 4 10 20 35 56 84 120
4 1 5 15 35 70 126 210 330
5 1 6 21 56 126 252 462 792
6 1 7 28 84 210 462 924 1716
7 1 8 36 120 330 792 1716 3432

In this table adaptation, the binomial coefficients, terms of the Pascal triangle, and combinatorics are articulated,
with “c” being the column and “r” being the row. We can identify the number of combinations of “n ” things
taken “k” at a time by looking for the term in the (n − k)th row and kth column.

Arnauld and Nicole in 1662 introduced probability as a numerical value applicable
to other situations (aside from games of chance) by means of mathematical principles,
promoting the passage from the calculus of chance to the theory of probability calculus.

4.3. 17th Century: The Beginning of Probability Theory and the Problem of Points

This period is characterized by the problem of points, to which the origin of probability
theory is attributed and whose resolution consists of associating, by means of a binomial
model, a number of points to each winner and, based on these, distributing the money [36,37].

A series of manuscripts by Cardano published in 1663 addressed topics that reflected
the usefulness of mathematical analysis for profit in games of chance. In addition to
introducing chance as the ratio of the number of favorable cases to the number of possible
cases, he formulated the principles of addition and multiplication of probability [37].

Blaise Pascal and Pierre de Fermat introduced the concept of value. Specifically, if in a
dice game the participant bets to roll a 6 in 8 throws, the player should receive 1/6 of the
total for not making the first throw, 1/6 of the remainder for not making the second throw,
and so on [36].
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From this period, one can identify the evident arithmetization of probabilistic phe-
nomena, making it no longer necessary to approach them from the counting of cases but
rather through more abstract ideas that can be the basis of new arguments or deductions.

4.4. 17th–18th Century: The Informal Binomial Distribution for Modeling of the p = 1/2 Case and
Modeling by Binomial Expansion

In this period, the generalization of expressions to model binomial situations was
identified. Using combinatorics and Pascal’s triangle as a base, Pascal developed the
binomial for p = 1/2 to analyze the notion of what is currently known as hope and to
provide a solution to the problem of points. Table 2 summarizes Pascal’s reasoning for
calculating e(a,b), the money that would correspond to A if the game stopped and player A
was short of winning “a” games while player B was short of winning “b”. It can be read,
for example, in the case that the number of remaining games is 3 and A needs to win 1 of
these, while B needs to win 2. If A wins the next game (3a), he or she should receive the
total of the bet. However, if A loses the next game (3b), as each one lacks a win, then he or
she would be entitled to half. By averaging these two possible cases, he obtained that A
should receive 3/4 of the total bet [37].

Table 2. Recursive calculus of e(a,b) by Pascal (retrieved from [37]).

Description
Event a b e(a−1,b)

e(a,b−1) e(a,b)

1 game max 0 n > 0 - 1
2 games max n n 1/2
3 games max 1 2

A wins 0 2 1
3/4B wins 1 1 1/2

4 games max 1 3
A wins 0 3 1 7/8
B wins 1 2 3/4

An association with the general formula is made in the letters between Fermat and
Pascal: if the players have a and b games left, the game should end in a maximum of
“a + b-1” games. Then, considering that all are played, there are 2a+b−1 possible cases, and
the number of favorable cases for A relative to 2a+b−1 will give the fraction corresponding
to A. As an example, for (a,b) = (2,3), there are 24 cases, of which 11 are favorable for A,
whereas with Fermat’s formula, e(2,3)= 11/16. This would be rearranged by Fermat, giving
the general answer to the following point problem:

e(a,b) =∑ (a−1+iCa−1)(1/2)a+i, i = 0, . . . , b − 1 (1)

On the other hand, John Arburthnot presented an approach to the binomial phe-
nomenon of coin tossing with the expression “(S + F)n”, with “n” equal to the number of
tosses and with “S” and “F” equal to the probabilities of success and failure (nowadays
designed with the letters “p” and “q”), respectively, which are not necessarily defined.
Table 3 shows the study of the binomial phenomenon with p = 1/2 and n = 6 [36,39].

Table 3. Aburthnot’s binomial phenomenon reasoning (adapted from from [39]).

Number of Successes 0 1 2 3 4 5 6
Possibilities (1/2)6 6(1/2)6 15(1/2)6 20(1/2)6 15(1/2)6 6(1/2)6 (1/2)6

In summary, in this period, we can identify that a probabilistic phenomenon is modeled
using probabilistic principles, and although the binomial distribution is not presented in a
formal way as we know it, the calculation of the currently known expectation and other
values involving binomial reasoning are introduced.
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4.5. 18th Century: Formalization of the Binomial Distribution

Jacob Bernoulli established the general expression of the binomial distribution for
the analysis of what today is known as hope in the problems embodied in his work
Ars Conjectandi (1613). Since the probability of “m” successes and “n−m” failures is
“pmqm−n”, then by combinatorial methods, it is deduced that there are “nCm” different
orders of “m” successes and “n−m” failures, which originates the formula of the binomial
distribution [36]:

B (k,n,p) = nCk pkqn−k, 0 < p < 1 (2)

In one of the letters exchanged with Pierre Redmond, Bernoulli remarked that the
solution of the point problem for any value of “p” is obtained by expanding “(p + q)a+b−1”,
giving the solution that corresponds to the generalization of Pascal’s proposal:

e(a,b) = ∑a+b−1Cipiqa+b−1−i with i = a, a + 1, . . . , a + b − 1 (3)

Another application of this type of expression is for finding the number “n” of attempts
needed to have good probabilities of at least “c” successes:

P = {x ≤ c − 1} = ∑nCxpxqn−x = 1/2, x = 0, 1, . . . , c − 1 (4)

Laudański [39] presented other examples of the use of the binomial, such as compari-
son with theoretical values, calculation of the mean and variance, analysis of the tails of the
probability distribution, demonstration of the law of large numbers, approximation to the
normal distribution by increasing cases and the notions of limit, multinomial distribution,
and negative binomial distribution.

5. Reconstruction of the Partial Meanings of the Binomial Distribution

From the Historical Epistemological Study (HES), we can identify four families of
problem situations, which increase in generality and can be categorized as follows: (1) prob-
lems related to the counting of cases, approached from the direct method, the graphical
method, and the generation of numerical patterns and their generalization; (2) problems
related to the calculation of the probability of particular binomial phenomena, approached
from probabilistic and combinatorial principles (allowing support in graphical representa-
tions) and resulting in values and expressions that can be extended to an infinite number
of trials; (3) problems related to general or complex binomial phenomena, in which the
focus is on the study of the behavior of the distribution with different values and whose
effective solution is achieved through the direct use of the formula or the study of the
graph of the distribution; and (4) problems in which the binomial distribution is extended
to other areas of mathematics and probability. In the following sections, we will elaborate
on these families of problems and the systems of practices generated for their resolution
(epistemic configurations).

5.1. Partial Meaning 1: Practice System for Binomial Case-Counting Problems

As shown in Table 4, the situations or family of problems belonging to this meaning
are those that refer to the way in which elements can be ordered and their use for counting
cases and their study, such as how many ways two things can be selected from “n” different
things. These can be approached from two levels of complexity: an informal one (in which
the answer is constructed from the direct counting of cases by means of numbers or graphic
representations) and a formal one (in which expressions such as “1/2n(n − 1)” are used for
more complex situations).
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Table 4. Practice system for binomial problems involving case counting.

Problem Situation (PS) Mathematical Practices (EC) Partial Meaning (PM)

PS1: Study the cases that a binomial
phenomenon can present

EC1: By means of direct counting
method, use of graphical
representations, or mathematical
patterns, study the possible cases of a
binomial phenomenon

PM1: The binomial phenomenon for
case counting

PS1.1: How many ways can two things be
selected from “X” different things?

EC1.1: Direct counting or recursive
techniques (fixed “X”) and use of
numerical patterns and inductive
reasoning (indefinite or variable “X”)

PM1.1: Selection of two things from
“X” things

PS1.2: How many cases (favorable and
unfavorable) do we have when rolling a
die or coin if we want “X”?

EC1.2: Direct counting, graphical
representation, and use of combinatorics

PM1.2: Analysis of possible cases:
favorable or unfavorable

Main problem-situation, mathematical practices and partial meaning are shown in bold. The problem situations
given consist strictly of the study of the number of cases of a binomial phenomenon or its characteristics, thus
addressing its possibilities. Because it was not developed as part of the formal probability theory, the maximum
complexity of this practice system would be reached in a task such as comparing proportions of the cases studied
and identified, obtained by direct counting or the use of patterns identified or the formula, concluding, for
example, that it is more possible to obtain an even number when throwing a 6-faced die than to obtain a multiple
of three.

5.2. Partial Meaning 2: Practice System for Binomial Case-Counting Problems

The second system of practices (Table 5) goes hand in hand with understanding prob-
ability as being applicable to other situations beyond games of chance from mathematical
principles, approaching the binomial phenomenon with the best known value (p = 1/2)
and situations, such as the problem of points (money distribution).

Table 5. Practice system for binomial situations with one variable or for specific cases.

Problem Situation (PS) Mathematical Practices (EC) Partial Meaning (PM)

PS2: Calculate the probability in binomial
situations with specific data

EC2: Mathematical modeling and analysis
(with or without support of graphical
representations such as flowchart or
distribution), generation of formulas, and
calculation with mathematical rules

PM2: Probabilities of specific
binomial phenomena

PS2.1: What is the value of a binomial trial
with “p” probability of success and “q”
probability of failure?

EC2.1: Multiplication of probabilities by their
respective values PM2.1: Assigning value to a trial

PS2.2: Does X behave randomly? EC2.2: Calculation of objective probabilities
and comparison with empirical results

PM2.2: Validation of randomness
of phenomena

PS2.3: What is the probability of obtaining the
same result “n” times in a binomial trial? EC2.3: Raise “p” or “q” by the power “n” PM2.3: Probability of edge cases

PS2.4: What is the probability of obtaining “X”
successes in “n” trials?

EC2.4: Calculation of the probability of one of
the cases and its combinatorics

PM2.4: Probability of a specific number of
successes in a binomial phenomenon

PS2.5: Probability of obtaining at least “X” hits
in “n” throws (defined probability)

EC2.5: Additive principles, Pascal’s triangle, or
combinatorics

PM2.5: Probability of an interval of the values
of the random variable of the
binomial distribution

PS2.6: Study of A’s expectation (against B) if a
series of trials stops, where A needs “a”
successful trials and B needs “b” failed trials
(with equal probability)

EC2.6: Calculation with recursive,
combinatorial, and multiplicative principles,
similar to the point problem

PM2.6: Calculate the expectation of a series of
incomplete binomial phenomena

Main problem-situation, mathematical practices and partial meaning are shown in bold. The problem situations
given address the calculus of probability by using the basic principles introduced as the basis of probability theory
and its development. As an object not fully developed, the binomial probability is addressed as a construction
made with punctual application of the multiplicative principle of probability and combinatorics. From a simple
task, such as calculating a punctual probability of a binomial phenomenon, to more complex task, such as the
study of the problem of points with specified data, this practice system can be addressed as one that does not
require the binomial distribution formula for an effective or possible approach.
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5.3. Partial Meaning 3: Practice System for Complex or Varying Binomial Situations

The third system (Table 6) involves the binomial distribution for the study of phenomena,
in which a high or undefined number of trials is performed and gives rise to the general formula
of the binomial distribution, applied directly to the modeling of probabilistic phenomena.

Table 6. Practice system for problems involving more complex or varying binomial situations.

Problem Situation (PS) Mathematical Practices (EC) Partial Meaning (PM)

PS3: Study probability in variable or
difficult binomial situations

EC3: Modeling and mathematical
analysis with the general formula or its
variations and deductive analysis and
calculation of properties such as mean
and variance

PM3: Probability in general or complex
binomial phenomena

PS3.1: What is the probability of having
“m” successes in “n” attempts? EC3.1: Use of the binomial formula PM3.1: The probability of a random

variable value of a binomial phenomenon

PS3.2: What is the expectation of a
complex binomial phenomenon? EC3.2: Calculation of the mean PM3.2: Expectation of a complex

binomial phenomenon

PS3.3: What is the most probable value of
the random variable “n” of successes? EC3.3: Calculation of the mode PM3.3: Most probable number of hits

PS3.4: What is the degree of dispersion of
the number of successes obtained in a
binomial phenomenon?

EC3.4: Calculation of variance PM3.4: Dispersion number of successes

PS3.5: Probability of obtaining at least “X”
hits in “n” throws (indefinite or
variable probability)

EC3.5: Summation of
probabilities (formula)

PM3.5: Probability of an interval of the
values of the random variable of a
complex binomial phenomena

PS3.6: With “x” being the number of
successes and “y” being the number of
failures (x + y = n), and letting A win if x
≥ m, what is the expectation that B
will win?

EC3.6: Calculus with recursive,
combinatorial, and multiplicative
principles, similar to the general problem
of points

PM3.6: Expectation of incomplete
binomial phenomenon

PS3.7: How many trials are necessary to
have at least “c” successes?

EC3.7: Equalizing the sum of
probabilities to 1/2

PM3.7: Favorable number of trials

Main problem-situation, mathematical practices and partial meaning are shown in bold. This practice system
consists of resolving problem situations that require the use of the binomial distribution formula to be solved
effectively, which also means an efficient use of time. By using the fully developed and proven formula, students
can address diverse types of binomial situations where multiple binomial phenomena or varied probabilities are
involved and study how their graphics change in different situations. This new approachable field of situation
problems, which considers the binomial distribution formula as an instrument, also requires the comprehension
of more complex probability ideas such as the variance, mean, and mode and reaches its maximum complexity
when analyzing generic solutions to problems such as the problem of points or the degree of dispersion of the
number of successes.

5.4. Partial Meaning 4: Practice System for Situations That Go beyond the Simple Application of
Binomial Distribution

Finally, the fourth meaning is composed of the system of practices in which the
binomial distribution is used to analyze other concepts of probability and mathematics,
such as the law of large numbers and the normal distribution. Therefore, we consider
this meaning as the extended meaning of the binomial distribution, a meaning that is not
exclusive to it and that links it with other probabilistic-mathematical objects (Table 7).

Our results suggest that it is important to start with the construction of the com-
binatorial and probabilistic principles applied to the counting of cases, followed by the
analysis of specific binomial situations, the obtaining of probabilities associated with these,
and the construction of expressions that represent their behavior, finally ending with the
construction of the binomial and its application to the direct calculation of probabilities
and answering other questions. This linear development of the binomial distribution also
shows that the mathematical practices of one meaning can be applied to the family of
problems of the previous meaning.
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Table 7. Practice system for problems involving the binomial distribution in other areas of probability
or mathematics.

Problem Situation (PS) Mathematical Practices (EC) Partial Meaning (PM)

SP4: Study of other probabilistic or
mathematical phenomena

EC4: Mathematical deductive and inductive
modeling and analysis with the general
formula or its variations

PM4: Extended meaning of the
binomial distribution

SP4.1: How close to the experimental values
are the theoretical values? How many trials do
we need to ensure that we are getting close
to them?

EC4.1: Search for the value “n” such that
Pn = P{|hn−p|≤ ε } > c > 0 PM4.1: Law of large numbers (probability)

SP4.2: With what degree of certainty can we
rely on specific values of the
binomial distribution?

EC4.2: Calculation of intervals PM4.2: Confidence intervals

SP4.3: What happens to the distribution as we
increase the number of trials?

EC4.3: Graphical method and
boundary analysis

PM4.3: Extension of the binomial distribution
to the normal distribution

SP4.4: What happens when the results fall into
different categories and trials or selections
occur without replacement? Considering “n”
independent trials with “f” equally likely
outcomes, what is the number of ways to
obtain “ni

” outcomes for one type?

EC4.4: Generate, with combinatorial and other
binomial principles, the probability of the
multinomial phenomenon

PM4.4: Multinomial distribution

SP4.5: What is the expectation, when an event
has occurred “p” times and failed “q” times,
that the original ratio of occurrence or
non-occurrence of an event is different from
the ratio between “p” and “q”?

EC4.5: Relate combinatorics, integral,
probabilistic principles, and
conditional probability

PM4.5: Inductive inference

SP4.6: Given a binomial phenomenon with a
given “p”, what is the probability that in the
fifth trial there were “n” successes?

EC4.6: Construction of the probability function
from binomial principles PM4.6: Negative binomial distribution

Main problem-situation, mathematical practices and partial meaning are shown in bold. This practice system is
only accessible if the previous one has been completely comprehended and consists of the use of the binomial
distribution and its formula to approach other mathematical or probabilistic objects. By fully developing its
meaning, the binomial distribution and its behavior can be used to study or complement other aspects, thus
giving it an active role as part of the probability and mathematical theory while addressing questions that extend
what is already known of the binomial distribution, such as limit theory or multinomial phenomena.

6. Primary Objects of Partial Meanings

Based on the problem situations identified in the HES, and relying on a complementary
specialized bibliography on probability, we deepen our understanding of the primary
objects associated with each of the exclusive partial meanings of the binomial distribution
(EC1, EC2, and EC3), considering their main characteristics and the relationship they have
with other mathematical or probabilistic notions.

6.1. Primary Objects of Partial Meaning 1 (Case Counts)

As mentioned above, the problem situations that are part of this meaning correspond
to those that refer to the counting of cases and their study. This type of problem situation
can be approached informally with the counting of cases or, in a more formal way, using the
principles of combinatorics and constructing numerical patterns. This requires the subject
to become familiar with inductive inference, breaking with determinism and extending
empiricism into the unknown by means of induction while also considering the possible
error involved, which is associated with variability and the existence of a degree of security
when generating deductions.

For this reason, the definitions and concepts of this meaning can be linked to those
of the primitive meaning of probability that existed long before it was defined [16]. For
the knowledge of chance or random phenomenon, the important elements are chance,
the case or event, numerical pattern, power, inequality, variable, unknown, combinatorics
(permutation and variation), value of the variable, order, probability in the form of ratios,
figurative numbers, and Pascal’s triangle, while for the knowledge of the event, the notions
of sample space, events (excluding and non-excluding), and discrete random variables
are important [40]. For the understanding and construction of combinatorics, in a similar
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way to the basic ideas of probability calculation, the understanding of different situations
depending on the number of elements selected, the existence or non-existence of repeti-
tion (variations, permutations, and combinatorics), and constructs such as combinatorial
numbers and the factorial are considered essential [41].

Regarding resolution procedures, the direct counting of cases, the construction of the
sample space, the construction and validation of algorithms originating from numerical
patterns, and the use of graphical representations to record and analyze the phenomena
studied are notable. This agrees with the study of combinatorics by Espinoza and Roa [48],
who identified as important tasks for combinatorics its recognition and application of the
operation and the enumeration and demonstration or search for its properties.

Similarly, the propositions and arguments with which the procedures and concepts
are presented and linked are focused on the early search for a degree of knowledge about
the uncertain (i.e., the rupture of the deterministic paradigm and the use of mathematics to
model and analyze the unknown). Using inductive reasoning and recursive expressions as
arguments, the subject constructs expressions that mathematically model the counting of
cases and employs them to his or her benefit in the prediction of phenomena and practices
such as divination or games of chance. For example, the product and sum rule is considered
essential for the counting of cases, which allows the generation of more complex ones, such
as the multiplication of the number of possible cases of two selections to obtain the number
of total arrangements. This corresponds to permutations, whose argumentation is one of
the main steps for the construction of combinatorics [43] and the understanding of the
relationship between figured numbers, combinatorial coefficients, and Pascal’s triangle [39].
In addition, we consider that a subject can use graphical representations as argumentation
of propositions, as they follow non-explicit principles of inductive or deductive reasoning,
as presented in Moreno [49].

Finally, the language used for this meaning is not very refined with respect to the theory
of mathematics and probability, since it does not yet involve demonstrations. In addition
to the common language, the use of symbolic language (mathematical-probabilistic) is
presented for the counting of cases, also making possible their registration or study using
tabular or graphical language (tree diagram), as shown in Table 8 and Figure 2.

Table 8. Tabular language for representing the roll of two dice (retrieved from [44]).

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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The elements of this meaning correspond to those explicitly or implicitly referred to by
the early experts for the study of phenomena of a binomial nature, taking the empirical work
to the scientific-mathematical, quantifying the observable, and constructing mathematical
expressions such as permutations, which allow the counting of cases by their application.

6.2. Primary Objects of Partial Meaning 2 (Particular Binomial Situations)

To the range of definitions and concepts mentioned above, we add those belonging to
the early state of probability theory, in which mathematics is used for the calculation of
probabilities. These are probability as a numerical value between 0 and 1 (no longer as a
proportion), the value associated with a random experiment, summation, and the extension
of the development of the binomial. Knowing already the probability as a numerical value
that allows the analysis of a variable (in this case, discrete), the concept of probability
distribution, and its function allows us to analyze in an empirical or purely theoretical way
phenomena that we identify as binomial [43] and compare those values, observing how
these become increasingly similar as the number of trials increases. This also allows us
to give a significant value to the probabilities (monetary, for example), facilitating their
application in phenomena of uncertainty in daily life [50].

The processes associated with this meaning are homologous to those carried out
by experts such as Pascal and Fermat to solve the problem of points: the generation,
verification, and correction of mathematical models of phenomena of a binomial nature once
identified, as well as the study of the expectation when assigning values to the probabilities
of a phenomenon. For this, the subject has available the definitions and concepts mentioned
so far, which allow for identifying binomial situations and constructing expressions for
the calculation of the probability of binomial phenomena that follow specific rules. For
example, if one wishes to obtain the probability of a part of a distribution, one uses the
principles of probability (homologous to the number of cases) that can be simplified using
summation [44].

Because of the above, it is not strange that the propositions and arguments deal
with the relationship between mathematics and probability (i.e., associating probability
with the hope or value of a trial, the use of multiplicative and additive principles related
to binomial coefficients, and the expansion of the binomial for the calculation of the
probability of binomial phenomena. From the search for the solution to the problem of
points, we can identify the proposition that the value of a binomial experiment corresponds
to the sum of the products of the probability of its outcomes and the value that each
one has, argued by multiplicative and additive principles (deductive reasoning). The
relationship between combinatorics, figured numbers, binomial coefficients, the number
of possible cases (demonstrable using induction), and the multiplicative and additive
principles introduced by Cardano (1663), generated by trial and error, as well as direct
inspection allow us to argue propositions such as the probability of a binomial phenomenon
having the same result an “n” number of times is given by the probability of that result
raised to “n”, and we can obtain the probabilities associated with a binomial phenomenon
by studying the expansion expression “(p + q)n”, in which “p” and “q” are their probabilities
and “n” is the number of trials.

The language used is complemented with new mathematical expressions and probabilis-
tic ideas, using symbolic language for the construction of new mathematical expressions and
using tables and tree diagrams to record and analyze the probabilities of binomial phenomena
with a specific “n” or other notions, such as the expected value (Figures 3 and 4 and Table 9),
thus allowing the continued use of representations as an argumentative tool.
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Table 9. Study of the binomial phenomenon with n = 4, with x being the number of successes (S)
obtained (retrieved from [44]).

Outcome x Probability Outcome x Probability

SSSS 4 p4 FSSS 3 p3(1 − p)
SSSF 3 p3(1 − p) FSSF 2 p2(1 − p)2

SSFS 3 p3(1 − p) FSFS 2 p2(1 − p)2

SSFF 2 p2(1 − p)2 FSFF 1 p(1 − p)3

SFSS 3 p3(1 − p) FFSS 2 p2(1 − p)2

SFSF 2 p2(1 − p)2 FFSF 1 p(1 − p)3

SFFS 2 p2(1 − p)2 FFFS 1 p(1 − p)3

SFFF 1 p2(1 − p)3 FFFF 0 (1 − p)4

The elements of this meaning are related to the first uses of probability as a numerical
value that follows a set of mathematical rules and can be analyzed by means of these rules
for the search of solutions to specific situations of uncertainty, though not necessarily in
games of chance.

6.3. Primary Objects of Partial Meaning 3 (General or Complex Situations)

The problem situations characteristic of this meaning are those whose adequate reso-
lution involves the direct use of the binomial distribution formula. These situations consist
of binomial phenomena in which a high, multiple, or infinite number of trials or variable
values of the probabilities are presented, reaching different levels of complexity, one of
the simplest being that which is answered directly with the formula, such as what the
probability of obtaining “k” successes in 30 trials is with p = 60 [44]. On the other hand,
one of the complex situations would be how many trials are necessary to have at least



Mathematics 2022, 10, 1748 16 of 23

“c” successes and, when letting “a” be the number of successes and “b” be the number of
failures obtained so far, what the expectation is that the number of successes is greater than
a specific value “m”.

The definitions and concepts that are added to this meaning are related to the theory
of probability applied to the binomial distribution once it is formalized: the binomial
distribution and its formula, probability function, parameter, probabilistic inference, degree
of knowledge (subjective probability), mean, variance, and expected value (hope). Wackerly
et al. [43] also introduced as a concept of this meaning the derivative and one of its
partial meanings (i.e., to maximize the probability of obtaining a certain number of hits).
Walpole et al. [41] mentioned the concept of binomial summation, referring to the notion of
summation applied to the various probabilities of the distribution. Devore [45] referred
to the expected values of successes and failures, considering as a base notion the test of
hypotheses, as well as the use of the binomial distribution to calculate the number of trials
needed to have a certain number of successes (i.e., the negative binomial). Finally, the
binomial distribution becomes part of probability theory, and it is possible to associate it
with the axioms of probability, such as indicating that the binomial summation must give
one and that the probability of every event is equal to or greater than zero [13].

The processes of this meaning address the use of binomial distribution for the analysis
of different probabilistic phenomena, such as by directly applying the formula to calculate
the probability of an event once its parameters have been identified and using it to estimate
values such as the mean and variance, as well as compare the theoretical values with the
empirical ones. In the same way, the propositions and arguments deal with this binomial
distribution as an object for the analysis of situations. Thus, propositions are presented
such as that in a binomial trial, with the probability of obtaining “m” hits in “n” trials
with a probability ‘p’ of success given by the binomial formula, the expected value in a
binomial phenomenon is given by its mean, and the probability of having a number greater
than or equal to “x” number of hits or misses is given by the first or last “x” elements of
the binomial expansion [42]. In addition, propositions related to the identification of a
trial as binomial or Bernoulli [44] are considered essential. These types of propositions are
argued using the combinatorial and probabilistic principles that gave rise to the binomial
distribution formula.

Finally, regarding the language, as the maximum generality of the mathematical
concept is reached, the use of symbolic language predominates, approaching the binomial
distribution from its general formula and other mathematical concepts, such as functions
and mathematical sets [40,41]. However, tabular or graphical representations are still used,
for example, to represent particular phenomena and compare them with the binomial
distribution or deliver specific values of interest, such as cumulative binomial distributions
(see Figure 5 and Tables 10 and 11). The automatic generation of these representations,
using probabilistic software or previously constructed resources, allows them to continue
to be used for argumentation, for example, by using the graph of the binomial distribution
to visually approximate its mean.
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Table 10. Comparison table of theoretical probability and observed ratios in a binomial situation
ending with 4 successes or 4 failures, considering p = q (retrieved from [44]).

Series Length Observed Proportion Theoretical Probability

4 17/68 = 0.250 0.125
5 16/68 = 0.235 0.250
6 21/68 = 0.309 0.3125

Table 11. Table of cumulative binomial distributions for n = 3 (retrieved from [45]).

P

x

0.01 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.99

0 0.951 0.774 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000 0.000 0.000
1 0.999 0.977 0.919 0.737 0.633 0.528 0.337 0.188 0.087 0.031 0.016 0.007 0.000 0.000 0.000
2 1.000 0.999 0.991 0.942 0.896 0.837 0.683 0.500 0.317 0.163 0.104 0.058 0.009 0.001 0.000
3 1.000 1.000 1.000 0.993 0.984 0.969 0.913 0.812 0.663 0.472 0.367 0.263 0.081 0.023 0.001

The primary objects mentioned above give meaning to the binomial distribution as
a structural whole, which can be identified from a set of mathematical and probabilistic
properties and allows for analyzing different cases with ease and studying what happens
with infinite cases, losing some numerical substances and algorithms such as the use of the
tree diagram.

A synthesis of components of the epistemic configurations of the three meanings of
the binomial distribution is presented in Tables 12–14.

Table 12. Primary objects of the first meaning of binomial distribution.

Primary Object Description

Problem Situation

S1. Study the cases that a binomial phenomenon can give.
S1.1 In how many and what ways can two things be selected from “X” different things?
Example: How many ways can two things be selected from 5 different things?
S1.2 How many or which cases (favorable and unfavorable) do I have when throwing a die or
flipping a coin if I want a specific amount of successes?
Examples: What are the possible cases in throwing 2 or 3 dice? What are the favorable cases in
flipping 2 coins if I want one side?

Definitions-Concepts

Chance, case, event (both excluding and non-excluding events), numerical pattern, power,
inequality, unknown, binomial coefficient, combinatorial, variable value, order, permutation,
variation, probability in the form of ratios, figured numbers, Pascal’s triangle, repetition, sample
space, discrete random variable, and factorial.

Processes

Exploration and modeling
Direct counting of cases, exploration of possible outcomes (construction of the sample space),
pattern recognition and construction as well as validation of algorithms based on them, search for
properties, and use of representations such as tree diagrams.

Properties-Propositions

Linking mathematics with the uncertainty of chance
Games of chance, as well as other phenomena, follow a behavior that allows them to be analyzed
among different representations.
A degree of knowledge of chance can be obtained by using mathematical expressions.
Adding the possible cases of two or more events gives the number of total arrangements (additive
principle for counting cases).
Multiplying the possible cases of two or more events gives the number of total arrangements
(multiplicative principle for counting cases).

Arguments Inductive and recursive principles for constructing expressions and discovering properties.
Use of representations.

Language
Unrefined mathematically and probabilistically (arithmetic expressions), focused on
case counting.
Tabular and graphical.
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Table 13. Primary objects of the second meaning of the binomial distribution.

Primary Object Description

Problem-Situation

S.2 Calculate the probability in particular binomial situations with specific data.
S2.1 What is the value of a binomial trial with p probability of success and q probability of failure?
Example: How much is a two-coin toss worth if USD 1000 is won if only one side comes up?
S2.2 Does an event exhibit random behavior?
Example: If heads comes up 5 times in a row, what can be said about the coin?
S.2.3 What is the probability of getting the same result “n” times in a binomial trial?
Example: What is the probability of getting heads 5 times in a row?
S2.4 What is the probability of getting “X” hits in “n” tosses (without using the formula)?
Example: What is the probability of getting heads in a toss of 3 coins?
S2.5 What is the probability of getting at least “X” hits in “n” throws (defined probability) or another
interval of the probability distribution?
Example: What is the probability of getting at least 1 head in a toss of 3 coins?
S2.6 Study the expectation of A (against B) if a series of trials stops, where A needs “a” successful
trials and B needs “b” successful trials (with equal probability).
Example: Considering that both players have an equal probability of winning, what is the hope of
player A if he or she must win 3 times against player B, who wins by winning 2 times?

Definitions-Concepts Probability as a numerical value between 0 and 1, the value associated with a random experiment,
probability distribution, summation, and the extension of binomial development.

Processes

Modeling probabilistic phenomenon
Identify characteristics of probabilistic phenomena.
Generation, verification, or correction of mathematical models of phenomena of a binomial nature
from the definitions and concepts mentioned above.
Calculation of the expected value when assigning values to the probabilities of a phenomenon.

Properties-Propositions

Linking probability with mathematics
The expected value of a binomial experiment corresponds to the summation of the products of the
value of each variable by its respective probability of occurrence.
We can obtain the probabilities associated with a binomial phenomenon by studying the expansion
expression “(p + q)n”, in which “p” and “q” are their probabilities and “n” is the number of
repetitions of the trials.
The additive and multiplicative principles of probability.

Arguments
Deductive.
Inductive.
Use of representations.

Language Common, symbolic, tabular, and graphical language that relates the definitions and concepts of
meanings 1 and 2 to the calculation of specific probabilities.

Table 14. Primary objects of the third meaning of the binomial distribution.

Primary Object Description

Problem-Situation

S.3 Study probability in binomial variable situations.
S3.1 What is the probability of having “m” successes in “n” attempts (using the formula)?
Example: What is the probability of getting “k” successes in 30 trials with p = 0.6?
S3.2 What is the expectation (expected value) of a binomial variable phenomenon?
Example: What is the expected outcome of a toss of 20 coins?
S.3.3 What is the most probable value of the random variable number of successes?
Example: What is the most probable number of heads when tossing 40 coins?
S.3.4 What is the degree of dispersion of the number of successes obtained in a binomial phenomenon?
Example: How dispersed are the results of 5 binomial trials with p = 3/4?
S3.5 Probability of obtaining at least “X” hits in “n” trials (indefinite or variable probability) or another interval of
the probability distribution.
Example: What is the probability of getting at least 20 heads in a series of coin tosses?
S3.6 Let “x” be the number of successes and “y” be the number of failures (x + y = n), and let A win if x ≥ m.
What is the expectation that B wins?
Example: Considering that both players have different probabilities of winning, what is the hope of player A if he
or she has to win 3 times versus player B, who wins by winning 2 times?S.3.7 How many trials are necessary to
have at least “c” successes?
Example: After how many binomial trials with p = 7/8 can one be sure that there is at least one failure?
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Table 14. Cont.

Primary Object Description

Problem-Situation

S.3 Study probability in binomial variable situations.
S3.1 What is the probability of having “m” successes in “n” attempts (using the formula)?
Example: What is the probability of getting “k” successes in 30 trials with p = 0.6?
S3.2 What is the expectation (expected value) of a binomial variable phenomenon?
Example: What is the expected outcome of a toss of 20 coins?
S.3.3 What is the most probable value of the random variable number of successes?
Example: What is the most probable number of heads when tossing 40 coins?
S.3.4 What is the degree of dispersion of the number of successes obtained in a binomial phenomenon?
Example: How dispersed are the results of 5 binomial trials with p = 3/4?
S3.5 Probability of obtaining at least “X” hits in “n” trials (indefinite or variable probability) or another interval of
the probability distribution.
Example: What is the probability of getting at least 20 heads in a series of coin tosses?
S3.6 Let “x” be the number of successes and “y” be the number of failures (x + y = n), and let A win if x ≥ m.
What is the expectation that B wins?
Example: Considering that both players have different probabilities of winning, what is the hope of player A if he
or she has to win 3 times versus player B, who wins by winning 2 times?S.3.7 How many trials are necessary to
have at least “c” successes?
Example: After how many binomial trials with p = 7/8 can one be sure that there is at least one failure?

Definitions-concepts Binomial distribution, binomial distribution formula, probability function, parameter, probabilistic inference,
degree of knowledge (subjective probability), mean, variance, and expected value (hope).

Processes

Application for analysis
Determination of parameters of the binomial distribution.
Calculate the probability by directly applying the formula.
Compare theoretical values of a binomial phenomenon and observed ratios.
Varying parameters in simulations.
Approximating or calculating measures such as mean and variance.

Properties-Propositions

Link the mathematical binomial distribution with the rest of mathematics and probability.
In a binomial phenomenon, there are “n” observations.
The observations or trials in a binomial phenomenon are independent.
In a binomial phenomenon, there are only 2 outcomes (success and failure).
The probabilities of success and failure are constant.
In a binomial trial, the probability of getting “m” hits in “n” trials with a probability of success “p” is given by the
binomial formula.
The expected value in a binomial phenomenon is given by its mean.
Considering a high series of experiments, if the observed proportion does not agree with the theoretical
probability, we can assume that the phenomenon is not binomial.

Arguments Deductive.
Use of representations.

Language The use of symbolic language is predominant, while the use of tables and graphs is used to study particular cases.

7. Conclusions

In this work, by means of a historical epistemological study (HES), and with its analysis
based on the notions of the Ontosemiotic Approach (OSA) to Mathematical Knowledge and
Instruction, we reconstructed the holistic meaning of the binomial distribution, identifying
the problem situations that gave rise to it, its resolution practices, and its main components.
With this, we reaffirm this work methodology as adequate to identify essential elements in
the learning of mathematical and probabilistic objects, especially those whose weaknesses
and learning conflicts are associated with the lack of consideration of its historical and
epistemic aspects, allowing their investigation with educational purposes based on the
diverse notions and perspectives of the OSA, such as proposing the elements and relations
identified as essential for its learning.

Regarding the binomial distribution as a concept, it was possible to identify that its
origin came from the analysis of games of chance which, with the passage of time, was
extended to the study of other phenomena that met identical or similar characteristics. In
this way, it was possible to reaffirm the historical nature of the binomial. Thus, the study
resulted in the identification of four families of problems: (1) problems related to counting
cases, (2) problems related to calculating the probabilities of particular binomial phenom-
ena, (3) problems related to general or complex binomial phenomena, and (4) problems
that extend the binomial distribution to other elements of mathematics or probability. Each
of these gives rise to a system of practices corresponding to one of the partial meanings of
the binomial distribution: (1) a binomial phenomenon for studying cases, (2) the binomial
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distribution for particular binomial situations, (3) the binomial distribution as a tool for
general or complex binomial situations, and (4) the extended meaning of the binomial dis-
tribution. What was also observed in the HES indicates that the main differences between
these families are the degree of complexity and the number of situations to which their
solution methods can be effectively applied, which increase over time, suggesting that the
different meanings of the binomial distribution present a linear configuration if considered
from a historical perspective, meaning that the resolution practices of one meaning are also
applicable to the problem situations associated with the previous meaning when making
the appropriate adjustments. When contrasting our results with the meanings identified in
works with the OSA that do not address their historical aspects [20,22], we can conclude
that the use of the HES is beneficial, since it allows identifying the development of the
different meanings as a response to the apparition of more complex problem situations and
how their essential elements are related, which could help to propose didactic trajectories
that address the historical aspect of the respectively mathematical object. Similarly, there
are also differences in comparison with the structure of holistic meanings reconstructed
on basis of the OSA and HES [18,29]; that is, because the holistic meaning of the binomial
distribution seems to follow a linear development defined by an increase of complexity of
the problem situations addressed, the holistic meanings of objects such as the antiderivative
and derivative are proposed in a more ramified form in the meantime, where some of their
meanings are related and developed at the same time, addressing different families of prob-
lem situations. This can be attributed to the difference in nature of the mathematical objects
studied, since the binomial distribution was developed in the same way as the meaning of
probability and its theory [16] to model random phenomena with increasing complexity.

On a second level of analysis, supported by the use of a specialized bibliography
in statistics and probability, we identified the primary objects of each of the exclusive
meanings of the binomial distribution (one, two, and three). For the first partial meaning,
we highlighted the definitions-concepts of chance, case, probability as a ratio, discrete
random variables, combinatorials, variable values, sample space, and factorials, proce-
dures focused on the exploration and generation of mathematical models, propositions
whose function is to mathematize uncertainty and the counting of cases, inductive and
recursive arguments, and an unrefined symbolic language and graphic language used for
the registration and counting of possible cases. Regarding the second partial meaning, we
highlighted the definitions-concepts of probability as a numerical value between 0 and
1, the use of modeling procedures, propositions that link probability with mathematics
(associated with the development of probability theory), the use of arguments based on
mathematical properties and the characteristics of the binomial phenomenon, and the
articulation between symbolic, tabular, and graphic languages. Finally, for the third par-
tial meaning, we highlighted the definitions-concepts of the binomial distribution and
its formula, the probability function, parameters, probabilistic inference, mean, variance,
and expected value (hope), procedures focused on the application of the formula and its
properties for the analysis of situations, propositions and arguments that link the binomial
distribution (already formalized) with the rest of mathematics and probability, and the
predominance of algebraic symbolic language. This also allowed us to identify that the
development of the meaning of the binomial distribution is related to the evolution of other
mathematical-probabilistic concepts such as probability (Laplacian meaning, frequency
meaning, and mathematical meaning relations) [16] and that of hope (expected case–trial
and value–hope relations).

The meanings and elements identified are key when planning learning processes of the
concept and proposing suitability criteria both for students and teachers, such as suggesting
that for a person to be able to answer problem situations of case counting, it is necessary
to handle the primitive concepts of probability such as chance, case, and probability as
ratios, in addition to handling inductive reasoning and the recursive use of expressions
and representations such as the tree diagram. In the same way, we can conclude that
for the understanding of the holistic meaning of the binomial distribution, it is necessary
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to understand its use to solve the three families of problems (case counting, particular
situations, and variable situations), preferably starting with the reconstruction of the
combinatorial and probabilistic principles (from logical reasoning, graphical reasoning, and
numerical patterns) applied to case counting, followed by the calculation of probabilities
for specific binomial situations, building expressions from probabilistic principles, and their
relationship with numerical patterns, fostering inductive reasoning and strengthening the
understanding of probabilistic or mathematical ideas (the difference between probability
and possibility or between permutation and combinatorics, for example), thus ending with
the construction of general expressions (binomial distribution formula) from the principles
and specific situations analyzed above to analyze the same binomial phenomenon or
apply it in conjunction with other probability concepts such as mean and variance. These
results are in agreement with the essential elements identified in other research regarding
the understanding of the binomial distribution [8,9,51–53] and, as a whole, facilitate the
identification of learning conflicts, the generation of experiences, and resources for learning,
as well as the comparative analysis with the elements identified with respect to what
is presented in textbooks, didactic proposals, the curriculum, and the knowledge of the
teacher in practice and in training, strengthening the binomial distribution as an object
of study in probability and its didactics. For this last reason, we consider as a possible
research area the exploration of the cognitive configurations that are manifested in students
and teachers at different levels, as well as in educational resources, namely study programs,
textbooks, and training programs.
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