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Abstract: Extensive but remote oil and gas fields in Canada and Russia require extremely long
pipelines. Global warming and local anthropogenic effects drive the deepening of seasonal thawing
of cryolithozone soils and enhance pathological processes such as frost heave, thermokarst, and
thermal erosion. These processes lead to a reduction in the subgrade capacity of the soils, causing
changes in the spatial position of the pipelines, consequently increasing the number of accidents. Oil
operators are compelled to monitor the daily temperatures of unevenly heated soils along pipeline
routes. However, they are confronted with the problem of separating anthropogenic heat losses
from seasonal temperature fluctuations. To highlight heat losses, we propose a short-term prediction
approach to a transformed multidimensional dataset. First, we define the temperature intervals
according to the classification of permafrost to generate additional features that sharpen seasonal
and permafrost conditions, as well as the timing of temperature measurement. Furthermore, linear
and nonlinear uncorrelated features are extracted and scaled. The second step consists of selecting a
training sample, learning, and adjusting the additive regression model. Forecasts are then made from
the test sample to assess the accuracy of the model. The forecasting procedure is provided by the three-
component model named Prophet. Prophet fits linear and nonlinear functions to define the trend
component and Fourier series to define the seasonal component; the third component, responsible
for the abnormal days (when the heating regime is changed for some reason), could be defined by
an analyst. Preliminary statistical analysis shows that the subsurface frozen soils containing the
oil pipeline are mostly unstable, especially in the autumn season. Based upon the values of the
error metrics, it is determined that the most accurate forecast is obtained on a three-month uniform
time grid.

Keywords: ESG; pipeline; remote monitoring; data analysis; machine learning; time series

1. Introduction

The construction and operation of buried pipelines in remote permafrost areas leads to
thawing and thereby reducing the subgrade capacity of frozen soil. Minor soil temperature
fluctuations in the range of 2–5 ◦C contribute to significant changes in spatial positioning
and may cause damage to objects. A geotechnical system monitors the temperature regime
of the soil to identify hazardous processes in permafrost at the operational stage. At the
local level of this system, there are strings of sensors (thermistors) loaded at various depths
in specially equipped thermowells for the simultaneous measurement of temperature at
multiple points. Measurements, converted to digital format, are transmitted to the reading,
storage, and display devices (controllers). Controllers periodically poll the sensors in the
string and read the numbers for the connection lines to sort the measurements by the depth
and save them on local storage devices. Fiber or wireless networks are used at the regional
level for accessing local archives [1]. The global level of a geotechnical monitoring system
for an extended pipeline includes web servers for synchronization, integration, processing,
and maintenance of measures and saving prepared information in a specialized global
data warehouse. A longer operating time increases the number of exogenous processes,
makes it necessary to install additional thermowells, and accumulates a large quantity of
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information that is difficult to analyze with classical statistical methods. For completing
data processing steps, unified scripts and schemes are created to integrate them into a
reproducible workflow.

The purpose of this study is to offer an express, visual, reasonably accurate approach
to locate and predict heat losses of the buried oil pipeline. An approach that would be
available to oil operators without expert knowledge.

According to the Dimensions platform (www.dimensions.ai, last accessed on 20 May
2022) that provides access to grants, publications, patents, and other sources, the number
of publications in which remote geotechnical monitoring was mentioned in the years
2015–2021 is on the rise (Figure 1).
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Figure 1. Increasing trend of publications in which remote geotechnical monitoring was mentioned.

Analysis of publications on the topic of the study went in three main directions:
organization of a remote geotechnical network, preprocessing of geotechnical data, and
comparison of forecasting models that consider the seasonality and non-stationarity of
the time series. The first group of articles discusses the causes of data transfer errors. The
authors of [2] created a cloud system to remotely monitor the moisture of fertile soil. They
note that under conditions of unstable network connection in the rural area, the collected
data contain a significant number of omissions. The quality of an open atmospheric optical
channel is reported [3] to be affected by the frequency of weather changes, the fluctuations
of the supports, and the scintillation. Additionally, it is demonstrated that long distances
and electromagnetic interference distort the signal, and the thermistors readings are affected
by moisture intrusion [4]. Therefore, sensor data must be carefully prepared for prediction.

The second group presents publications offering preprocessing schemes of raw data
for the subsequent identification or prediction of the state of the system under study.
Data processing pipelines (dimensional modification, indexing, aggregation, time-series
oversampling, etc.) are derived from the book by the author of a Python library [5]. The
regional-scale hydrological system model is a good example of applying a data preprocess-
ing pipeline to heterogeneous datasets [6]. Each type of climate data (e.g., temperature,
wind speed) is tied to a uniform grid with a predetermined pitch, and investigators note
that most of the time is spent preparing and binding data rather than forecasting from
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ready-made models. Further investigation [7] defines aggregation as the main preprocess-
ing procedure for sensor data due to its volume and monotony. Based on this, the authors
conclude that the significance of sensor data is mainly in discovering trends.

Below is a third group of articles where the forecasting method is used, highlighting
the trend in the data. Traditionally, a time series containing seasonality is thought of as a
mixture of trend-cyclical, seasonal, and irregular components, assuming that these compo-
nents are independent and additive or multiplicative. Having a decade and half period
of observation, various trends in fumarole temperatures are detected when applying a
thermal model, considering three temperature subcycles: the annual cycle, representing
the daily-averaged temperature; the daily cycle, representing the instantaneous tempera-
ture; and the weather-change cycle, which is divided into two parts to represent both the
daily-averaged and the instantaneous temperature [8]. Monitoring is limited to only a few
sites, but the observed trends help define the most critical fumaroles in the area.

To use the powerful model named ARIMA (autoregressive integrated moving aver-
age), researchers must check whether the series contains trends, seasonality, emissions,
nonconstant variances, and other non-stationarities. The more non-stationarity manifests
itself, the stronger the transformation that must be used [9]. The weak point of the model is
that the researcher is forced to control the transformation effect visually. As a result, the
model is challenging to use for engineers who are not professionally trained experts [10].
Neural network-based prediction methods (e.g., LSTM, ANN) require more data, even
for short-term prediction [11]. Therefore, the data referenced in the ANN simulation are
the hourly activity schedules of more than 5000 data sources, containing 6 features and
collected for a year, and yet the authors need to simulate additional data to train the
model [12].

In addition to those listed, there are numerical algorithms for solving thermal conduc-
tivity problems based on the finite volume method [13] and the finite difference method [14].
Their fundamental disadvantage is the use of small-scale grid spacing, which leads to high
overhead costs for extended pipelines [15]. Similarly, fast Fourier transformation focusing
on trend and harmonics is used to separate seasonal temperature variations from the in-
fluence of the oil pipeline [16]. The main limitations of the fast Fourier transformation are
the use of data arrays of lengths equal to the degree of two and noticeable distortion of the
results at a low sample rate.

A recent study [17] compares long short-term memory (LSTM) and a three-component
model named Prophet for predicting air temperature. The study leverages massive histor-
ical data on daily maximum and minimum air temperatures for more than 5 years. The
authors note that using time as a regressor, Prophet fits piecewise linear and nonlinear
saturating growth functions to define the first component. The second component that
defines seasonality effects is fitted by using a Fourier series, and the third component
could be defined by an analyst providing a custom list of past and future events. The
result showed that, for minimum temperature, Prophet performs better on maximum air
temperature while LSTM performs better on minimum air temperature.

A growing number of articles and patents enlisted in [18] on monitoring sites in per-
mafrost areas over the last two decades has enabled a discussion regarding the topical
significance of the issue. Soil temperatures at depths of 7–8 m are known to be significantly
different from air temperatures, particularly in summer and autumn. Thawed soils with
varying concentrations of ice produce various sediments. Therefore, the predicted change
in soil temperature in three dimensions, taking into account the seasonal component, high-
lights the impact of the pipeline transporting heated oil. To achieve this aim, we represent
soil temperatures as time series, define additional features that improve the accuracy of
the forecasting model, select uncorrelated features to decrease the dimensionality of the
model, learn the regression model of the soil temperature dynamics over time and estimate
its quality.
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2. Materials and Methods

Geotechnical monitoring systems tend to comprise groups of sensors in thermometric
wells along the routes of the pipelines; the sensors are linked with wired or wireless
technologies and measurements are obtained using web-based software. The geotechnical
dataset was collected over a year at 13 locations along the pipeline. It represents daily
measurements of soil temperature at depths of up to 15 m during daylight hours [19].

Fourteen open-source Python libraries are applied to manipulate, visualize, and obtain
geotechnical data. Primary analysis was made with a library named Numpy. It facilitates
advanced mathematical operations on big data. The Pandas library provides flexible data
structures to work with structured (tabular, multidimensional, potentially heterogeneous)
and time-series data. The library, named Pandas-profiling, is a tool to preview, explore,
and summarize the statistical information of a dataset. Python packages such that SciPy,
Sklearn, and Statsmodels are used for data manipulation. All data visualizations were
made with Matplotlib, Pandas.plotting, Prophet.plot, and Seaborn. We performed extended
data analysis with a library named Association_metrics. It provides tools to measure the
degree of nonlinear association among other features. The feature engineering for time
series was based on the Calendar package. The Facebook Prophet and SciPy.Interpolate
packages provide models for predicting time series. The programming code was created
in the Google Research product, named Colaboratory, enabling developers to write and
execute Python code via a browser.

2.1. Initial Data Structure

Within the geotechnical monitoring system, triples of thermowells are installed along
the pipeline route, mainly in the areas where exogenous processes are developing (Figure 2a).
Each thermowell contains 8–12 thermistors installed at different depths of the soil (Figure 2b).
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Figure 2. Schematic drawing showing the locations of the triples of thermowells: (a) plan 1: to-
pographic contour lines, m; 2: a road; 3: a pipeline; 4: a line along which three thermowells are
located; (b) profile reflects 3 garlands of thermistors (black squares) installed in 3 thermometric wells
at different depths.

The initial data, which were temperature measurements, could be represented as a 4D
array, such that each dimension contained data about the following:
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- location along the route as the numbers of thermometric wells in which the garlands
of temperature sensors are installed;

- distance from the pipe, as there are three thermometric wells inline at every location
at 2, 4, and 10 m, respectively;

- depth as the levels of soil’s depth at which each temperature sensor of a garland was
installed from 0 to 15 m;

- time as the moments of temperature fixations.

The initial data measured 1.7+ megabytes and were distributed across 51 features.

2.2. Two-Step Approach of Forecasting Temperatures Based upon a Geotechnical Dataset

Figure 3 shows the two-step approach to analyze the dynamics of the soil temperatures
along the route of an oil pipeline that crosses permafrost zones.
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Figure 3. Two-step approach for the temperature forecasting based upon geotechnical data.

Our approach differs from the known approaches as we transform the collected 4D
array to 2D without losing information; add new features, underlining seasonality, and
permafrost condition; conduct both linear and nonlinear correlation analyses, selecting
time series significant in the forecasting model; and finally, we train the Prophet model
using data form the thermowell triples.

2.3. Statistical Analysis on a Transformed Dataset

In the original dataset (Table 1), the daily temperature measurements collected by
the geotechnical system were naturally grouped around the date of measurement and
the number of the thermowells’ triples (groups of three thermowells). This data view
contained four dimensions for every temperature measurement: location, distance from
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the pipe, depth, and time. This view is called a ‘wide format’ and is convenient when using
spreadsheets such as Excel.

Table 1. The wide format of initial data.

Time
No. of the

Thermowells’ Triple

Temperature at Different
Depths of the 1st Well, ◦C

Temperature at Different Depths
of the 3rd Well, ◦C

h1.1 . . . h1.18 h3.1 . . . h3.15

2021-09-28 13:07:00 40.0 8.05 0.06 . . . 6.47 −0.23

When analyzing a significant amount of data, the wide format is not convenient for
processing. Therefore, the original dataset was converted to a “long format,” where two
columns work as identifiers (Time and No. of the thermowells’ triple), and the remaining
columns (Depth and Temperature) are treated as values and unpivoted to the row axis
(Table 2).

Table 2. The long format of initial data.

Time of
the Measurement

Number of the
Thermometric Well

Number of the
Sensor,

Distance.Depth
Temperature, ◦C

2021-09-28 13:07:00 40.0 h1.1 8.05

2021-09-28 13:07:00 40.0 h1.18 0.06

To calculate over homogenous data, we created a multi-index (location of a thermo-
metric well, distance from a pipe, and depth of a sensor), receiving the 2D view from the
4D dataset.

Figure 4 compares the temperatures along the pipeline route measured with triples
of thermowells. The temperature intervals are chosen based on the classification of per-
mafrost (high-temperature (−2; −0.5] ◦C; high-temperature with the predominant interval
(−0.5; 1.5] ◦C; the stable temperature interval (−3; −2] ◦C; low-temperature with the pre-
dominance of the interval (−5; −3] ◦C; and low-temperature (−∞; −5] ◦C). The interval
distribution of temperatures at different depths was obtained from November of the pre-
vious year to October of the following year. To sharpen the difference in the permafrost
condition, we generate additional categorical features based on these five intervals of
soil temperature.

Comparative analysis revealed that the soil layers were in high temperature condition
with the predominance of the intervals (−2; −0.5] and (−0.5; 1.5] ◦C. A primary statistic of
the data divided by two categories is given in Table 3.

Table 3. A sample of the first group of additional features.

Time Period Month Day Season

2020-01-17 15:20:00 Noon January Friday Winter
2021-07-21 15:20:00 Noon July Tuesday Summer
2021-10-01 14:15:00 Noon October Friday Autumn

Analysis of the density of temperature measurements at different soil layers defines
the transition from a two-top distribution (surface temperatures) to a single-top distribution
(medium depth temperature) with a shift in the mathematical expectation towards negative
temperatures and a significant decrease in the standard deviation (Figure 5). Further
increase in depth leads to a multi-top distribution. The most significant kurtosis values are
at a depth from 3 to 4 m for medium thermowells (Figure 5a) and from 2 to 3 m for distant
thermowells (Figure 5b).
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Figure 5. Changing parameters of temperature distributions at different depths: (a) measurements at
a distance of 4 m from the pipeline (medium thermowells); (b) measurements at a distance of 10 m
from the pipeline (distant thermowells).

At the same depths, minor symmetrical distributions are observed. At the same time,
the mathematical expectation from layer to layer varies to a lesser extent. The analysis
shows that thermal conductivity from depth to depth is a non-stationary process.
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2.4. Selecting Uncorrelated Time Series
2.4.1. Linear Correlation

Most methods of incorporating explaining features into a model are based on two
opposing principles: their weak mutual correlation or a strong correlation of each feature
with a dependent variable [20]. To assess the linear correlation, we calculated Pearson’s
correlation coefficients for temperature measurements at the different depths and distances
of the route. Figure 6 shows the values of Pearson’s linear correlation with a threshold of
more than 0.7 per module.
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 (2) 

Figure 6. Correlation of temperature and distance (where, for each hi.j, the first digit i = {1, 2, 3} is
the number of a thermowell triple and the second digit j = {1, . . . , 18} is the number of a sensor at a
different depth).

According to the correlation map above, we define a strong correlation between
temperature measurements and their locations, for example:

- 13–18 thermistors of the first line of thermowells (closest to the pipeline),
- 12–13 thermistors of the second line of thermowells (at the medium distance to

the pipeline),
- 10–13 thermistors of the third line of thermowells (distant from the pipeline).

Because these thermistors are located at depth [5; 13] m, they capture the heating
effect of the oil pipeline. At the same time, we define a significant number of highly
correlated, layered temperature measurements, such as h1.13–h1.18, h1.3–h1.4–h1.6, and
h2.3–h2.5–h2.6. It may indicate the existence of solid geological layers with similar charac-
teristics. The readings of the three surface thermistors h1.1, h2.1, and h3.1 are also positively
correlated, so the readings of h1.1 are left for further analysis. As a result of correlation
analysis, the measurements on seven thermistors are taken {h1.1, h1.10, h1.14, h1.6, h1.8,
h2.7, h3.10}.
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2.4.2. Nonlinear Correlation

The publication [21] suggests the use of Spearman-Kramer correlation coefficients to
identify a nonlinear correlation. Spearman’s rank correlation coefficient is a nonparametric
measure of rank correlation ρrgX ,rgY :

ρrgX ,rgY =
cov(rgX , rgY)

σrgX σrgY

, (1)

where cov(rgX , rgY) is the covariance of the rank variables,
σrgX and σrgY are the standard deviations of the rank variables.
Cramer’s correlation coefficient, ϕC bases on Pearson’s χ2 test statistic, and is used for

ordinal and binned interval variables:

ϕC =

√
χ2

N min(r− 1, k− 1)
(2)

where N is the number of observations and r (k) is the number of rows (columns) in a
contingency table.

To apply nonlinear correlation at the first stage, we convert the existing time feature
“Time” of the geotechnical dataset to a set of categorical features that highlights the time
difference: a day, a month, a day of a week, or a season of a year (Table 3), as the moment
of measurement impacts the temperature.

Furthermore, in the second stage, we convert the values of linearly uncorrelated
features into categorical values using the temperature intervals given in Section 2.3. The
resulting categorical data are assessed using a nonlinear relationship between tempera-
ture and measurement time (Figure 7). Colored correlation maps indicate a relationship
between layered temperature measurements. The color map of the Cramer correlation
coefficients (Figure 7a) shows that the thermistors h1.14 and h3.10 malfunctioned, and their
measurements are indifferent to the days of the week, months and seasons. Therefore,
these measurements and the feature named Day_name are excluded from further anal-
ysis. Furthermore, the Spearman correlation matrix (Figure 7b) establishes the relation
between measurements of thermistors h1.6 and h1.8 and correlation between months and
temperature fluctuations at the ground surface (thermistors h1.1).
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Thus, the resulting set of features appeared as follows {h1.1, h1.6, h1.10, h2.7, Pe-
riod, Season}.

2.5. Scaling Selected Time Series

To compare temperature measurements at different depths, we apply the robust scaling
method because it uses statistics that are robust to outliers:

y′ =
yi −Q2(y)

Q3(y)−Q1(y)
, (3)

where y, y′ are unscaled and scaled temperature time series;
Qi(y) are the 1st, 2nd, or 3rd quartile of the temperature time series.
Figure 8 reflects scaled temperature time series grouped according to the thermowells.
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Figure 8 shows that probability distributions of scaled temperatures are close to
bell-shaped. The height difference of the curves seems to depend on the distance of the
thermowell from the heating points.

2.6. Forecasting Model

Smoothing, adaptive, autoregression models, and neural networks can be highlighted
among time series forecasting approaches [1]. We apply a model implemented in the
Python library named Facebook Prophet that was opened for users in 2017. Its code is
open-sourced and tunable and the result is easy to interpret. The main disadvantages of
the model are a requirement for data to be in a specific 2D format (time and temperature)
and operating with one-by-one time series. It contains the additive regression model with
customizable components:

y̌(t) = g(t) + s(t) + h(t) + εt, (4)

where t is time;
y̌(t) is the regression function;
g(t) is the trend component, modeled with piecewise linear, piecewise logistic growth,

or flat function;
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s(t) is the seasonal component responsible for modeling the periodic changes related
to seasonality (seasonality is estimated using a partial Fourier sum);

h(t) is the component responsible for the abnormal days;
εt is an error that contains information not considered by the model.

3. Results and Discussion

This paper presents the two-step approach to preprocessing sensor data and fore-
casting soil temperatures. For the first step, temperature analysis is carried out in the
following areas: assessing the stability of frozen soils, checking temperature time series for
stationarity, elucidating linear and nonlinear relationships between soil layers according
to correlation matrices, and bringing the distributions of the temperature series to the
bell shape.

It is established that the frozen soils containing the pipeline were mainly in an unstable
state with the predominance of the intervals (−2; −0.5] and (−0.5; 1.5] ◦C.

The statistical analysis of the mathematical expectation and standard deviations shows
that thermal conductivity month by month and depth to depth is a non-stationary process.

We define a strong correlation between temperature measurements of the thermistors
located at depth [5; 13] m, which means they capture the heating effect of the oil pipeline.
Highly correlated temperature measurements, such as h1.13–h1.17, h1.2–h1.6, and h2.1–h2.6,
can also indicate the existence of a solid geological layer with similar characteristics.

Reducing temperature time series to dimensionless values by dividing on the differ-
ence of the third and first quantiles allows the transformation of the probability density
functions to bell curves. All operations were supported with unified scripts in the language
Python, which were then integrated into a reproducible workflow.

In the second step we group the transformed dataset around the thermometric wells,
the distance to the pipeline and the depth. Then within each group, we split the scaled
temperature time series into training and testing samples. The testing sample included
the last 90 days of the dataset. Then we applied the training sample for training our
model and treated the testing sample as a collection of data points that helped us evaluate
whether the model could generalize well to unknown data. Next, we tuned the seasonality
component selecting the discretization step at the time grid and calculated and compared
accuracy metrics.

The short-term forecast presented in Figure 9 is not very favorable, as, by May 2022,
the standard deviation of temperature measurements will have increased. The black dots
are the actual values, the blue line represents the predicted values, and the blue line is the
uncertainty corridor.
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This forecast may indicate moderate heat leakage through the joints of pipe sections in
the area controlled by the thermometric well no. 20.0.

The forecasting error is assessed using the mean absolute percentage error (MAPE)
and the mean square error (MSE) for the temperature measurements. For calculation of the
MAPE, actual temperature measurements and their forecast were used:

MAPE =
100%

n ∑n
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣, (5)

where y, ŷ are actual and forecasted temperatures.
With the MAPE, we measured how far the model’s predictions are off from their

corresponding outputs on average. The MSE highlights large errors because it squares the
difference between actual and forecasted temperatures before summing them:

MSE =
1
n ∑n

t=1(yt − ŷt)
2, (6)

The lower the MAPE and MSE, the more accurate the prediction. The lowest MAPE
and MSE were obtained on the three-month uniform time grid and equaled 24.91% and
0.010, respectively.

The available temperature time series had the following features: incompleteness
(11 months), equidistant fixation intervals, non-stationarity, fast-decreasing autocorrelation
functions, the range of temperature changes depended on the depth of measurement and
the location of a thermowell, as well as the changing trend and the presence of seasonality.
The best result, MAE = 34.68% and MSE = 0.043, was given by the forecast on the alternative
three-parameter additive Holt–Winters model for a three-week uniform time grid with
a seasonality parameter = 15. Holt–Winters forecasting required preliminarily filling the
omissions in temperature data by substituting the average group values.

The most effective way to improve the accuracy of machine learning models is to in-
crease the training sample by creating additional features based on the available dataset [22].
The following can be assumed as additional features: the climatic zones at the sites of the
thermowells; the rate of soil erosion; the distance from rivers, roads, and settlements; a
detailed characteristic of the terrain; a wind rose; and ravine networks. Separately, it is
necessary to note the possibility of overlapping the temperature curve along the pipeline
route determined by the locations of points for oil heating.

The additional benefit of the implementation of Facebook Prophet is insensitivity
to multiple omissions in data. These omissions appear both in the initial data due to
measurement and data transfer failures and in some processing steps, such as when down-
discretization was applied to a time grid step.

Further studies of temperature time series can be made in three directions:

• designing a digital twin of a pipeline displaying the change in the temperature field of
the pipe-to-ground system for three dimensions at once: along the pipe, inland, and at
a distance from the pipeline;

• integrating temperature changes, soil characteristics, and the location and operation
mode of the oil heating points;

• retraining a temperature prediction model with new data.

4. Conclusions

A buried pipeline impacts frozen soils when transporting heated oil. Melting per-
mafrost provokes a change in the position of the oil pipeline and can lead to accidents such
as an oil spill.

The geotechnical monitoring system that collects soil temperature measurements along
the buried oil pipeline includes a significant number of thermowells, a fiber or a wireless
network to access local archives, and web servers to process the data.
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The thermal influence of a buried pipeline transporting heated oil on frozen soils is
uneven and increases during the pipeline’s operation. Preliminary statistical analysis shows
that the temperatures of frozen soils containing the oil pipeline are in a high-temperature
condition with the predominance of the intervals (−2; −0.5] and (−0.5; 1.5] ◦C. Collecting
volumetric temperature data, the oil operators need a fast, simple, visual, and high-quality
method for predicting heat leaks. Higher temperature not associated with seasonality may
indicate heat leakage. This study simplifies the forecasting procedure of heat losses along
the buried pipeline transporting heated oil.

The proposed approach is express, easily automated, visual, and reasonably accurate
to locate and predict heat losses of the buried oil pipeline. It consists of two steps: creation
of multidimensional datasets and temperature forecast. The first step includes statistical
analysis on a transformed dataset, generation of features sharpened seasonality and per-
mafrost condition, selection of uncorrelated time series, and scaling of the selected time
series. The second step is a procedure to forecast time series data based on an additive
model where nonlinear trends are fit with yearly, weekly, and daily seasonality.

To generate additional features based on the moment of measurement, the existing
time feature is converted to a set of categorical features: a day, a month, a day of a week,
and a season of a year. The correlation analysis is implemented with Pearson, Spearman,
and Cramer coefficients due to nonlinear temperature–depth and time-series relationships.
The amount of the features is decreased by sevenfold. It is established that selecting
uncorrelated features reduce the forecasting error. Up-sampling (transition from days to
months) and scaling temperature time series convert the probability density function to a
bell curve.

The forecasting procedure is provided by the three-component model named Prophet.
Prophet fits linear and nonlinear functions to define the trend component and Fourier series
to define the seasonal component; the third component, responsible for the abnormal days
(when the heating regime is changed for some reason), could be defined by an analyst.
Prophet works best with time series with substantial seasonal effects and several seasons of
historical data. It is robust against missing data, shifts in the trend, and outliers.

Based upon values of MAPE and MSE (24.91% and 0.010, respectively), it is determined
that the most accurate forecast is obtained on a three-month uniform time grid. Reducing
the time grid’s step led to the retraining of the model but enlarging it led to an increase
in error.
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