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Abstract: In the last few years, a new class of fractional-order (FO) systems, known as Katugampola
FO systems, has been introduced. This class is noteworthy to investigate, as it presents a general-
ization of the well-known Caputo fractional-order systems. In this paper, a novel lemma for the
analysis of a function with a bounded Katugampola fractional integral is presented and proven. The
Caputo–Katugampola fractional derivative concept, which involves two parameters 0 < α < 1 and
ρ > 0, was used. Then, using the demonstrated barbalat-like lemma, two identification problems,
namely, the “Fractional Error Model 1” and the “Fractional Error Model 1 with parameter constraints”,
were studied and solved. Numerical simulations were carried out to validate our theoretical results.

Keywords: fractional-order systems; bounded Katugampola fractional integral; Caputo–Katugampola
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1. Introduction

In the last decades, fractional calculus and the investigation of fractional-order systems
have distinctly risen. This fact has been stimulated by the numerous applications of the
fractional calculus in science and engineering [1–4]. In the literature, different definitions
of the fractional derivative have been introduced [5]. One of the most famous concepts
of the fractional derivative is the Caputo one. Since many years, a great interest is being
given by researchers in solving different queries related to the control theory for Caputo
fractional-order systems. As examples of these works, we cite fault estimation for Caputo
fractional-order descriptor systems [6,7], stabilization for Caputo fractional-order reaction–
advection–diffusion systems [8], and model reference control for Caputo fractional-order
linear systems [9,10].

Recently, a novel fractional derivative, called the Caputo–Katugampola derivative,
which is a generalization of the Caputo derivative, has been suggested by Katugam-
pola [11,12]. In an interesting study [13], Katugampola affirmed the existence of solutions
of Caputo–Katugampola fractional differential equations. The concept of this new deriva-
tive is characterized by two parameters: 0 < α < 1 and ρ > 0. It is important to note
that if ρ = 1, the Caputo–Katugampola derivative reduces to the classical Caputo deriva-
tive [14,15]. Another particular case: if ρ→0, then one obtains the Caputo–Hadamard
fractional derivative [16]. From a physical point of view, some investigations are currently
conducted in relation with Katugampola fractional-order systems. For instance, the authors
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of [17] investigated the Katugampola fractional derivative for the RL, LC, RC, and RLC
electrical circuits.

On the other hand, adaptive systems have a great importance in the control
theory [18–20]. Dealing with the integer-order calculus, the Barbalat’s lemma [21] can
be considered as a key tool in studying the stability of adaptive systems. Concerning
Caputo fractional-order systems, no analogue Barbalat’s lemma to the one proved in [21]
has been successfully demonstrated in the literature. The closest lemma to the one in [21],
ever proved for Caputo fractional-order systems, has been recently developed in [22]. Using
another fractional derivative concept, which is the conformable derivative, the authors
in [23] proved the existence of an analogue Barbalat’s lemma to the one in [21]. In this
paper, we present a Barbalat-like lemma for the class of Katugampola fractional-order
systems. Moreover, the importance of this established lemma in studying adaptive schemes
is shown through investigating two identification problems.

The identification task has received particular interest from researchers for many
years, as this is a prominent task for real-world applications. Different identification
principles have been defined, and various techniques have been deployed to tackle such an
important issue. For example, the authors in [24] developed a direct method for parameter
identification of distributed parameter systems. In another work [25], it was a question of
reviewing the synchronization-based parameter identification for dynamical systems from
time series. Another technique consists of using metaheuristic algorithms for PV parameter
identification [26].

The identification query for fractional-order systems can be regarded as a recent axis
of research [27,28]. Generally speaking, “error models” constitute one of the well-known
techniques to carry out the identification task. Among these models, one particular type,
called “Error Model 1”, has been used quite often in the literature [29]. The generalization
of the classical Error Model 1 to the fractional calculus is well known as the “Fractional
Error Model 1” and was firstly investigated in [30].

In this paper, we exploited the new presented lemma in two identification schemes. In
the first scheme, a Fractional Error Model 1 was investigated to the class of Katugampola
fractional systems. In the second scheme, two adaptive Katugampola fractional systems,
related by a linear constraint, were considered. In this case, the so-called “Fractional Error
Model 1 with parameter constraints” was used.

The contribution of this paper can be summarized as follows:

• The main novelty in this work was that it presents a new Barbalat-like lemma for
the class of Katugampola fractional-order systems. To the knowledge of the authors,
such a particular result is developed for the first time, and no existing papers have
demonstrated it.

• In a second stage, the authors exploited this new lemma in two identification schemes.
In the first scheme, a Fractional Error Model 1 was investigated to the class of Katugam-
pola fractional systems. In the second scheme, two adaptive Katugampola fractional
systems, related by a linear constraint, were considered. In this case, the so-called
“Fractional Error Model 1 with parameter constraints” was used.

The rest of the paper is organized as follows. Useful preliminaries in relation with
Katugampola fractional-order systems are presented in Section 2. In Section 3, the novel
lemma for Katugampola fractional systems is presented and proven. Finally, the given
lemma in Section 3 is exploited in Section 4 in the context of identification problems.
Moreover, the theoretical and simulation studies for both classes of “Simple Fractional Error
Model 1” and “Fractional Error Model 1 with parameter constraints” were investigated.

2. Preliminaries

Some useful definitions and results are prompted from the literature. In the following,
we adopt the definitions of the Katugampola fractional integral [11] and the Caputo–
Katugampola fractional derivative [31]. Through the paper, we define the Katugampola
parameters: 0 < α < 1 and ρ > 0, the initial time t0 > 0, and the integration variable s.
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Definition 1. Let x ∈ L1[a, b], 0 < a < b. For any α > 0 and ρ > 0, the generalized Katugampola
fractional integral (provided it exists) is defined as

Iα,ρ
a x(t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1x(s)

(tρ − sρ)1−α
ds.

Γ(α) =
∫ +∞

0 e−ttα−1dt is the Gamma function generalizing factorial for non-integer
arguments.

Definition 2. Let a > 0. For any 0 < α ≤ 1 and ρ > 0, the generalized Caputo–Katugampola
fractional derivative of an absolutely continuous function x is defined as

CDα,ρ
a x(t) =

ρα

Γ(1− α)

∫ t

a

x′(s)
(tρ − sρ)α ds.

It is noteworthy that the above Definition 2 is a generalization of the Caputo derivative
concept:

Definition 3. Let a be the integer part of α + 1. The Caputo fractional derivative is defined as

CDα
t0,tx(t) =

1
Γ(a− α)

∫ t

t0

(t− s)a−α−1 da

dsa x(s)ds, (a− 1 < α < a)

For 0 < α < 1, this derivative is reduced to

CDα
t0,tx(t) =

1
Γ(1− α)

∫ t

t0

(t− s)−α d
ds

x(s)ds.

Lemma 1 ([32]). Let α ∈ ]0, 1], ρ > 0 and P ∈ Rn×n a constant symmetric and positive definite
matrix. Then, the following relationship holds

CDα,ρ
a

(
xT(t)Px(t)

)
≤ 2xT(t)PCDα,ρ

a x(t).

3. Evolution of a Function with a Bounded Katugampola Fractional Integral

In the following, an original lemma concerning functions with a bounded Katugam-
pola fractional integral is presented and proven. Later, in Section 4, the importance of
this lemma in studying adaptive systems, in the context of identification problems, will
be shown.

Lemma 2. Let ρ > 0 , α ∈ ]0, 1] and x : R+ → R be a nonnegative function. If there exists
M > 0 such that

ρ1−α

Γ(α)

∫ t

t0

sρ−1x(s)

(tρ − sρ)1−α
ds ≤ M, ∀ t ≥ t0 > 0, (1)

then
lim

t→ ∞

[
tρα−ε

∫ t
t0

x(s)ds

tmax(ρ,1)

]
= 0, ∀ε > 0. (2)

Proof. We have from (1):

∫ t

t0

sρ−1x(s)

(tρ − sρ)1−α
ds ≤ M

Γ(α)

ρ1−α
, ∀ t ≥ t0
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Then, for any ε > 0, one has

lim
t→ ∞

1
tε

∫ t
t0

sρ−1x(s)
(tρ−sρ)1−α ds = 0 (3)

(i) If 0 < ρ ≤ 1, then ∀t0 ≤ s < t:

sρ−1

(tρ − sρ)1−α
≥ tρ−1

tρ−ρα = tρα−1,

Then
1
tε

∫ t

t0

sρ−1x(s)

(tρ − sρ)1−α
ds ≥ tρα−ε

∫ t
t0

x(s)ds

t
≥ 0

Then, by using (3), one can find

lim
t→ ∞

[
tρα−ε

∫ t
t0

x(s)ds
t

]
= 0

(ii) If ρ > 1, then ∀ t0 ≤ s < t:

sρ−1

(tρ − sρ)1−α
≥ sρ−1

tρ−ρα ≥
t0

ρ−1

tρ−ρα .

Then
1
tε

∫ t

t0

sρ−1x(s)

(tρ − sρ)1−α
ds ≥ t0

ρ−1

tε−ρα

∫ t
t0

x(s)ds

tρ ≥ 0

Then, by using (3), one can find

lim
t→ ∞

[
t0

ρ−1

tε−ρα

∫ t
t0

x(s)ds
tρ

]
= 0

Then
lim

t→ ∞

[
tρα−ε

∫ t
t0

x(s)ds
tρ

]
= 0

As a conclusion from the two cases (i) and (ii), one has

lim
t→ ∞

[
tρα−ε

∫ t
t0

x(s)ds

tmax(ρ,1)

]
= 0

�

Remark 1. Lemma 2, which is the principal contribution in this paper, is a theoretical mathematical
result. Discussing the relation between this theoretical finding and real-world applications, the
authors remind the readers that Lemma 2 is useful in studying adaptive systems. Indeed, many real
systems are adaptive systems, and such ones require particular mathematical tools. An example
of real-world adaptive systems is the induction machine in [19], where the authors designed an
adaptive controller within the integer-order calculus framework. The relevance of the present work
is that it would enhance the development of future research works dedicated to real-world adaptive
systems within the fractional-order calculus framework.
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4. Application to Identification Problems
4.1. Identification Using Fractional Error Model 1
4.1.1. Theoretical Study

Dealing with the identification task, a very frequent representation used in the litera-
ture is given by [22,33]

y(t) = θ∗Tw(t), (4)

where y(t) ∈ R and w(t) ∈ Rn are available measured signals, and θ∗ ∈ Rn is the vector of
constant parameters to be identified. Naturally, the vector w(t) is composed of bounded
signals. Define ŷ(t) as an estimate of the output signal y(t), and θ(t) as the estimate of the
constant parameter vector θ∗. Then, the output error and the parametric error are given,
respectively, by e(t) = ŷ(t)− y(t) and ϕ(t) = θ(t)− θ∗. In such a situation, one can obtain
the so-called “Error Model 1”:

e(t) = ϕT(t)w(t), (5)

In the integer-order case, the well-known adaptive law in order to carry out the
identification task is given by

.
ϕ(t) =

.
θ(t) = −e(t)w(t), (6)

In the fractional-order case, and under the Caputo–Katugampola fractional derivative
concept, one obtains the following Fractional Error Model 1:{

e(t) = ϕT(t)w(t),
CDα,ρ

t0
ϕ(t) = −e(t)w(t), 0< α ≤ 1, ρ >0 . (7)

Consider the Caputo–Katugampola fractional derivative of 1
2 ϕT(t)ϕ(t). Using Lemma 1,

one gets
CDα,ρ

t0
1
2 ϕT(t)ϕ(t) ≤ ϕT(t)CDα,ρ

t0
ϕ(t)

≤ −ϕT(t)e(t)w(t)
CDα,ρ

t0
1
2 ϕT(t)ϕ(t) ≤ −e2(t).

(8)

Then, ϕ is a bounded function, and
∣∣∣∣∣∣ϕ(t) ||2 ≤∣∣∣∣∣∣ϕ(t0) ||2, ∀t ≥ t0 . Regarding (5) and

the fact that w(t) is bounded, one can conclude that e(t) is also bounded.
Integrating (8), it follows that

Iα,ρ
t0

e2(t) ≤ 1
2

(∣∣∣∣∣∣ϕ(t0) ||2−
∣∣∣∣∣∣ϕ(t) ||2 )

Then, using Lemma 2, we conclude that

lim
t→ ∞

[
tρα−ε

∫ t
t0

e2(s)ds

tmax(ρ,1)

]
= 0, ∀ε > 0, (9)

Remark 2. In relation with the parameter ρ, three particular cases arise:

• 0 < ρ ≤ 1: In this case, (9) reduces to the convergence in mean value of e2(t):

lim
t→ ∞

[
tρα−ε

∫ t
t0

e2(s)ds
t

]
= 0, ∀ε > 0,

• ρ = 1: This case corresponds to the classical Caputo derivative concept. An analogue study
has been conducted for Caputo fractional systems, in [22].

• α = 1 and ρ = 1: This case corresponds to the integer-order calculus framework. In this case,
the adaptive law is (6), instead of (7). Moreover, from a theoretical point of view, (9) reduces to
the convergence to zero of e(t).
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4.1.2. Simulation Study

Let us consider a numerical example in the form of (7), where the actual parame-
ter vector to be identified is θ∗ = [−2− 2]T and the measured vector w(t) is given by

w(t) =
[
1 e−t

2

]T
. The goal is to show the curves of the output error e(t) and the norm of

the parameter identification error ϕ(t). For simulation, initial conditions of the estimated
parameters are taken θ1(0.001) = −1 and θ2(0.001) = −2.5. The first derivative parameter
is chosen α = 0.7. For the second parameter, two cases are studied: ρ = 1.5 (> 1) and
ρ = 0.5 (< 1). After checking Figures 1–4, one can note that e(t) and ϕ(t) remain bounded
(and this confirms our theoretical studies). Furthermore, if we consider another bounded
information signal w(t) = [2 sin(t)]T , the simulation results given in Figures 5–8 show that
the theoretical results of Fractional Error Model 1 are satisfied for that choice of the chosen
bounded information signal w(t), i.e., the parameter error ϕ(t) and the output error remain
bounded for all t.

4.2. Identification Using Fractional Error Model 1 with Parameter Constraints
4.2.1. Theoretical Study

In this sub-section, another identification problem is studied [29], where two adaptive
systems related by a linear constraint are considered. In such a situation, we have two error
models of type “1” representing these systems:{

e1(t) = r1 ϕ1
T(t)w1(t),

e2(t) = r2 ϕ2
T(t)w2(t),

(10)

where e1(t), e2(t), r1, r2 ∈ R, ϕ1(t) = θ1(t)− θ1
∗ ∈ Rn1 , ϕ2(t) = θ2(t)− θ2

∗ ∈ Rn2 , θ1(t)
and θ2(t) are, respectively, the estimates of θ1

∗ and θ2
∗, w1(t) ∈ Rn1 , w2(t) ∈ Rn2 . r1 and r2

are unknown but with known signs. In this study, the unknown parameters r1, r2, θ1
∗ and

θ2
∗ are supposed to be related by the following matrix constraint:

r1R1θ1
∗ + r2R2θ2

∗ = ϑ (11)

where ϑ ∈ Rn, R1 ∈ Rn×n1 and R2 ∈ Rn×n2 are well known. In order to adjust the
estimates r̂1(t), r̂2(t), θ1(t) and θ2(t), taking into consideration the relation (11), we define
the following intermediary equation [34]:

ξ(t) = r̂1(t)R1θ1(t) + r̂2(t)R2θ2(t)− ϑ (12)

This equation can be rewritten otherwise, taking into consideration the errors:
ϕr1(t) = r̂1(t)− r1, ϕr2(t) = r̂2(t)− r2, ϕ1(t) = θ1(t)− θ1

∗ and ϕ2(t) = θ2(t)− θ2
∗:

ξ(t) = r1R1 ϕ1(t) + ϕr1(t)R1θ1(t) + r2R2 ϕ2(t) + ϕr2(t)R2θ2(t) (13)

Define the following Lyapunov function:

V(ϕ1, ϕr1 , ϕ2, ϕr2) =
1
2

(
|r1|ϕ1

T ϕ1 + ϕr1
2 ++|r2|ϕ2

T ϕ2 + ϕr2
2
)

. (14)

Using Lemma 1, the derivative of the Lyapunov function has the following up-
per bound:

CDα,ρ
t0

V ≤ |r1|ϕ1
TCDα,ρ

t0
ϕ1 + ϕr1

CDα,ρ
t0

ϕr1 + |r2|ϕ2
TCDα,ρ

t0
ϕ2 + ϕr2

CDα,ρ
t0

ϕr2 (15)

Now, let us consider the following adaptive laws:

CDα,ρ
t0

ϕ1(t) = CDα,ρ
t0

θ1(t) = −sgn(r1)
[
e1(t)w1(t) + R1

Tξ(t)
]

(16)
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CDα,ρ
t0

ϕr1(t) =
CDα,ρ

t0
r̂1(t) = −[R1θ1(t)]

Tξ(t) (17)

CDα,ρ
t0

ϕ2(t) = CDα,ρ
t0

θ2(t) = −sgn(r2)
[
e2(t)w2(t) + R2

Tξ(t)
]

(18)

CDα,ρ
t0

ϕr2(t) =
CDα,ρ

t0
r̂2(t) = −[R2θ2(t)]

Tξ(t) (19)

and then, from (15), one can have:

CDα,ρ
t0

V ≤ −e1
2(t)− e2

2(t)− ξ(t)Tξ(t) (20)

Inequality (20) means that V(t) is bounded for all t ≥ t0. Thus, ϕ1(t), ϕ2(t), ϕr1(t)
and ϕr2(t) are also bounded. Now, using (10) and (13), it follows that e1(t), e2(t) and ξ(t)
are also bounded. Moreover, by integrating (20), one has

Iα,ρ
t0

(
e1

2(t) + e2
2(t) + ||ξ(t) ||2

)
≤ V(t0)−V(t)

Then, Iα,ρ
t0

e1
2(t), Iα,ρ

t0
e2

2(t), and Iα,ρ
t0
||ξ(t) ||2 are bounded. Finally, by applying Lemma

2, we conclude that

lim
t→ ∞

[
tρα−ε

∫ t
t0

e1
2(s)ds

tmax(ρ,1)

]
= 0, ∀ε > 0, (21)

lim
t→ ∞

[
tρα−ε

∫ t
t0

e2
2(s)ds

tmax(ρ,1)

]
= 0, ∀ε > 0, (22)

lim
t→ ∞

[
tρα−ε

∫ t
t0

ξ(t)2(s)ds

tmax(ρ,1)

]
= 0, ∀ε > 0, (23)
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𝑒−𝑡

2
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Figure 1. e(t) for system (7), with α = 0.7, ρ = 1.5, and w(t) =
[
1 e−t

2

]T
.
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Remark 3. In relation with the parameter ρ, two particular cases arise:

• 0 < ρ ≤ 1: In this case, (21)–(23) reduce to the convergence in mean value of e1
2(t), e2

2(t),
and ||ξ(t) ||2, respectively.

• ρ = 1: This case corresponds to the classical Caputo derivative concept. An analogue study
has been conducted for Caputo fractional systems in [35].
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Figure 8. ||ϕ(t)|| for system (7), with α = 0.7, ρ = 0.5, and w(t) = [2 sin(t)]T .

4.2.2. Simulation Study

In this sub-section, we consider a numerical simulation example, where the parameters
to be identified are scalars, with the true values θ1

∗ = 1 and θ2
∗ = 2. In this example,

w1(t) = 1 and w2(t) = e−t, and r1 and r2 are assumed to be known such that r1 = r2 = 1.
Here, the linear equation relating θ1

∗ and θ2
∗ is given by

θ1
∗ − θ2

∗ = −1 (24)

In this case, the auxiliary equation (12) reduces to

ξ(t) = θ1(t)− θ2(t) + 1 (25)

The adaptive laws, in this case, are given by

CDα,ρ
t0

θ1(t) = −e1(t)w1(t)− ξ(t) (26)

CDα,ρ
t0

θ2(t) = −e2(t)w2(t) + ξ(t) (27)

The goal is to show the curves of the output errors norm e(t) =
√

e1
2 + e22 and the

parameter identification errors norm ϕ(t) =
√

ϕ1
2 + ϕ22. For simulation, initial conditions

of the estimated parameters are taken θ1(0.001) = 2 and θ2(0.001) = 1 . The first derivative
parameter is chosen α = 0.5. For the second parameter, two cases are studied: ρ = 1.5 (> 1)
and ρ = 0.5 (< 1). Figures 5–8 show that e(t) and ϕ(t) remain bounded, which confirms
our theoretical results. Furthermore, when we consider another bounded information
signal w(t) = [2 sin(t)]T , the simulation results shown in Figures 9–16 display that the
theoretical results of Fractional Error Model 2 are satisfied, i.e., the parameter error ϕ(t) and
the output error remain bounded for all t.
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5. Conclusions

In this paper, a new lemma for the analysis of Katugampola fractional-order systems
has been presented and proven. This work treated the Caputo–Katugampola fractional
derivative concept, which involves two parameters 0 < α < 1 and ρ > 0. We have
discussed the convergence of the solutions according to the parameter ρ. For the particular
case ρ = 1, it simply reduces to the Caputo derivative definition. The really challenging
thing in this work was the investigation of the solutions’ convergence as ρ ∈ [0,+∞].

Then, that developed and proved lemma was exploited in studying adaptive schemes
through investigating two identification problems. In both cases, the identification task
was based on the so-called “fractional error models”, which are an extension of the classical
“error models”. In the first identification scheme, a simple fractional error model was
considered. In the second identification scheme, two adaptive systems were considered, and
the so-called “Fractional Error Model 1 with parameter constraint” was used. Theoretical
and numerical studies were provided for each identification scheme.

As for future perspectives related to this work, the authors aim to apply the results
found herein to some real-world applications in order to further validate these findings
analytically and experimentally.
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