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Abstract: Ensemble learning techniques are widely applied to classification tasks such as credit-risk
evaluation. As for most credit-risk evaluation scenarios in the real world, only imbalanced data are
available for model construction, and the performance of ensemble models still needs to be improved.
An ideal ensemble algorithm is supposed to improve diversity in an effective manner. Therefore, we
provide an insight in considering an ensemble diversity-promotion method for imbalanced learning
tasks. A novel ensemble structure is proposed, which combines self-adaptive optimization techniques
and a diversity-promotion method (SA-DP Forest). Additional artificially constructed samples,
generated by a fuzzy sampling method at each iteration, directly create diverse hypotheses and
address the imbalanced classification problem while training the proposed model. Meanwhile, the
self-adaptive optimization mechanism within the ensemble simultaneously balances the individual
accuracy as the diversity increases. The results using the decision tree as a base classifier indicate
that SA-DP Forest outperforms the comparative algorithms, as reflected by most evaluation metrics
on three credit data sets and seven other imbalanced data sets. Our method is also more suitable
for experimental data that are properly constructed with a series of artificial imbalance ratios on the
original credit data set.

Keywords: credit-risk evaluation; ensemble learning; imbalanced classification; diversity promotion;
self-adaptive optimization; fuzzy sampling method

MSC: 91G40; 68U35; 68T10

1. Introduction

Class imbalance is the problem that occurs when a smaller number of samples are
included in one class than in the others. Especially for binary-classification tests, there exists
a typical division into a minority class and a majority class. These imbalanced classification
tasks have challenged existing machine learning algorithms greatly, since most of them were
initially designed for balanced learning tasks. Credit-risk evaluation has been recognized
as a binary-classification task which divides the customers into the categories of good credit
and bad credit in order to determine the applicability of loans for applicants. Meanwhile,
class-imbalance and data-insufficiency problems recur under various kinds of credit-risk
evaluation circumstances with monotonous regularity. However, this stage has substantial
economic importance for the finance industry in the context of credit activities to reduce the
losses caused by wrong decisions. It also benefits enterprises in terms of inner-management
financial risk control. In recent decades, evaluation models based on machine learning
have been studied widely [1,2]. The experimental results demonstrate that the machine
learning models outperform traditional statistical models under most circumstances [3].

However, the balance of the data disturbance is an essential assumption for most
machine learning algorithms, and it can hardly be achieved under real circumstances. In
particular, models such as Artificial Neural Networks (ANNs) need abundant training data
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to achieve excellent performance. In credit-risk evaluation tasks, the number of customers
with high credit risk is far lower than that of normal customers, which results in data
imbalance and insufficiency. This significantly challenges the accuracy and robustness
of these data-mining models. Imbalanced machine learning is of great importance in
such applications.

A great number of studies have been dedicated to handling these imbalanced classi-
fication tasks. Therefore, imbalanced learning strategies have been employed in various
kinds of applications; they mainly include resampling techniques, cost-sensitive learning
and ensemble methods. Resampling techniques belong to data-pre-processing methods,
which generate artificial data before model construction. However, the effects are limited
when encountering data that are either extremely imbalanced or insufficient, for the valid
information on which artificial-sample generation based on is, therefore, insufficient. Cost-
sensitive approaches assign a higher misclassification cost to the minority class than the
majority class. However, the disadvantage is the lack of recourse to set the appropriate
values in the cost matrix. Ensemble methods combine several base classifiers to obtain a
prediction with an accuracy that is mostly superior to other single classifiers. Meanwhile,
they can also handle class-imbalance problems. Instead of pre-processing the experimental
data, some researchers deal with data imbalance by improving the algorithm itself, such as
the BalancedRandomForest algorithm proposed by Chao Chen and Andy Liaw [4].

As for ensemble learning, diversity and accuracy are two main factors for the im-
provement of the performance of the classifier. However, the individual accuracy and the
diversity in the ensemble system are two naturally opposite objects, and it is intractable to
maximize them simultaneously. It has been experimentally verified that the robustness of
the ensemble classifier can be promoted by increasing ensemble diversity. It is now widely
considered that the promotion of diversity can lead to superior performance compared
with other methods when simultaneously balancing ensemble accuracy. Inspired by this,
this study proposes an ensemble algorithm that manages to balance the accuracy as well as
increasing the diversity when taking the data-imbalance problem into consideration.

The main innovative feature of the novel ensemble model is that it provides an insight
in an ensemble-diversity-promotion method for imbalanced learning tasks. We generate
borderline-fuzzy samples for diversity promotion that directly create diverse hypotheses
and address the imbalanced classification problem while training the proposed model. A
self-adaptive optimization mechanism within the ensemble simultaneously balances the
individual accuracy as the diversity increases. The paper is organized as follows: Sec-
tion 2 summarizes the literature related to ensemble approaches and imbalanced learning.
Section 3 presents the detailed methodology of the proposed algorithm. The experimental
design is represented in Section 4. The data sets we used and the comparative algorithms
are shown, and the experimental process is also presented. In Section 5, the experimental
results are presented, and an analysis is conducted to illustrate the performance of the
model. We outline our conclusions and future expectations in Section 6.

2. Literature Review

A great number of research studies have been made on ensemble learning and im-
balanced learning approaches. In this section, the evolution of ensemble learning and its
important issues are introduced. As the topic of this paper is credit-risk assessment, the fol-
lowing discussion only includes classification cases. Additionally, some common methods
to reduce the negative effect of imbalanced samples are also elaborated in the following.

2.1. Ensemble Approaches

Ensemble learning has been proved to be an effective machine learning model applied
to data-mining tasks. As the features and sizes of the data used in these tasks have become
harder to classify in the past few decades, further developments have been made to the
classification algorithms. However, the various kinds of single classifiers cannot effectively
solve all the problems and meet developing needs. Therefore, ensemble methods have
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been studied and widely applied to various kinds of tasks. A great number of studies have
proved that the performance of ensemble classifiers is often superior to that of individual
classifiers. Dietterich [5] reviewed some original methods, such as Bayesian averaging,
and some modern methods, such as boosting and bagging. Kuncheva [6] revealed the
superiority of ensemble models under the diversity aspect.

2.1.1. Ensemble Classifier and Hybrid Ensemble

Ensemble learning is prevalent in various domains, and the studies on this topic can
be mainly categorized into those analyzing the ensemble classifier and those dedicated to
the hybrid ensemble. Ensemble-classifier studies mainly focus on the algorithms and their
decision making. Classical ensemble algorithms such as bagging, boosting and stacking
have all been applied to classification tasks such as credit scoring. A comparative study [7]
indicated that ensemble classifiers can substantially improve performance in comparison
with individual classifiers. It also verified that bagging performs better than boosting
in all credit data sets, while stacking and bagging ensemble algorithms obtain the best
performance. Tomczak [8] used the boosting method to construct an extreme gradient
lifting tree ensemble model, which is applied for predicting credit bankruptcy risk. Their
model also takes advantage of synthetic features. He and Zhang [9] used RandomForest
and the extreme gradient lifting tree as the basic classifier for ensemble learning. In addition,
their model also combines stacking with the extended balance cascade approach in order
to obtain a three-stage ensemble to adapt to different ratios of imbalanced data sets.

On the other hand, hybrid ensemble studies mainly focus on the combination of feature
selection or parameter optimization before classification. Eletter [10] proposed a network
to support the decision making of Jordanian commercial banks. The best parameters
of the neural network were found by applying the genetic algorithm. Several feature
selection methods were compared in Fatemeh’s study [11], and the Principal Component
Analysis (PCA) was considered the best feature-selection method to build a hybrid model.
Other scholars focused on the breakthrough of the dimension-reduction algorithm before
classifier modelling. Jadhav [12] and Nali [13] also conducted research in the field of
hybrid ensemble.

2.1.2. Ensemble Diversity

The diversity of the ensemble classifier is regarded as the most important question in
ensemble learning. It represents the difference between the base classifiers of an ensem-
ble model. Only by gathering single classifiers with diversity can we combine them to
reduce the variance error without increasing the bias error [14]. However, some scholars
showed that the correlation between ensemble diversity and performance is not so obvious,
and individual accuracy is considered the most crucial factor, rather than ensemble diver-
sity [15]. It is now widely considered that the promotion of diversity can lead to superior
performance when we simultaneously balance ensemble accuracy.

However, there is still not a complete understanding of diversity, neither do we have
a precise measure that can be widely accepted. At present, the measure of ensemble
diversity is mainly based on the prediction of the validation set. Even though many
different measures have been proposed in the literature, studies such as Tang [16] imply
that the exact form of diversity measurement which can effectively guide the construction
of ensembles has not been discovered. In this study, we propose a kappa coefficient for
diversity measurement, which was first used by Dietterich [17], in order to intuitively
display ensemble diversity in a two-dimension graph. The graph is well known as a
‘kappa error’.

Many ensemble algorithms enhance their diversity in their own ways. Some commonly
used ensemble methods, mainly divided into boosting or bagging, generate diversity based
on certain algorithms. A famous boosting algorithm, Adaboost [18], promotes its diversity
by re-weighting the existing training data after each iteration. Bagging predictors [19]
use the bootstrap sub-sampling method to improve diversity, while RandomForest [20]
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further improves ensemble diversity by randomly choosing a feature subset during mod-
elling. Geurts [21] introduced the extremely randomized trees technique, which consists of
randomizing both feature selection and cut-point choice while splitting a tree node; this
can further increase the diversity and reach a better result than RandomForest. Another
idea, named rotation forest [22], simultaneously encourages individual accuracy and di-
versity within the ensemble by applying PCA on the training feature subset, offering a
rotated feature space for a base classifier. Maudes [23] proposed random feature weights
for constructing ensembles of decision trees in order to increase diversity by introducing
randomness. Hu [24] proposed a novel ensemble learning algorithm that aims at improving
the margin distribution of the combined system over the training set; therefore, diversity is
exploited by optimizing the margin distribution. Adding artificial data into the training set
is another way to improve ensemble diversity. Melville and Mooney [25] generated artificial
data based on the Gaussian distribution defined by the mean and standard deviation from
the original training set. The algorithm they proposed reduces the correlation between
individual classifiers by labeling these artificial data oppositely before offering them to the
ensemble. Zhang and Zhou [26] exploited unlabeled data to facilitate ensemble learning by
helping the augmentation of diversity among the base classifiers.

However, ensemble diversity and ensemble accuracy are usually two opposite objects
that can hardly be maximized simultaneously. It is unavoidable that the individual accuracy
dramatically decreases when the diversity increases [27]. Mao [28] exploited the correlation
among individual classifiers and their corresponding weights by constructing a joint
optimization ensemble model to balance the diversity and accuracy. In a study by Ren [29],
an ensemble learning approach that uses a two-phase accuracy bee-colony algorithm was
proposed to balance the accuracy and diversity. In this paper, a novel method is also
proposed to balance accuracy and diversity in a certain way.

2.2. Imbalanced Learning

In some cases, rare events happen much less frequently and are hard to detect. This
results in a class imbalance and an insufficiency of data provided for data-mining model
construction. However, the misclassification of these rare events would cause enormous
losses, especially in fields such as credit-risk evaluation. Therefore, many imbalanced
learning strategies have been proposed to cope with imbalanced and insufficient classifi-
cation tasks; they are mainly categorized as resampling [30], ensemble methods [31] and
cost-sensitive learning [32].

2.2.1. Resampling

Resampling methods manage to cope with imbalanced classification tasks at the data
level, which is independent of the learning algorithm. However, consensus has not been
reached among researchers regarding which resampling method is the best, for there is
not a method that maintains the best performance under various circumstances [33]. The
types of resampling methods are mainly divided into three groups, as many scholars have
acknowledged [34]: over-sampling, under-sampling and hybrid sampling. A famous over-
sampling method called the synthetic minority over-sampling technique (SMOTE) [35]
has been applied to many kinds of imbalanced classification tasks, such as clinical data
analysis [36], credit-risk evaluation [37], information technology, etc. However, it may
generate redundant information or even indicate the wrong direction for classifier construc-
tion. Therefore, various improvements have been made based on the synthetic minority
over-sampling technique (SMOTE) [38,39] with respect to its weakness. Scholars such as
Niu [40] also proposed a new sampling method, while facing the credit-scoring task of P2P
lending, in order to solve the misclassification of the majority class as well as maintaining
the prediction accuracy of the minority class. Under-sampling is also commonly used; it
consists of randomly selecting samples from the majority class to be dropped to decrease
its size to that of the minority class. However, it often causes a great loss of information
in the majority class when the data are extremely imbalanced and insufficient. Hybrid
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methods are the combination of over-sampling and under-sampling. In many applications,
hybrid ensemble methods are designed to make a breakthrough on the current resampling
techniques [41,42]. Besides, novel resampling techniques based on the cluster method also
draw great attention. Nekooeimehr [43] proposed a semi-unsupervised hierarchical cluster-
ing approach to cluster the minority instances and then oversample them in terms of their
distance to the majority class. However, this data-pre-processing method is not so effective
and can hardly maintain its competitive edge when facing extremely imbalanced problems.

2.2.2. Ensemble Methods

Ensemble-based methods have been found to be more and more effective for class
imbalance problems in recent years. As boosting and bagging are the two main ensemble
paradigms in ensemble learning, they are also popular solutions when combining them
with resampling methods or cost-sensitive learning. EasyEnsemble and balance cascade are
two classical ensemble methods that can overcome the deficiency of under-sampling [44].
They draw balance subsets from original data randomly or with guide removal at each
iteration and are used to train an Adaboost ensemble. RUSBoost and SMOTEBoost were
proposed in another study [45], which also combined Adaboost with sampling techniques.
Apart from these iteration-based ensembles, parallel-based ensembles can also provide
good results. The BalancedRandomForest classical algorithm was proposed based on the
RandomForest algorithm. At each iteration, the bootstrap samples are drawn from the
minority class, and the same number of samples are drawn from the majority class. It
obviously shows a better performance than other algorithms. Sun [46] stated that the
current ensemble model may suffer from unexpected mistakes and rise in generalization
errors when altering the data distribution. Therefore, he proposed a novel ensemble
model based on the parallel ensemble and reached a better result when solving highly
imbalanced problems.

In recent years, researchers have begun to introduce ensemble classifiers to the field of
credit-risk evaluation. A DBN-based resampling SVM ensemble learning paradigm was
introduced by Yu [47] in credit-risk assessment. The bagging resampling method is used
to generate the training subset. It applies SVM as a base classifier and is then integrated
by a DBN model, which is quite different from classical ensemble paradigms. Jie Sun [48]
combined sampling techniques with a parallel ensemble to form a new decision tree
ensemble framework based on SMOTE, bagging and DSR. This introduces different over-
sampling rates to SMOTE, and therefore diversity, into the ensemble, outperforming other
models for imbalanced enterprise-credit evaluation. Leopoldo [49] introduced dynamic
selection techniques to solve imbalanced credit-scoring problems, as they show advantages
over static learning models. Some other scholars also made improvements in this field [50].

2.2.3. Cost-Sensitive Learning

Different from resampling methods and ensemble methods, cost-sensitive learning can
handle imbalanced data without altering the data distribution. In this case, we assume the
cost of misclassification, with respect to the cost under real circumstances. Cost-sensitive
learning is often used together with certain classification algorithms such as weighted
RandomForest. However, cost-sensitive methods are used much less frequently than
resampling techniques and ensemble methods, as the misclassification cost cannot be
estimated accurately.

3. Methodology

The imbalance and insufficiency of samples are questions that trouble the field of credit-
risk evaluation. As ensemble methods are among the most useful methods in imbalanced
classification tasks, this paper provides an insight in effectively integrating the methods
that can enhance ensemble classification performance in imbalanced classification tasks. As
promoting diversity to a proper degree while simultaneously balancing accuracy is essential
for ensemble learning, SA-DP Forest integrates these two aspects into imbalanced learning.
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This novel ensemble learning algorithm combines two essential structures, self-adaptive
optimization techniques and a diversity-promotion method, which focus on ensemble di-
versity and individual accuracy, respectively. The diversity-promotion method works based
on artificially constructed samples which are generated by a fuzzy sampling method at each
iteration of training a base classifier. It directly creates diverse hypotheses and addresses
the imbalanced classification problem while training the proposed model. Meanwhile,
the self-adaptive optimization mechanism within the ensemble simultaneously balances
individual accuracy as the diversity increases. These two aspects are the fundamental
elements of SA-DP Forest.

3.1. Fuzzy Sampling Method

At each iteration of training the base classifier, we selected the imbalanced data subset
from the original training data. Then, we balanced the training subset of a base classifier by
constructing artificial samples.

To overcome the weakness of random over-sampling, Chawla et al. put forward
the SMOTE (synthetic minority oversampling technique) algorithm for class-imbalanced
classification. Its basic assumption is the random constructing of an artificial sample
between two real minority-class samples. For a minority-class sample vector x, its K nearest
neighbor is selected by the Euclidean distance. According to the proportion of minority
samples and other samples, the nearest minority samples xi are selected. For all randomly
selected nearest-neighbor samples xi, a new sample xn is constructed as follows:

xn = x + random(0, 1) ∗ di f (xi − x) (1)

We proposed a fuzzy sampling method based on Equation (1) to promote diversity
in the ensemble by constructing unexpected artificial samples. The boundary of different
classes is obfuscated by artificial samples generated from this fuzzy sampling method. The
class of artificial samples is randomly decided.

This fuzzy sampling method is effective mainly due to its borderline-fuzzy operation.
As artificial samples contribute to the increase in ensemble diversity, training samples
generated with a proper fuzzy operation can theoretically further contribute to this increase.
This fuzzy operation focuses on the samples on the borderline of each class. The borderline
sample is distinguished by the value of Pmin. For a sample in the original data set, Pmin
represents the proportion of samples belonging to the minority class in its K nearest
neighbors. If the K nearest neighbors of a sample all have the same kind of label, then Pmin
equals to 1 or 0. It is regarded as an internal sample, for its nearest neighbors all belong to
the same class. Intuitively, the borderline samples are located when Pmin is not equal to 1 or
0. For a borderline sample xi, a random vector Irandom with the same length of vector xi
is constructed, and it contains different random numbers between 0 and 1. An artificial
sample is generated as follows:

xn = xi + Irandom ∗ di f (xk − xi) (2)

where di f (xk − xi) is the difference vector of sample xi and one of its nearest neighbors
xk. SMOTE generates artificial samples in the linear space between xi and xk, as it utilizes
just one random number to determine the random distance between xi and xn. This fuzzy
sampling method proposes a random vector Irandom substitute for the random number,
which results in the position of the artificial sample being located randomly in all directions.

For each artificial sample we generated as a borderline sample, its label is randomly
defined according to Pmin. The probability that it belongs to the majority class and minority
class are 1− Pmin and Pmin, respectively. This fuzzy operation makes the borderline between
the minority class and the majority class not so explicit. Figure 1 shows the comparative
application of SMOTE and this fuzzy sampling method on simulated original data. The
green points represent the minority class samples and blue points represent the majority
class samples. The artificial samples generated by the fuzzy sampling method are mainly
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located on the borderline. With the uncertainty of label definition, the borderline is not so
intuitively explicit in comparison with the SMOTE over-sampling method.
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As there are no accurate metrics to measure ensemble diversity, the validity remains
uncertain with the increase in diversity by focusing on a specific manmade metric. However,
diversity has been proved to be able to be increased by artificial sample disturbance,
although we cannot measure it accurately. This fuzzy sampling method can generate
diversity in the ensemble by introducing fuzzy artificial samples into model construction.
The numbers of artificial samples are controlled by a fuzzy rate f ( f > 1). As the number
of original samples is a, the upper number limitation of artificial samples is ( f − 1) ∗ a. The
specific process is shown in Algorithm 1.

Algorithm 1 Artificial Sample Construction

Input:
Training subset TS = {(x1, y1), (x2, y2), . . . , (xa, ya)}
f : A fuzzy rate which controls the numbers of artificial samples ( f > 1)
For a sample, (xi, yi) belongs to minority class:

(1) If the numbers of sample in TS smaller than f ∗ a:
(2) Calculate the distance and select K nearest neighbors. Pmin is the probability of the

occurrence of minority samples within K nearest neighbors.
(3) If Pmin 6= 1:

(1) Generate a vector Irandom with the same length of vector xi, which contains random
numbers between 0 and 1;

(2) Randomly choose a sample xk from K nearest neighbors. An artificial sample xn is
generated by xn = xi + Irandom ∗ di f (xk − xi);

(3) Randomly select the label yn for the artificial sample. The probability it respectively
belongs to minority class and majority class is (Pmin, 1− Pmin);

(4) TS = TS ∪ (xn, yn).

Output : Training subset TS = {(xi, yi)}

3.2. Self-Adaptive Optimization

The optimization mechanism within the ensemble is a self-adaptive controlling method
based on a simulation test. It focuses on balancing the individual accuracy while the
diversity increases. Several data subsets are randomly selected from the original training
set as a function of the validation of the ensemble generalization ability in order to stimulate
the application environment under various circumstances. At each iteration, a simulation
environment is randomly selected to test whether a base classifier is able to join the
ensemble or train another one. The data subset in the simulation test is also obfuscated by
the fuzzy sampling method with a parameter f (Algorithm 1). These operations simulate
the randomness of events in reality. The value of f is used to simulate the complexity of a
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real data set, for the more diversity the environment contains, the more artificial samples
need to be generated.

Acc+C+1 + µ ∗ Acc−C+1 > Acc+C + µ ∗ Acc−C (3)

These scores are computed through a simulation test of the ensemble before and after
adding a new base classifier. C represents the ensemble model before adding a new base
classifier, and C + 1 represents the ensemble model after adding a new classifier. The
formula indicates that the base classifier is accepted if the inequality holds.

3.3. The Algorithm of the SA-DP Model

The original data are input into the model as samples. The input parameter N repre-
sents the limitation on the numbers of base classifiers. Parameters µ and f depend on the
specific data set.

At each iteration, in order to construct a subset to train the base classifier for the
ensemble, minority-class samples and majority-class samples are randomly extracted from
the original data set. Then, a decision tree is trained by the training subset, and the
simulation test is used to decide to add the decision tree to the ensemble model.

The composition of the training set plays a significant role when training a base
classifier. A larger proportion of samples provides more valuable information about the
class to which these samples belong. Based on this assumption, we designed the self-
adaptive mechanism of SA-DP Forest. At iteration C, the size of the samples in the two
classes of the training subset is controlled by the sampling ratio Rc−1. Rc−1 equals to the
division of Acc−C−1 and Acc+C−1, which is computed at the previous iteration. At iteration
C, the size of the real minority class in the training subset, which is extracted from the
original minority class, is j ∗ Rc−1, where j is the sample size of the minority class in the
original data set. This illustrates that the higher Acc+C−1 is, the bigger Rc−1 is. Therefore,
the minority samples extracted at iteration C become larger and make up a greater part
of the training subset. Similarly, the size of the real majority class in the training subset
extracted from the original majority class is j/Rc−1. In order to integrate uncertainty into
the training subset and improve the diversity within each individual classifier, the numbers
of artificial samples controlled by f are generated and added to the training subset before
they are offered to train the individual classifier.

If the base classifier trained at iteration C is accepted, then Rc is generated for iteration
C + 1. Sampling rate Rc is the key element of the self-adaptive adjustment. The specific
process at each iteration is shown in Table 1. As a result, the balance of the classification
accuracy in the two classes is adjusted self-adaptively, meanwhile adding diversity to the
ensemble.

Table 1. The real sample number at each iteration.

Iteration Number Real Minority
Sample Size

Real Majority
Sample Size R (Acc+

C/Acc−C )

1 j j R1
2 j ∗ R1 j/R1 R2

. . . . . . . . . . . .
C j ∗ Rc−1 j/Rc−1 Rc

The algorithm of the SA-DP model is here stated in Algorithm 2.
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Algorithm 2 SA-DP Forest

Input:
•The training set X = {(x1, y1), (x2, y2), . . . , (xa, ya)}
•N—The limitation of the base learning algorithm number
•Parameters µ and f
BaseLearner(T)—Single decision tree trained by subset T
C—The number of base classifiers in the ensemble model. (C = 1, 2, . . . , N)
EC—The ensemble learning model in iteration C
RC—The sampling ratio in iteration C
T+—The samples in majority classes
T−—The samples in minority classes
Randomly extract several subsets from T+ and T− respectively, then change the sample
distribution by the fuzzy operation (Algorithm 1). These subsets are constructed as verification set
(TV) for the simulation test.
C = 0
Set the initial sampling ratio Rc = 1
Accuracy = 0
E0 = φ

While C < N:

(1) Randomly extract T+
′

and T−
′

as the training subset. T+
′

is extracted with replacement from
T+. The size of T+

′
is j/Rc−1. T−

′
is randomly extracted from T−. The size of T−

′
is j ∗ Rc−1;

(2) Construct artificial samples by the fuzzy operation (Algorithm 1) with parameter f ;
(3) Extract random features. The feature space size is

√
b. The new subset is denoted as T;

(4) Train a decision tree by T. Denote the decision tree as BaseLearner(T);
(5) Ec+1 = Ec∪ BaseLearner(T);
(6) Randomly choose a data set from TV. Compute the accuracy of EC on both of the majority

class and minority class, denoted as Acc+C and Acc−C , respectively, and do the same
operation on EC+1, which obtain Acc+C+1 and Acc−C+1;

(7) If Acc+C+1 + µ ∗ Acc−C+1 > Acc+C + µ ∗ Acc−C

Let Rc = Acc+C /Acc−C
C = C + 1

(8) Else

Ec = Ec-BaseLearner(T)
Output: SA-DP Forest ensemble model

To classify an unlabeled sample, the hard-voting technique is applied. Each base
learner within the ensemble provides a result ˆyEi(i = 1, 2, . . . , C), ˆyEi = 1 or 0. The number
of two classes, y+ = countif( ˆyEi = 1), y− = countif( ˆyEi = 0), is compared. The label of an
unknown sample predicted by the ensemble learning model belongs to the majority one.

3.4. Operation Mechanism of SA-DP Forest

The diversity and accuracy of the ensemble system are usually opposite objects. An
ensemble with high diversity may result in sacrificing the accuracy of the model. However,
some preliminary ensemble algorithms consider maximizing the diversity and individual
accuracy simultaneously by measuring proposed specific metrics which indicate diversity
and accuracy. The effectiveness of these methods remains to be discussed. SA-DP Forest
manages to increase diversity in imbalanced classification tasks in another way, and its
effectiveness is illustrated below.

The self-adaptive optimization method is designed to control ensemble accuracy.
The optimization mechanism considers the self-adaptive controlling method based on a
simulation test. At each iteration of the simulation test, the size of the artificial samples
in the two classes is indirectly controlled by sampling ratio R. During the process of the
optimization method, the adjustment of the training set at later iterations makes up for the
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classification deficiency of the ensemble model at the previous iteration. As the samples in
the simulation test contain fuzzy artificial samples, this self-adaptive optimization method
could adaptively improve ensemble accuracy when proposing the diversity-promotion
method.

The fuzzy sampling technique that generates the synthetic samples is the most impor-
tant diversity-promotion method within the novel ensemble. This fuzzy sampling method
generates artificial samples which contain a certain randomness. Additionally, the design
of SA-DP Forest focuses on improving the diversity of the base classifier. The design of
diversity promotion in this research study is as follows:

(a) Decision tree is a classifier which is sensitive to the differences in input training samples;
(b) The model randomly extracts sample subsets at each iteration and randomly extracts

a feature subset in order to form the training data subset;
(c) Artificial samples are generated based on the fuzzy sampling method. The artificial

samples obtain more diversity and uncertainty according to the fuzzy operation.
The artificial samples can directly create diverse hypotheses while training the pro-
posed model;

(d) The training subsets are extracted from the original data before building the model
to simulate the diversity under real circumstances. The fuzzy artificial data are also
introduced in the simulation test. Each of the verification sets has a different compo-
sition and distribution, so that they can diversify the applicable data distribution of
each decision tree and diversify the base classifier.

4. Experimental Design
4.1. Data Set Description

In order to test the performance of our proposed algorithm on imbalanced data, and
to ensure the reliability and availability of our proposed algorithm, we applied SA-DP
Forest to the credit-risk data of Germany, Taiwan and China. The Chinese SME data set was
obtained from Choice Financial Terminal, and the other data sets were obtained from UCI
data sets. In the Chinese SME data set, the Chinese authorities marked some companies
with ‘ST’ and ‘*ST’, which alert market investors of their financial distress. We defined
all these companies as being at a high-risk level, while the others remained at a low level
of credit risk. The overall information of all these data sets is given in Table 2 with the
numbers of samples, features, classes and original imbalanced ratio (IR). As credit-risk
evaluation is a binary classification task, the labels of the samples were all divided into two
classes. Three of them were originally imbalanced. As world economic activities greatly
deviated from normal due to the COVID-19 pandemic, the credit data of Chinese SMEs in
2020 and 2021 were not considered in the study.

Table 2. Information of credit data sets.

Experiment Data
(Credit Risk Evaluation)

Numbers
IR

Features Classes Samples
German 20 2 1000 2.33

Chinese SMEs 20 2 1000 13.08
Taiwanese Bankruptcy 95 2 6819 29.99

The features for Chinese SMEs had to be selected in our experiment. According to
previous studies and the international standard, this study selected several original features
regarding four aspects: profitability, solvency, operating ability and growth ability (Table 3).
Profitability means the ability of an enterprise to use current resources in order to create
profits. Solvency represents the debt-paying situation of the enterprise in the previous
periods, so that it can reflect its credit status. Operating ability indicates the operating
efficiency of an enterprise, mainly referring to the efficiency and benefit of its operating
assets. Growth ability reflects the speed of enterprise development and the expectations for
the future.
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Table 3. Features.

Num. First Level Second Level

1

Solvency

Current ratio
2 Quick action ratio
3 Cash ratio
4 Net assets debts ratio
5 Equity ratio
6 Interest coverage ratio

7

Profitability

Return on equity
8 Net profit margin on sales
9 Return on total assets ratio

10 Ratio of profits to cost and expense
11 Net interest rate on total assets
12 Net operating interest rate

13 Operating
ability

Inventory turnover ratio
14 Total assets turnover
15 Receivables turnover ratio

16

Growth
ability

Net assets growth rate
17 Increase rate of main business revenue
18 Total assets growth rate
19 Growth rate of operating profit
20 Net profit growth rate

We also selected seven imbalanced binary data sets from the KEEL repository to
illustrate that SA-DP Forest is not limited to credit-risk evaluation, but that it also performs
well in other imbalanced classification situations. The overall information of all these data
sets is given in Table 4.

Table 4. Information of other imbalanced data sets.

Experiment Data
(Other Applications)

Numbers
IR

Features Classes Samples

yeast3 8 2 1484 8.1
ecoli-0-1-4-7_vs_5-6 6 2 332 12.28

yeast4 8 2 1484 28.1
winequality-red-4 11 2 1599 29.17

winequality-red-8_vs_6 11 2 656 35.44
yeast6 8 2 1484 41.4

winequality-red-3_vs_5 11 2 691 68.1

Additionally, credit-risk data sets with different imbalanced ratios were also adopted
in the experiment. We resampled the data sets of German credit in order to construct a
series of experimental training sets with different imbalance ratios. As it is shown in Table 5,
by randomly dropping samples from the minority class, we constructed 28 imbalanced
training sets with different imbalance ratios. Therefore, the simulated circumstances ranged
from being slightly imbalanced to extremely imbalanced.

Table 5. Information of credit simulation data sets.

Experiment Data
(Simulation)

Numbers
IR

Features Classes Samples

Datasets constructed with
different imbalanced ratio

based on German credit dataset

20 2 933 3
20 2 875 4
. . . . . . . . . . . .
20 2 723 30
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4.2. Data Pre-Processing

Before the experiments, we pre-processed the original data sets. Firstly, regarding the
Chinese SME data set obtained from the real market, there were missing values in some
features. Except for the missing values of the interest protection multiple, which were large,
the missing values of the other features were all below 20. Therefore, the mean-value filling
method was used to fill in the eigenvalues that were very small. Since the interest guarantee
multiple is an important feature to measure the long-term solvency of an enterprise and is
important for credit-risk evaluation, the missing value of this feature was filled with the
missing forest method. Additionally, there were no missing values in other imbalanced
data sets obtained from the UCI and KEEL repositories.

As the original data of the features were different from each other by having different
sizes of numeric ranges, those with larger numeric ranges may have had a larger impact on
the target value. Data standardization was applied to alter the data in different features
into same scale. The original data xi were transformed by the following formula (x: mean,
σ: std) into the new yi:

yi =
xi − x̄

σ
(4)

4.3. Performance Evaluation

The assessment of the model proposed in this experiment was evaluated by certain
measures of performance. The description of these measures is explained by the confusion
matrix presented in Table 6.

Table 6. Confusion matrix.

Actual Classification
Prediction

Bad Customer Good Customers

Bad customers True Positive
TP

False Negative
FN

Good customers False Positive
FP

True Negative
TN

The different parts of the confusion matrix can be described as follows in terms of
class prediction:

• TP: Actual instances with bad credit that are predicted as bad;
• FN: Actual instances with bad credit that are predicted as good;
• FP: Actual instances with good credit that are predicted as bad;
• TN: Actual instances with good credit that are predicted as good.

According to the above explanation, four types of measures were chosen, that is,
accuracy, recall, G-mean and AUC. Some of them are calculated below:

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

Recall =
TP

TP + FN
(6)

G−mean =

√
TN

FP + TN
∗ TP

TP + FN
(7)

Accuracy was considered as the ratio of a model’s correct prediction among the total
number of instances. Recall was considered as the ratio of a model’s correct prediction
among the total number of instances with bad credit. G-mean was considered as the
average value of the correct prediction rate among enterprises with bad credit and the
counterparts of enterprises with good credit. AUC, which measures the area under the
ROC curve, was introduced to provide a quantitative measure of a classifier’s performance
for the evaluation of which model was better.
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We also used the kappa coefficient kappai,j to evaluate the diversity between the two
individual classifiers i and j, while the average error

[
(1− accuracyi) +

(
1− accuracyj

)]
/2

was also computed to form a kappa-error graph. accuracyi refers to the accuracy rate of the
ith individual classifier on the test data. Meanwhile, the following metrics are the average
kappa coefficient and average error of the total ensemble, respectively, where N is the
number of individual classifiers:

kappa(average) =
1

N2

N

∑
i=1

N

∑
j=1

kappai,j (8)

error(average) =
1

N2

N

∑
i=1

N

∑
j=1

1
2
[(1− accuracyi) +

(
1− accuracyj

)
] (9)

4.4. Experiment Design

An empirical study was conducted to validate the performance of AB-DP Forest.
The experiments were conducted using Python software, version 3.8. To illustrate the
performance of the proposed method, six ensemble methods for imbalanced classification
tasks were compared in our experiments, and their differences are listed in Table 7.

Table 7. Description of methods.

Abbreviation Method Category Description

BRF BalancedRandomForest

Imbalance ensemble method

The base learner of RandomForest is trained
by the balanced subset in each iteration.

RB RUSBoost
The base learner of Adaboost is trained by

the dataset balanced by random
undersampling in each iteration.

EEC EasyEnsemble Bagging with undersampling of the majority
class and Adaboost.

SB SMOTEBoost
The base learner of Adaboost is trained by

the dataset balanced by SMOTE in
each iteration.

RF RandomForest Ensemble method
The simple RandomForest algorithm, which

is mostly used for the balance
classification task.

SRF SMOTE+RandomForest Sampling method
RandomForest trained by the dataset

balanced by SMOTE, which represents the
sampling method.

We set the initial ensemble size as 50 individual decision trees within these proposed
models, which then remained unchanged in Observations 1–3. A five-fold CV was adopted
to divide the data sets into training parts and testing parts. The training parts were used
to learn the classifiers. The testing parts were used to calculate the evaluation metrics
mentioned above. Then, the experiment on these data sets was carried out. There were
three main observations. The details are presented as follows:

Observation 1: This research study first ran the models on the three credit data sets.
This was performed to verify the robustness of the model on different credit-risk appli-
cations. Seven other imbalanced data sets were provided for expanding the applications
to various imbalanced classification tasks. Then, the evaluation metrics were proposed to
show the performance of these models.

Observation 2: An observation was made on the internal structure of the ensemble. As
diversity promotion is the key of our proposed model, a kappa-error diagram was applied
to demonstrate the diversity versus error between base classifiers. The average kappa
coefficient and average error were computed for the seven algorithms on the three credit
data sets.
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Observation 3: The research study resampled the German credit training set in order
to construct a series of experimental training sets with different imbalance ratios. The
performance of each algorithm was analyzed under different circumstances of credit-risk
evaluation. The curve, according to the evaluation metrics, was then drawn.

5. Experimental Analysis
5.1. Observation 1: Performance on Different Data Sets

The ensemble model we propose was designed for imbalanced classification tasks,
especially credit-risk evaluation. In this section, we first discuss the results on credit-risk
data sets.

As SA-DP achieves a better diversity, it seems to have an edge over the other multi-
stage integrated methods and ensemble classifiers mentioned above. In the case of credit-
risk evaluation, the experiment was conducted on the German credit data set, the Taiwanese
bankruptcy data set and the Chinese SME data set. For each data set, five-fold stratified
cross validation was used to divide the data sets into training parts and testing parts
for evaluating the performance of each method. The accuracy, recall, G-mean and AUC
on total validation set were applied for these measurements. The experiment results
are summarized in Table 8, where we present the prediction among the credit data sets,
which provides us with a clear illustration of the models’ classifying ability for each
class. Furthermore, the results of the classifier on other imbalanced learning data sets are
presented in Table 9.

Table 8. Evaluation of model performance on credit risk datasets (%), the bold represent the
optimal result.

Balance Ensemble Models Boosting Imbalance Ensemble Bagging Imbalance Ensemble Proposed Method

AUC RF SRF SB RB BRF EEC SA-DP

Chinese SMEs 92.67 91.21 88.34 78.40 92.25 93.59 93.79
German credit 74.91 74.17 70.10 71.74 73.45 71.77 76.37

Taiwanese
bankruptcy 89.92 91.48 91.34 85.06 92.73 93.38 93.50

Recall RF SRF SB RB BRF EEC SA-DP

Chinese SMEs 47.50 64.37 55.62 58.72 81.25 90.62 91.25
German credit 30.25 47.75 72.50 67.25 63.50 71.25 77.75

Taiwanese
bankruptcy 12.00 47.33 33.66 62.33 87.66 90.67 90.33

Accuracy RF SRF SB RB BRF EEC SA-DP

Chinese SMEs 73.12 80.93 75.37 71.25 85.31 86.87 86.25
German credit 62.12 64.87 66.37 67.25 67.37 67.75 73.75

Taiwanese
bankruptcy 56.00 71.63 66.16 73.99 85.16 86.83 87.33

G-mean RF SRF SB RB BRF EEC SA-DP

Chinese SMEs 67.92 79.04 72.56 70.02 84.99 86.76 85.57
German credit 53.31 62.53 66.07 67.02 66.37 67.63 73.33

Taiwanese
bankruptcy 34.52 67.14 57.35 72.65 85.09 86.69 87.22

The experiment on all data sets showed that the improvement exerted on the ensemble
model’s performance is not absolute, but depends on the variety of different data sets. For
each measure, the best algorithm among the seven methods is shown in bold-face type.
Table 8 illustrates the outstanding performance of our proposed model on the credit-risk
data sets.

As Table 8 shows, SA-DP achieved the highest result according to the AUC on the three
credit data sets. Accuracy and G-mean reflect the performance of the whole model on both
the minority class and the majority class. According to both metrics, SA-DP achieved the
highest result on the German credit data set and the Taiwanese bankruptcy data set, while
the Chinese SME data set came in second place. Recall represents the prediction accuracy
of customers with bad credit. The ensemble models generally achieved a better recall than
the models without sample-balance methods (RF) or models that balance the data set in a
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pre-processing stage (SRF). SA-DP achieved the highest recall on the Chinese SME data set
and the German credit data set. EasyEnsemble achieved the best result in the Taiwanese
bankruptcy data set, while SA-DP Forest came in second place. Additionally, it is also worth
pointing out that the SA-DP Forest we propose in this paper provided significant better
performance than SMOTEBoost (SB). Both SMOTEBoost and SA-DP Forest adopt synthetic
neighborhoods in their ensemble procedure, but the artificial samples in SMOTEBoost
are composed by synthetic samples generated by SMOTE. This result illustrates that our
proposed fuzzy sampling method within the ensemble can lead to a great promotion of
model performance.

Table 9. Evaluation of model performance on other data sets (%), the bold represent the optimal result.

Datasets RB SB BRF EEC SA-DP

yeast3
Accuracy 90.84 91.58 92.45 90.29 91.42
G-mean 90.84 91.56 92.45 90.29 91.42

AUC 94.98 95.02 97.54 96.93 95.32

ecoli-0-1-4-7_vs_5-6
Accuracy 89.87 89.74 88.24 87.63 90.02
G-mean 89.85 89.33 88.24 87.63 90.00

AUC 94.95 95.81 95.69 96.23 96.53

yeast4
Accuracy 82.87 82.34 83.75 82.41 82.27
G-mean 82.87 82.23 83.25 82.41 82.18

AUC 78.12 81.76 85.70 90.91 89.12

winequality-red-4
Accuracy 70.67 70.93 70.54 63.41 75.04
G-mean 70.66 70.90 69.57 63.41 72.77

AUC 60.12 68.97 71.37 69.73 72.07

winequality-red-
8_vs_6

Accuracy 85.22 86.66 72.40 77.89 83.70
G-mean 85.21 86.64 72.39 77.89 83.06

AUC 77.01 76.51 84.39 86.18 84.65

yeast6
Accuracy 91.84 89.93 88.81 87.93 90.36
G-mean 91.84 89.37 88.81 87.93 89.76

AUC 90.27 90.31 93.69 93.91 94.98

winequality-red-
3_vs_5

Accuracy 91.30 89.74 75.97 76.69 91.61
G-mean 91.30 89.63 75.97 76.69 75.68

AUC 66.51 71.51 75.97 84.31 84.50

As Table 9 shows, we only propose an imbalanced ensemble method for these seven
data sets. The table illustrates that SA-DP Forest maintained a good performance on
different applications. As it achieved the best AUC in four of the seven data sets, it verified
its relative superiority in generalization ability compared with the other four imbalanced
ensemble methods. Moreover, as for the accuracy and G-mean, we can observe that
the proposed SA-DP showed better performance. In addition, ensemble models such as
RUSBoost and SMOTEBoost performed well on originally highly-imbalanced data sets,
while ensemble models such as BalancedRandomForest and EasyEnsemble preferred data
sets that were more balanced. Although SA-DP Forest did not always maintain the best
performance when applied to various imbalanced data sets, it is still competitive with other
algorithms. The results show that the use of SA-DP Forest may be worth expanding to a
wider range of application scenarios.

These results suggest that SA-DP Forest is more competitive in predicting customers
with credit risk when imbalanced information is provided. The superiority of our method
over the other comparative algorithms confirms that utilizing a diversity-promotion method
and balancing the accuracy can bring more benefits than other ensemble techniques in
imbalanced credit-risk evaluation.
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5.2. Observation 2: Diversity and Accuracy

The SA-DP Forest we designed is based on the claim that diversity is critical for an
ensemble model. This can lead to better results in imbalanced classification tasks such as
credit-risk evaluation.

We attempted to validate this by measuring the similarity between two base classifiers
and their average generalization error. The kappa-error graph was applied to reinforce our
claim. The y-axis represents the average generalization error between two base classifiers,
and the x-axis represents the kappa coefficient between them. The kappa coefficient is
a traditional statistic first used by Margineantu and Dietterich to measure the diversity
between two classifiers. The kappa coefficient generally lies in [−1,1], and the bigger the
kappa coefficient is, the greater the diversity between the two classifiers. For instance, the
kappa coefficient is 1 if the predictions of the two classifiers are exactly the same. Moreover,
if it is 0, the predictions of the two classifiers are completely independent. Additionally, if
the kappa coefficient is less than 0, it represents the circumstances whereby the number of
consensuses reached between the two classifiers is less than the expected number when the
classification is totally random.

The experimental results are given by the scatter plot in Figure 2. We compared the
kappa-error diagrams with the seven models. As it is shown, SA-DP Forest and RUSBoost
obtained the value of the scatter on the x-axis direction on the diagrams much closer to 0
than the other five ensemble models. This illustrates that the individual classifiers inside
the ensemble structure were more independent than the other five ensemble models on
the proposed data sets. Meanwhile, the average error of SA-DP Forest was lower than
that of RUSBoost, and this may lead to the superiority of our proposed model compared
with RUSBoost.

To further analyze the details of the ensemble structure, we quantitively studied the
average kappa coefficient and average error of the seven algorithms. The computation
of these two metrics is shown in Section 4.3. After summarizing, we gained the main
information of the kappa-error diagrams as shown in Table 10.

Table 10. Main information of each kappa-error diagram.

kappa(average) SA-DP BR RB EEC RF SB SR

German credit 0.0202 0.1553 0.0417 0.6743 0.1610 0.3293 0.2527

Taiwanese bankruptcy 0.0148 0.5623 0.0152 0.7358 0.2540 0.5137 0.3833

Chinese SMEs 0.1430 0.5090 0.0025 0.6278 0.4996 0.5379 0.5232

error(average) SA-DP BR RB EEC RF SB SR

German credit 0.4746 0.4055 0.4843 0.3369 0.4069 0.4014 0.4013

Taiwanese bankruptcy 0.4473 0.2090 0.4651 0.1738 0.3800 0.4573 0.3076

Chinese SMEs 0.3535 0.2237 0.4710 0.1920 0.3100 0.3652 0.2812

As it is shown, SA-DP achieved the highest average kappa coefficient on the German
credit data set and the Taiwanese bankruptcy data sets. There was a slight difference
between SA-DP and RUSBoost, but this was a significant gap compared with other algo-
rithms. As shown above, SA-DP effectively improved ensemble diversity, while diversity
within the other five ensemble models was lower. Furthermore, we compared the average
accuracy of SA-DP and the comparative ensemble models in the three data sets. However,
as the table indicates, the value of the average error of SA-DP was higher than some of the
other ensemble models. This means that the classification accuracy of each base classifier
in SA-DP may be worse than some comparative methods. This result occurred with all the
data sets. The average error of SA-DP Forest was lower than that of RUSBoost, meaning
that its performance was better than that of RUSBoost. In addition, the average error of
EasyEnsemble was the lowest. However, its average kappa coefficient was high, which
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means a high correlation within the individual classifiers. Its outstanding performance
on individual accuracy helped the entire ensemble model achieve a better performance.
Although SA-DP Forest is not optimal in either of the two indicators, the total classification
ability of SA-DP was better than that of the other methods we have verified. This illustrates
that individual accuracy and ensemble diversity are opposite and crucial for the ensem-
ble to reach equilibrium. The results illustrate that our design of an ensemble structure
which manages to improve ensemble diversity as well as balancing individual accuracy is
effective.
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5.3. Observation 3: Data Sets with Different Imbalance Ratios

The influence of the imbalance ratio plays a significant role in building a classifier.
To determine how the ensemble model’s performance changed according to the different
imbalance ratios of the training data, we ran the following experiment by increasing the
imbalance ratio. The imbalance ratio is defined as the ratio of the number of samples in the
majority class to that of samples in the minority class. The bigger the imbalance ratio is, the
more serious the imbalance of the data in the training set. German credit was chosen as the
experimental data set, for the number of samples in both the majority and minority classes
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was sufficient for artificially constructing a training set with different imbalance ratios.
We intentionally increased the imbalance ratio of the training set by randomly dropping
samples from the minority class until a certain imbalance ratio was reached. As a result,
28 training sets with imbalance ratios from 3:1 to 30:1 were constructed and applied in this
experiment. For instance, when the imbalance ratio was 30:1, the number of samples in the
minority class contained in the training set was 20.

Figures 3 and 4 show the G-mean and AUC of the models according to different
imbalance ratios, respectively. There were five comparative methods included in this
experiment, for they are all imbalanced learning techniques. Five of them were affected
by the increase in the imbalanced ratio to a greater or lesser degree, but the curve did not
show a notable decline in either measure—G-mean or AUC. SA-DP Forest achieved the
highest performance and remained in first place as the imbalanced ratio increased. The
figures of both G-mean and AUC indicate that SA-DP Forest maintained its accuracy and
robustness simultaneously, even with less training information of the minority class being
provided. We suppose that this depends on the self-optimization technique we used and the
artificial samples we generated. The BalancedRandomForest and EasyEnsemble methods
were obviously higher than the RUSBoost and SMOTEBoost algorithms, according to both
metrics. These four algorithms, the strategies of which are based on ensemble modeling,
achieved a higher G-mean than SMOTE+RandomForest. In Figure 4 (AUC), it can be seen
that SMOTE + RandomForest achieved a higher result than RUSBoost and SMOTEBoost.
Compared with basic ensemble learning algorithms, these sampling techniques applied in
the stage of data pre-processing before ensemble modeling did improve the classification
ability on the minority class, according to the figure.
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However, the curves of SA-DP Forest and RUSBoost fluctuated more than those of
the other four algorithms and were unstable. The same occurred with the AUC metric.
We analyzed the uncertainty included in the model construction. As borderline-fuzzy
sample generation and simulation tests all largely depend on randomness, the method to
balance diversity and accuracy in SA-DP Forest might not be as stable as that of the other
comparative algorithms.

Though it may lead to a slight decrease in the model’s robustness, the total general-
ization ability under various credit-risk evaluation circumstances was better on average.
Therefore, the experiment illustrated that SA-DP Forest was more suitable for the task using
extremely imbalanced data while evaluating credit risk as the cost of misclassification.
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6. Conclusions

This paper presents an ensemble method for imbalanced learning tasks where only an
extremely imbalanced data set is available. We introduce the diversity-promotion method
for imbalanced learning while using an ensemble model and simultaneously balancing the
individual accuracy. The proposed method performed better under circumstances of data
set imbalanced distribution than comparative ensemble models and imbalanced learning
methods.

SA-DP Forest was designed based on the diversity-promotion method and the self-
optimization technique. Firstly, artificially constructed borderline-fuzzy data enlarged the
minority class based on a fuzzy sampling technique, which promoted ensemble diversity
as well as addressing imbalanced classification problems. Meanwhile, a simulation test and
an adaptive ratio were applied to the self-optimization mechanism, which can control the
number of artificial data generated in the current iteration based on the parameters from
the last iteration. Several fuzzy subsets were randomly drawn from the training data and
used to optimize the individual accuracy while increasing the diversity.

An empirical study was conducted to validate the performance of SA-DP Forest.
This research study ran SA-DP Forest with six other comparative models on three credit
evaluation data sets, including German credit, Chinese SMEs and Taiwanese credit. The
comparative analysis was also applied on seven other imbalanced data sets. Moreover, the
research study resampled the German credit data set in order to construct experimental data
with different imbalance ratios. The curve was then drawn to measure the performance of
the models.

Although the new method provides an illuminating insight in ensemble learning,
the precise interpretation of ensemble diversity remains an unsolved mystery. Whether
it can be defined by an explicit definition or can only be comprehended intuitively still
needs to be discussed. In future research, ensemble diversity needs to be further analyzed.
Moreover, the theoretic interpretation of randomness in SA-DP Forest and diversity also
needs to be improved in the future. Additionally, as a limitation, this paper focuses solely
on binary classification tasks, which are the main character of credit-risk evaluation. This
new method needs to be applied to multi-class classification tasks and relevant experiments
need to be designed in an appropriate way in future research.

In conclusion, the proposed SA-DP Forest effectively improves diversity by applying
the fuzzy sampling method while balancing individual accuracy as well. It obtained a
better performance than the comparative ensemble learning algorithms in our experiment.
This not only illustrates the outstanding performance of our model in handling imbal-
anced classification tasks but also provides an insight in considering a diversity-promotion
method while applying ensemble models to cases that have data with extreme imbalanced
ratios, such as credit-risk evaluation.
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