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Abstract: This paper addresses a problem faced by maintenance service providers: performing
maintenance activities at the right time on geographically distributed machines subjected to ran-
dom failures. This problem requires determining for each technician the sequence of maintenance
operations to perform to minimize the total expected costs while ensuring a high level of machine
availability. To date, research in this area has dealt with routing and maintenance schedules separately.
This study aims to determine the optimal maintenance and routing plan simultaneously. A new
bi-objective mathematical model that integrates both routing and maintenance considerations is
proposed for time-based preventive maintenance. The first objective is to minimize the travel cost
related to technicians’ routing. The second objective can either minimize the total preventive and
corrective maintenance cost or the failure cost. New general variable neighborhood search (GVNS)
and variable neighborhood descent (VND) algorithms based on the Pareto dominance concept are
proposed and performed over newly generated instances. The efficiency of our approach is demon-
strated through several experiments. Compared to the commercial solver and existing multi-objective
VND and GVNS, these new algorithms obtain highly competitive results on both mono-objective and
bi-objective variants.

Keywords: time-based maintenance; vehicle routing problem; random failures; multi-objective
optimization; variable neighborhood descent; general variable neighborhood search

MSC: 90-08; 90-10; 90B06; 90C27; 90C29

1. Introduction

Large-scale systems are essential to today’s industry, such as aeronautics, railways,
telecommunications, etc. The management of such systems is often complicated and
requires an adapted maintenance strategy. Maintenance is indeed a vital primary service
in industries, especially when failures are likely to impact personnel safety and cause
important environmental damages. It can also have a major impact on profitability.

Maintenance aims to retain equipment in its operating condition or restore it to a
previous state enabling its required functions. To perform maintenance activities, it is
crucial to effectively manage a crew of operators and sequence their visits over a planning
horizon. Two main categories of maintenance can be distinguished [1]:

(1) Corrective Maintenance (CM) that is performed after the failure. It includes actions
such as repair or replacement.

(2) Preventive Maintenance (PM), which occurs before the failure and intends to reduce
the risks of unforeseen breakdowns. It can itself be divided into two categories:
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1. Time-Based Maintenance (TBM) that includes the periodic replacement and the
age replacement policy (ARP).

2. Condition-Based Maintenance (CBM) that is based on the inspection of the unit
or system before the intervention.

In the first case of TBM, the preventive replacement is performed at regular time intervals.
For the ARP, the unit is replaced depending on its age or its remaining useful life [1]. CBM is
based on the inspection of the unit or system before the intervention. It focuses on predicting
the health condition of the system using information collected from sensors.

The companies mainly outsource their maintenance operations to a service provider.
This maintenance provider is required to ensure good quality maintenance services at the
lowest overall cost. Figuring out the right time and manner to carry out the maintenance
are therefore major concerns. The planning of maintenance operations on geographically
dispersed machines subjected to random failures is, therefore, a complex problem faced
by service providers. In the industry, machines are exposed to random failures that can
lead to significant penalties. The opportune maintenance times are sometimes defined by
the equipment manufacturer, but more often, the companies entrust their maintenance
providers to define the maintenance schedule. The service provider tries to reduce the
number of maintenance operations as much as possible, which can be accomplished by
maximizing the periods between two successive visits to the same machine. At the same
time, he seeks to avoid the huge costs resulting from carrying out corrective maintenance
operations on broken machines. The challenge is therefore finding the optimal number of
visits to perform maintenance operations. Mathematical maintenance policies are used to
develop an effective preventive maintenance plan. The objective of such policies is to design
a maintenance schedule including both preventive replacement and corrective replacement.
The maintenance models dealing with these policies are probabilistic due to the uncertainty
of the mechanism that causes failure. When machines are geographically distributed, it is
necessary to sequence the visits and determine the best routing–maintenance policy. Cost,
availability, reliability, and maintainability are the benchmarks for evaluating maintenance
decisions, similar to cost, quality, and time objectives in logistics. The maintenance company
would be interested in finding the best compromise between services and maintenance
costs on one hand and operational and transport costs on the other hand. The objective is to
jointly consider the technical aspects of maintenance and the organizational aspects of op-
eration management. To consider these two aspects, many works in the literature consider
both maintenance and routing problems [2–5]. To handle this optimization problem, it is
necessary to simultaneously investigate the maintenance scheduling and vehicle routing
problem (VRP). The vehicle routing problem with time windows (VRPTW) has been widely
used in the literature as the main variant of VRP for planning and scheduling maintenance
operations [4–7].The problem addressed in this paper consists of determining the best
routing maintenance policy when planning operators’ schedules to perform maintenance
operations on geographically distributed machines subjected to random failures.

Herein, the main contributions of this work are summarized as follows.

(1) A new bi-objective model is proposed, aiming to minimize both maintenance and
transport costs in the case of time-based preventive maintenance. The first objective
minimizes the total travel cost related to technicians’ routing. The second objective
can either minimize the total preventive and corrective maintenance cost or the failure
cost. A penalty cost is incurred when the maintenance activities are performed after
the optimal time interval. The present paper comes with the novelty of introducing a
nonlinear and uncertain failure cost that uses information from equipment degradation.
Moreover, the failure and maintenance costs adopted have not been used in a multi-
objective study with the routing objective. We also include a continuous-time for the
last restoration in the second objective of the model.

(2) Variable Neighborhood Descent and General Variable Neighborhood Search variants
have been designed and implemented to solve the mono-objective and the bi-objective
problems. The proposed multi-objective VND and GVNS algorithms are based on
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the Pareto dominance strategy and start with a unique initial solution. The algorithm
MOVND/P is designed to be an intensified local search component of the GVNS
algorithms, whereas MOVND/PI and MOGVNS/P are intended to solve the multi-
objective problem. They use a proposed multi-objective best improvement strategy
called MOBI/P and new adaptations of VNS mechanisms in the multi-objective context.

(3) Extensive experiments demonstrated that the proposed algorithms outperformed the
literature algorithms. We also test some other GVNS variants for comparison reasons.
An analysis is conducted to clearly show the differences between the performance
of the algorithms proposed and the literature algorithms. It permits measuring the
influence of the proposed mechanisms to improve the results.

This study will be presented as follows: Section 2 sets a summary of the corresponding
literature. Section 3 delineates the problem and sets out its mathematical formulation.
A description of the proposed solution approaches and their implementation details are
given in Section 4. Section 5 then presents experimental results. At last, Section 6 lays out
concluding observations and perspectives for upcoming research.

2. Literature Review

The majority of existing studies tackling routing and maintenance problems dealt
separately with each of them. Two principal research streams can be distinguished in
the literature:

First stream: The routing is used to schedule maintenance operations.
Second stream: Maintenance and routing are viewed as an integrated problem by consider-
ing both their specific features.

The first stream of research includes workforce scheduling problems that are par-
ticularly useful in reality and affect many organizations. Indeed, the workforce cost
constitutes one of the highest costs in any organization. The major problems addressed in
the first stream are technician routing and scheduling problem (TRSP) [8], technician and
task scheduling problem (TTSP) [7], service technician routing and scheduling problem
(STRSP) [6], and workforce scheduling and geographically distributed asset maintenance
problems (GDMP) [2]. Cordeau et al. [7] proposed a mixed-integer linear program and
a solution approach for the ROADEF 2007 challenge. This challenge tackled the specific
features of the TTSP in a large telecommunications company. A constructive heuristic was
proposed to generate a feasible solution by defining teams and assigning tasks. An adaptive
large neighborhood search metaheuristic is then used to solve the problem in the improve-
ment phase. Each technician is specialized in different tasks with different skill levels. He
is able to execute tasks requiring lower levels than his as well. Skills requirements and a
time window characterize each maintenance task. An outsourcing budget, as well as task
priorities, are considered. Kovacs et al. [6] introduced the service technician routing and
scheduling problem. Their model minimized routing and outsourcing costs by considering
skills and team-building constraints. They used an adaptive large neighborhood search
algorithm to solve the problem. They also proposed to select destroy–repair operator pairs
and adapted the adaptive mechanism consequently. Pillac et al. [8] dealt with the dynamic
technicians routing and scheduling problem (DTRSP). The assignment of technicians with
adequate skills, spare parts, and tools to tasks is realized to minimize the overall cost.
To handle more requests, technicians can replenish tools and spares at the depot at any
time. The authors proposed a re-optimization approach for the periodic problem. This
approach relies on a parallel adaptive neighborhood search (RpALNS) algorithm, which
generates a new route each time a request arrives. The suggested parallelization scheme
distributes the computational effort among the different processors. Their metaheuristic
has achieved the same performances as the state-of-the-art results for the dynamic vehicle
routing problem with time windows. Çakırgil et al. [9] studied the multi-skill workforce
scheduling and routing problem for an electricity company. Different skills requirements
and priorities characterize the maintenance operations, and teams of technicians need to be
formed to perform them. A mixed-integer programming model was proposed to complete
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higher priority tasks earlier and minimize total costs. The authors proposed a two-stage
matheuristic based on the variable neighborhood search to solve the bi-objective problem.

The second stream of research is concerned with the combination of maintenance
and routing characteristics. Workforce scheduling is not the only problem dealt with in
this case since other maintenance problems are taken into account. Reliability analysis
can be included to design solutions that assign technicians at the right time to perform
maintenance operations. Workforce costs and maintenance costs are both dealt with in
this case. Lopez-Santana et al. [4] proposed a mathematical model called the combined
maintenance and routing (CMR) and a two-phase procedure to solve it. In the first phase,
a maintenance model is solved to determine the optimal times to perform preventive
maintenance operations, their frequency, and their time windows while minimizing the total
expected maintenance cost. The output data of the maintenance model is then considered
in a second phase as the input data of the routing model that schedules maintenance
operations for each technician. The maintenance model is again solved using the updated
start times of preventive operations obtained by the routing model to connect the two
problems. This procedure is repeated until meeting the stopping criterion. The nonlinear
and convex maintenance cost of the objective function is approximated using a piecewise
linear function, and the problem is solved for small instances using a commercial solver.
Jbili et al. [3] modeled an integrated strategy of vehicle routing and maintenance. They
considered vehicles used in transcontinental transportation that are subject to random
failures on the road. These failures have to be repaired, which may take random durations
that induce delays. A policy consisting of replacing the critical component when arriving at
selected customers is adopted. A mathematical model is proposed to determine the optimal
routing and sequence of PM actions simultaneously. The objective is to minimize the total
expected cost per unit of time. It considers the reliability of the vehicle, maintenance (PM
operations and minimal repairs), transportation costs, and finally, maintenance durations
and penalties incurred by late arrivals. A genetic algorithm is then proposed to solve
large instances. Chen et al. [2] studied the maintenance of gully pots or storm drains.
They modeled a multi-period VRP, which considers the risk impact of gully pot failure
and its failure behavior each day. The risk impact is estimated using meteorological
information. A risk-driven analysis is adopted to evaluate maintenance actions. They
focused on two factors: parked cars and gully pots status information. The latter has been
proven to be the dominant factor that may negatively affect the scheduling of maintenance
actions. Rashidnejad et al. [5] presented a bi-objective multi-period model of preventive
maintenance planning in geographically dispersed systems through prognostic information
and remaining useful life (RUL) called the integrated vehicle routing problem with time
windows and maintenance scheduling (IVRPTW-MS). The first objective minimizes the
total cost composed of the performing maintenance cost, the expected failure cost, and
the travel cost, whereas the second objective minimizes the unavailability of the assets.
The authors used fixed costs and did not include corrective maintenance. They used a
non-dominated sorting genetic algorithm II (NSGA-II) to solve this NP-hard problem.

There is a relatively small amount of research combining preventive and corrective
maintenance strategies since most of the papers examined dealt only with preventive
scheduling, apart from [2,4]. Moreover, they did not consider the uncertainty of the
breakdowns and did not deal with a multi-objective perspective. Papers that considered
random breakdowns among those examined are [3,4]. The multi-objective formulation
is considered in [5,9]. Analyzing the previous problems emphasizes the need to propose
solutions to the real problem that includes the following realistic features: large scale,
uncertainty, the combination of both corrective and preventive maintenance, and finally,
routing of technicians in a multi-objective perspective. To the best of our knowledge, no
previous study investigated these features together. These aspects make the NP-hard
optimization problem even more challenging. Therefore, heuristic-based approaches are
necessary for large instances since exact methods are practically limited. Due to their success
in solving many mono-objective combinatorial problems, VND and GVNS algorithms were
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extended in several studies to deal with multi-objective optimization problems. However,
most of these extensions do not question the utility of using properties working well for
evolutionary algorithms such as dealing with a population of solutions, aggregation, etc.
They also do not propose a specific local search strategy for multi-objective optimization
apart from Paquette et al. [10]. Instead, most literature algorithms apply mono-objective
local searches by dealing with each objective separately [11] or use previously proposed
local search strategies [12,13] such as Pareto local search [13].

The present paper comes with the novelty of exploring the combination of vehicle
routing and maintenance problems in a unique bi-objective model and proposes novel VND
and GVNS algorithms to solve it. This paper proposes a bi-objective model for the joint
maintenance and routing problem. The first objective minimizes the total travel cost and
the penalty cost. The second objective can be minimizing the total preventive and corrective
maintenance cost. This cost was proposed by Lopez et al. [4] in their single objective model.
The paper also introduces a nonlinear and uncertain failure cost that uses information from
equipment degradation, with the routing model as a second objective. The maintenance
hypothesis of renewal theory is considered on both costs through a continuous time for the
last restoration. Penalties for late arrivals are also associated with the second considered
objective. Moreover, the failure and maintenance costs adopted have not been used in a
multi-objective study with the routing objective. The workforce’s cost and maintenance
cost represent the highest costs in a plant. Failing to optimize these costs together can
lead to a serious loss for the manufacturing company and reduce its profitability. The
maintenance and transport are support processes often outsourced due to their importance.
They are directly linked for a service provider to the production of its service. This model
simultaneously optimizes these costs in an organization, making it appropriate for real-
world situations. Maintenance service providers can use this model to provide the best
services to their customers whenever the maintenance strategy adopted by those customers
is time-based maintenance, including preventive and corrective maintenance. The previous
research gaps of the problem in the literature are therefore filled. To solve the integrated
maintenance and routing problem efficiently, multi-objective new adaptations of the vari-
able neighborhood descent and the general variable neighborhood search algorithms are
proposed. This paper describes the design of the improvement method, the new best
improvement strategy proposed MOBI/P, the acceptance criterion, the stopping criterion,
and the approach adopted to reduce the computational time. The paper finally presents an
analysis to demonstrate the efficiency and novelty of the proposed mechanisms compared
to the literature. This work differs from the literature since it proposes novel adaptations
of VND and GVNS algorithms to solve multi-objective problems. Indeed, it does not use
the existing local search improvement strategies but a new one called MOBI/P. Moreover,
the VND algorithm, which is to be used as an intensification algorithm, is designed to be
far faster than the GVNS algorithm. In addition, these algorithms include more design
features to lead to better solutions than the literature.

3. Problem Definition and Formulation

We consider a setM of machines that are located in dispersed customers’ sites. They
are subjected to random breakdowns due to the failure of a critical component. For each
machine and at regular time intervals, preventive maintenance (PM) interventions are
scheduled. A PM operation has a cost Cpmi and lasts a duration Tpmi. Each preventive
operation must be performed within its corresponding time window. However, if it is not
possible due to the high workload of technicians, late arrivals are then allowed. Hence,
technicians can arrive at an operation i following the end of its time window bi. A penalty
cost pik is incurred in this case. On the other hand, a team of technicians has to wait until
the earliest time ai to start an operation i. Teams of technicians K are available to perform
both preventive and corrective maintenance. They perform corrective maintenance (CM)
operations when machines unexpectedly break down. In this case, the machine stays in
a failure state until the arrival of the teams of technicians for a certain time Wi. The unit
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waiting cost for each operation is Cwi. A CM operation has a cost Ccmi and lasts a duration
Tcmi. A minimized number of vehicles among the available ones must be determined and
used for all operations to reduce transport costs. The Node 0 is considered the departure
point of maintenance teams, and the Node n + 1 is considered the final destination. We
denote by O the set of all nodes of the PM operations related to all machines, and by V ,
the set of all locations (operations nodes plus the depots). Each team of technicians has
to perform the maintenance operations at the customers’ sites. Thus, the model could be
defined as a directed complete graph G = (V ,A), where A = {(i, j), i ∈ V o, j ∈ Vd, i 6= j}
with V o and Vd as the sets of origin and destination vertices. The following assumptions
are considered:

• All maintenance teams have the same skills and qualifications to do the maintenance
operations.

• It is considered that the random variable of the time to failure for each machine follows
a Weibull distribution whose shape and scale parameters are, respectively, βm and σm,
m ∈ M. Any other distribution resulting from the historical data of machine failures
can be applied.

• We suppose βm > 1, m ∈ M to deal with the third part of the bathtub curve. This
part features the wear-out life of the machine when the failure rate is an increasing
function of age or usage. Indeed, the wear-out is the phenomenon accelerating the
risk of failure over time.

• All costs related to the maintenance and penalties are known and constant.
• The duration of PM and CM tasks are known and constant.
• After each PM or CM operation, a machine is considered in a state similar to a new one.
• The mean time of the CM operation is superior to the mean time of the PM operation.
• The cost of a CM operation is superior to the cost of a PM operation.
• Each PM operation must be performed in its associated time window. However, if it

is not possible, we allow a team of technicians to arrive following the end of its time
window. In this case, a penalty cost is added to the total cost.

• The failure of a machine is generally due to the failure of its critical components.
• Failures of individual machines are statistically independent.
• A machine can have several maintenance operations over the planning horizon.
• In case of failure, before the beginning of the next PM operation, the customer must

wait for the team of technicians to perform a CM operation instead. The team is not
rescheduled based on this new situation.

• The travel times are deterministic and satisfy the triangle inequality.

3.1. Notation of the Joint Maintenance Scheduling and Workforce Routing Problem

The notations below are employed throughout the paper.

3.1.1. Sets

• M = {1, . . . , l}: set of machines.
• O = {1, . . . , n}: set of PM operations (n = ∑m∈M nm).
• V = {0, . . . , n + 1}: set of all vertices including the PM operations, departure depot 0

and destination depot n + 1.
• V o = {0, . . . , n}: set of origin nodes.
• Vd = {1, . . . , n + 1}: set of destination nodes.
• K = {1, . . . , K}: set of technicians’ teams or vehicles.
• A = {(i, j), i ∈ V o, j ∈ Vd, i 6= j}: set of arcs linking nodes.

3.1.2. Maintenance Parameters

• Cpmm: total preventive maintenance operation (PM) cost of machine m.
• Ccmm: total corrective maintenance operation (CM) cost of machine m.
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• Cwm: unit waiting cost. This cost can be interpreted as the production loss cost per
unit time incurred by the customer for this machine m.

• Tpmm: service time of PM operation of machine m.
• Tcmm: service time of CM operation of machine m.
• Mm(δm): mean time to failure of the machine m given that the failure occurred before

the optimal PM period for machine m, δm.
• Wm: waiting time before starting a CM operation on machine m . It is the time waited

before the arrival of the technicians to perform a CM operation when the machine m
suddenly breaks down.

• CMm(δm): the total cost per unit time if the PM operation is performed when the
machine m is of age δm.

• Tm: random variable of the time to failure of machine m.
• βm: shape parameter of the Weibull distribution of machine m.
• σm: scale parameter of the Weibull distribution of machine m.
• Fm(t): cumulative distribution function of t. It represents also the probability of failure

of machine m in the interval [0, t].
• fm(t): density function of the Weibull distribution of t of machine m.
• tolm: the percentage of time of delaying or advancing a PM operation.
• H: length of the planning horizon.

3.1.3. Routing Parameters

• ti,j: travel time associated to the arc (i, j) ∈ A.
• ci,j: routing cost associated to the arc (i, j) ∈ A.
• ai: earliest time to start a PM operation.
• bi: latest time to start a PM operation.
• c: penalty cost per unit time for arriving after the deadline bi associated to PM operation.
• K: number of teams of technicians.
• B: large number.

3.1.4. Variables

• xi,j,k: binary decision variable that takes the value one if the technicians’ teams k travels
through arc (i, j) ∈ A and 0 otherwise.

• θi,k: arrival time of the team of technicians k to the maintenance operation i.
• pi,k: penalty variable that measures the total time in excess of the latest permitted time

to start the service bi by the team of technicians k. pi,k = max(0, θi,k − bi).
• ρi,k: time of the last restoration (renewal) previous to the i-th PM operation performed

by the team of technicians k. It is the previous start time of the operation on the same
machine.
The variables of the maintenance model that are constant input parameters for the
routing one are defined as follows:

• δm: optimal PM period for machine m.
• nm: frequency of PM operations of machine m. It is the number of PM operations of

the machine m on the planning horizon.
• φi: execution time of operation i.
• n: number of PM operations to perform in the planning horizon.

3.2. The Description of the General Approach

The maintenance model is solved to determine the optimal time φi for each mainte-
nance operation i that minimizes the total maintenance cost. The optimal date φi to perform
a PM operation i is used to determine the durations di for the PM operations, the total num-
ber of operations n and a time window interval [ai, bi] that minimizes the total maintenance
cost. The above steps have been adopted by by Lopez et al. [4]. We then solve the defined
joint maintenance and routing model that minimizes the routing and maintenance costs
or the routing and the failure costs. Penalties for late arrival are considered in both cases.
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In the first case, the maintenance cost is minimized considering the workforce routing
constraints that incorporate maintenance requirements (maintenance time windows, etc.).
Integrating technical maintenance requirements with transport management is the first
merit of the approach. In the second case, the failure cost is minimized to reduce the
risk of failures. However, the optimal time chosen must be within a time window that
minimizes the total maintenance cost. This latter case considers three objective require-
ments simultaneously while the minimization of maintenance cost is included in time
windows constraints. Expressing some objectives of optimization problems as constraints
reduces the problem complexity as adopted in [14]. The second merit of our approach is
integrating several maintenance strategies. Indeed, the chosen optimal time reduces the
risk of failures, the maintenance cost, and the travel cost (risk-based maintenance, etc.).
The outputs of the problem are shown in Figure 1. The workforce routing constraints
influence the time to perform maintenance operations, the time of the last restoration that
depends on that latter in the combined model, and the waiting time. All the variables are
interconnected. Therefore, it is essential to model an integrated problem and to solve it
using multi-objective optimization.

Figure 1. The general approach.

3.3. The Maintenance Model

The decision model to determine the optimal interval between PM operations is
referred to as the maintenance model. It is used when the aim of performing maintenance
activities is to minimize the total related maintenance costs of preventive and corrective
maintenance operations. The optimal period δm to perform a PM operation is determined
for each machine m with the frequency nm of PM operations in the planning horizon.
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In the following, we define the main terms employed in the maintenance decision
model. The probability of failure in the interval [0, δm] of machine m, where Pm is the
probability’s notation, is:

Fm(δm) = Pm(Tm ≤ δm) =
∫ δm

0
fm(t)dt (1)

The model generally applied by researchers in the literature to settle optimal times to
carry out PM operations in the case of periodic preventive maintenance is defined in [15].
Given a machine m, we seek the optimal time δ∗m to execute PM operations that minimizes
the total maintenance cost CMm(δm):

CMm(δm) =
E[CMm(δm)]

E[Tm(δm)]
= Cpmm(1−Fm(δm))+Ccmm Fm(δm)

δm(1−Fm(δm))+Mm(δm)Fm(δm)
(2)

The terms E[CMm(δm)] and E[Tm(δm)] refer, respectively, to the total expected cost of
a cycle and the expected cycle length for a machine m.

Lopez-Santana et al. [4] propose an extended maintenance cost which includes the
waiting cost expression in addition to the PM and CM durations. These service times
cannot be negligible when the systems under study are large-scale.

CMm(δm) =
Cpmm(1−Fm(δm))+(Ccmm+Wm∗Cwm)Fm(δm)

(δm+Tpmm)(1−Fm(δm))+(Mm(δm)+Wm+Tcmm)Fm(δm)
(3)

Mm(δm) represents the expected time to failure of machine m assuming the failure happens
before δm.

Mm(δm) =
∫ δm

0

t fm(t)
Fm(δm)

dt (4)

According to Lopez-Santana [4], the waiting time Wi of an operation i undertaken by
the teams of technicians k is the difference between the technicians arrival time to the PM
task θi,k and the mean time to failure Mm(θi,k):

Wi = θi,k −Mm(θi,k), i ∈ {1, . . . , nm}, k ∈ K (5)

The values of θi,k are needed to compute the waiting times. They are also the outputs
of the routing model. Consequently, the number of Wi obtained is equal to the number
of PM operations to be performed for the machine m in the planning horizon. Since the
maintenance model takes only one value, Lopez-Santana et al. [4] consider the average
value of all Wi, where i refers to the PM operations related to the machine m to update the
waiting time Wm and iterate the procedure. However, the values of θi,k are unknown before
solving the routing model. Therefore, we suppose a PM operation will be scheduled at δm.
This approximation has also been used by [16].

The waiting time is therefore defined as follows:

Wm = δm −Mm(δm) (6)

The maintenance cost per time unit for a machine m at the time δm is finally equal to:

CMm(δm) =
Cpmm(1−Fm(δm))+(Ccmm+(δm−Mm(δm))Cwm)Fm(δm)

(δm+Tpmm)(1−Fm(δm))+(δm+Tcmm)Fm(δm)
(7)

This nonlinear equation without constraints is solved to obtain the optimal period for
each machine m, δ∗m = argmin CMm(δm) .

The frequency of a PM operation on the planning horizon H can be obtained as follows:

nm =
H

E[Tm(δ∗m)]
, m ∈ M (8)
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The frequency of a PM task is the number of times it is realized in the horizon.
Considering a frequency nm of a machine m, the PM operations need to be performed
at times {δ∗m, δ∗m + E[Tm(δ∗m)], δ∗m + 2 ∗ E[Tm(δ∗m)],. . . , δ∗m + (nm − 1) ∗ E[Tm(δ∗m)]}. The
execution date φmo of an operation o corresponding to machine m is equal to φi which
represents the execution date of an operation i and is obtained as follows:

φi = φmo = δ∗m + (o− 1)× E[Tm(δ
∗
m)], o ∈ {1, . . . , nm}, m ∈ M, i ∈ O (9)

The time window [ai, bi] of PM tasks associated with a machine are obtained using
[am, bm] the time window of the PM period of machine m on the first cycle. [am, bm] is
determined using the percentage of time of postponing or preempting a PM task that we
can tolerate. The cost stays relatively low and close to the minimal value CMm(δ∗m) in this
interval. [ai, bi] can be expressed as follows:

ai = am
o = am + (o− 1)× E[Tm(δ

∗
m)], o ∈ {1, . . . , nm}, m ∈ M, i ∈ O (10)

bi = bm
o = bm + (o− 1)× E[Tm(δ

∗
m)], o ∈ {1, . . . , nm}, m ∈ M, i ∈ O (11)

where am
o and bm

o correspond to the lower and upper bound of the time window of
machine m and its associated operation o. Each machine m can have nm operations in
the horizon, o ∈ {1, . . . , nm}. All operations for all machines are indexed by i. For each
machine m, we can associate an operation i with i ∈ {1, . . . , n} and (n = ∑m∈M nm). The
interval [am, bm] is determined as follows:

am = δ∗m − tolm × δ∗m, m ∈ M (12)

bm = δ∗m + tolm × δ∗m, m ∈ M (13)

3.4. The Joint Maintenance Scheduling and Workforce Routing Model

As mentioned previously, a machine has to undergo a number nm of operations within
the time horizon. They are indexed by i ∈ {1, . . . , nm}. In this case, the parameters related
to operations i related to the same machine m are equal to the parameters of this machine
m. Fi, σi and βi are, respectively, equal to Fm, σm and βm. This way, the values of the
operations parameters in the routing model are obtained from the maintenance parameters.
The mathematical model of the integrated maintenance scheduling and routing problem
can be formulated as follows.

min( f1(xi,j,k, θi,k, ρi,k, pi,k), fl(xi,j,k, θi,k, ρi,k, pi,k), l = 2, 3) (14)

s.t.

n+1

∑
j=1

K

∑
k=1

xi,j,k = 1, ∀i ∈ O, i 6= j (15)

n

∑
i=0

K

∑
k=1

xi,j,k = 1, ∀j ∈ O, i 6= j (16)

n

∑
i=0

xi,j,k =
n+1

∑
i=1

xj,i,k, ∀j ∈ O, ∀k ∈ K (17)

θi,k + Tpmi(1− Fi(δ
∗
i )) + TcmiFi(δ

∗
i ) + ti,j ≤ θj,k + B(1− xi,j,k),

∀i ∈ V o, ∀j ∈ Vd, ∀k ∈ K, i 6= j
(18)

ai ≤ θi,k ≤ bi + pi,k, ∀i ∈ V , ∀k ∈ K (19)

n

∑
j=1

K

∑
k=1

x0,j,k =
n

∑
i=1

K

∑
k=1

xi,n+1,k (20)



Mathematics 2022, 10, 1807 11 of 36

n

∑
j=1

x0,j,k ≤ 1, ∀k ∈ K (21)

θi,k, pi,k, ρi,k ≥ 0, xi,j,k ∈ {0, 1} (22)

The first objective function f1 regards the transport of technicians. The second objective
function fl deals with maintenance. It equals either f2 or f3:

f1 =
n

∑
i=0

n+1

∑
j=1

K

∑
k=1

ci,jxi,j,k +
n+1

∑
i=0

K

∑
k=1

c× pi,k (23)

f2 =
n

∑
i=1

K

∑
k=1

(Ccmi + Wi ∗ Cwi)Fi(θi,k − ρi,k) +
n+1

∑
i=0

K

∑
k=1

c× pi,k (24)

f3 =
n

∑
i=1

K

∑
k=1

CMi(θi,k − ρi,k) +
n+1

∑
i=0

K

∑
k=1

c× pi,k (25)

The objective function f1 (23) minimizes the total travel cost related to technicians
routing as well as the penalty cost of not respecting the operations time windows upper
bounds. The objective function f2 (24) minimizes the failure cost, the waiting cost, and the
penalty cost. Minimizing the machines probability of failure is equivalent to maximizing
machines reliability. The objective function f3 (25) minimizes the total expected mainte-
nance cost and the penalty cost incurred for arriving after the deadline bi associated to PM
operations. The penalty term is intended to ensure that the time windows are respected.
Therefore, it is considerably small compared to the first term of the objectives whether it is
the routing, failure, or maintenance cost and does not increase the correlation between the
objectives. The constraints (15) and (16) indicate that each PM operation has to be executed
exactly once by one team of technicians. Constraints (17) ensure that the entry of a team
of technicians to node i is mandatorily followed by their leaving. Constraints (18) make
sub-tours impossible. The purpose of constraints (19) is ensuring that each PM operation
is carried out within its time window. Note that we assume a0 = 0 and bn+1 represents
the maximum time of arrival to the depot. It is permitted to arrive after the deadline bi. A
penalty pi is then calculated. Constraints (20) determine the number of vehicles needed
and that minimizes the total costs. Constraints (21) ensure that there are different teams of
technicians in the different tours. It also ensures that every tour starts at the depot. Finally,
the constraints (22) impose domain conditions on the variables.

3.5. The Novelty of the Proposed Model

Several multi-objective or bi-objective models have been proposed for the maintenance
and workforce routing problem. However, adopting the failure and maintenance costs as
the second objective with the routing cost has never been proposed to date in the literature
to the best of our knowledge. The second objective function of the model can either be
minimizing the total preventive and corrective maintenance cost and the penalty cost (24) or
minimizing the failure cost with the penalty cost (25). In both costs related to maintenance,
the time of the last restoration previous to the i-th PM operation performed by the team of
technicians k, ρi,k is used to verify the hypothesis of the renewal theory. Including this time
in the objectives functions is a novel aspect of the model. The definition of the failure cost
itself and its possible use is another novelty of the proposed model.

The Failure Cost: The second objective function f2 minimizes the failure cost and the
penalty cost. The aim is to maximize machines reliability. The uncertainty aspect is
integrated into the failure cost function by incorporating the probability of failure and the
reliability of each machine. In the second objective function, we have used the probability
of failure, Fi(θi,k − ρi,k), for each operation i ∈ O to utilize information from equipment
degradation and hence consider failure risks in technicians’ assignment to tasks. It includes
direct costs (failure cost) and indirect costs (production losses) illustrated by the waiting
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time. During that time, the failed machines were out of order and were not used by the
organization for production activities. Losses are, therefore, supported by the company.
When we multiply it by the waiting cost per unit time, we obtain a cost that can be
interpreted as the production loss incurred by the organization due to this machine failure.
The failure cost is beneficial in industries where breakdowns are hazardous and influence
safety. This term is nonlinear and includes a random variable. It is equal, in the case of the
Weibull distribution, to:

Fi(θi,k − ρi,k) = 1− e−((θi,k−ρi,k)/σi)
βi , i ∈ O, ∀k ∈ K (26)

The Maintenance Cost: The objective function f3 minimizes the total expected maintenance
cost with the penalty cost. The maintenance cost balances both preventive and corrective
maintenance to find the least cost considering the two strategies.
The Task Duration: The duration of the maintenance operation i is probabilistic. It is
simplified in the model as proposed by [4] to be deterministic. Its real expression proposed
by [4] is:

di = Tpmi(1− Fi(θi,k − ρi,k)) + TcmiFi(θi,k − ρi,k), i ∈ O, k ∈ K (27)

4. Proposed Multi-Objective Algorithms

The proposed mathematical model is a mixed integer nonlinear program (MINLP)
which cannot be solved by commercial solvers in a reasonable time when applied to large-
scale instances. VRPTW is NP-hard [5], and the classical maintenance scheduling problem
using operations research techniques is NP-hard as well [5]. Naturally, the combined
problem is an NP-hard problem.

The following section presents an adaptation of variable neighborhood descent (VND)
and general variable neighborhood search (GVNS) to the multi-objective context to solve
the proposed bi-objective combined maintenance and routing problem. At first, the method
adopted is explained, and multi-objective notions used in this paper are defined; then
the solution representation is shown. Next, the functions used by the algorithms and
neighborhood structures are presented. Finally, the proposed multi-objective algorithms
are described, as well as their novelty compared to the literature. The proposed algo-
rithms extend single objective variable neighborhood descent (VND) and general variable
neighborhood search (GVNS) proposed by Mladenovic and Hansen [17] to solve multi-
objective problems. The algorithm MOVND/P is designed to be an intensification local
search component of the GVNS algorithms, whereas MOVND/PI and MOGVNS/P are
intended to solve the multi-objective problem. They use the Pareto dominance strategy
and start with a unique initial solution. They also incorporate novel proposed strategies.
Additionally, they all use a novel multi-objective best improvement strategy called MOBI/P.
The other GVNS variants aim to measure the impact of the inclusion of a decomposition
strategy on the algorithms. MOGVNS/D uses a weighted sum method instead of the
Pareto dominance concept and a population of solutions, whereas MOGVNS/CDP tests
the use of a population of solutions with MOGVNS/P.

4.1. Pareto Optimality

Pareto Optimal Dominance: “The solution s dominates another solution s
′
” is denoted

by fi(s) ≺ fi(s
′
) that is ensured if these both conditions are verified fi(s) ≤ fi(s

′
),

∀i ∈ {1, 2, . . . , k} and f j(s) < f j(s
′
), ∃j ∈ {1, 2, . . . , k} where k is the number of objec-

tives.
Pareto Optimal Dominance Negation: “The solution s does not dominate another solution
s
′
” is denoted by fi(s) ⊀ fi(s

′
)

Pareto Weakly Dominance: “The solution s weakly dominates another solution s
′
” is

denoted by fi(s) � fi(s
′
) if fi(s) ≤ fi(s

′
), ∀i ∈ {1, 2, . . . , k}
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Incomparable Solutions: Two solutions s and s
′

are incomparable if they are equally good.
This means neither solution dominates the other and is denoted by fi(s) ⊀ fi(s

′
) and

fi(s
′
) ⊀ fi(s)

4.2. Solution Representation and Constraints Handling

A solution is represented as a set of K tours, where each tour is a permutation of
PM operations. All the constraints considered are hard apart from verifying the upper
bounds of the time windows. We allow the arrival of a team to an operation after the latest
permitted time defined by its time window. We therefore accept only feasible solutions.
Figure 2 shows the solution representation that was used in our implementation and the
results for one instance when minimizing only the first objective (the routing cost). The
solution that minimizes this cost is composed of two routes (two vehicle are therefore
needed). Each route is composed of three tasks in the specified order. Section 3.4 explicitly
indicates how the three objective costs are evaluated and how the start time is calculated
θik, i ∈ O, k ∈ K. For instance, five machines are being considered. Each machine has one
operation, apart from machine three that has two operations: three and four. The renewal
time ρik for all operations apart from four is therefore zero. The renewal time ρ42 for task
four related to machine three is in route two. It is equal to the start time of task three
associated with the same machine, and that precedes task four. The data of this specified
instance is detailed in [18].

Figure 2. Solution representation of the result minimizing the routing cost for the instance
Re/6/2/80/80/0.07/2 (time in hours).

4.3. Initial Population Generation

We use a weighted aggregation of the two objectives when generating an initial solu-
tion. The weighted sum method is used in MOGVNS/D to evaluate and compare solutions.
In contrast, the other proposed algorithms (MOVND/P, MOVND/PI, MOGVNS/P, and
MOGVNS/CDP) use a multi-objective evaluation and can therefore start with any weight-
less solution. The weighted sum method is a linear combination of weights. The evaluated
function using this method is:

f (s) = w1 ∗ f1(s) + wl ∗ fl(s), w1 + wl = 1, l = 2, 3 (28)

The algorithms start with initial solutions constructed using the best insertion heuristic.
This latter calculates the minimum insertion cost for each operation that has to be inserted
in the solution. The insertion cost of an operation i represents the difference between
the cost solution with and without operation i. At each iteration of the heuristic, the
operation with the minimum insertion cost is inserted at its best position in the current
solution. The process stops when all the operations are inserted. The proposed algorithms,
MOGVNS/CDP and MOGVNS/D deal with a population of solutions. Each population
individual is generated using the best insertion heuristic and specific weighted sum method.
The detailed procedure is described in Algorithm 1. In decomposition approaches, each
population individual is associated with a subproblem. It is necessary to decompose
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the multi-objective problem effectively to reach the maximum parts of the Pareto front.
Subproblems are defined in our case by firstly generating the weights. These weights (or
search directions) are chosen to explore different directions. The best insertion heuristic is
then used to construct each population’s individual using these weights. .

Algorithm 1: GenerateInitialPopulation.
Data: M : population parameter
Result: pop : a population of initial solutions

1 pop← vector of M + 1 empty solutions ;
2 for i = 0 to M do

3 (w1, wl)← (
i

M
,

M− i
M

);

4 pop[i]← bestInsertionHeuristic(w1, wl) ;
5 end

4.4. Local Search Procedure and Neighborhood Structures

Our VNS and VND algorithms rely on the set of the neighborhood structures used and
particularly on the sequence of their execution. The neighborhood structures are classified
and then applied from the best to the least performing [17]. This work adopts the following
sequence of neighborhood structures: the swap, the insert, the 2-opt*, and the 2-opt
operators. We use approximately the same order as the literature for VRP problems [19,20].
The results of our previous work [18] show that with well-chosen operators, the GVNS
algorithm is an effective method to solve the single objective version of our problem. Its
general structure can be applied to improve other methods performance [21]. Preliminary
tests were realized using a steepest descent heuristic (best improvement local search) to
verify this order. The semi-randomization and the randomization of the operators have
been tested in both shaking and VND phases. They worsen the solutions obtained. In this
study, we have used the classical BA strategy for the mono-objective GVNS and a novel
proposed BA strategy, the MOBI/P, for the multi-objective algorithms to obtain a complete
Pareto front. In our Pareto-based algorithms, a solution s

′
is considered better than an other

solution s if it dominates it or if it is incomparable to it. In other words, if after applying a
move operator f (s

′
) ≺ f (s) or f (s

′
) ⊀ f (s) and f (s) ⊀ f (s

′
), the solution s

′
is considered

as a new efficient solution and the set A is updated by means of the addSolution method.
The intra-route moves are used on a single route, while inter-route moves intervene on
multiple routes. We examine in the neighborhood exploration all possible positions for
each operator. The three first neighborhood structures are inter-routes, and the 2-opt is an
intra-route operator. The insert and 2-opt* procedure may modify the number of operations
in each route as well as their order. Here’s a description of the different possible moves:

The swap move exchanges two operations either in the same route or between different
routes.
The insert move deletes an operation from its position and inserts it in another position
that can be in the same route or in a different route.
The 2-opt* operator generates a neighboring solution by removing arcs (i, i + 1) and
(j, j + 1) belonging to two distinct routes and reconnecting arcs (i, j + 1) and (j, i + 1). It
withdraws two edges from a route and replaces them with two other edges to form new
routes. This operator is therefore inter-route.
The 2-opt operator removes arcs (i, i + 1) and (j, j + 1) from a route and links arcs (i, j)
and (i + 1, j + 1) in the same route. This operator is the same as a reverse operator that
reverses the elements between i and j + 1. This operator is intra-route since it intervenes
on arcs belonging to the same route.



Mathematics 2022, 10, 1807 15 of 36

4.5. Updating Non-Dominated Solutions Set

The addSolution method described in Algorithm 2 is used to update the set of non-
dominated solutions in the archive A [12,22]. This method uses Pareto dominance to
evaluate solutions.

Algorithm 2: addSolution.

Data: A: a set of non-dominated solutions;
s: a starting solution;
Result: A: updated archive;
added: a boolean equal to true if s is added to the archive A;

1 added← true;
2 foreach x ∈ A do
3 if f (x) � f (s) then
4 added← f alse;
5 break;
6 end
7 if f (s) ≺ f (x) then
8 A← A− {x};
9 end

10 end
11 if added = true then
12 A← A ∪ {s};
13 end

4.6. Multi-Objective Variable Neighborhood Descent Based on Pareto Dominance (MOVND/P)

The multi-objective variable neighborhood descent based on Pareto dominance is
an adaptation of the variable neighborhood descent algorithm (VND) to solve our multi-
objective problems. It is called MOVND/P. This algorithm has been designed primarily
as a multi-objective local search component and an intensification algorithm. Its goal is
to improve the performance of other algorithms. This algorithm is based on the general
principle of exploring several neighborhoods when there is still an improvement and is
inspired by the single objective VND.

Algorithm 3 describes the proposed MOVND/P algorithm. At each iteration and
while the archive is still improving (steps 6–25), the current neighborhood of s is entirely
explored with a novel multi-objective best improvement strategy called MOBI/P. This
MOBI/P procedure tests if each neighbor of s is non-dominated with the best solution
found so far in the neighborhood of s. This best solution changes during the search. The
MOBI/P strategy is very impactful since it allows the search to be more efficient and
diversified and enables the algorithm to converge rapidly. All non-dominated solutions by
the best solution found so far in the neighborhood of s are then stored in the set P (step 10).

Each point in P generated with the MOBI/P procedure that is not in the archive A is
evaluated to enter this latter or not (steps 12–16). The solution x is included in the archive
A if it is non-dominated by s and replaces the current solution s. This replacement of the
current solution s by a solution that dominates it or that is incomparable to it is another
new feature used. It can be noticed in line 16 and is directly inspired by a single-objective
local search.

The counterAISecond measures if some solutions have been added to the archive
from the previous iteration to the next iteration. It is incremented in line 21. The aim is to
continue running the algorithm while there is still an improvement. The counterAISecond
precisely measures if there is an improvement compared to the counter of the previous
iteration counterAISecondPrevIt. There is, however, a stopping condition on the number of
iterations itermax to avoid large computational time.
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We define a new multi-objective neighborhood change procedure. In our case, we say
that a neighborhood Nl improves the archive A if all the solutions returned in P are non-
dominated by the solutions in A. An improvement means that all new points have been
added to the archive A. This is recorded using the counter counterAI, which is incremented
at each improvement.

A new characteristic was also incorporated in the neighborhood change procedure.
In our algorithm, we stay in the improving neighborhood if all the solutions in P are non-
dominated by s but also when counter did not reach iterCmax. The last part of the condition
is required to avoid not exploring the other neighborhoods when the first neighborhood
is constantly improving. We can obtain an efficient mix between staying in the best
neighborhood and exploring the different neighborhoods.

Algorithm 3: Multi-objective VND based on Pareto Dominance (MOVND/P).
Data: lmax: number of neighborhood structures;
s0: initial solution;
Result: A: a set of potentially efficient solutions;

1 s← s0 ;
2 addSolution(s0, A) ;
3 P← ∅ ;
4 iteration← 1;
5 counterAISecond← 0;
6 while (counterAISecondPrevIt 6= counterAISecond ∧ (iteration ≤ itermax) do
7 counterAISecondPrevIt← counterAISecond ;
8 counter ← 1;
9 l ← 1;

10 while l ≤ lmax do
11 P← MOBI/P(s, l);
12 counterAI ← 0;
13 foreach x ∈ P do
14 if x /∈ A ∧ addSolution(x, A) then

15 end
16 s← x ;
17 counterAI ← counterAI + 1;
18 counterAISecond← counterAISecond + 1;
19 end
20 counter ← counter + 1;
21 if (counterAI = size(P)) ∧ (counter ≤ iterCmax) then
22 l ← 1 ;
23 else
24 l ← l + 1 ;
25 end
26 end
27 iteration← iteration + 1;
28 end

4.7. Multi-Objective Variable Neighborhood Descent Based on Pareto Dominance Improved
(MOVND/PI)

The multi-objective variable neighborhood descent improved based on Pareto dom-
inance (MOVND/PI) presented in Algorithm 4 is an improvement of our Algorithm 3
presented in Section 4.6. The improved algorithm can be used to solve multi-objective
problems but is not intended to be a local search component such as the previous algorithm.
We allow it, therefore, to consume more computational time through a more sophisticated
selection criterion. The new solution s for the following iteration is randomly chosen
from the set of non-dominated solutions A among solutions that have not been previously
explored in the search. The aim of this criterion is to avoid the intensification of a point
already visited and exploited. The algorithm, therefore, does not include the line 16 of the
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Algorithm 3 to select a solution for the next iteration. The only criteria here to continue
running the algorithm is the maximum number of iterations.

Algorithm 4: Multi-objective VND based on Pareto Dominance Improved
(MOVND/PI).

Data: lmax: number of neighborhood structures;
s0: initial solution;
Result: A: a set of potentially efficient solutions;

1 s0 ← bestInsertionHeuristic(0.5, 0.5) ;
2 s← s0 ;
3 addSolution(s0, A) ;
4 P← ∅ ;
5 iteration← 1;
6 while (s ∈ notExploredSolution(A)) ∧ (iteration ≤ itermax) do
7 counter ← 1;
8 l ← 1;
9 while l ≤ lmax do

10 P← MOBI/P(s, l);
11 counterAI ← 0;
12 foreach x ∈ P do
13 if x /∈ A ∧ addSolution(x, A) then

14 end
15 counterAI ← counterAI + 1;
16 end
17 counter ← counter + 1;
18 if (counterAI = size(P)) ∧ (counter ≤ iterCmax) then
19 l ← 1 ;
20 else
21 l ← l + 1 ;
22 end
23 end
24 s← selectRandomNotExploredSolution(A) ;
25 iteration← iteration + 1;
26 end

4.7.1. Multi-Objective General Variable Neighborhood Search Based on Pareto Dominance
(MOGVNS/P)

Algorithm 5 describes the GVNS-based algorithm proposed. At each iteration of
MOGVNS/P and while the archive is still improving (steps 7–33), a shaking procedure
is applied on the current solution s to obtain s

′
. The shaking procedure selects a random

solution s
′

from the current kth neighborhood of the current solution s (s
′ ∈ Nk(s)). The

aim of this phase is to diversify the search process. This perturbation is applied nS times.
An intensification step is then applied to the perturbed solution s

′
using the MOVND/P

described in Section 4.6. The non-dominated solutions obtained by MOVND/P are stored
and returned in the set PVND (step 16). All the solutions of the PVND set are compared to s
to update the archive A using the function addSolution. The improvement of the archive A
while exploring PVND is recorded using counterAI and counterAISecond from one iteration
to the other such as in the MOVND/P algorithm.

We stay in the same neighborhood if all solutions in PVND are added to the archive
(steps 25–29). The multi-objective neighborhood change procedure is the same as defined
in MOVND/P and MOVND/PI.

In this algorithm, and differently from MOVND/P, the non-dominated solutions in
the archive A are used to restart the current solution s. Indeed, the new solution s for the
next iteration is randomly chosen from the archive A among solutions that have not been
already explored.
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The step-by-step procedure of MOGVNS/P can be summarized as follows. First,
an initial solution is constructed using the best insertion heuristic and is added to the
archive of efficient solutions A. The main procedure is then repeated while there is still an
improvement of the archive A and while not reaching a maximum number of iterations
itermax. It is composed of the following steps: the exploration of the neighborhood struc-
tures while k ≤ kmax and a random selection in the archive A for the next iteration of the
algorithm. The neighborhood exploration phase is composed of four steps. It starts with
a shaking procedure to perturb the current solution, followed by an intensification phase
using the MOVND/P algorithm to generate the Pareto front PVND. Next, a test is applied to
verify that the points in PVND are non-dominated by s to enter the set of efficient solutions
A or not. Finally, the decision to stay in the improving neighborhood or explore other
neighborhoods is made. Counters are used throughout the algorithms to define stopping
criteria, including counters that record the improvement of the archive A.

Algorithm 5: Multi-objective GVNS based on Pareto Dominance (MOGVNS/P).
Data: kmax: number of neighborhood structures in MOGVNS/P ;
lmax: number of neighborhood structures in MOVND/P ;
Result: A : a set of potentially efficient solutions

1 s0 ← bestInsertionHeuristic(0.5, 0.5) ;
2 s← s0 ;
3 addSolution(s, A) ;
4 PVND ← ∅ ;
5 iteration← 1;
6 counterAISecond← 0;
7 while (counterAISecondPrevIt 6= counterAISecond ∧ (iteration ≤ itermax) do
8 counterAISecondPrevIt← counterAISecond ;
9 counter ← 1;

10 k← 1 ;
11 while k ≤ kmax do
12 s

′ ← s;
13 for p = 1 to nS do
14 s

′ ← Shaking(s′, k);
15 end
16 PVND ←MOVND/P(s

′
, lmax);

17 counterAI ← 0;
18 foreach (x ∈ PVND) do
19 if x /∈ A ∧ addSolution(x, A) then
20 counterAI ← counterAI + 1;
21 counterAISecond← counterAISecond + 1;
22 end
23 end
24 counter ← counter + 1;
25 if (counterAI = size(PVND)) ∧ (counter ≤ iterCmax) then
26 k← 1 ;
27 else
28 k← k + 1 ;
29 end
30 end
31 s← selectRandomNotExploredSolution(A) ;
32 iteration← iteration + 1;
33 end

4.7.2. Multi-Objective General Variable Neighborhood Search Based on Pareto Dominance
and Decomposition (MOGVNS/CDP)

Algorithm 6 extends the MOGVNS/P by starting with a population of initial solutions
rather than a single solution. The population is generated using the population generation
procedure previously presented in Algorithm 1. The chosen weights in each solution aim
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to guide the search process in different directions. For each individual in the population,
the MOGVNS/P algorithm is used to obtain the non-dominated solutions. The algorithm is
therefore based on Pareto dominance. The population of solutions aims to introduce more
diversity in the search process by exploring different regions. The drawback of this method
is that it can be more time-consuming since we start from a population of solutions.

Algorithm 6: Multi-objective GVNS based on Pareto Dominance and Decompo-
sition (MOGVNS/CDP).

Data: kmax: number of neighborhood structures in MOGVNS/P;
lmax: number of neighborhood structures in MOVND/P;
pop← vector of M + 1 empty solutions;
M : population parameter;
Result: A : a set of potentially efficient solutions;

1 pop← GenerateInitialPopulation(M);
2 for i = 0 to M do
3 addSolution(pop[i], A) ;
4 end
5 for i = 0 to M do
6 s← pop[i] ;
7 MOGVNS/P(s, A, kmax, lmax);
8 end

4.8. Multi-Objective General Variable Neighborhood Search Based on Decomposition
(MOGVNS/D)

Algorithm 7 combines the general structure of the classical aggregation-based method,
decomposition algorithms, and GVNS algorithm. It divides the multi-objective problem
into M+ 1 mono-objective problems based on aggregation through different weight vectors.
The proposed algorithm here is called MOGVNS/D. It uses the single objective local search
VND to solve the scalar subproblems.

The single objective VND applies a weighted sum function to evaluate and compare
solutions. Given a solution s, the weighted sum function associated to a solution sol and
weight vector (w1, wl) is calculated as follows: g(s, w1, wl) = w1 × f1(s) + wl × fl(s) with
l = 2, 3. The initial population is generated using the procedure described in Algorithm 1.
Compared to the previous ones based on Pareto dominance, the main drawback of this
method is that the Pareto front returned is an approximation of the supported efficient
solutions. It can also be time-consuming since we start from a population of solutions. On
the other hand, this algorithm is easily convertible to the single objective GVNS algorithm
since it is based on aggregation.

4.9. Novelty in the Proposed Algorithms
4.9.1. Novelty among Acceptance Strategies in Multi-Objective Optimization

Several authors have proposed and used several adaptations for the first-accept (FA)
and best-accept (BA) in the multi-objective optimization. Therefore, we analyze and review
the existing ones and the proposed method hereafter.

First-Accept based on Pareto dominance: This procedure consists of accepting the first
solution s

′
that is non-dominated by s. It has been used by Cota et al. [12].

Best-Accept based on Pareto dominance PLS: Paquete et al. [10] proposed Pareto local
search to apply the BA strategy in the multi-objective context. All the neighborhood of s is
explored, and the new solution is accepted if it is not dominated by any solution in the set
of efficient solutions.
Best-Accept based on Pareto dominance MOBI/P: We use in this paper a novel best-accept
acceptance strategy for multi-objective optimization called MOBI/P. This procedure tests if
each neighbor of s is non-dominated with the best solution found so far in the neighborhood
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of s. This best solution changes during the search. If the new solution s
′

dominates this
best solution, it replaces it, and so on until exploring all the neighborhoods and retaining
a unique last best solution that is the most converging. Choosing the last best solution
permits a translation in the Pareto front, ensuring diversification if the new solution s

′
is

incomparable with the best solution or more convergence if it dominates it. Moreover,
it is faster compared to the PLS strategy since we avoid comparing each solution in the
neighborhood to each solution in the archive as in PLS.

Algorithm 7: Multi-objective General Variable Neighborhood Search based on
Decomposition (MOGVNS/D).

Data: kmax: number of neighborhood structures in MOGVNS/P;
lmax: number of neighborhood structures in MOVND/P;
pop: vector of M + 1 empty solutions ;
M: population parameter;
Result: A : a set of potentially efficient solutions;

1 k← array of M + 1 integers ;
2 pop← GenerateInitialPopulation(M);
3 repeat
4 for i = 0 to M do
5 repeat
6 k[i]← 1 ;
7 while k[i] ≤ kmax do
8 s

′ ← pop[i];
9 for p = 1 to nS do

10 s
′ ← Shaking(s′, k);

11 end
12 s

′′ ← VND(s′, lmax);
13 if g(s

′′
, w1, wl) < g(pop[i], w1, wl) then

14 pop[i]← s
′′

;
15 k[i]← 1 ;
16 else
17 k[i]← k[i] + 1;
18 end
19 end
20 until no improvement is obtained;
21 iteration← iteration + 1;
22 end
23 until iteration ≤ itermax;
24 for i = 0 to M do
25 addSolution(pop[i], A) ;
26 end

Best-Accept for each objective separately: This procedure consists of applying a single
objective local search but for each objective separately. Duarte et al. [11] use VND-1
(respectively, VND-2) to improve the value of f1 (respectively, f2) regardless of the value
of f2 (respectively, f1) in a bi-objective problem. The final local optimum is then tested to
enter the archive or not.
Combination between the FA and BA strategy in PLS: Dubois-Lacoste et al. [13] propose
an alternative to accept only dominating solutions to speed up the search. They suggest
switching to the criteria adopted in PLS of accepting non-dominated solutions if such
solutions are no longer found. The authors also proposed an alternative strategy. It consists
of using the first-improvement technique to converge first to a good approximation of the
Pareto front until all solutions in the archive are flagged as visited. Afterward, one can
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move to the PLS best improvement strategy to complete the archive with the remaining
neighbors.

4.9.2. Novelty in the Design of the Multi-Objective Algorithms

We consider an improvement if all the solutions explored have been added to the
archive. This procedure is different than the definition of improvement proposed by [11],
where improving means at least one new point has been added to the archive A.

Likewise, we stay in the improving neighborhood if all the solutions explored are
non-dominated by s but also when a defined counter does not reach a maximum number
of iterations. This last condition is required to avoid not exploring the other neighborhoods
when the first neighborhood is constantly improving. In the literature, if there is an
improvement, the exploration continues in the same neighborhood structure [11]. Queiroz
and Mundim [23] propose to change the neighborhood systematically at each iteration in
an adapted template from [11] to reduce the computational time.

The proposed algorithms use all the MOBI/P procedure above as a multi-objective
best improvement strategy, whereas there are several different FA and BA accept strategies
in the literature.

5. Computational Experiments

This section presents computational experiments carried out to measure the perfor-
mance of the proposed algorithms. We present the results of the mono-objective problem
using the GVNS algorithm and the results of the multi-objective problem using the pro-
posed algorithms MOVND/P, MOVND/PI, and MOGVNS/P. The results of other proposed
variants as MOGVNS/CDP and MOGVNS/D, are also shown to demonstrate the perfor-
mance of the three aforementioned algorithms. In addition, CPLEX results are reported
for the mono-objective problem. Heuristic Pareto fronts are also provided for comparison
to our multi-objective problem. The maintenance model without constraints was solved
using Python 3.6. The joint maintenance scheduling and workforce routing model was then
solved using C++. This work has been compiled with GCC 7.4 in a Linux environment. To
solve the MILP using an exact method, the concert technology library of CPLEX 12.10.0
version with default settings in C++ has been used. Experiments were conducted using
the CALCULCO computing platform in an AMD EPYC 7702 with 2CPU, 2 gigahertz, and
1 core was dedicated to each instance. All methods are run using the same machine to
avoid bias.

5.1. Instances Description

We use two sets of instances. The first one, denoted by Re, is inspired by industrial
reality. In the Re instances, large and short maintenance durations are considered (Tcm
and Tpm go from 0.5 to 48 h). We set the shape the parameter of the Weibull distribution
β > 1 to consider the wear-out period of the machine’s life. These machines are, therefore,
old. Short (27 km) and long distances (up to 500 km) are considered. The speed is fixed
to 60 km/h, as adopted in real-world scenarios. The horizon is set to H = 101 h for n = 12
and H = 80 h for n = 6. The penalty cost is fixed to c = 10. This cost is high enough to
produce the desired effect of penalizing the objective functions whenever multiplied by
the penalty variables. The depot time window is the interval between the lower bound
a0 = 0 and the upper bound bn+1. For this class of instances, bn+1 = H. These data are
shown in [18]. There are six machines that may need more than one maintenance task in
the planning horizon in the class of instances Re. The travel time and distance between the
same machine operations are naturally zero. The number of available vehicles is initially
fixed to 4 for n = 12 and 2 for n = 6. We note that in some obtained solutions, we can
use fewer vehicles than those available. The second set is derived from the well-known
Solomon benchmark. These benchmark problems are available on Solomon’s web page
http://web.cba.neu.edu/ msolomon/problems.htm. We used the first 10, 25, 50 machines
of Solomon’s classes of instances. The number of operations used in these instances varies
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from 23 to 91 operations, and the number of vehicles ranges from 5 to 35. This latter can
also be reduced during the search.

Solomon’s instance are classified in three groups:

• R: randomly distributed locations.
• C: geographically clustered locations.
• RC: partially randomly distributed and partially clustered locations.

There are six Solomon’s classes with different locations coordinates: C101, C201, R101,
R201, RC101, RC201. The unitary speed is adopted. For each of these six classes, we con-
sider the horizon H = 100 h with a latest arrival time at the depot bn+1 = 200 h and H = 200 h
with bn+1 = 400 h. The opening time is a0 = 0. The maintenance parameters were gen-
erated as described in [4]: Tpmi ∼ Uc[5, 10], Tcmi ∼ Uc[15, 30], Cpmi ∼ Uc[100, 200],
Ccmi ∼ Uc[400, 800], Cwi ∼ Uc[10, 20], and σ ∼ t0i ∗ Uc[2, 5]. Only the parameter
β ∼ Uc[2, 6] is generated differently compared to the one described in [4] that we consider
closer to reality. The continuous uniform distribution Uc has been used to generate the
random information. In the instances sets, the percentage of time windows tolerance is
set to tol = 7%. It is inspired by the values usually used in large-scale industries that con-
sider a restricted time window. Another significant time window tolerance is considered
tol = 30%.

5.2. Numerical Results for the Mono-Objective Problem
5.2.1. Parameter Setting and Performance Metrics

To set the algorithm parameters, we have run several preliminary tests. We noticed
that a high value of the shaking parameter nS and a high number of iterations have a
negative impact on the computational time. The retained parameters for the maximum
number of iterations is itermax = max(1, E[n/8]) for the routing objective (23) and the
maintenance objective (25), where the symbol E stands for the whole experiments parts
of the integer portion of the number itermax = max(1, E[n/4]) for the failure objective (24).
The diversification parameter nS in the shaking phase is set to three. We compare the results
of the CPLEX solver and our mono-objective GVNS algorithm for the routing objective
function (23). In the CPLEX columns, we report the objective value, the CPU time, and
whether the solution is optimal, feasible, or not found after 96 h of execution. In the GVNS
algorithm, we indicate, respectively, the maximum, minimum, and average values for five
runs. We also provide the corresponding maximum, minimum, and CPU time.

The pseudo-code of mono-objective GVNS and VND are shown in [18]. The mono-
objective GVNS can directly be obtained with MOGVNS/D when the initial population is
reduced to one individual. The gap between the objective value of our metaheuristic and
the CPLEX solution is calculated as follows:

Gap(CPLEX, GVNS) = (
Value(CPLEX)−Value(GVNS)

Value(CPLEX)
)× 100% (29)

This gap represents the percent decrease of the cost objective when the GVNS algo-
rithm is used in comparison to the use of the CPLEX solver. It is the case whenever the
CPLEX solver only found a feasible penalized solution, and the gap is different from zero.

The percent decrease of CPU time when using the GVNS algorithm compared to the
CPLEX solver is given by:

ICPU(CPLEX, GVNS) = (
Time(CPLEX)− Time(GVNS)

Time(CPLEX)
)× 100% (30)

5.2.2. Test Results

The results of the GVNS and CPLEX solver for the routing objective are represented in
Table 1. Bold values are the minimum objective values obtained by either the GVNS or the
solver. Whenever a number in the improvement column is bold, there is an improvement.
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Table 1. Results of mono-objective GVNS for the routing objective.

Instance n
CPLEX GVNS Improvement

Objective Status CPU (s) max min avg max cpu min cpu avg cpu Gap (%) ICPU (%)

RE/6/2/80/80/0.07/2 6 110.88 optimal 0.03 110.88 110.88 110.88 0.244 0.233 0.239 0 −676.67
RE/6/4/101/101/0.07/2 12 353.52 optimal 0.92 362.64 353.52 355.344 3.66 2.64 3.01 0 −186.96

RE/6/2/80/80/0.30/2 6 98.64 optimal 0.09 105.36 98.64 92.784 0.18 0.12 0.146 0 −33.33
RE/6/4/101/101/0.30/2 12 325.92 optimal 1.74 349.44 325.92 336.768 5.94 3.49 4.224 0 −100.57

C101/10/8/100/200/0.07/2 23 119.699 optimal 131.61 121.451 119.699 120.133 131.56 94.83 113.878 0 27.95
C101/10/5/100/200/0.07/2 23 225.078 optimal 2186.44 226.826 225.078 225.588 161.95 56.89 107.518 0 97.40

C101/10/7/100/200/0.07 23 82.536 optimal 55.28 82.996 82.536 82.628 211.3 156.28 179.042 0 −78.36
C101/25/18/100/200/0.07 54 192.184 optimal 114,985 196.632 192.184 193.963 5586.44 4218.19 4868.12 0 96.33
C201/10/7/100/200/0.07 24 77.168 optimal 44.19 77.168 77.168 77.168 148.5 81.96 116.02 0 −85.47

C201/25/18/100/200/0.07 52 223.01 feasible 83,458 228.691 222.451 224.947 3566.31 2902.28 3245.33 0.29 96.52
R101/10/7/100/200/0.07 34 507.37 feasible 51,587.8 544.467 450.746 492.615 649.18 540.83 611.382 11.16 98.95

R101/25/18/100/200/0.07 68 244,302 feasible 67,536.8 316.103 299.882 307.842 13,044.3 10,906.1 12,133.2 99.88 83.85
R201/10/7/100/200/0.07 34 341.741 feasible 236,032 354.432 341.741 348.367 716.37 487.04 578.662 0 99.79
R201/25/18/100/200/0.07 65 - - - 246.648 237.633 239.436 10,748.3 7093.85 8823.51 - -
RC101/10/7/100/200/0.07 33 752.961 feasible 51,859 777.745 716.459 747.226 752.87 541.27 659.03 4.85 98.96
RC101/25/18/100/200/0.07 62 18,763.7 feasible 14,382.1 262.036 261.552 261.746 7660.66 5238.13 6368.32 98.61 63.58
RC101/50/35/100/200/0.07 89 - - - 560.06 560.06 560.06 35,389.4 31,967.6 33,868.1 - -
RC201/10/7/100/200/0.07 33 678.987 feasible 241,174 676.96 612.94 637.187 750.19 320.74 552.822 9.73 99.87
RC201/25/18/100/200/0.07 60 281.088 feasible 343,932 321.337 277.384 287.31 6173.46 4781.44 5537.82 1.32 98.61
RC201/50/35/100/200/0.07 91 - - - 713.324 706.072 708.94 34,343.8 26,443.5 29,329.9 - -
C101/10/8/100/200/0.30/2 23 82.544 feasible 225,506 83.344 82.544 82.704 159.31 77.38 121.358 0 99.97
C101/10/5/100/200/0.30/2 23 82.544 optimal 18,631.6 83.736 82.544 82.9424 147.76 78.27 119.06 0 99.58

C101/10/7/100/200/0.30 26 65.044 optimal 2288.14 65.044 65.044 65.044 251.2 152.27 190.812 0 93.35
C101/25/18/100/200/0.30 54 42,379.5 feasible 78,964.4 166.876 159.068 163.753 6284.01 3802.55 4849.62 99.62 95.18
C201/10/7/100/200/0.30 24 70.116 optimal 356.48 70.116 70.116 70.116 109.47 84.34 99.466 0 76.34

C201/25/18/100/200/0.30 52 116,913 feasible 80,200.3 180.7 179.144 179.758 4440.74 3303.94 4050.43 99.85 95.88
R101/10/7/100/200/0.30 34 94.96 feasible 236,317 107.644 95.528 101.242 805.61 431.89 558.634 −0.60 99.82
R101/25/18/100/200/0.30 68 - - - 208.588 203.616 205.714 13,602.9 11,030.5 12,438.2 - -
R201/10/7/100/200/0.30 34 83.28 optimal 24,458.8 87.18 83.28 84.06 791.51 694.42 752.572 0 97.16
R201/25/18/100/200/0.30 65 - - - 195.636 190.732 192.26 13,517.8 7052.6 9646.78 - -
RC101/10/7/100/200/0.30 33 173.116 feasible 241,311 207.477 173.116 189.96 747.57 425.65 571.79 0 99.82

RC101/25/18/100/200/0.30 62 - - - 232.152 229.78 230.761 7774.12 6244.38 7005.41 - -
RC201/10/7/100/200/0.30 33 117.011 feasible 258,832 128.91 117.011 121.77 638.44 439.24 555.072 0 99.83



Mathematics 2022, 10, 1807 24 of 36

Table 1. Cont.

Instance n
CPLEX GVNS Improvement

Objective Status CPU (s) max min avg max cpu min cpu avg cpu Gap (%) ICPU (%)

RC201/25/18/100/200/0.30 60 - - - 224.492 219.724 221.649 7803.89 5486.56 6723.49 - -
C101/10/18/200/400/0.07/2 52 148.156 feasible 342,141 130.743 130.743 130.743 10,770.5 7695.34 8634.23 11.75 97.75

C101/10/18/200/400/0.07 58 - - - 103.8 95.972 98.6456 19,472.2 12,096.7 15,370.3 - -
C201/10/18/200/400/0.07 54 - - - 96.216 96.16 96.1712 7471.94 6153 6749.16 - -
R101/10/18/200/400/0.07 73 - - - 71.892 71.892 71.892 32,985.8 25,402.7 28,932 - -
R201/10/18/200/400/0.07 72 - - - 71.896 71.896 71.896 30,988.5 22,842.1 25,594.4 - -

RC101/10/18/200/400/0.07 71 - - - 86.104 86.104 86.104 24,206.5 17,693.7 19,926 - -
RC101/10/18/200/400/0.07 72 - - - 86.104 86.104 86.104 30,123 21,641.7 24,153.9 - -
C101/10/18/200/400/0.30/2 52 11,986.3 feasible 252,973 102.328 100.588 101.198 13,018.1 9452.88 10,463.7 99.16 96.26

C101/10/18/200/400/0.30 58 - - - 84.864 84.624 84.72 18,539.5 9654.02 13,218.7 - -
C201/10/18/200/400/0.30 54 - - - 94.72 88.104 90.6752 11,208.8 6835.28 9404.82 - -
R101/10/18/200/400/0.30 73 - - - 82.712 71.888 77.608 31,452 25,678.5 29,740 - -
R201/10/18/200/400/0.30 72 - - - 81.136 71.896 79.288 32,522.2 25,003.3 28,856.2 - -

RC101/10/18/200/400/0.30 71 - - - 94.792 86.104 87.8416 26,959.8 19,969.3 24,013.2 - -
RC201/10/18/200/400/0.30 72 - - - 92.192 86.104 87.3216 29,509.4 19,741.8 23,851.1 - -
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The quality of the initial solution obtained with the best insertion heuristic considerably
reduces the CPU time since we start from a reduced objective compared to random initial
solutions. The impact of good initial solutions on the CPU time is illustrated in [18]. Indeed,
providing a well-chosen starting solution positively influences the execution time and
helps to improve the final solution quality rapidly. Optimizing the failure cost requires
more iterations to reach high-quality solutions than optimizing the routing cost or the
maintenance cost.

For small instances (less than 26 operations) of Solomon’s class C, both CPLEX and
GVNS were able to solve the problem optimally. However, the GVNS algorithm consumed
less CPU time than CPLEX for most of the instances. When the number of operations
increases to more than 34, some optimums were obtained for class C, R, or RC instances.
For these instances, CPLEX returns mostly either feasible solutions or optimal solutions but
after a very long CPU time (more than 48 h). In many instances, CPLEX fails to find optimal
solutions after one week. In most cases, the GVNS algorithm improves the objective value
of feasible solutions obtained by CPLEX. The Gap of GVNS for most instances is 0%. The
algorithm is also very robust since the difference between the maximum, minimum, and
average values is very small, almost negligible.

For the 47 tested instances, CPLEX returned either feasible or optimal values for 29
instances and failed to obtain any feasible solution for the remaining 18 instances, even
after a week of execution. For the 29 instances for which we obtained either feasible or
optimal solutions using CPLEX, the average gap or objective improvement of GVNS over
CPLEX is 18.47%. The average improvement of CPU is 32.81%. When removing the four
Re instances for which the number of operations is inferior to 12, we obtain an average
objective improvement in favor of GVNS equal to 21.42 % and an average improvement of
the CPU is 77.96%. The gap value is 0 for 17 instances among 29 instances solved. Therefore,
the proposed GVNS found the optimums in these instances. The GVNS algorithm improves
the CPLEX results on 11 instances out of the 29 instances for which CPLEX returns either
feasible or optimal solutions. However, it obtains a slightly worse value for only one
instance. The average gap for the 12 instances where the gap is different from 0 is 44.61%.
This means that when the gap is different from zero (meaning only a feasible solution is
found), GVNS finds a better objective value than CPLEX with a percentage of 44.61%. The
average percent decrease of CPU time when using GVNS compared to CPLEX is 85.73% in
this case.

Our GVNS algorithm outperforms CPLEX in terms of running time, the longest CPU
time being only 3 h (109,061 s) compared to the maximum CPU time reached by CPLEX of
95.53 h (343,932 s).

5.3. Numerical Results for the Multi-Objective Problem
5.3.1. Parameter Setting and Performance Metrics

There are two stopping conditions for the MOVND/P, MOVND/PI and MOGVNS/P:
the maximum number of iterations itermax and the stopping criterion related to the neigh-
borhood change iterCmax. The value of these parameters has been fixed according to the
number of operations n. For the MOVND/P algorithm, the maximum number of iterations
is itermax = max(1, E[n/2]). The second defined stopping criterion related to the neighbor-
hood change is iterCmax = max(1, E[n/16]). Similarly, for MOGVNS/P these parameters
are itermax = max(1, E[n/2]) and iterCmax = max(1, E[n/16]). For MOVND/PI, these
values are itermax = 2n and iterCmax = max(1, E[n/16]). For the algorithm MOGVNS/D,
itermax = 1 in the multi-objective case, while it is for the mono-objective case, as men-
tioned previously, itermax = max(1, E[n/8]) for the routing objective and the maintenance
objective and itermax = max(1, E[n/4]) for the failure objective. MOGVNS/CDP calls
MOGVNS/P and has, therefore, the same values as this latter for itermax and iterCmax. The
population size parameter equals M = 10.

In mono-objective optimization, it is simple to evaluate the quality of a solution. It
is a more difficult task in multi-objective optimization since the output is represented
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by sets of trade-off solutions, potentially incomparable in terms of Pareto dominance.
Consequently, we use several indicators to measure the quality of an approximation of
the Pareto front involving several criteria such as solution quality, computational effort,
robustness, and other factors. The indicators assess solution quality and computational
effort. The CPU indicator evaluates the time needed for the algorithm to return a final Pareto
front. The quality indicators that we used are the number of non-dominated solutions and
the hypervolume indicator to measure coverage and assess the front returned convergence.

The hypervolume (HV) indicator is a metric that measures the size of the space covered.
It assesses the space enclosed by all the solutions of the objective space. The HV of an
estimated Pareto front is the sum of the hypercubes that each set of solutions contains. It
shows the distribution of solutions along the Pareto front. The larger the HV indicator is,
the better the Pareto front is.

The reference point ( f rp
1 , f rp

l ) is chosen to be dominated by all solutions of the Pareto
front. In this section, the reference point rp used is ( f max

1 , f max
l ) since we seek to minimize

costs. f max
1 and f max

l are, respectively, the maximum values of the first objective (routing
cost) and the second objective, either failure or maintenance cost in the Pareto front identi-
fied by the mono-objective GVNS. The size of a rectangular area ai enclosed by a solution
si is hvi = ( f rp

1 − f1(si)) ∗ ( f rp
l − fl(si)) where l = 2,3. The hypervolume is the sum of the

areas formulated as follows:

hv =
p

∑
i=1

( f max
1 − f1(si)) ∗ ( f max

l − fl(si)), ∀si ∈ A (31)

where l = 2,3, and p is the number of solutions si in the Pareto front A.
Our bi-objective algorithms based on VND and GVNS frameworks were compared to

those of [11]. Algorithms in [11] were run for a longer time to have a complete Pareto front
and meaningful results. For a fair comparison, all methods were run on the same machine
in the computing platform.

The improvement of our algorithms over the literature algorithm is evaluated using a
percent increase of the HV indicator and the number of non-dominated points when using
the proposed algorithms PA compared to the comparison algorithms CA of [11].

IHV(CA, PA) = (
HV(PA)− HV(CA)

HV(CA)
)× 100% (32)

INDP(CA, PA) = (
NDP(PA)− NDP(CA)

NDP(CA)
)× 100% (33)

It is also evaluated using the percent decrease of the CPU time of the proposed
algorithms PA over the comparison algorithms CA.

ICPU(CA, PA) = (
CPU(CA)− CPU(PA)

CPU(CA)
)× 100% (34)

5.3.2. Test Results

Tests are realized over small, medium, and large instances. Small instances include 6
and 12 PM operations. The number of operations varies between 23 and 34 for medium-
sized instances and between 52 and 73 for large-sized instances. The indicators assessed
are the hypervolume (HV) to measure the convergence and coverage of the solutions in the
Pareto front obtained, the number of non-dominated points (NDP), and the CPU time in
seconds.

Comparison with the Literature

Tables A1 and A2 show the results of the proposed variable neighborhood descent
algorithms, MOVND/P, MOVND/PI, and the results of the MOVND suggested by [11]. Fur-
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thermore, Table A1 details the results for the maintenance cost as a second objective, whereas
Table A2 shows the results when the failure cost is the second objective of the problem.

Some results that were not displayed in detail are also reported here for the tested
instances: the average percent improvement of HV (IHV), NDP (INDP), and CPU (ICPU).
They are summarized in Table 2. There is an improvement for bold numbers. When the
maintenance cost is the second objective considered, both MOVND/P and MOVND/PI
have better average values than the MOVND of [11] on all the considered quality indicators.
Indeed, the average percent improvement of MOVND/P compared to MOVND [11] of the
hypervolume (IHV) and the number of non-dominated points (INDP) is, respectively, 7.82%
and 2.79%. These two indicators improved slightly; however, the CPU time decreased
considerably by 81.56%. The second proposed algorithm, MOVND/PI, considerably
outperforms the MOVND of the literature [11] for the 46 instances tested. Indeed, the
hypervolume and the number of non-dominated points increased, respectively, by an
average of IHV = 104.12% and INDP = 108.45%, which is a considerable improvement.
However, the CPU decreased by only 4.73%. Despite the minor improvement for the
CPU time, the other coverage and convergence indicators are considerably improved. We
also measure this improvement for the proposed VND algorithms over MOVND of the
literature [11] for the instances without the four small instances Re. For the 42 derived from
Solomon’s instances, the improvement of the indicators HV, NDP, and CPU of MOVND/P
are, respectively, IHV = 2.32%, INDP = −3.26%, and ICPU = 88.81%. The improvement
of the same indicators for MOVND/PI becomes IHV = 106.38%, INDP = 105.20%, and
ICPU = 28.87%.

Table 2. Comparisonbetween the proposed algorithms and the literature algorithms.

Improvement
The Maintenance Objective The Failure Objective

IHV (%) INDP (%) ICPU (%) IHV (%) INDP (%) ICPU (%)

MOVND/P over MOVND of [11] 7.82 2.79 81.56 85.71 67.74 80.79
MOVND/PI over MOVND of [11] 104.12 108.45 4.73 303.78 304.90 −10.21
MOGVNS/P over MOGVNS of [11] 52.29 52.15 41.69 91.47 92.11 47.74
MOGVNS/P over MOGVNS/CDP 2.42 1.92 24.73 −2.91 −1.68 18.24
MOGVNS/P over MOGVNS/D 574.41 573.14 19.92 792.71 679.11 13.03
MOGVNS/P over MOVND/PI 25.87 26.90 −706.20 22.02 21.75 −387.50
MOVND/PI over MOGVNS/P −0.38 −0.23 65.74 −7.55 −7.41 70.87

We consider the failure cost as a second objective with the routing one. The average
percent improvement of the indicators of MOVND/P in comparison to MOVND of the
literature [11] is considerable, and the values of HV, NDP, and CPU indicators equal,
respectively, 85.71%, 67.74%, and 80.79%. The average percent improvement of HV for
MOVND/PI compared to MOVND of the literature is 303.78%. The number of non-
dominated points NDP increased by 304.90%. However, the improvement of the CPU
is −10.21%. When the four small instances Re are deleted to consider only instances
generated from Solomon’s set, the improvement of the indicators stays considerable for
both algorithms. The values of HV, NDP, and CPU indicators improves by, respectively,
67.16%, 67.11%, and 88, 81% for MOVND/P and by 324.52%, 325.54%, and 14.01% for
MOVND/PI. The quality indicators are improved, and the CPU time of our algorithms is
considerably less.

We can conclude that all the indicators were improved for both failure cost and
maintenance cost as the second objective. There is a slight improvement for the HV and
NDP indicator for MOVND/P for the maintenance cost and a considerable improvement
in the CPU time that has decreased. On the other hand, MOVND/PI improves the HV and
NDP indicators considerably with only a tiny improvement in the CPU time. The results of
the failure cost as a second objective demonstrated a considerable improvement for all the
quality and time indicators for both MOVND/P and MOVND/PI algorithms.
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Table A3 illustrates the results of the comparison between our proposed MOGVNS/P
and MOGVNS of the literature suggested by [11]. When the maintenance cost is the
second objective, the average percent improvement of HV when using MOVGVNS/P is
52.29%. The number of non-dominated points NDP increased by an average of 52.15%.
The computational time CPU of MOVGVNS/P decreased by ICPU = 41.69%. When the
failure cost is the second objective, the average percent improvement of HV of MOVGVNS
compared to MOGVNS of the literature is 91.47%. The number of non-dominated points
NDP increased by 92.11%. The running time is reduced by 47.74%. All the indicators have
been improved. We can conclude that the MOGVNS/P algorithm considerably outperforms
the literature algorithm in all the assessed indicators for both second objectives.

We fixed a time limit to one week to have all the instances. We have therefore tested
the MOGVNS of the literature for fewer instances since it consumes more time.

Comparison between the Proposed Algorithms

Tables A4 and A5 present the results of the three indicators measuring the quality of
the solutions obtained and the time to get those solutions for the proposed MOGVNS/P,
MOGVNS/CDP, and MOGVNS/D algorithms. The last study aims to compare the perfor-
mance of the algorithms presented and discuss their difference. When the maintenance cost
is the second objective, and for the 46 tested instances, MOGVNS/P outperforms in average
MOGVNS/CDP in the three indicators HV, number of NDP, and CPU with, respectively,
2.42%, 1.92%, and 24.73%. MOGVNS/P is better on average than the decomposition-based
algorithm MOGVNS/D in the indicators HV, the number of NDP, and CPU with, respec-
tively, 574.41%, 573.14%, and 19.92%. The MOGVNS/P improves MOVND/PI on the
indicators HV and NDP by about 25.87% and 26.90%. However, MOGVNS/P consumes
more time (−706.20%) than MOVND/PI. In the opposite direction, the MOVND/PI im-
proves MOGVNS/P by −0.38%, −0.23%, and 65.74%. Therefore, we can conclude that
MOVND/PI has similar performance for the HV and NDP indicators and is far faster than
MOGVNS/P. When the failure cost is the second objective and for the 46 instances tested,
MOGVNS/P outperforms on average MOGVNS/CDP in the three indicators HV, the num-
ber of NDP, and CPU with, respectively, −2.91%, −1.68%, and 18.24%. The MOGVNS/P
is better than MOGVNS/D in the indicators HV, NDP, and CPU with 792.71%, 679.11%,
and 13.03%. The MOGVNS/P improves MOVND/PI on the three indicators HV, NDP, and
CPU by about 22.02%, 21.75%, and −387.50%. The HV and NDP indicators are improved;
however here again, MOGVNS/P consumes more time than MOVND/PI when the fail-
ure cost is considered. In the opposite sense, the MOVND/PI improves MOGVNS/P by
−7.55%, −7.41%, and 70.87%. We can conclude from this study that MOGVNS/P is better
in all indicators compared to MOGVNS/CDP and MOGVNS/D. Moreover, MOVND/PI
has approximately the same performance as MOGVNS/P, but it is considerably faster.

The convergence of the proposed algorithms for all the instances tested can be
discussed from the HV results of Table 2. The improvement for the HV indicator of
MOGVNS/P over MOGVNS/CDP is slight. The two algorithms therefore have similar
convergence and coverage performance. They also have approximately the same number
of non-dominated points NDP. The mono-objective GVNS, whose results are presented in
Section 5.2.2 obtains a solution with the optimal cost found by the solver or a solution with
a better objective value than the feasible solution returned by the solver. Therefore, the
GVNS algorithm converges. The algorithm MOGVNS/D uses the same components (neigh-
borhood structures, etc.) as the GVNS algorithm and an aggregated function to evaluate
solutions. It therefore has the same convergence as the other GVNS algorithms. However,
the set of efficient solutions returned includes only supported solutions, which explains
its weak performance in the HV and NDP indicators compared to MOGVNS/P. Figure 3
illustrates for a given instance of 52 operations that MOGVNS/D has a good convergence
but returned an incomplete Pareto front. MOVND/P is designed to be an intensification
algorithm. It is a main component of MOGVNS/P and MOGVNS/CDP. It therefore has
less convergence than the latter two. MOGVNS/P outperforms MOVND/PI in the HV and
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NDP indicators. MOGVNS/P also takes more time. Therefore, the convergence and the
coverage of MOGVNS/P are better than those of MOVND/PI. The MOGVNS/P algorithm
also returns more non-dominated points than MOVND/PI. This is shown in Figure 3. We
can conclude that all the algorithms converge; however, the convergence of the GVNS algo-
rithms is better than the convergence of VND-based algorithms. All the GVNS algorithms
proposed in this paper have the same convergence as MOGVNS/P but differ only in terms
of coverage.

Discussion of the Results

In conclusion, the proposed algorithms MOVND/P, MOVND/PI, and MOGVNS/P
have a better performance compared to the MOVND, and MOGVNS of [11]. One reason can
be that the VND used by [11] first tries to improve each objective separately independently
from the other using a single objective evaluation. As a result, the algorithms are not totally
based on Pareto dominance. The method we used to fully explore the neighborhoods
MOBI/P is also very impactful in improving solution quality and reducing computational
time. We also force the exploration of all the neighborhoods with specific stopping crite-
ria, while in [11], staying in the same neighborhood is necessary when it still improves.
MOGVNS/P has a similar performance as MOGVNS/CDP. However, the latter consumes
more time since MOGVNS/CDP is the same as MOGVNS/P applied on a population of
solutions instead of one initial solution. The shaking procedure is also a better perturbation
than the method we used to generate the initial population and is sufficient to diversify
the search. The importance of the shaking procedure also appears when comparing the
performance between MOGVNS/P and MOVND/PI. MOGVNS/P outperforms for the
quality indicators MOVND/PI. MOGVNS/P is far better than MOGVNS/D for all quality
indicators since the latter algorithm returns only supported solutions. All methods have a
good convergence towards a good Pareto front. The methods differ in the coverage and
convergence indicator, the number of non-dominated solutions, and the computational
time. Our best algorithms are MOGVNS/P and MOVND/PI.

Figure 3 illustrates the Pareto front obtained on the instance C201/25/18/100/200/0.30.
For this specific instance, MOGVNS/P and MOGVNS/CDP have good performance over
all other algorithms. MOVND/P and MOVND/PI are better than the MOVND proposed
in the literature. Moreover, MOVND/PI is also better than MOGVNS in the literature.
MOGVNS/D returns an incomplete Pareto front but has a good convergence. This instance
can represent the results of the performance of all the algorithms on average. The proposed
MOGVNS/P algorithm has better convergence compared to MOVND/PI. The average
percent results obtained in Table 2 show the same performance. However, the results of
MOVND/PI, on average, are close to those of MOGVNS/P, although it is less converging.

Figure 3. Pareto fronts of the different algorithms for the instance C201/25/18/100/200/0.30 and the
failure cost as second objective (52 operations).
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6. Conclusions

In this paper, we address a joint maintenance and workforce routing problem. We
propose a novel bi-objective mathematical model that aims to minimize both maintenance
and transport costs in the case of time-based preventive maintenance. The set of machines
is supposed to be geographically distributed and subject to non-deterministic failures.
The joint maintenance and routing problem’s objective is to simultaneously determine the
optimal times to perform preventive maintenance operations on each machine and find the
optimal sequence of these operations that simultaneously minimizes the maintenance and
routing cost.

There are many contributions to this paper. We first propose a nonlinear stochastic
failure cost that uses information from equipment degradation. It includes direct costs
(failure cost) and indirect costs (production losses) illustrated by the waiting time. This
objective is particularly valuable for industries where failures seriously influence personnel
safety and cause environmental damage. We also investigate another maintenance cost pre-
viously proposed in the literature that aims to balance both preventive and corrective costs
related to maintenance operations. For the first time, a bi-objective approach is proposed
to deal with this problem, where we associate either the failure cost or the maintenance
cost with the routing cost. Both costs also consider the time of the last restoration. The
proposed model considers maintenance operations time windows, penalties related to
late arrival, and maintenance costs under uncertainty which are interesting features of
real industrial problems. New adaptations of variable neighborhood descent and general
variable neighborhood search frameworks called respectively MOVND/P, MOVND/PI,
and MOGVNS/P are proposed to deal with combinatorial multi-objective optimization
problems, and this problem, particularly. To obtain high-quality solutions, we describe how
to design the improvement method, the acceptance criterion, the stopping criterion, and
the neighborhood change procedure. These algorithms are based on the Pareto dominance
concept and use a new multi-objective best improvement strategy called MOBI/P. We test
a pure decomposition approach. The resultant algorithm, MOGVNS/D, decomposes the
problem into several scalar subproblems and uses the weighted sum method to evaluate
the solutions. This algorithm is easily convertible to a mono-objective general variable
neighborhood search. Finally, we test the use of a population of solutions with MOGVNS/P.
The resulting variant is called MOVNS/CDP.

Several numerical experiments have been performed to validate our proposals. First,
the mathematical model and the proposed algorithms were evaluated on randomly gener-
ated instances. For the single objective variant of the problem, the computational results
for the linear routing objective indicate that the GVNS significantly outperforms the results
of the commercial solver CPLEX in terms of solution quality and CPU time. The obtained
results also demonstrate that MOVND/P, MOVND/PI, and MOGVNS/P outperform ex-
isting MOVND and MOGVNS in the literature for all indicators measuring convergence
and coverage in less computational time. Compared to the other proposed MOGVNS
variants, MOGVNS/P is significantly better than MOGVNS/D for all the quality and
time indicators since the latter algorithm returns only supported solutions. MOGVNS/P
slightly outperforms MOGVNS/CDP in less computational time. Moreover, MOVND/PI
and MOGVNS/P have almost similar performances with a time advantage in favor of
MOVND/PI.

Future research will include exploring the integration of other maintenance strategies
with the routing problem to reduce maintenance costs and improve the quality of main-
tenance services. It will also be promising to test the hybridization of local search and
population-based methods to solve the problem.
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Appendix A. Comparison of the Proposed Algorithms with the Literature

Table A1. Results of MOVND/P, MOVND/PI and MOVND literature for the maintenance cost as a
second objective.

Instance n
MOVND/P MOVND/PI MOVND Literature

HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s)

RE/6/2/80/80/0.30/2 6 0.0003 5 0.05 0.0003 5 0.2 0.0003 4 0.04
RE/6/4/101/101/0.30/2 12 0.0485 8 1.22 0.0666 11 4.47 0.0843 14 5.36
RE/6/2/80/80/0.07/2 6 0.0007 4 0.06 0.0007 7 0.21 0.0002 1 0.03

RE/6/4/101/101/0.07/2 12 0.0479 5 1.22 0.0670 4 4.48 0.0572 6 4.01
C101/10/8/100/200/0.07/2 23 1.24 4 19.47 2.49 8 133.15 3.11 10 116.31
C101/10/5/100/200/0.07/2 23 1.55 5 23.72 0.31 1 5.87 0.93 3 86.28

C101/10/7/100/200/0.07 26 12.97 9 23.83 12.97 9 209.43 5.77 4 130.84
C101/25/18/100/200/0.07 54 562.34 16 533.78 1581.59 45 6428.67 667.78 19 8932.8
C201/10/7/100/200/0.07 24 4.10 4 15.71 5.77 4 142.89 3.07 3 40.64
C201/25/18/100/200/0.07 52 386.17 11 609.31 1097.39 32 5450.49 702.11 20 9680.37
R101/10/7/100/200/0.07 34 6.39 2 55.92 3.19 1 26.76 6.40 2 281.41

R101/25/18/100/200/0.07 68 951.51 12 1091.67 2140.90 27 17,624.5 475.75 6 21,268.8
R201/10/7/100/200/0.07 34 17.17 2 91.98 6.17 2 26.74 9.27 3 417.44

R201/25/18/100/200/0.07 65 897.63 14 1242.88 1987.66 31 14,485.9 769.37 12 19,628.2
RC101/10/7/100/200/0.07 33 17.17 3 55.66 7.22 2 24.26 7.24 2 276.07

RC101/25/18/100/200/0.07 62 1011.35 15 677.4 2292.50 34 10,612.2 1348.52 20 13,304
RC201/10/7/100/200/0.07 33 6.59 2 68.92 6.57 2 24.24 3.30 1 121.77
RC201/10/7/100/200/0.07 60 1227.72 21 1032.7 2104.66 36 8961.95 876.78 15 9027.58
C101/10/8/100/200/0.30/2 23 5.41 19 22.12 9.97 35 132.91 4.56 16 147.47
C101/10/5/100/200/0.30/2 23 1.42 5 20.67 5.41 19 126.2 2.85 10 99.42

C101/10/7/100/200/0.30 26 29.05 17 35.08 42.94 31 209.26 18.01 13 150.65
C101/25/18/100/200/0.30 54 548.34 16 590.27 2296.17 67 6034.47 274.17 8 8805.36
C201/10/7/100/200/0.30 24 3.93 4 9.73 19.66 20 154 12.78 13 92.96
C201/25/18/100/200/0.30 52 445.82 13 357.9 3223.72 94 5141.7 1097.37 32 17,867.8
R101/10/7/100/200/0.30 34 15.71 5 61.06 6.28 2 26.77 18.85 6 340.59

R101/25/18/100/200/0.30 68 938.94 12 743.79 4616.59 59 18,565.4 2660.35 34 54,171.9
R201/10/7/100/200/0.30 34 8.99 3 52.73 35.96 12 564.07 29.97 10 425.77

R201/25/18/100/200/0.30 65 1008.25 16 904.88 3150.85 50 15,022.9 441.12 7 32,633.30
RC101/10/7/100/200/0.30 33 10.66 3 96.33 3.55 1 24.27 21.32 6 454.34

RC101/25/18/100/200/0.30 62 863.89 13 609.68 3322.72 50 11,081.2 1727.76 26 22,870.20
RC201/10/7/100/200/0.30 33 25.77 8 73.56 22.55 7 502.72 22.55 7 429.36

RC201/25/18/100/200/0.30 60 345.92 6 464.33 2882.67 50 9104.31 1787.19 31 20,760.4
C101/10/18/200/400/0.07/2 52 294.75 17 1242.3 346.77 20 11,082 294.75 17 18,586.1

C101/10/18/200/400/0.07 58 464.93 13 1868.44 434.22 12 14,898.9 289.48 8 20,384.3
C201/10/18/200/400/0.07 54 158.07 6 1092.76 447.88 17 11,487.4 342.48 13 23,556.1
R101/10/18/200/400/0.07 73 690.09 10 1395.12 3795.37 55 49,525.1 1587.10 23 64,858.6
R101/10/18/200/400/0.07 72 871.90 14 1719.02 2366.54 38 47,512.1 1556.88 25 86,544.6

RC101/10/18/200/400/0.07 71 860.73 11 1957.61 2112.70 27 43,173.4 1095.45 14 39,987.6
RC201/10/18/200/400/0.07 72 604.69 8 3235.91 982.63 13 45,042.6 755.85 10 86,450.6
C101/10/18/200/400/0.30/2 52 260.40 32 2103.68 398.74 49 10,837.7 195.29 24 34,088.3

C101/10/18/200/400/0.30 58 569.45 16 1129.3 1530.41 43 15,580.8 284.73 8 19,984.4
C201/10/18/200/400/0.30 54 234.59 9 616.88 1172.96 45 12,336.6 781.95 30 23,290.3
R101/10/18/200/400/0.30 73 1570.12 23 2435.37 3618.16 53 49,447 2457.47 36 149,979
R201/10/18/200/400/0.30 72 430.94 7 1366.78 4063.01 66 46,973.4 1785.15 29 150,895

RC101/10/18/200/400/0.30 71 1547.50 20 1715.48 5493.56 71 44,989.6 1934.23 25 80,095.2
RC101/10/18/200/400/0.30 72 820.64 11 2227.89 2909.57 39 46,574.3 2685.58 36 130,648
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Table A2. Results of MOVND/P, MOVND/PI and MOVND literature for the failure cost as a second
objective.

Instance n
MOVND/P MOVND/PI MOVND Literature

HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s)

RE/6/2/80/80/0.30/2 6 0.0034 5 0.06 0.0004 5 0.21 0.0004 4 0.04
RE/6/4/101/101/0.30/2 12 0.0909 8 1.22 0.1117 10 4.45 0.1008 9 4.05
RE/6/2/80/80/0.07/2 6 0.0015 4 0.06 0.0015 4 0.21 0.0004 1 0.03

RE/6/4/101/101/0.07/2 12 0.0671 5 1.22 0.1174 7 4.48 0.1001 6 3.64
C101/10/8/100/200/0.07/2 23 5.31 9 15.1 5.31 9 135.19 5.30 9 64.05
C101/10/5/100/200/0.07/2 23 1.76 3 14 6.45 11 128.08 3.52 6 43.86

C101/10/7/100/200/0.07 26 18.79 7 31.58 18.79 7 213.73 10.74 4 103.54
C101/25/18/100/200/0.07 54 1231.33 18 559.09 3899.40 57 6678.62 1983.79 29 8206.33
C201/10/7/100/200/0.07 24 5.77 3 16.77 5.77 3 13.77 5.77 3 37.4

C201/25/18/100/200/0.07 52 865.32 13 551.99 2196.74 33 5780.61 532.46 8 10,127.5
R101/10/7/100/200/0.07 34 42.19 8 86.95 116.43 22 657.07 52.88 10 1166.9
R101/25/18/100/200/0.07 68 4066.99 29 2002.37 21,038.07 150 18,851.9 3786.48 27 33,391.7
R201/10/7/100/200/0.07 34 63.14 12 94.28 52.66 10 647.3 21.05 4 452.07
R201/10/7/100/200/0.07 65 4361.90 38 1034.57 15,726.16 137 15,669.4 918.13 8 33,337.7

RC101/10/7/100/200/0.07 33 55.46 9 127.03 67.90 11 565.16 43.13 7 881.1
RC101/25/18/100/200/0.07 62 3657.44 30 707.27 9510.84 78 11,472.4 4023.34 33 15,830.2
RC201/10/7/100/200/0.07 33 32.66 6 59.1 10.86 2 65.87 27.21 5 453.44

RC201/25/18/100/200/0.07 60 1566.20 15 685.66 3445.64 33 9295.29 1252.91 12 18,024.7
C101/10/8/100/200/0.30/2 23 13.77 25 29.48 18.73 34 132.67 8.81 16 86.21
C101/10/5/100/200/0.30/2 23 5.49 10 16.25 10.44 19 125.59 8.22 15 116.21

C101/10/7/100/200/0.30 26 7.82 3 31.54 49.50 19 210.47 23.42 9 155.62
C101/25/18/100/200/0.30 54 806.57 12 384.27 4571.50 68 6545.2 537.50 8 10,506
C201/10/7/100/200/0.30 24 24.09 13 32.81 27.79 15 154.49 12.95 7 160.28

C201/25/18/100/200/0.30 52 1308.52 20 641.11 5038.12 77 5401.41 261.65 4 5892.46
R101/10/7/100/200/0.30 34 72.90 14 147.27 156.51 30 642.17 104.19 20 906.05
R101/25/18/100/200/0.30 68 2914.36 21 1139.92 9306.64 67 19,275.6 6387.17 46 55,910.8
R201/10/7/100/200/0.30 34 55.75 10 77.69 117.96 23 658.76 77.96 14 911.04
R201/25/18/100/200/0.30 65 2934.54 25 880.81 12,567.23 111 15,819.6 1173.17 10 26,295.3
RC101/10/7/100/200/0.30 33 54.65 9 95.43 158.08 26 579.12 30.29 5 445.19

RC101/25/18/100/200/0.30 62 3137.26 26 976.83 9533.74 79 10,722.8 3378.24 28 25,547.6
RC101/10/7/100/200/0.07 33 32.19 6 114.38 32.13 6 543.16 16.07 3 348.52

RC101/25/18/100/200/0.07 60 1654.22 16 917.79 5377.30 52 8604.74 929.90 9 17,975.6
C101/10/18/200/400/0.07/2 52 247.51 10 519.16 544.52 22 11,468.7 321.76 13 9274.35
C101/10/18/200/400/0.07 58 1011.13 20 1644.54 1769.47 35 16,796.7 859.45 17 22,559.4
C201/10/18/200/400/0.07 54 300.01 8 489.9 450.04 12 11,983.4 375.00 10 13,677
R101/10/18/200/400/0.07 73 5556.85 61 2423.77 24,150.22 265 48,796.8 4281.01 47 187,668
R201/10/18/200/400/0.07 72 4314.09 51 2484.2 20,134.71 238 45,927.8 5412.29 64 154,388

RC101/10/18/200/400/0.07 71 6007.16 57 1913.23 14,228.34 135 44,609.6 2107.10 20 28,488
RC201/10/18/200/400/0.07 72 1199.78 12 1645.21 1199.79 12 45,741 899.84 9 42,006.1
C101/10/18/200/400/0.30/2 52 350.15 30 1882.84 735.40 63 11,110 46.67 4 13,236
C101/10/18/200/400/0.30 58 548.26 11 876.11 3489.58 70 16,929.4 1246.10 25 24,077.3
C201/10/18/200/400/0.30 54 409.33 11 630.19 1228.07 33 12,909.9 669.76 18 20,636.9
R101/10/18/200/400/0.30 73 4336.84 48 1873.73 13,106.60 145 48,922.1 4876.02 54 230,071
R201/10/18/200/400/0.30 72 6785.69 81 3001.99 13,665.38 163 46,528.3 921.47 11 209,551

RC101/10/18/200/400/0.30 71 5012.31 48 2224.24 12,745.50 122 44,825 3446.74 33 103,688
RC201/10/18/200/400/0.30 72 1089.28 11 1673.89 5447.25 55 47,334.7 3169.18 32 95,318.4
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Table A3. Results of MOGVNS literature and improvement of MOGVNS/P over the MOGVNS of the literature [11].

Instance n

The Maintenance Objective The Failure Objective
MOGVNS Literature Improvement of MOGVNS/P MOGVNS Literature Improvement of MOGVNS/P

Over MOGVNS Literature (%) Over MOGVNS Literature (%)

HV NDP CPU HV NDP CPU HV NDP CPU HV NDP CPU (s)

C101/10/8/100/200/0.07/2 23 2.49 8 292.92 62.52 62.50 −93.80 7.66 13 291.07 −30.76 −30.77 25.46
C101/10/5/100/200/0.07/2 23 0.93 3 158.81 −33.08 −33.33 −35.97 3.52 6 146.89 100.04 100.00 −87.10

C101/10/7/100/200/0.07 26 10.09 7 638.24 42.86 42.86 45.60 18.79 7 762.43 −14.29 −14.29 53.43
C101/25/18/100/200/0.07 54 843.52 24 253,456 108.33 108.33 85.62 2736.29 40 328,945 62.51 62.50 89.62
C201/10/7/100/200/0.07 24 3.07 3 438.08 33.34 33.33 68.18 5.77 3 270.76 33.33 33.33 −24.74
C201/25/18/100/200/0.07 52 912.74 26 288,684 7.70 7.69 94.81 1464.39 22 285,426 145.47 145.45 89.27
R101/10/7/100/200/0.07 34 3.20 1 1294.75 199.70 200.00 59.75 95.23 18 8911.06 72.29 72.22 69.82
R201/10/7/100/200/0.07 34 6.18 2 2827.07 0.09 0.00 68.17 63.15 12 8289.31 150.18 150.00 62.83

RC101/10/7/100/200/0.07 33 7.24 2 1846.61 0.09 0.00 71.40 61.75 10 8152.01 90.10 90.00 66.10
RC101/25/18/100/200/0.07 62 1618.23 24 521,083 20.83 20.83 94.71 5242.74 43 682,100 79.09 79.07 90.13
RC201/10/7/100/200/0.07 33 3.30 1 1174.53 200.25 200.00 59.59 21.78 4 5799.4 0.04 0.00 83.40
RC201/25/18/100/200/0.07 60 1520.17 26 501,547 215.39 215.38 89.74 2928.86 24 484,991 14.10 33.33 95.00
C101/10/8/100/200/0.30/2 23 4.84 18 401.75 147.06 133.33 −156.04 7.15 13 418.21 277.19 276.92 −99.83
C101/10/5/100/200/0.30/2 23 5.13 18 365.8 33.34 33.33 −145.15 7.68 14 350.3 43.09 42.86 −5.53

C101/10/7/100/200/0.30 26 24.93 18 856.62 55.56 55.56 −78.38 23.42 9 1009.15 355.96 355.56 −75.78
C101/25/18/100/200/0.30 54 1268.02 37 401,784 86.49 86.49 90.30 2621.15 39 351,411 97.49 97.44 90.52
C201/10/7/100/200/0.30 24 16.71 17 712.62 52.94 52.94 −15.28 16.66 9 790.65 122.38 122.22 −17.34
C201/25/18/100/200/0.30 52 1474.66 43 351,203 42.93 53.49 95.26 2355.18 36 317,681 75.02 75.00 92.68
R101/10/7/100/200/0.30 34 15.71 5 5142.73 80.02 80.00 63.00 78.19 15 13,043.5 260.37 260.00 59.06
R201/10/7/100/200/0.30 34 23.97 8 7247.38 25.00 25.00 78.59 66.84 12 10,749.3 175.16 175.00 79.46

RC101/10/7/100/200/0.30 33 17.77 5 5546.07 −20.03 −20.00 88.04 97.18 16 7944.16 25.13 25.00 74.25
RC201/10/7/100/200/0.30 33 22.55 7 5212.09 57.14 57.14 79.06 37.51 7 5000.94 57.41 57.14 63.73

C101/10/18/200/400/0.07/2 52 329.43 19 351,203 10.53 10.53 91.65 396.01 16 336,779 93.75 93.75 90.98
C101/10/18/200/400/0.07 58 361.85 10 891,106 −50.00 −50.00 97.02 1213.34 24 801,339 62.50 62.50 93.07
C201/10/18/200/400/0.07 54 342.49 13 466,326 −23.08 −23.08 93.54 712.53 19 567,144 10.53 10.53 91.68
C201/10/18/200/400/0.30 54 729.82 28 701,594 3.58 3.57 94.44 1116.37 30 833,222 20.01 20.00 91.00
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Appendix B. Comparison between the Proposed Algorithms

Table A4. Results of MOGVNS/P, MOGVNS/CDP and MOGVNS/D for the maintenance cost as a
second objective.

Instance n
MOGVNS/P MOGVNS/CDP MOGVNS/D

HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s)

RE/6/2/80/80/0.30/2 6 0.0003 5 0.61 0.0003 5 0.69 0.0002 3 2.17
RE/6/4/101/101/0.30/2 12 0.0909 15 22.72 0.0784 13 23.76 0.0181 3 64.39
RE/6/2/80/80/0.07/2 6 0.0007 4 0.58 0.0010 6 0.69 0.0005 3 2.37

RE/6/4/101/101/0.07/2 12 0.0862 9 19.37 0.0766 8 21.64 0.0190 2 49.14
C101/10/8/100/200/0.07/2 23 4.04 13 567.69 4.35 14 540.53 1.55 5 963.5
C101/10/5/100/200/0.07/2 23 0.62 2 215.94 1.86 6 301.86 1.24 4 995.92

C101/10/7/100/200/0.07 26 14.41 10 347.19 14.41 10 543.16 2.88 2 1540.26
C101/25/18/100/200/0.07 54 1757.32 50 36,453.2 1476.15 42 32,099.8 140.58 4 21,119.6
C201/10/7/100/200/0.07 24 4.10 4 139.39 4.10 4 451.88 1.02 1 814.02

C201/25/18/100/200/0.07 52 983.00 28 14,984.4 1954.68 57 29,964.8 140.42 4 14,866
R101/10/7/100/200/0.07 34 9.60 3 521.14 3.20 1 1425.67 3.20 1 4394.02
R101/25/18/100/200/0.07 68 1506.65 19 20,893 1982.43 25 38,759.2 158.59 2 55,887.3
R201/10/7/100/200/0.07 34 6.19 2 899.84 12.38 4 1100.96 3.10 1 4236.49
R201/25/18/100/200/0.07 65 2821.33 44 47,265.5 1538.86 24 39,607.3 320.60 5 50,983.9
RC101/10/7/100/200/0.07 33 7.25 2 528.11 7.25 2 1435.14 3.62 1 2839.68

RC101/25/18/100/200/0.07 62 1955.35 29 27,539.3 3169.04 47 46,969.1 337.13 5 33,062.7
RC201/10/7/100/200/0.07 33 9.89 3 474.6 6.60 2 1363.49 6.60 2 4309.18

RC201/25/18/100/200/0.07 60 4794.41 82 51,475.7 1871.00 32 32,881.3 116.93 2 29,448.2
C101/10/8/100/200/0.30/2 23 11.97 42 1028.66 12.25 43 1012.73 1.71 6 1255.38
C101/10/5/100/200/0.30/2 23 6.84 24 896.75 10.55 37 916.97 1.99 7 1230.12

C101/10/7/100/200/0.30 26 38.78 28 1528.05 40.17 29 1676.91 5.54 4 1407.87
C101/25/18/100/200/0.30 54 2364.74 69 38,991.2 2707.43 79 41,306.1 274.17 8 33,123.8
C201/10/7/100/200/0.30 24 25.56 26 821.53 31.46 32 1169.56 5.90 6 872.48

C201/25/18/100/200/0.30 52 2107.70 66 16,633 1920.48 56 32,819.2 240.06 7 18,837.8
R101/10/7/100/200/0.30 34 28.28 9 1902.74 21.99 7 3817.55 12.57 4 4957.75
R101/25/18/100/200/0.30 68 3599.37 46 33,302.6 5242.55 67 78,662.6 391.23 5 65,550.5
R201/10/7/100/200/0.30 34 29.97 10 1551.54 56.94 19 3758.07 14.98 5 4040.9
R201/25/18/100/200/0.30 65 3339.90 53 80,219.7 3217.40 52 41,885.8 315.09 5 42,049.4
RC101/10/7/100/200/0.30 33 14.21 4 663.56 28.44 8 1989.76 7.11 2 4935.93

RC101/25/18/100/200/0.30 62 2694.57 51 53,688.2 2923.98 44 61,284.6 398.72 6 40,465.1
RC201/10/7/100/200/0.30 33 35.43 11 1091.48 25.77 8 3174.47 9.67 3 4613.12

RC201/25/18/100/200/0.30 60 4669.82 81 31,113.3 2479.05 43 59,595.3 461.22 8 27,920.8
C101/10/18/200/400/0.07/2 52 364.11 21 29,319.5 260.08 15 28,688.7 86.69 5 56,155.4
C101/10/18/200/400/0.07 58 180.92 5 26,547.2 578.96 16 55,461.7 108.55 3 57,331.8
C201/10/18/200/400/0.07 54 263.46 10 30,138.6 289.80 11 30,350.5 131.73 5 42,786.6
R101/10/18/200/400/0.07 73 2691.29 39 143,386 3312.35 48 160,197 138.00 2 74,408.6
R201/10/18/200/400/0.07 72 2491.10 40 156,440 1992.88 32 247,398 186.83 3 79,235.2

RC101/10/18/200/400/0.07 71 1486.71 19 19,687.1 1799.71 23 106,481 234.74 3 68,235.6
RC201/10/18/200/400/0.07 72 1133.81 15 89,683 1133.80 15 55,479.2 302.33 4 81,787
C101/10/18/200/400/0.30/2 52 598.30 47 48,933.3 415.00 51 78,190.2 56.96 7 43,388.3
C101/10/18/200/400/0.30 58 1921.90 54 103,540 1743.90 49 103,414 177.95 5 58,642.1
C201/10/18/200/400/0.30 54 755.93 29 39,023.7 1251.16 48 45,827.1 156.39 6 56,019.9
R101/10/18/200/400/0.30 73 4573.85 67 193,702 6485.25 95 258,245 477.87 7 143,966
R201/10/18/200/400/0.30 72 3016.52 49 138,179 3570.61 58 253,926 345.06 5 88,666.5

RC101/10/18/200/400/0.30 71 3404.46 44 62,050.9 4487.63 58 220,287 524.99 7 83,348.4
RC201/10/18/200/400/0.30 72 2238.12 30 98,068 2536.52 34 149,601 447.63 6 77,137.2
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Table A5. Results of MOGVNS/P, MOGVNS/CDP and MOGVNS/D for the failure cost as a second
objective.

Instance n
MOGVNS/P MOGVNS/CDP MOGVNS/D

HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s) HV (×1010) NDP CPU (s)

RE/6/2/80/80/0.30/2 6 0.0005 6 0.59 0.0004 5 0.65 0.0002 3 2.43
RE/6/4/101/101/0.30/2 12 0.1698 15 15.71 0.1907 17 24.67 0.0339 3 60.23
RE/6/2/80/80/0.07/2 6 0.0018 5 0.59 0.0018 5 0.71 0.0011 3 2.32

RE/6/4/101/101/0.30/2 12 0.1172 7 19.9 0.1005 6 18.95 0.0333 2 45.58
C101/10/8/100/200/0.07/2 23 5.31 9 216.96 10.61 18 981.69 2.36 4 1085.69
C101/10/5/100/200/0.07/2 23 7.04 12 274.83 2.93 5 573.82 2.93 5 1293.41

C101/10/7/100/200/0.07 26 16.10 6 355.05 24.15 9 1021.91 13.42 5 1627.55
C101/25/18/100/200/0.07 54 4446.77 65 34,139.1 5092.48 74 34,088.1 478.86 7 25,013.6
C201/10/7/100/200/0.07 24 7.69 4 337.74 3.89 2 475.76 5.77 3 993.2

C201/25/18/100/200/0.07 52 3594.67 54 30,615.3 2942.53 44 29,954.2 399.40 6 20,716.7
R101/10/7/100/200/0.07 34 164.07 31 2689.1 217.78 40 5828.58 31.76 6 5327.16
R101/25/18/100/200/0.07 68 18,654.84 133 93,925.7 15,409.97 109 90,059.7 1262.27 9 64,565
R201/10/7/100/200/0.07 34 158.00 30 3081.38 200.01 37 4998.82 36.84 7 5065.3
R201/25/18/100/200/0.07 65 15,381.74 134 74,284 21,163.04 183 87,084 1033.06 9 60,050.9
RC101/10/7/100/200/0.07 33 117.39 19 2763.77 120.11 19 4822.82 43.24 7 4516.16

RC101/25/18/100/200/0.07 62 9389.07 77 67,295.3 10,924.15 89 63,118.8 853.54 7 29,063.3
RC201/10/7/100/200/0.07 33 21.79 4 962.57 55.62 10 3642.36 16.33 3 4058.1

RC201/25/18/100/200/0.07 60 3341.87 32 24,243.6 4940.53 47 47,436.3 313.30 3 36,816.5
C101/10/8/100/200/0.30/2 23 26.99 49 835.69 31.05 54 1032.43 3.86 7 1339.66
C101/10/5/100/200/0.30/2 23 10.99 20 369.67 16.10 28 838.58 2.75 5 1098.4

C101/10/7/100/200/0.30 26 106.78 41 1773.90 95.24 36 1755.06 13.02 5 2057.67
C101/25/18/100/200/0.30 54 5176.53 77 33,325.1 7161.20 106 42,890.5 201.54 6 31,026.5
C201/10/7/100/200/0.30 24 37.05 20 927.78 39.34 21 1098.54 12.97 7 1200.75

C101/25/18/100/200/0.30 52 4122.09 63 23,267.9 4268.45 65 24,749.7 196.19 6 20,101
R101/10/7/100/200/0.30 34 281.77 54 5339.7 203.74 38 5483.74 36.52 7 4909.06
R101/25/18/100/200/0.30 68 8193.86 59 31,630.7 10,913.77 78 67,300.9 1111.17 8 72,624
R201/10/7/100/200/0.30 34 183.93 33 2207.54 250.89 44 5704.28 39.03 7 6199.63
R201/25/18/100/200/0.30 65 11,274.87 96 80,442.8 11,462.14 97 82,898.8 822.02 7 53,859.1
RC101/10/7/100/200/0.30 33 121.61 20 2045.54 161.47 26 2161.36 30.40 5 4634.17

RC101/25/18/100/200/0.30 62 14,242.86 118 70,866.5 11,046.54 91 75,571.3 361.91 6 43,626.3
RC201/10/7/100/200/0.07 33 59.04 11 1814.02 38.31 7 2147.76 21.47 4 4423.04

RC201/25/18/100/200/0.07 60 5687.61 55 24,037.7 7904.99 76 52,829.2 310.14 6 37,858.9
C101/10/18/200/400/0.07/2 52 767.28 31 30,374.4 691.19 27 65,021.6 173.26 7 36,495
C101/10/18/200/400/0.07 58 1971.71 39 55,556.1 1996.60 39 114,965 353.90 7 58,048.8
C201/10/18/200/400/0.07 54 787.57 21 47,186.4 416.12 11 21,047.7 187.51 5 45,972.9
R101/10/18/200/400/0.07 73 17,862.57 196 218,379 21,549.32 232 291,184 820.01 9 157,945
R201/10/18/200/400/0.07 72 16,413.05 194 212,096 17,552.03 204 287,891 761.31 9 152,872

RC101/10/18/200/400/0.07 71 9064.57 86 139,083 14,973.80 140 254,233 737.76 7 101,806
RC201/10/18/200/400/0.07 72 1999.65 20 124,109 2228.21 22 108,438 499.90 5 77,240.8
C101/10/18/200/400/0.30/2 52 548.62 47 66,374.2 916.12 76 81,434.6 70.02 6 45,062.4
C101/10/18/200/400/0.30 58 2193.46 44 101,037 3329.42 66 125,092 249.18 5 68,694.4
C201/10/18/200/400/0.30 54 1339.74 36 75,004.4 1838.22 49 77,837.6 297.70 8 59,965.1
R101/10/18/200/400/0.30 73 13,650.66 151 304,359 13,525.98 147 295,760 813.41 9 221,425
R201/10/18/200/400/0.30 72 8549.00 102 98,438.4 13,032.20 153 301,157 838.35 10 176,422

RC101/10/18/200/400/0.30 71 11,283.23 108 197,350 9114.36 86 231,112 940.41 9 176,085
RC201/10/18/200/400/0.30 72 4456.75 45 3502.3 5715.83 57 14,995.39 594.30 6 132,318
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