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Abstract: Recently, the attention mechanism combining spatial and channel information has been
widely used in various deep convolutional neural networks (CNNs), proving its great potential in
improving model performance. However, this usually uses 2D global pooling operations to compress
spatial information or scaling methods to reduce the computational overhead in channel attention.
These methods will result in severe information loss. Therefore, we propose a Spatial channel attention
mechanism that captures cross-dimensional interaction, which does not involve dimensionality
reduction and brings significant performance improvement with negligible computational overhead.
The proposed attention mechanism can be seamlessly integrated into any convolutional neural
network since it is a lightweight general module. Our method achieves a performance improvement
of 2.08% on ResNet and 1.02% on MobileNetV2 in top-one error rate on the ImageNet dataset.

Keywords: attention mechanism; image classification; deep learning; cross-dimensional interaction

MSC: 68T07

1. Introduction

Recently, attention mechanisms have attracted extensive research in natural language
processing (NLP) [1], computer vision (CV) [2], and speech signal processing (SSP) [3],
including spatial attention [1,2,4–6], channel attention [7,8], and spatial and channel atten-
tion [9–13], as they can easily improve the performance of neural networks by recalibrating
the weights of features. These mechanisms enable the network to learn where or what to pay
attention to by explicitly building cross-channel dependencies or weighted spatial regions.

SENet [7], as one of the state-of-the-art channel attention mechanisms, provides signif-
icant performance gains at an extremely low computational cost. However, SE attention
only considers the encoded inter-channel information and ignores the importance of spatial
information, which is crucial for image classification. The convolutional block attention
module (CBAM) [10] provides robust representative attention by combining channel in-
formation and spatial information. Compared with SENet, the CBAM offers significant

Mathematics 2022, 10, 1750. https://doi.org/10.3390/math10101750 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10101750
https://doi.org/10.3390/math10101750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1845-5623
https://doi.org/10.3390/math10101750
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10101750?type=check_update&version=1


Mathematics 2022, 10, 1750 2 of 10

performance improvements with a small computational overhead. However, in CBAM, spa-
tial attention is obtained by simply global average pooling (GAP) and global max pooling
(GMP), compressing channel C into a single channel to obtain important spatial information.
Similarly, coordinate attention (CA) [12] uses GAP to compress, respectively, height H and
width W to capture the interaction between spatial information and channel information.

Wang [8] pointed out that it is important to avoid dimensionality reduction and proper
cross-channel interaction when learning channel attention. Therefore, Misra [13] proposed
a lightweight non-dimensionality reduction attention mechanism, triplet attention (TA). TA
captures the interaction between the spatial dimension and channel dimension through a
rotation operation to enhance feature representations.

Provided by Misra [13], the SE module, CBAM, and TA are shown in Figure 1a–c,
respectively.
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Figure 1. Comparisons with different attention modules [13]: (a) squeeze excitation (SE) module;
(b) convolutional block attention module (CBAM); (c) triplet attention (TA). ⊕ denotes broadcast
elementwise addition, and � denotes broadcast elementwise multiplication.

However, triplet attention uses two branches to capture the cross-dimensional inter-
action of channel C with height H and width W, respectively, and uses the third branch
to capture spatial information, which is unnecessary; furthermore, it increases the com-
plexity of the model. Therefore, we propose a simpler, but better performing attention
mechanism to capture cross-dimensional interaction information, which does not involve
dimensionality reduction, namely Spatial channel attention (SCA).

Specifically, to capture cross-dimensional interaction and alleviate the spatial informa-
tion loss caused by GAP or GMP, we aggregate the cross-dimensional interaction features
between the spatial dimensions H or W with the channel dimension C by simply permuting
the input tensors. Then, we feed them into convolutional layers and Sigmoid activa-
tion layers to generate two interaction attention maps, respectively. Finally, we permute
back attention maps to the original input shape and apply them to the input tensors via
multiplication.

Our Spatial channel attention has the following advantages. First, it emphasizes
the importance of cross-dimensional interaction to capture not only orientation-aware
channel information, but also channel-sensitive spatial information, which helps the model
to locate and identify objects of interest more accurately. Second, our method is flexible
and lightweight, capturing rich discriminative feature representations with negligible
computational overhead, classic convolutional neural network building blocks that can be
easily inserted, such as ResNet [14] and MobileNetV2 [15], by emphasizing information
representation to enhance functionality.
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The proposed method considers cross-dimensional dependencies, which are computa-
tionally efficient and inexpensive. For example, for ResNet-50 [14] with 25.557M parameters
and 4.122 GFLOPs, the proposed Spatial channel attention mechanism achieves a 2.08%
improvement on top-one error rate at the cost of 4.6K more parameters and 4.1 × 10−2

more GFLOPs.
We propose a Spatial channel attention mechanism to improve the performance of

CNNS for image classification. The remainder of this paper is organized as follows. In
Section 2, recent efforts in attention mechanisms are described for image classification.
In Section 3, the working details of the proposed method SCA are explicitly introduced.
In Section 4, extensive experiments are conducted to assess the performance of SCA. In
Section 5, our work is summarized.

2. Related Work

Attention mechanisms originate from the human visual system where humans se-
lectively concentrate on regions of interest while ignoring the rest. Therefore, attention
mechanisms are extensively studied in computer vision tasks, such as image classifica-
tion [16–18], object detection [4,19], and image segmentation [5,6,11], aiming to tell a model
where and what to attend to for boosting the performance of deep convolutional neural
networks (CNNs). In this section, we review some attention mechanisms that are closely
related to our work.

Attention mechanisms adaptively recalibrate the weights of features to improve the
information perception ability of the model. According to the feature dimension applied,
attention can be categorized into various types of variants, such as spatial attention and
channel attention.

To improve the capability of modeling spatial information in CNNs, spatial attention
is widely used with great success. The non-Local module [4] computes the relationship
between a pixel and all other pixels to capture the long-range dependencies in images.
However, the computational overhead of the non-local module is expensive. In order
to reduce the amount of computation, GCNet [19] uses 1 × 1 convolution and scaling
operations, and CCNet [5] uses criss-cross attention modules in a cascading manner to
aggregate the information on rows and columns of pixels. DANet [11] compresses the 3D
tensor to 2D and captures spatial information through matrix multiplication. Similarly,
SPNet [6] uses strip pooling on the height and width of features separately and generates
spatial attention maps through matrix multiplication.

Channel attention assigns weights to different channels to tell the model what to focus
on, which is simple and effective. SENet [7] was the first to propose an efficient method for
channel attention, providing significant performance improvements at a minimal additional
computational cost. SENet compresses each 2D spatial feature to generate channel weights,
explicitly establishing the interdependencies between channels. To balance the paradox
between model performance and complexity, Wang [8] proposed an attention without
dimensionality reduction, efficient channel attention (ECA), which can bring significant
performance gains by adding only a handful of parameters.

However, these channel attention methods only consider inter-channel interdepen-
dencies and ignore spatial information. Therefore, the CBAM [10] combines the channel
attention and spatial attention to recalibrate the weights of features. The CBAM sequen-
tially extracts attention maps along channels and spatial information and multiplies them
with input feature maps to achieve adaptive feature augmentation.

Similarly, CA [12] utilizes two branches in parallel to extract cross-dimensional in-
teraction between channel C with height H and width W to generate an attention map.
Furthermore, TA [13] proposes three-branch attention without dimensionality reduction,
where two branches capture cross-dimensional interaction and the third branch is used to
build spatial attention.
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3. Method

Spatial channel attention can be viewed as a computational unit that aims to enhance
the expressive power of the learned features for mobile networks. It can take any inter-
mediate feature tensor X as the input and outputs a transformed tensor with augmented
representations Y. To provide a clear description of the proposed Spatial channel attention,
we first revisit the channel attention in the CBAM, which is widely used in convolutional
neural networks.

3.1. Revisiting CBAM

We first revisit the channel attention module and spatial attention module used in
the CBAM [10] in this subsection. Let X ∈ RC×H×W be the input of the CBAM channel
attention module, where C, H, and W denote the number of channels and the height and
width of the feature map, respectively.

The channel attention weight in the CBAM can be expressed by the following equation:

ωc = σ(W1
c ReLU(W0

cGAPc(X)) + W1
cReLU(W0

cGMPc(X))) (1)

where ωc represents the channel attention weight, σ is the Sigmoid activation function,
ReLU is another activation function, and W1

c and W0
c are weight matrices, whose sizes

are defined as C× C/r and C/r× C, respectively. GAPc and GMPc are the global average
pooling function and global max pooling function of the channel, respectively.

Similarly, the spatial attention weight in the CBAM can be expressed by the following
equation:

ωs = σ(Conv7×7[GAPs(X)); GAPs(X))]) (2)

where Conv7×7 represents a convolution operation with a filter size of 7 × 7, [;] represents
the tensor concatenation operation, and GAPs and GMPs are the global average pooling
function and global max pooling function of the channel, respectively.

The CBAM is widely used in convolutional neural networks and has proven to be
efficient. However, the CBAM compresses channel C into a single channel to obtain
important spatial information and compresses spatial dimension H×W into a single pixel
to obtain channel importance, ignoring the cross-dimensional interaction information
between spatial and channel dimensions. Therefore, in the following, we introduce a novel
attention block that considers both channel and spatial cross-dimensional information to
enhance feature representation.

3.2. Spatial Channel Attention

As shown in Section 1, we propose an attention mechanism with few parameters to
capture the interaction between spatial and channel dimensions, namely Spatial channel
attention. Figure 2a,b show how we insert the attention mechanism into the residual block
in ResNet and the inverted residual block in MobileNetV2, respectively.

The traditional way to compute spatial attention is to compress the channels of the
input tensor to generate a weight for each region on the spatial dimension. This can lead
to incorrectly assigning higher weights to non-target regions. Similarly, the traditional
way to compute channel attention is to compress the spatial information of the input
tensor to generate a weight for each channel via global average pooling. This results in
a severe loss of spatial information. Furthermore, the interdependence between these
spatial attention and channel attention methods is non-existent. In simple terms, channel
attention tells which channel to focus on, while spatial attention tells where to focus on in the
channel. The disadvantage of this process is that channel attention and spatial attention are
separated and computed independently of each other, without considering any relationship
between them. Therefore, we propose a Spatial channel attention mechanism that captures
cross-dimensional interaction.
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Figure 2. Connection implementation between the proposed attention mechanism and CNNs, where
⊕ denotes broadcast elementwise addition.

The proposed Spatial channel attention is shown in Figure 3. There are two branches
in Spatial channel attention, which are responsible for capturing the cross-dimensional
interaction between channel dimension C and spatial dimension H or W, respectively.
SCA will rearrange the input tensors through the permutation operation. Then, they are
sequentially input to the convolutional layer and the Sigmoid activation layer to generate
two attention maps for cross-dimensional interaction, respectively. Finally, attention maps
are permuted again and applied to the input tensor via multiplication, obtaining feature
representations that are interactively enhanced across dimensions.

⨀

X

C × H ×W

W × H × C H × C ×W

1 × H × C 1 × C × W

C × H × 1 C × 1 × W

C × H ×WY
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Batch Norm Batch Norm

Permute Permute

Sigmoid Sigmoid

Figure 3. Spatial channel attention mechanism (SCA), where � denotes broadcast elementwise
multiplication.

As shown in Figure 4, given an input tensor X with dimension C×H×W, we first pass
it to the two branches in the proposed attention module. In the top branch, we construct
the interaction between the height dimension H and the channel dimension C. To do this,
we permute X and rearrange to W×H× C. Next, the rearranged tensor is successively
fed to a convolutional layer with a kernel size of 1 × 1 and a batch normalization layer,
and an intermediate output with dimension 1×H× C is obtained. Then, we input it in
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the Sigmoid activation function and obtain the attention weights. Finally, we permute the
newly generated attention weights again to rearrange them as C×H× 1.

Fch(X) = Permutech(σ(Conv1×1Permutech(X))) (3)

where Permutech represents the operation of permuting the channel dimension C and the
spatial dimension H and Conv1×1 represents a convolution operation with a filter size of
1 × 1.

H

C
W

Permute

H

W
C

PermuteConv

BN

W

H

C

H

C

1

H

C
W

Permute Conv

BN

W

H

C

C

W

C

H
W

Permute

1

Figure 4. The attention-map-generation process of SCA. The top branch represents the cross-
dimensional interaction between C and H, and the bottom branch represents the cross-dimensional
interaction between C and W.

Likewise, in the bottom branch, we rearrange X into a dimensional representation
of H× C×W. Then, we feed it sequentially to a convolutional layer with a filter size of
1 × 1, a batch normalization layer, and a Sigmoid activation function, obtaining attention
weights of shape 1× C×W. Finally, we permute the newly generated attention weights
again, rearranging them as C× 1×W.

Fcw(X) = Permutecw(σ(Conv1×1Permutecw(X))) (4)

Finally, we apply the two newly generated attention weights to the input tensor X
via broadcast elementwise multiplication. A tensor Y weighted with cross-dimensional
interaction can be obtained.

Y = X� Fch(X)� Fcw(X) (5)

where Fch(X) represents the interaction function between the channel dimension C and the
height dimension H and Fcw(X) represents the interaction function between the channel
dimension C and the width dimension W.

4. Results and Analysis

In this section, we first introduce our experimental settings. Then, the proposed
method is evaluated on ImageNet-1K [20] for image classification based on ResNet-50 [14]
and MobileNetV2 [15]. Ablation experiments were conducted to verify the effectiveness of
cross-dimensional interaction. Finally, sample visualizations are provided from Grad-CAM
to demonstrate the effectiveness of the proposed method in locating and identifying objects
of interest.

4.1. Experimental Setup

For the fairness of comparisons, we followed the training configuration of ResNet.
Likewise, we followed the training configuration and data augmentation method in [15] to
implement our MobileNetV2-based architecture. We used the Adam [21] optimizer and
cosine learning schedule, training on a 1 Nvidia Tesla P100 GPU.
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4.2. Comparative Experiment

The results of the comparative experiments are shown in Table 1. Spatial channel atten-
tion introduces the fewest parameters while consistently outperforming other attentions.

Table 1. Comparative experimental results.

Method Backbone Parameters FLOPs Top-1(%) Top-5(%)

ResNet-50

ResNet-50

25.56M 4.12G 24.56 7.50
+ SENet 28.07M 4.13G 23.14 6.70
+ CBAM 28.09M 4.13G 22.66 6.31
+ TA 25.56M 4.17G 22.52 6.32
+ SCA (ours) 25.56M 4.16G 22.48 6.30

MobileNetV2

MobileNetV2

3.51M 0.32G 28.36 9.80
+ SENet 3.53M 0.32G 27.58 9.33
+ CBAM 3.54M 0.32G 30.07 10.67
+ TA 3.51M 0.32G 27.38 9.23
+ SCA (ours) 3.51M 0.32G 27.34 9.21

The ResNet-50-based model improved the top-one error rate on ImageNet by 2.08%,
while the number of parameters only increased by 0.02%, and the FLOPs increased by
about 1%. Spatial channel attention outperformed SENet and CBAM with 0.66% and 0.18%
improvements in top-one error rates, respectively. The main reason is that the proposed
method considers spatial information and does not use GAP or GMP to reduce dimension-
ality, which avoids information loss. Furthermore, our method also outperformed TA by a
small margin.

We observed similar performance trends in the smaller MobileNetV2 model. Com-
pared with MobileNetV2, using Spatial channel attention improved top-one error rate by
1.02%, while increasing parameter complexity by only 0.03%. Spatial channel attention
outperformed SENet with a 0.24% improvement in top-one error rate, respectively. We
also observed that in the case of MobileNetV2, the CBAM hurt the model performance: it
reduced the accuracy by 1.71%. Experimental results showed that the proposed Spatial
channel attention worked in both heavyweight and lightweight models with negligible
increases in parameters and computation. Furthermore, our method also slightly outper-
formed TA. The main reason is that the proposed method utilizes multiplication to fuse
the interaction of different dimensions, rather than simple addition, which results in the
information of different dimensions being treated equally.

4.3. Ablation Studies

To investigate the importance of the interaction between different spatial dimen-
sions and channel dimensions, we observed changes in performance by clipping different
branches. In Table 2, CHA represents the top branch and CWA represents the bottom
branch in Figure 4. As shown in Table 2, the experimental results showed that Spatial
channel attention consistently outperformed the baseline model and its two counterparts.

Table 2. Effectiveness experiment.

Method Parameters FLOPs Top-1(%) Top-5(%)

ResNet-50 25.56M 4.12G 24.56 7.50
+ CHA 28.07M 4.14G 23.15 6.92
+ CWA 25.92M 4.14G 23.09 6.85
+ SCA (ours) 25.56M 4.16G 22.48 6.30

MobileNetV2 3.51M 0.32G 28.36 9.80
+ CHA 3.53M 0.32G 27.62 9.47
+ CWA 3.54M 0.32G 27.68 9.53
+ SCA (ours) 3.51M 0.32G 27.34 9.21
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4.4. Grad-CAM Visualization

To evaluate the effectiveness of the proposed method in locating and identifying objects
of interest, sample visualizations are provided utilizing the Grad-CAM [22] techniques.
Figure 5 is the gradient visualization based on Resnet-50, where the ground-truth label at
the top is cock and the bottom is the Greater Swiss Mountain dog.

The visualizations shows that the proposed method can help to locate target objects
and improve the performance of CNNs.

(a) (b) (c)

Figure 5. Visualization of Grad-CAM results based on ResNet-50; (a) original images; (b) ResNet-50;
(c) ResNet-50 with SCA.

5. Conclusions

In this paper, we proposed an attention mechanism that does not involve dimension-
ality reduction, namely Spatial channel attention (SCA). SCA can capture cross-dimensional
interaction information, including direction-aware channel information and channel-sensitive
spatial information, which can help to improve the performance of the model image classi-
fication. Because SCA is a lightweight general module, it can be flexibly plugged into any
convolutional neural network.

In the future, we plan to replace standard convolution with dilated convolution in the
proposed method, aiming to reduce the computational cost while increasing the receptive
field. We intend to apply SCA to object detection and other visual tasks and consider
adding time-aware information to adapt to video-related tasks.
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