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Abstract: The idea of spherical fuzzy soft set (SFSS) is a new hybrid model of a soft set (SS) and
spherical fuzzy set (SFS). An SFSS is a new approach for information analysis and information fusion,
and fuzzy modeling. We define the concepts of spherical-fuzzy-soft-set topology (SFSS-topology) and
spherical-fuzzy-soft-set separation axioms. Several characteristics of SFSS-topology are investigated
and related results are derived. We developed an extended choice value method (CVM) and the
AHP-TOPSIS (analytical hierarchy process and technique for the order preference by similarity to
ideal solution) for SFSSs, and presented their applications in multiple-criteria group decision making
(MCGDM). Moreover, an application of the CVM is presented in a stock market investment problem
and another application of the AHP-TOPSIS is presented for an environmental mitigation system.
The suggested methods are efficiently applied to investigate MCGDM through case studies.

Keywords: SFSS-topology; SFS-separation axioms; environmental mitigation system; choice value
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1. Introduction

The data in classical analysis often carry interesting geometric and topological proper-
ties. Characterizing the complexities of such properties with efficient models, algorithms,
and tools is a challenging problem that requires new mathematical modeling. Classical
topology has expanded by drawing inspiration from classical analysis and it has a number
of applications in domains such as learning algorithms [1,2], data analysis [3], machine
learning, large data, data mining [4,5], quantum gravity, and cosmological models [6].
Additionally, the term “topology” refers to the relationship between geometric objects
and features, and can be used to characterize certain spatial functions and to comprehend
data sets with improvements in product quality control and data integrity. There have
traditionally been two fundamental perspectives (or metaphysics) of compactification in
classical topology, as well as two associated approaches (or epistomologies).

To address uncertain and vague real-life issues, it is necessary to look at the brief
description of the different fuzzy sets and the study of their constraints depending on
positive membership degree (PMD) 0 ≤ µ ≤ 1, neutral degree/indeterminacy (ND)
0 ≤ γ ≤ 1, and negative membership degree (NMD) 0 ≤ η ≤ 1. Some fuzzy models and
their constraints are expressed in Table 1.

Mathematics 2022, 10, 1826. https://doi.org/10.3390/math10111826 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111826
https://doi.org/10.3390/math10111826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8115-9168
https://orcid.org/0000-0001-8522-1942
https://doi.org/10.3390/math10111826
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111826?type=check_update&version=1


Mathematics 2022, 10, 1826 2 of 36

Table 1. Some fuzzy models with existing constraints.

Fuzzy Models µ γ η Constraints

Fuzzy set (FS) [7] X × × An FS deals with vagueness in
terms of µ with 0 ≤ µ ≤ 1.

Intuitionistic fuzzy set X × X An IFS assigns a pair of PMD and
(IFS) [8] NMD with 0 ≤ µ + η ≤ 1

Pythagorean fuzzy set X × X A PFS assigns a pair of PMD and
(PFS) [9,10] NMD with 0 ≤ µ2 + η2 ≤ 1

q-Rung orthopair fuzzy set X × X A q-ROFS assigns a pair of PMD and
(q-ROFS) [11] NMD with 0 ≤ µq + ηq ≤ 1, q ≥ 1

Neutrosophic set X X X An NS assigns three indexes, truthness T,
(NS) [12] indeterminacy I, and falsity F, with

T, I, F ∈]0−, 1+[, T + I + F ∈ [0−, 3+]

Single-valued neutrosophic X X X An NS assigns three indexes, truthness T,
set (SVNS) [13] indeterminacy I, and falsity F, with

T, I, F ∈ [0, 1], T + I + F ∈ [0, 3]

Picture fuzzy set X X X A PFS assigns PMD, ND, and NMD,
(PFS) [14–16] such that 0 ≤ µ + γ + η ≤ 1

Spherical fuzzy set X X X A PFS assigns PMD, ND, and NMD,
(SFS) [17–19] such that 0 ≤ µ2 + γ2 + η2 ≤ 1

Chang [20] established a natural framework for generalizing a large number of topo-
logical ideas to what are called fuzzy topological spaces. To keep things simple, the more
fundamental ideas, such as open set, interior set, exterior, compactness and continuity,
were studied by Kelly [21]. Wong [22] presented the concept of fuzzy points and obtained
findings on local countability, separability, and local compactness. Numerous subtle, and
occasionally startling, variations from general topological theory are detected. The addition
of fuzzy points also adds emphasis to the study of convergence. New concepts and defi-
nitions for fuzzy topological spaces were introduced by Lowen [23], who introduced two
functions that helped us to better understand topological properties. Fuzzy compactness
was also presented by Lowen [23] as a modification of compactness. Hutton [24] extended
the concept of normality to fuzzy topological spaces. Normality is the axiom of separation
that can be studied entirely by points and open sets and closed sets containing these points.
In 1980, Ming and Ming [25] defined a fuzzy point in such a way that it includes a crisp
singleton, as a particular case, and extended on the relationship between fuzzy points, fuzzy
sets, and their neighborhood systems, and others have examined many elements of fuzzy
theory using crisp approaches. Ying [26,27] moved fuzzy topology and related results in a
new direction. T◦, T1, T2 (Hausdorf), T3 and T4 separation axioms and their equivalence
and relation with each other in a fuzzifying topology were introduced and analyzed by
Shen [28]. Coker [29,30] invented the idea of an IF topological space based on the idea of
IFSs as an extension of the FS proposed by Atanassov [31,32], and researched many paral-
lels to conventional topological concepts such as compactness and continuity. Additionally,
numerous authors examined the concept of topological structures and their significance for
decision-making environments [33,34]. To deal with uncertainties, Molodtsov [35] devel-
oped the idea of a new type of sets, commonly known as soft sets, as a new mathematical
tool. Maji et al. [36] came up with the concept of fuzzy soft sets by merging the ideas of
FSs and SSs. Decision making, medical issues, machine learning, information processing,
modeling and computer graphics can all benefit from the topological structure found in
these types of data sets. Soft topology has been studied by numerous researchers [37–42].
Fuzzy soft topological spaces were introduced by Aygunoglu et al. [43]. FPFS-topology
was introduced by Zorlutuna and Atmaca [44]. Intuitionistic fuzzy soft topology (IFS-
topology) and their interesting results were outlined in [45,46]. The topological structure of
an N-soft set and soft rough sets, and their applicability to MCGDM, were proposed and
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demonstrated by Riaz et al. [47–49]. TOPSIS has been extended to various fuzzy models
for solving a lot of real-life problems, which are mentioned in Table 2.

Table 2. Some applications of TOPSIS method based on fuzzy models.

Models Researchers Applications

Crisp-TOPSIS Hwang and Yoon [50] The fighter aircraft problem

Fuzzy-TOPSIS Chen [51] Selection of a system-analysis engineer

BF-TOPSIS Akram et al. [52] Skin disorder diagnosis

FSS-TOPSIS Eraslan and Karaaslan [53] Selection of a house

IFSS-TOPSIS Garg and Arora [54] Supplier-selection problem

SF-TOPSIS Kahraman et al. [55] Selection of a hospital location

PmpF-TOPSIS Naeem et al. [56] Selection of an advertisement mode

HFS-TOPSIS Senvar et al. [57] Hospital-site selection

PF-TOPSIS Zhang and Xu [58] MCDM based on PFSs to examine
efficiency among domestic airlines

TOPSIS Kahraman et al. [59] Ranking of alternatives for location
problem in supply-chain management

To address uncertain real-life issues, due to the sheer number of uncertainties and
amount of ambiguity in these situations, the procedures commonly used in classical mathe-
matics are not always effective. Human judgments can be assessed for sturdiness using a
number of MCDM processes that evaluate a set of options against a range of approaches.
Information aggregation and synthesis are critical to several technologies, including cog-
nitive computing, decisions, photogrammetry, feature extraction and analytical thinking.
To look at it another way, aggregation is the process of bringing together several bits of
content to make a final product. According to the research, human’s reasoning processes
cannot be described using fundamental data-management methods based on crisp values.
Decision makers (DMs) are facing ambiguous results and inconclusive judgements because
of these approaches. Since the world is full of ambiguous and fuzzy situations, DMs
are looking for fresh ideas that allow them to understand the equivocal input data and
keep their reasoning demands in response to a variety of scenarios. Due to the abundant
variety of criteria, trade-offs should be taken into account during the decision process. As
a result, this mode of decision-making is often known as MCDM, and it may be grouped
into several categories, including correlative methodologies, reference-point techniques,
relative-importance index methods, and others (i.e., dominance, maxmin and minmax).
AHP is a method for ranking several alternatives using evaluation criteria, both qualitative
and quantitative [60]. Numerous scholars used AHP to evaluate the precise relevance
(weights) of criterion and sub-criteria [61]. The application of FSs to AHP (the use of a
fuzzy score rather than a simple integer) aids in preserving the imprecision embedded in
preference. Fuzzy AHP has been used in a multitude of scenarios, including selecting the
best infrastructure improvements by decision makers in the USA [62], valuing environ-
mental considerations and predictors for resource traffic congestions [63], evaluating and
optimising risk levels associated with the implementation of sustainability practices [64,65],
and evaluating the environmental considerations of a manufacturing plant [66–68]. The
fuzzy axioms, under which the information postulate is coupled with AHP [69], is another
strategy to cope with complex problems using numerical and categorical data [70].

Given the efficacy of AHP and TOPSIS with fuzzy models, there seems to be a massive
rise among practitioners and researchers in integrating these technologies. This integration
has already been applied to a variety of modifications of FS theory, including type-1 fuzzy
sets [71], interval type-2 fuzzy sets [72], neutrosophic sets [73], Pythagarean fuzzy sets
(PFS) [74]), and even mixed FSs, which are a combination of hesitant and interval type-2
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fuzzy sets [72]. The efficiency of AHP and TOPSIS when seeking the optimal suitable
alternative has led researchers to apply this technique in a variety of applications, including
manager selection for a telecommunications company [75] and the selection of a bank’s
chief inspectors [76,77]. The weights of criteria are provided directly in SFSS-TOPSIS,
without any evaluation between the criteria. SFS-AHP, on the other hand, derives the final
scores used to grade the objects without distinguishing the best and worst solutions. As
a result, it is necessary to integrate AHP and TOPSIS under SFS to obtain more precise
findings. Gundogdu and Kahraman [78], in 2020, merged AHP with SFS. Roman et al. [79]
proposed the idea of hybrid data-driven fuzzy active disturbance rejection control for
tower-crane systems. Zhu et al. [80] developed the notion of an event-triggered adaptive
fuzzy control for stochastic nonlinear systems with unmeasured states and unknown
backlash-like hysteresis. Sarkar and Biswas [81] proposed AHP-TOPSIS with a new dis-
tance measure for Pythagorean fuzzy sets and its application to transportation management.
Perveen et al. [82] proposed the notion of spherical fuzzy soft sets and their fundamen-
tal characteristics. Many researchers proposed interesting real-life applications of fuzzy
models: Ashraf et al. [83], an MADM application; Ali et al. [83], green supplier chain
management; Narang et al. [84], stock-portfolio selection; Zavadskas et al. [85], selec-
tion of steel-pipes supplier; Blagojevic et al. [86], freight-transport railway undertakings;
Badi et al. [87], supplier selection; and Ali et al. [88] green supplier chain management.

The purpose of this study is to magnify the concepts of SFSs and SSs, resulting in the
proposal of a novel soft-set model called SFSS for integrated data analysis and information
fusion. The purpose of this study is to use AHP TOPSIS to solve a decision-making
problem. There is no study that we are aware of that incorporates AHP and TOPSIS into
SFSS. As a result, this article presents a hybrid of two methodologies, AHP and TOPSIS, that
employs SFSS theory to address crucial problems of ambiguity in decision making. In AHP,
the pair-wise comparison matrix is formulated; this pair-wise comparison matrix is utilized
to compute the weights of the criterion; whereas, the final ordering of the alternatives is
determined using SFSS TOPSIS. This method is then used to identify the various proposals
that can be implemented for treating environmental crises around the globe based on
the factors that contribute to the procedure for environmental mitigation in developing
life-friendly environmental structures. This is critical for integrating society’s resources
and the steps to be taken to minimize the environmental crises and to enhance the system’s
service efficiency.

The main objectives the suggested framework are as follows.

1. The notion of a spherical fuzzy soft set (SFSS) is a combination of an SFS and a
SS. An SFSS is a new approach for computational intelligence, data analysis, and
fuzzy modeling.

2. We define some new operations on SFSSs for the construction of SFSS-topology. The
idea of spherical fuzzy soft set topology (SFSS-topology) is defined with the help of
null SFSS, absolute SFSS, SFSS-extended union, and SFSS-restricted intersection.

3. Novel conceptualizations of SFSS-topology are explored, such as, SFSS-open set, SFSS-
closed set, SFSS-interior, SFSS-closure, SFSS-base and SFSS-subbase. These notions
are illustrated with some numerical examples.

4. The concepts of spherical fuzzy soft set separation axioms are proposed and related
results are explored.

5. We developed an extended choice value method (CVM) and the AHP-TOPSIS for
SSFSs, respectively.

6. The suggested methods are efficient tools for MCDGDM of an environmental mit-
igation system. An application is designed to identify the ability of the suggested
approach to focus the crises addressed by the environmental mitigation system,
as well as to signify the validity of numerous major findings through case studies.
It is presented in order to justify our technique and demonstrate its applicability
and effectiveness.
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7. The efficiency of suggested methods is demonstrated by a comparative analysis and
sensitivity analysis.

The remainder of the paper is structured in the following manner. Section 2 recalls
some fundamental SFSS concepts. Section 3 summarizes the major discoveries about
SFSS-topology. The concept of SFSS-separation axioms is defined in Section 4. While,
in Section 5, an application of CVM is presented in a stock market investment problem.
Another application of AHP-TOPSIS method is presented for environmental mitigation
system. Section 6 outlines the major findings of the study paper.

2. Preliminaries

First, we present some basic concepts of SFSSs that are necessary to study the remain-
ing part of the paper. Some fundamental notions that are essential for this research work
can be seen in [17–19].

Definition 1 ([17–19]). Let X be a set, a spherical fuzzy set (SFS) S on X can be expressed as

S =
{
(κ, µ(κ), γ(κ), η(κ)) : κ ∈ X

}
=

{
κ

(µ(κ), γ(κ), η(κ))
: κ ∈ X

}
where PMD µ, ND γ, and NMD η satisfy µ, γ, η ∈ [0, 1] and µ2 + γ2 + η2 ∈ [0, 1].

A spherical fuzzy number (SFN) can be written as N = (µ, γ, η).

Definition 2 ([18]). The score function for any SFN N = (µ, γ, η) is written as

s(N) = µ2 − γ2 − η2

where −1 ≤ s(N) ≤ 1. If Ni and Nj are two spherical fuzzy numbers (SFNs), then

1. If s(Ni) < s(Nj) then Ni precedes Nj i.e., Ni ≺ Nj;
2. If s(Ni) > s(Nj) then Ni succeeds Nj i.e., Ni � Nj;
3. If s(Ni) = s(Nj) then Ni ∼ Nj.

Definition 3 ([18]). The accuracy function for any SFN N = (µ, γ, η) is defined as

a(N) = µ2 + γ2 + η2

where 0 ≤ s(e) ≤ 1. If Ni and Nj are two spherical fuzzy numbers, then

1. If s(Ni) and s(Nj) coincide and a(Ni) exceeds a(Nj) then Ni � Nj;
2. If both s(Ni), s(Nj) and a(Ni), a(Nj) coincide then Ni ∼ Nj

Definition 4 ([18]). Let ST = {(κ, µT(κ), γT(κ), ηT(κ)) : κ ∈ X}, with µ2
T(κ)+γ2

T(κ)+ η2
T(κ)

≤ 1, and SJ =
{
(κ, µJ(κ), γJ(κ), ηJ(κ)) : κ ∈ X

}
, with µ2

J (κ) + γ2
J (κ) + η2

J (κ) ≤ 1, be any two
SFSs over X; then, some operations on SFSs are defined as follows.

• Inclusion: If µT(κ) ≤ µJ(κ), γT(κ) ≤ γJ(κ), ηT(κ) ≥ ηJ(κ);
• Equality: If T ⊆ J and J ⊆ T then T = J;
• Union:

{
(κ, max{µT(κ), µJ(κ)}, min{γT(κ), γJ(κ)}, min{ηT(κ), ηJ(κ)})|κ ∈ X

}
;

• Intersection:
{
(κ, min{µT(κ), µJ(κ)}, min{γT(κ), γJ(κ)}, max{ηT(κ), ηJ(κ)

}
)|κ ∈ X};

• Complement: {(κ, ηT(κ), γT(κ), µT(κ))|κ ∈ X}.

Example 1. Let X = {κ1, κ2, κ3} be any set. Let us consider two SFSs ST and SJ as follows,

ST =

{
κ1

(0.691, 0.316, 0.380)
,

κ2

(0.534, 0.4811, 0.495)
,

κ3

(0.691, 0.218, 0.354)

}
,



Mathematics 2022, 10, 1826 6 of 36

SJ =

{
κ1

(0.811, 0.428, 0.150)
,

κ2

(0.694, 0.531, 0.330)
,

κ3

(0.813, 0.251, 0.129)

}
.

According to the operations on SFSs, given in Definition 4, we see that

ST ⊆ SJ ⇒ ST ∪ SJ 6= SJ , ST ∩ SJ = ST .

Now we modify inclusion and intersection operations on SFSs as follows.

• Inclusion: If µT(κ) ≤ µJ(κ), γT(κ) ≥ γJ(κ), ηT(κ) ≥ ηJ(κ).
• Intersection: {(κ, min{µT(κ), µJ(κ)}, max{γT(κ), γJ(κ)}, max{ηT(κ), ηJ(κ)})|κ ∈ X}.

Now we use the modified operations of inclusion and intersection, and we use the opera-
tions of union and complement defined in Definition 4. We illustrate these operations in
the following example.

Example 2. Let X = {κ1, κ2, κ3} be the universe with ST and SJ , two SFSs in X.

ST =

{
κ1

(0.62, 0.42, 0.38)
,

κ2

(0.52, 0.51, 0.42)
,

κ3

(0.72, 0.25, 0.36)

}

SJ =

{
κ1

(0.81, 0.31, 0.15)
,

κ2

(0.62, 0.48, 0.32)
,

κ3

(0.83, 0.21, 0.12)

}
Using with applying new operations defined on SFSs, clearly, we can see that ST ⊆ SJ implies that
ST ∪ SJ = SJ and ST ∩ SJ = ST .

Definition 5 ([19]). The null SFS is denoted by Φ̂ and defined as

Φ̂ =

{
κ

(0, 0, 1)
: κ ∈ X

}
Definition 6 ([19]). The absolute SFS is denoted by χ̂ and defined as

χ̂ =

{
κ

(1, 0, 0)
: κ ∈ X

}
Example 3. Using the SFSs described in Example 2, we observe that

Φ̂ * ST , Φ̂ ∪ ST 6= ST , Φ̂ ∩ ST 6= Φ̂,

ST ⊆ χ̂, ST ∪ χ̂ = χ̂, ST ∩ χ̂ = ST .

Let β(X) be the collection of all SFSs in X. Then it is quite difficult to define the
topological structure of the collection β(X) with these drawbacks. To overcome these
drawbacks, we take a new collection β(γ)(X) of SFSs from a universe X, where neutral
membership degree γ is a fixed value in [0, 1]. Thus, we define the spherical fuzzy null set
and spherical fuzzy absolute set for this new collection β(γ)(W) in the following definitions.

Definition 7. An SFS in β(γ)(X), 0 ≤ γ ≤ 1, is called a null SFS, if

Φ =
{ κ

(0, γ, 1− γ)
: κ ∈ X

}
For γ = 0, the null SFS becomes Φ =

{
κ

(0,0,1) : κ ∈ X
}

. That is, Φ = Φ̂.
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Definition 8. An SFS in β(γ)(X), 0 ≤ γ ≤ 1, is called a absolute SFS, if

χ =
{ κ

(1− γ, γ, 0)
: κ ∈ X

}
For γ = 0, the absolute SFS becomes χ =

{
κ

(1,0,0) : κ ∈ X
}

. That is, χ = χ̂.

Throughout the manuscript, we assume that X is the universe, E is the set of attributes,
A ⊆ E, 2X to be the power set of X, and SFSX to be the class of all spherical fuzzy sets
(SFSs) in X.

Definition 9 ([35]). Let F : A→ 2X be a mapping, then the soft set (SS) in X is denoted by (F, A)
or FA, and defined by

(F, A) =
{(

p,F(p)
)

: p ∈ A
}

Definition 10 ([82]). Let S : A→ SFSX be a mapping, then the spherical fuzzy soft set (SFSS)
is denoted as (S, A) or SA, and defined by

(S, A) =
{(

e,S(e)
)

: e ∈ A, κ ∈ X
}

=
{(

e, {κ, µSA(κ), γSA(κ), ηSA(κ)}
)

: e ∈ A, κ ∈ X
}

=

{(
e,
{

κ

(µSA(κ), γSA(κ), ηSA(κ))

})
: e ∈ A, κ ∈ X

}

The family of all SFSSss in X is called the spherical fuzzy soft class (SFSS-class) and it can expressed
as SFS(X, E).

Let X = {κ1, · · ·, κm} and A = {e1, · · ·, en}. Then, an SFSS SA may be represented in
tabular form as follows

SA e1 e2 · · · en

κ1 (µ11, γ11, η11) (µ12, γ12, η12) · · · (µ1n, γ1n, η1n)
κ2 (µ21, γ21, η21) (µ22, γ22, η22) · · · (µ2n, γ2n, η2n)
...

...
...

. . .
...

κm (µm1, γm1, ηm1) (µm2, γm2, ηm2) · · · (µmn, γmn, ηmn)

and its spherical fuzzy soft matrix is

(S, A) = [(µij, γij, ηij)]m×n

=


(µ11, γ11, η11) (µ12, γ12, η12) · · · (µ1n, γ1n, η1n)
(µ21, γ21, η21) (µ22, γ22, η22) · · · (µ2n, γ2n, η2n)

...
...

. . .
...

(µm1, γm1, ηm1) (µm2, γm2, ηm2) · · · (µmn, γmn, ηmn)


Example 4. Let X = {b1, b2, b3, b4} be the set of buildings suitable for a warehouse, and
E = {p1, p2, p3}, where p1 stands for maximum storage capacity, p2 stands for the climate control
structure, and p3 stands for inexpensive. Then the SFSS (S, A) describes the “parameterized family
of buildings” as follows,

(S, A) = {(pi,S(pi)) : i = 1, 2, 3},

where
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S(p1) = {(b1, 0.45, 0.16, 0.62), (b2, 0.72, 0.24, 0.35), (b3, 0.76, 0.27, 0.18), (b4, 0.69, 0.31, 0.16)};
S(p2) = {(b1, 0.69, 0.23, 0.34), (b2, 0.78, 0.17, 0.25), (b3, 0.90, 0.11, 0.19), (b4, 0.56, 0.28, 0.42)};
S(p3) = {(b1, 0.85, 0.21, 0.36), (b2, 0.43, 0.39, 0.52), (b3, 0.57, 0.17, 0.69), (b4, 0.72, 0.21, 0.38)}.

Definition 11. Let (S, A) be an SFSS, written as,

(S, A) =
{
(e, {κ, µS(e)(κ), γS(e)(κ), ηS(e)(κ)}) : e ∈ A, κ ∈ X

}
.

Then, its complement is written as (S, A)c or (S, A)′, and defined as,

(S, A)′ =
{
(e, {κ, ηS(e)(κ), γS(e)(κ), µS(e)(κ)}) : e ∈ A, κ ∈ X

}
.

Definition 12. Let S(1)
T1

and S(2)
T2

be SFSSss over X. Then, S(1)
T1

is an SFSS-subset of S(2)
T2

i.e.,

S(1)
T1
⊆̃S(2)

T2
, if

(i) T1 ⊆ T2, and
(ii) S(1)(e) is SFSS-subset of S(2)(e) for all e ∈ T1.

Definition 13. Let (S, T) and (F, J) be two SFSSs over X, then (S, T) and (F, J) is an SFSS
denoted by (S, T) ∧ (F, J) and is defined as

(S, T) ∧ (F, J) = (H, T × J)

where H(α, β) = S(α) ∩ F(β), ∀α, β ∈ T × J. i.e.,

H(α, β)(κ) =
(
κ, min{µS(α)(κ), µF(β)(κ)}, min{γS(α)(κ), γF(β)(κ)}, max{ηS(α)(κ), ηF(β)(κ)}|κ ∈ X

)
Definition 14. Let (S, T) and (F, J) be two SFSSs over X, then (S, T) OR (F, J) is an SFSS
denoted by (S, T) ∨ (F, J) is defined as

(S, T) ∨ (F, J) = (H, T × J)

where H(α, β) = S(α) ∪ F(β), ∀α, β ∈ T × J. i.e.,

H(α, β)(κ) =
(
κ, max{µS(α)(κ), µF(β)(κ)}, min{γS(α)(κ), γF(β)(κ)}, min{ηS(α)(κ), ηF(β)(κ)}|κ ∈ X

)
Definition 15. Extended Union: Let (S1, T1) and (S2, T2) be SFSSs defined over X. Then, their
union is defined as (S, A) = (S1, T1)∪̃(S2, T2), where A = T1 ∪ T2 and for all e ∈ A,

S(e) =


S1(e), if e ∈ T1\T2
S2(e), if e ∈ T2\T1
S1(e) ∪ S2(e), if e ∈ T1 ∩ T2

where S1(e) ∪ S2(e) is the union of two SFSSs.

Definition 16. Restricted Union: Let (S1, T1) and (S2, T2) be SFSSs defined over X. Then, their
union is defined as (S, A) = (S1, T1)∪̃(S2, T2), where A = T1

⋂
T2 and for all e ∈ A; then, let

S(e) = S1(e) ∪ S2(e) be the union of two SFSSs.
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Definition 17. Extended intersection: The intersection of two SFSSs (S1, T1) and (S2, T2) is an
SFSS (S, A) = (S1, T1)∩̃(S2, T2), where A = T1 ∪ T2 and

S(e) =


S1(e), if e ∈ T1\T2
S2(e), if e ∈ T2\T1
S1(e) ∩ S2(e), if e ∈ T1 ∩ T2

Definition 18. Restricted intersection: The intersection of two SFSSs (S1, T1) and (S2, T2) is
an SFSS (S, A) = (S1, T1)∩̃(S2, T2), where A = T1 ∩ T2; then, let S(e) = S1(e) ∩ S2(e) be the
intersection of two SFSSs.

Example 5. Let X = {κj : j = 1, 2, 3, 4} and E = {pi : i = 1, 2, · · ·, 5}. Let A = {p1, p2, p5},
J = {p1, p3} and D = {p1, p2, p5, p6}; then, consider three SFSSs (S, A), (F, J) and (I, D) in X
as defined as

(S, A) =


p1 p2 p5

κ1 (0.54, 0.36, 0.41) (0.62, 0.21, 0.54) (0.36, 0.25, 0.78)
κ2 (0.81, 0.23, 0.18) (0.72, 0.31, 0.11) (0.45, 0.18, 0.36)
κ3 (0.72, 0.20, 0.17) (0.52, 0.13, 0.48) (0.90, 0.12, 0.11)
κ4 (0.89, 0.15, 0.24) (0.45, 0.32, 0.57) (0.52, 0.31, 0.46)



(F, J) =


p1 p3

κ1 (0.91, 0.11, 0.18) (0.82, 0.21, 0.45)
κ2 (0.76, 0.21, 0.15) (0.57, 0.32, 0.36)
κ3 (0.62, 0.40, 0.28) (0.71, 0.23, 0.28)
κ4 (0.59, 0.21, 0.42) (0.86, 0.12, 0.23)



(I, D) =


p1 p2 p5 p6

κ1 (0.25, 0.18, 0.56) (0.78, 0.16, 0.41) (0.54, 0.25, 0.31) (0.63, 0.24, 0.28)
κ2 (0.78, 0.11, 0.12) (0.72, 0.30, 0.19) (0.38, 0.45, 0.23) (0.91, 0.11, 0.12)
κ3 (0.39, 0.42, 0.25) (0.61, 0.32, 0.48) (0.72, 0.18, 0.24) (0.58, 0.13, 0.35)
κ4 (0.89, 0.10, 0.12) (0.52, 0.31, 0.38) (0.48, 0.36, 0.41) (0.63, 0.24, 0.18)


(S, A) ∧ (F, J) = (H, A× J)

=


(0.54, 0.11, 0.41) (0.54, 0.21, 0.45) (0.62, 0.11, 0.54) (0.62, 0.21, 0.54) (0.36, 0.11, 0.78) (0.36, 0.21, 0.78)
(0.76, 0.21, 0.18) (0.57, 0.23, 0.36) (0.72, 0.21, 0.15) (0.57, 0.31, 0.36) (0.45, 0.18, 0.36) (0.45, 0.18, 0.36)
(0.62, 0.20, 0.28) (0.71, 0.20, 0.28) (0.52, 0.13, 0.48) (0.52, 0.13, 0.48) (0.62, 0.12, 0.28) (0.71, 0.12, 0.28)
(0.59, 0.15, 0.42) (0.86, 0.12, 0.24) (0.45, 0.21, 0.42) (0.45, 0.12, 0.57) (0.52, 0.21, 0.46) (0.52, 0.12, 0.46)



(S, A) ∨ (F, J) = (M, A× J)

=


(0.91, 0.11, 0.18) (0.82, 0.21, 0.41) (0.91, 0.11, 0.18) (0.82, 0.21, 0.45) (0.91, 0.11, 0.18) (0.82, 0.21, 0.45)
(0.81, 0.21, 0.15) (0.81, 0.23, 0.18) (0.76, 0.21, 0.11) (0.72, 0.31, 0.11) (0.76, 0.18, 0.15) (0.57, 0.18, 0.36)
(0.72, 0.20, 0.17) (0.72, 0.20, 0.17) (0.62, 0.13, 0.28) (0.71, 0.13, 0.28) (0.90, 0.12, 0.11) (0.90, 0.12, 0.11)
(0.89, 0.15, 0.24) (0.89, 0.12, 0.23) (0.59, 0.21, 0.42) (0.86, 0.12, 0.23) (0.59, 0.21, 0.42) (0.86, 0.12, 0.23)


(S, A) ∪ (I, D) = (L, C)

where, C = A ∪ D = {p1, e2, p5, p6}

(L, C) =


(0.54, 0.18, 0.41) (0.78, 0.16, 0.41) (0.54, 0.25, 0.31) (0.63, 0.24, 0.28)
(0.81, 0.11, 0.18) (0.72, 0.30, 0.11) (0.45, 0.18, 0.23) (0.91, 0.11, 0.12)
(0.72, 0.20, 0.17) (0.61, 0.13, 0.48) (0.90, 0.12, 0.11) (0.58, 0.13, 0.35)
(0.89, 0.10, 0.12) (0.54, 0.31, 0.38) (0.52, 0.31, 0.41) (0.63, 0.24, 0.18)
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(S, A) ∪ (I, D) = (L, C)
where, C = A ∩ D = {p1, p2, p5}

(L, C) =


(0.54, 0.18, 0.41) (0.78, 0.16, 0.41) (0.54, 0.25, 0.31)
(0.81, 0.11, 0.18) (0.72, 0.30, 0.11) (0.45, 0.18, 0.23)
(0.72, 0.20, 0.17) (0.61, 0.13, 0.48) (0.90, 0.12, 0.11)
(0.89, 0.10, 0.12) (0.54, 0.31, 0.38) (0.52, 0.31, 0.41)


(S, A) ∩ (I, D) = (L, C)

where, C = A ∪ D = {p1, p2, p5, p6}

(L, C) =


(0.25, 0.18, 0.56) (0.62, 0.16, 0.54) (0.36, 0.25, 0.78) (0.63, 0.24, 0.28)
(0.78, 0.11, 0.18) (0.72, 0.30, 0.19) (0.38, 0.18, 0.36) (0.91, 0.11, 0.12)
(0.39, 0.20, 0.25) (0.52, 0.13, 0.48) (0.72, 0.12, 0.24) (0.58, 0.13, 0.35)
(0.89, 0.10, 0.24) (0.45, 0.31, 0.57) (0.48, 0.31, 0.46) (0.63, 0.24, 0.18)


(S, A) ∩ (I, D) = (L, C)

where, C = A ∩ D = {p1, p2, p5, p6}

(L, C) =


(0.25, 0.18, 0.56) (0.62, 0.16, 0.54) (0.36, 0.25, 0.78)
(0.78, 0.11, 0.18) (0.72, 0.30, 0.19) (0.38, 0.18, 0.36)
(0.39, 0.20, 0.25) (0.52, 0.13, 0.48) (0.72, 0.12, 0.24)
(0.89, 0.10, 0.24) (0.45, 0.31, 0.57) (0.48, 0.31, 0.46)


Definition 19. An SFSS (S, E) in X is called null SFSS, written as Sφ or φE; if ∀ e ∈ E, we have
S(e) = Φ, where Φ denotes null SFS. Hence, null SFSS is defined by

φE =

{(
e,
{

κ

(0, γ, 1− γ)

})
: e ∈ E, κ ∈ X

}
,

where γ ∈ [0, 1] is fixed.

Definition 20. An SFSS (S, E) in X is called absolute SFSS, denoted by X̆ or X̆E, if S(e) = χ,
∀ e ∈ E. Here, χ denotes absolute SFS. Hence, absolute SFSS is defined by

X̆E =

{(
e,
{

κ

(1− γ, γ, 0)

})
: e ∈ E, κ ∈ X

}
,

where γ ∈ [0, 1] is fixed.

3. Spherical Fuzzy Soft Set Topology

In this section, we define the idea of spherical fuzzy soft set topology (SFSS-topology)
with the help of null SFSS, absolute SFSS, SFSS-extended union, and SFSS-restricted inter-
section.

Definition 21. Let βγ(X, E) be the collection of all spherical fuzzy soft sets in X, where neutral
membership γ is a fixed value in [0, 1]. For A, B ⊆ E, a subcollection ø̃ of βγ(X, E) is called
spherical fuzzy soft set topology (SFSS-topology) on X̆E if following properties hold:

(i) φE, X̆E ∈̃ø̃;
(ii) SA, SB∈̃ø̃ then SA∩̃SB ∈̃ø̃;
(iii) If STi ∈̃ø̃, ∀ i ∈ I, then ∪̃i∈I STi ∈̃ø̃.

The pair (X̃E, ø̃), or simply X̃E, is called SFSS-topological space.

Definition 22. Let (X̃E, ø̃) be a topological space, the members of ø̃ are known as SFSS-open
sets. The complement of members of ø̃ are known as SFSS-closed sets. That is, the complement of
SFSS-open sets are called SFSS-closed sets.
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Definition 23. Let (X̃E, ø̃X) be an SFSS-topology. Let Y ⊆ X and Y̆E be an absolute SFSS in Y,
then the SFSS relative topology on Y can be expressed as

ø̃Y =
{

SB : SB = SA∩̃Y̆E, SA ∈ ø̃X
}

.

That is, SFSS-open sets of an SFSS relative topology are SB = SA∩̃Y̆E, where SA are SFSS-open
sets of ø̃X .

Example 6. Let X = {x1, x2, x3} and E = {pi : i = 1, 2, 3, 4}. Take two sub-collections
A = {p1, p2} and B = {p1, p2, p3} of E. Assume that the neutral membership degree γ is a fixed
value in [0, 1], (say) γ = 0.100.

S(1)
A =

{(
p1,
{

x1
(0.351,0.100,0.743)

}
,
{

x2
(0.345,0.100,0.689)

})
,
(

p2,
{

x2
(0.342,0.100,0.546)

}
,
{

x3
(0.351,0.100,0.569)

})}
,

S(2)
B =

{(
p1,
{

x1
(0.348,0.100,0.476)

}
,
{

x2
(0.731,0.100,0.218)

})
,
(

p2,
{

x2
(0.349,0.100,0.242)

}
,
{

x3
(0.398,0.100,0.321)

})
,

(
p3,
{

x1
(0.343,0.100,0.295)

}
,
{

x2
(0.323,0.100,0.216)

})}
. Then,

ø̃X = {φE, X̆E, S(1)
A , S(2)

B }

is an SFSS-topology on X.
We consider an absolute SFSS on Y = {x2, x3} ⊆ X as

Y̆E =

{(
pi,
{ x2

(0.9, 0.1, 0)

}
,
{ x3

(0.9, 0.1, 0)

})
: 1 ≤ i ≤ 4

}

Since

Y̆E∩̃φE = φE,

Y̆E∩̃S(1)
A = {(p1, { x2

(0.345, 0.100, 0.689)
}), (p2, { x2

(0.342, 0.100, 0.546)
}, { x3

(0.351, 0.100, 0.569)
})}

= S(1)
A ,

Y̆E∩̃S(2)
B =

{(
p1,
{ x2

(0.731, 0.100, 0.218)

})
,
(

p2,
{ x2

(0.349, 0.100, 0.242)

}
,
{ x3

(0.398, 0.100, 0.321)

})
,

(
p3,
{ x2

(0.323, 0.100, 0.216)

})}
= S(2)

B ,

Y̆E∩̃X̆E = Y̆E

so
ø̃Y = {φE, S(1)

A , S(2)
B , Y̆E}

is an SFSS sub-topology of ø̃X .

Definition 24. Let (X̃E, ø̃) be an SFSS-topological space and SA⊆̃X̃E.

(1) SFSS interior:
The interior S◦A of SA is the SFSS extended union of all SFSS-open subsets of SA. Note that
S◦A is the largest SFSS-open subset of SA.
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(2) SFSS closure:
The closure SA of SA is the SFSS restricted intersection of all SFSS-closed supersets of SA.
Note that SA is the smallest SFSS-closed superset of SA.

(3) SFSS frontier:
The boundary or frontier Fr(SA) of SA is defined as

Fr(SA) = SA ∩̃ Sc
A

(4) SFSS exterior:
The exterior Ext(SA) of SA is defined as

Ext(SA) = (Sc
A)
◦

In the forthcoming Example 7, we illustrate the notions of the SFSS interior, SFSS exterior,
SFSS closure, and SFSS frontier of an SFSS.

Example 7. Let X = {x1, x2, x3} be any crisp set and E = {p1, p2} be the set of attributes. Let
us consider the following SFSS subsets of X̃E; take γ as a fixed value in [0, 1], (say) γ = 0.100.

S(1)
E =

{(
p1,
{ x1

(0.38, 0.10, 0.42)

}
,
{ x2

(0.63, 0.10, 0.28)

}
,
{ x3

(0.42, 0.10, 0.38)

})
,

(
p2,
{ x1

(0.32, 0.10, 0.28)

}
,
{ x2

(0.78, 0.10, 0.11)

}
,
{ x3

(0.49, 0.10, 0.34)

})}
,

S(2)
E =

{(
p1,
{ x1

(0.89, 0.10, 0.25)

}
,
{ x2

(0.71, 0.10, 0.11)

}
,
{ x3

(0.44, 0.10, 0.35)

})
,

(
p2,
{ x1

(0.83, 0.10, 0.21)

}
,
{ x2

(0.79, 0.10, 0.07)

}
,
{ x3

(0.49, 0.10, 0.31)

})}
,

S(3)
E =

{(
p1,
{ x1

(0.15, 0.10, 0.45)

}
,
{ x2

(0.62, 0.10, 0.38)

}
,
{ x3

(0.40, 0.10, 0.39)

})
,

(
p2,
{ x1

(0.19, 0.10, 0.48)

}
,
{ x2

(0.71, 0.10, 0.26)

}
,
{ x3

(0.42, 0.10, 0.38)

})}
.

Then, by Definition 21, the collection ø̃ = {φE, X̆E, S(1)
E , S(2)

E , S(3)
E } is an SFSS-topology. Consider

an SFSS SE given by

SE =

{(
p1,
{ x1

(0.59, 0.10, 0.32)

}
,
{ x2

(0.72, 0.10, 0.28)

}
,
{ x3

(0.59, 0.10, 0.38)

})
,

=

(
p2,
{ x1

(0.72, 0.10, 0.25)

}
,
{ x2

(0.79, 0.10, 0.09)

}
,
{ x3

(0.62, 0.10, 0.24)

})}
.

(i) SFSS-interior of SE

The members of ø̃ are obviously SFS open sets and φE , S(1)
E and S(3)

E are the open subsets of
SE. Therefore,

S◦E = φE ∪̃ S(1)
E ∪̃ S(3)

E

= S(1)
E
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(ii) SFSS-closure of SE
In order to determine the closure of SE, the corresponding closed SFSSs are(

φE

)c
= X̆E(

X̆E

)c
= φE(

S(1)
E

)c
=

{(
p1,
{ x1

(0.42, 0.10, 0.38)

}
,
{ x2

(0.28, 0.10, 0.63)

}
,
{ x3

(0.38, 0.10, 0.42)

})
,

(
p2,
{ x1

(0.28, 0.10, 0.32)

}
,
{ x2

(0.11, 0.10, 0.78)

}
,
{ x3

(0.34, 0.10, 0.49)

})}
(

S(2)
E

)c
=

{(
p1,
{ x1

(0.25, 0.10, 0.89)

}
,
{ x2

(0.11, 0.10, 0.71)

}
,
{ x3

(0.35, 0.10, 0.44)

})
,

(
p2,
{ x1

(0.21, 0.10, 0.83)

}
,
{ x2

(0.07, 0.10, 0.79)

}
,
{ x3

(0.31, 0.10, 0.49)

})}
(

S(3)
E

)c
=

{(
p1,
{ x1

(0.45, 0.10, 0.15)

}
,
{ x2

(0.38, 0.10, 0.62)

}
,
{ x3

(0.39, 0.10, 0.40)

})
,

(
p2,
{ x1

(0.48, 0.10, 0.19)

}
,
{ x2

(0.26, 0.10, 0.71)

}
,
{ x3

(0.38, 0.10, 0.42)

})}

X̆E is the only closed superset that contains SE. Therefore,

SE = X̆E

(iii) SFSS-frontier of SE

For the purpose of finding the frontier of SE, we need

(
SE

)c
=

{(
p1,
{ x1

(0.32, 0.10, 0.59)

}
,
{ x2

(0.28, 0.10, 0.72)

}
,
{ x3

(0.38, 0.10, 0.59)

})
,

=

(
p2,
{ x1

(0.25, 0.10, 0.72)

}
,
{ x2

(0.09, 0.10, 0.79)

}
,
{ x3

(0.24, 0.10, 0.62)

})}

where X̆E is the only closed superset that contains
(

SE

)c

Sc
E = X̆E

Fr(SE) = SE ∩̃ Sc
E

= X̆E ∩̃ X̆E

= X̆E

(iv) SFSS-exterior of SE
φE is the only open subset of Sc

E. Thus, the Int(Sc
E) is φE.

Ext(SE) = (Sc
E)
◦

= φE
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Theorem 1. Let (X̃E, ø̃) be a spherical fuzzy soft topological space over X and SA, SB are SFSSs in
X. Then

1. int(φE) = φE and int(X̆E) = X̆E.
2. int(SA) ⊆ SA.
3. A is an SFSS open set⇔ SA = int(SA).
4. int(int(SA)) = int(SA).
5. SA ⊆ SB ⇒ int(SA) ⊆ int(SB).
6. int(SA) ∪ int(SB) ⊆ int(SA ∪ SB).
7. int(SA ∩ SB) = int(SA) ∩ int(SB).

Proof.

1. This is obvious by Definition 24.
2. This is obvious by Definition 24.
3. If SA is an SFSS open set in X, then SA is itself an SFSS open set in X which contains

SA. Therefore, SA itself is the largest SFSS open set contained in SA and int(SA) = SA.
Conversely, suppose that int(SA) = SA. Since int(SA) is always SFSS open, SA must
be SFSS open.

4. Let int(SA) = SB. Then, int(SB) = SB from (3) and then, int(int(SA)) = int(SA).
5. Consider SA ⊆ SB as int(SA) ⊆ SA ⊆ SB; int(SA) is an SFSS open subset of SB, so,

by the definition, we have that int(SA) ⊆ int(SB).
6. It is clear that SA ⊆ SA ∪ SB and SB ⊆ SA ∪ SB. Thus, int(SA) ⊆ int(SA ∪ SB) and

int(SB) ⊆ int(SA ∪ SB). Therefore, we have that int(SA) ∪ int(SB) ⊆ int(SA ∪ SB),
using 5.

7. It is known that int(SA ∩ SB) ⊆ int(SA) and int(SA ∩ SB) ⊆ int(SB) by 5. Therefore,
that int(SA ∩ SB) ⊆ int(SA) ∩ int(SB). In addition, from int(SA) ⊆ SA and
int(SB) ⊆ SB, we have int(SA) ∩ int(SB) ⊆ SA ∩ SB. These imply that
int(SA ∩ SB) = int(SA) ∩ int(SB)

Theorem 2. Let (X̃E, ø̃) be an SFSS topological space over X and SA, SB are SFSSs in X. Then,

1. cl(φE) = φE and cl(X̆E) = X̆E;
2. SA ⊆ cl(SA);
3. A is an SFSS closed set⇔ SA = cl(SA);
4. cl(cl(SA)) = cl(SA);
5. SA ⊆ SB ⇒ cl(SA) ⊆ cl(SB);
6. cl(SA) ∪ int(SB) = cl(SA) ∪ cl(SB);
7. cl(SA ∩ SB) ⊆ cl(SA) ∩ cl(SB).

Proof. The proof is obvious by Definition 24.

Theorem 3. Let (X̃E, ø̃) be an SFSS-topological space and SA⊆̃X̃E, then

(1) (S◦A)
c = (Sc

A), and
(2) (SA)

c = (Sc
A)
◦.

Theorem 4. Let (X̃E, ø̃) be an SFSS-topological space and SA⊆̃X̃E, then Fr(SA) = Fr(Sc
A).

Proof. By Definition 24, we see that

Fr(SA) = (SA) ∩̃ (Sc
A)

= (Sc
A) ∩̃ (SA)

= (Sc
A) ∩̃ [(Sc

A)]
c

= Fr(Sc
A)
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Example 8. Let X = {x1, x2} and E = {p1, p2, p3, p4}. Let A = {p1, p2}, B = {p3, p4} ⊆ E
and γ be a fixed value in [0, 1], (say) γ = 0.100. Consider SFSSs given as,

SA =

{(
p1,
{ x1

(0.400, 0.100, 0.480)

}
,
{ x2

(0.789, 0.100, 0.342)

})
,

(
p2,
{ x1

(0.891, 0.100, 0.169)

}
,
{ x2

(0.800, 0.100, 0.269)

})}

SB =

{(
p3,
{ x1

(0.789, 0.100, 0.231)

}
,
{ x2

(0.801, 0.100, 0.189)

})
,

(
p4,
{ x1

(0.845, 0.100, 0.207)

}
,
{ x2

(0.784, 0.100, 0.200)

})}

then
ø̃1 = {φE, SA, X̆E}

and
ø̃2 = {φE, SB, X̆E}

are SFSS-topologies on X but

ø̃1 ∪̃ ø̃2 = {φE, X̆E, SA, SB}

is not so.

Example 9. By Example 7, it can be seen that

ø̃1 = {φE, S(1)
A , X̆E},

ø̃2 = {φE, S(1)
A , S(2)

A , S(3)
A , X̆E}

are two SFSS-topologies in X. Since, ø̃1 ⊂̃ ø̃2, ø̃1 is coarser than ø̃2. Then, ø̃2 is called finer than ø̃1.

Example 10. Let X = {x1, x2, x3} be the universe of discourse and E = {pi : i = 1, 2, 3, 4} be
the group of attributes with A = {p1, p2} ⊆ E, and take γ = 0.100. Assume that

SA =

{(
p1,
{ x1

(0.309, 0.100, 0.469)

}
,
{ x2

(0.718, 0.100, 0.367)

})
,

(
p2,
{ x1

(0.321, 0.100, 0.348)

}
,
{ x2

(0.691, 0.100, 0.278)

})}

Clearly
ø̃ = {φE, X̆E, SA, Sc

A}

fails to be an SFSS-topology on X for neither SA ∩̃ Sc
A∈̃ø̃ nor SA ∪̃ Sc

A∈̃ø̃.

Definition 25. Let (X̃E, ø̃) be an SFSS-topological space. The,n B⊆̃ø̃ is an SFSS-basis for ø̃ if
each SA∈̃ø̃ is an SSFS union of members of an SSFS-topology; that is, SA = ∪̃B.

Example 11. From Example 7, the collection

B =
{

S(1)
A , S(2)

A , S(3)
A , X̆E

}



Mathematics 2022, 10, 1826 16 of 36

is an SFSS-basis for the SFSS-topology

ø̃ =
{

φE, X̆E, S(1)
A , S(2)

A , S(3)
A

}
.

4. SFSS-Separation Axioms

In this section, the concept of SFSS points, SFSS open sets and SFSS closed sets are
used to define SFSS separation axioms. First, we define the concept of a spherical fuzzy
soft set point (SFSS point) contained in an SFSS.

Definition 26. Let X be any set. Then, for each p ∈ A, an SFSS point in an SFSS denoted by pS,
and defined by pS =

(
p,S(p)

)
, where S(p) is any SFS in X.

Definition 27. An SFSS point pS =
(

p,S(p)
)

belongs to an SFSS (S′, A) = {
(

p′,S(p′)
)

:
p′ ∈ A,S(p′) ∈ SFSX}, written as, pS∈̃(S′, A) if p = p′ and S(p) ⊆ S(p′), for some p′ ∈ A.

Definition 28. (i) Two SFSS points p(1)S =
(

p(1),S(p(1))
)

and p(2)S =
(

p(2),S(p(2))
)

are said
to be equal if p(1) = p(2) and S(p(1)) = S(p(2)).
(ii) Two SFSS points p(1)S =

(
p(1),S(p(1))

)
and p(2)S =

(
p(2),S(p(2))

)
are said to be distinct if

either p(1) 6= p(2) or S(p(1)) 6= S(p(2)).

Example 12. The SSFS given in Example 10 contains two distinct SFSNs, given as,

p(1)S =

(
p1,
{ x1

(0.309, 0.100, 0.469)
}

,
{ x2

(0.718, 0.100, 0.367)
})

,

p(2)S =

(
p2,
{ x1

(0.321, 0.100, 0.348)
}

,
{ x2

(0.691, 0.100, 0.278)
})

.

Definition 29. An SFSS-topological space (X̃E, ø̃) is called SFSS T0-space if, for every pair of
distinct SFSS points p(1)S =

(
p(1),S(p(1))

)
and p(2)S =

(
p(2),S(p(2))

)
, there exists at least

one SFSS-open set (S, A) containing exactly one of the SFSS points. That is, p(1)S ∈̃(S, A) and

p(2)S /̃∈(S, A) or p(1)S /̃∈(S, A) and p(2)S ∈̃(S, A).

Example 13. Let τd = βγ(X, E) be the collection of all spherical fuzzy soft subsets of the absolute
SFSS X̆E. Then, βγ(X, E) can be regarded as discrete SFSS-topology. Then, every discrete SFSS-
topological space τd is an SFSS T0-space, for there exists an open set (p(1),S(p(1))) that clearly
contains p(1)S but not p(2)S .

Definition 30. An SFSS-space is an SFSS T1-space if, for any two distinct SFSS-points p(1)S and p(2)S

of X̃E, there exist two PFS-open sets, (S, T) and (S, F), such that p(1)S ∈̃(S, T), p(2)S /̃∈(S, T) and

p(1)S /̃∈(S, F), p(2)S ∈̃(S, F).

Example 14. Every discrete SFSS-topological space τd = βγ(X, E) is an SFSS T1-space. If

p(1)S 6= p(2)S , then there exist SFSS open sets (p(1),S(p(1))) and (p(2),S(p(2))), such that p(1)S ∈
(p(1),S(p(1))), p(1)S /∈ (p(2),S(p(2))) and p(2)S ∈ (p(2),S(p(2))), p(2)S /∈ (p(1),S(p(1))).

Definition 31. An SFSS-space (X̃E, ø̃) is called an SFSS T2-space or SFSS Haüsdorff space if, for
any two distinct SFSS points p(1)S and p(2)S of X̃E, there exist two SFSS open sets (S, T) and (S, F),

such that p(1)S ∈̃(S, T), p(2)S ∈̃(S, F) and (S, T)∩̃(S, F) = SE.

Example 15. Every discrete SFSS-topological space τd = βγ(X, E) is an SFSS T2-space.
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Theorem 5. An SFSS-topological space (X̃E, ø̃) is an SFSS T2-space if and only i,f for any two
distinct SFSS-points p(1)S and p(2)S , there are SFSS-closed sets SC1 and SC2 , such that p(1)S ∈̃SC1 ,

p(2)S /̃∈SC1 , p(1)S /̃∈SC2 , p(2)S ∈̃SC2 and SC1 ∪̃SC2 = X̆E.

Proof. Suppose that (X̃E, ø̃) is an SFSS T2-space and let p(1)S and p(2)S be two distinct SFSS-
points of X̃E. Then, by definition, there must exist two SFSS-open sets (S, T1) and (S, T2)

such that p(1)S ∈̃(S, T1), p(2)S /̃∈(S, T1), p(1)S /̃∈(S, T2), p(2)S ∈̃(S, T2) and (S, T1)∩̃(S, T2) = φE.

However, then, (S, T1)
c∪̃(S, T2)

c = X̆E and p(1)S /̃∈(S, T1)
c = SC2 , p(2)S ∈̃(S, T1)

c = SC2 .

p(1)S ∈̃(S, T2)
c = SC1 , p(2)S /̃∈(S, T2)

c = SC1 .

Conversely, suppose that, for any two distinct SFSS-points p(1)S , p(2)S ∈̃X̃E, there are SFSS-

closed sets SC1 and SC2 , such that p(1)S ∈̃SC1 , p(2)S /̃∈SC1 , p(1)S /̃∈SC2 , p(2)S ∈̃SC2 and SC1 ∪̃SC2 = X̆E.

Then
{

SC1

}c and
{

SC2

}c are SFSS-open sets, such that p(1)S /̃∈
{

SC1

}c, p(2)S ∈̃
{

SC1

}c, p(1)S ∈̃
{

SC2

}c,

p(2)S /̃∈
{

SC2

}c and
{

SC1

}c∩̃
{

SC2

}c
=
{

X̆E
}c

= φE. Hence, X̃E is an SFSS T2-space.

Remark 1. The property of being an SFSS T2-space of any SFSS-topological space (X̃E, ø̃) is
hereditary, i.e., every subspace of an SFSS T2-space is SFSS T2-space.

Definition 32. An SFSS-topological space (X̃E, ø̃) is called an SFSS-regular space if, for any
SFSS-closed set SA and any SFSS-point pS /∈ SA, there are SFSS-open sets (S, T) and (S, F), such
that pS∈̃(S, T), SA⊆̃(S, F) and (S, T)∩̃(S, F) = φE.

Definition 33. An SFSS-topological space (X̃E, ø̃) is reckoned as a SFSS T3-space if it is an
SFSS-regular T1-space.

Definition 34. An SFSS-topological space (X̃E, ø̃) is said to be a SFSS-normal space if, for any
two SFSS-closed disjoint subsets SA and SB of (X̃E, ø̃), there are SFSS-open sets (S, T) and (S, F),
such that SA⊆̃(S, T), SB⊆̃(S, F) and (S, T)∩̃(S, F) = φE. An SFSS-normal T1-space is called an
SFSS T4-space.

Theorem 6. Every SFSS T4-space is SFSS-regular, i.e., every SFSS-normal T1-space is SFSS-regular.

Proof. Let (X̃E, τ̃) be an SFSS T4-topological space. Let pS be an SFSS-point in X̃E. Then,
clearly, {pS} is a closed SFSSs in (X̃E, τ̃). Let SA be a closed SFSS not containing pS. Since
(X̃E is SFSS-normal, there are open SFSSs, namely, SX , SV , such that

{pS}⊆̃SX , SA⊆̃SV , and SX ∩ SV = Sφ

However, then
pS∈̃SX , SA⊆̃SV , and SX ∩ SV = Sφ

Thus, (X̃E, τ̃) is an SFSS-regular.

5. MCDGM by Using SFSS Information

Multi-criteria group decision making (MCGDM) is an operational process that occurs
in trade, industry, business, and other real-life fields. MCDGM is a branch of operation
research in which decision makers evaluate some feasible alternatives under multiple
criteria to seek an optimal alternative and to find the ranking of these alternatives in a
descending order from high preference to low preference. It distinguishes between ongoing
operational evaluations at the stage of low-ranking administration and the protracted
planning and implementation undertaken by executives. The study is reviewed in order
to draw conclusions that can cause serious or negative consequences, but is there a clear
strategic plan that policymakers should follow to achieve victory, or should they deviate
from the standard specific plan?
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Many aspects should be taken into consideration before a choice is made by decision
makers. Therefore, before making a final decision, it is crucial to make sure that all of these
factors have been considered. A taxonomic approach to decision-making is essential in
parliamentary law, to ensure that all relevant facts and numbers are thoroughly examined.

Mathematics, among other things, helps us draw judgments based on scientific facts.
Algorithm 1 illustrates an approach for solving MCGDM utilizing the choice-value method
in an SFSS framework.

Algorithm 1 Choice value method.

Step 1: Input X = {xi : i = 1, 2, · · · , m} as a set of objects and E = {pi : i = 1, 2, · · · , n}
as a set of parameters.

Step 2: Calculate the SFSS-matrix ψE that corresponds to the input data.
Step 3: Each attribute should be given a corresponding weight in the procedure.
Step 4: Calculate the matrix of chosen values using relation C = 1

ΣW(pi)

(
ψE ×Wt).

Step 5: Calculate values of score function s(xi) = µ2 − γ2 − η2 for ranking of xi.
Step 6: The alternative for which s(xi) is highest is the required xi.
Step 7: In case of a tie, use accuracy function a(xi) = µ2 + γ2 + η2 for ranking of xi.
Step 8: The alternative for which a(xi) is greatest is the required xi.

The flow chart of Algorithm 1 is shown in Figure 1.

Figure 1. Flow chart of Algorithm 1.

In the next example, we use Algorithm 1 for MCGDM in a stock-market investment problem.

Example 16. Let X = {xi : i = 1, 2, · · · , 7} be the collection of some companies under considera-
tion for investment in stock exchange. Suppose a person is interested in investing a percentage of
his money into four companies in a linear order. Since the decision makers want to avoid a high risk
factor, they agree to put their money in the four leading firms in percentages of 45%, 25%, 20%, and
10%, in order to reduce the risk factor. After conferring with financial specialists, they settle on a set
of parameters E = {pi : i = 1, 2, · · · , 6}, where

p1 = prestige of the firm;

p2 = asset protection;

p3 = intangible assets;

p4 = validity of the commodity;

p5 = per-share cash flow;

p6 = share market impact.
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Table 3 shows the decision maker’s assessment of alternatives under the influence of parameters in
terms of SFSS SE.

Table 3. SFSS evaluation by the decision maker.

SE p1 p2 p3 p4 p5 p6

x1 (0.469, 0.131, 0.630) (0.589, 0.128, 0.338) (0.811, 0.008, 0.213) (0.638, 0.213, 0.419) (0.291, 0.316, 0.362) (0.429, 0.214, 0.586)

x2 (0.234, 0.346, 0.189) (0.000, 0.000, 1.000) (0.783, 0.132, 0.189) (0.789, 0.102, 0.289) (0.278, 0.118, 0.346) (0.000, 0.000, 1.000)

x3 (0.271, 0.213, 0.348) (0.769, 0.139, 0.169) (0.000, 0.000, 1.000) (0.532, 0.243, 0.411) (0.291, 0.381, 0.293) (0.781, 0.131, 0.639)

x4 (0.795, 0.142, 0.231) (0.249, 0.321, 0.256) (0.330, 0.142, 0.479) (0.359, 0.134, 0.651) (0.594, 0.287, 0.367) (0.801, 0.095, 0.121)

x5 (0.256, 0.389, 0.180) (0.393, 0.102, 0.597) (0.435, 0.134, 0.596) (0.795, 0.112, 0.280) (0.000, 0.000, 1.000) (0.286, 0.327, 0.179)

x6 (0.692, 0.134, 0.128) (0.643, 0.260, 0.189) (0.000, 0.000, 1.000) (0.279, 0.321, 0.340) (0.788, 0.103, 0.211) (0.327, 0.256, 0.441)

x7 (0.297, 0.216, 0.310) (0.781, 0.118, 0.171) (0.181, 0.310, 0.490) (0.497, 0.115, 0.324) (0.237, 0.310, 0.212) (0.505, 0.123, 0.486)

The corresponding SFSS-matrix ψE =

(0.469, 0.131, 0.630) (0.589, 0.128, 0.338) (0.811, 0.008, 0.213) (0.638, 0.213, 0.419) (0.291, 0.316, 0.362) (0.429, 0.214, 0.586)
(0.234, 0.346, 0.189) (0.000, 0.000, 1.000) (0.783, 0.132, 0.189) (0.789, 0.102, 0.289) (0.278, 0.118, 0.346) (0.000, 0.000, 1.000)
(0.271, 0.213, 0.348) (0.769, 0.139, 0.169) (0.000, 0.000, 1.000) (0.532, 0.243, 0.411) (0.291, 0.381, 0.293) (0.781, 0.131, 0.639)
(0.795, 0.142, 0.231) (0.249, 0.321, 0.256) (0.330, 0.142, 0.479) (0.359, 0.134, 0.651) (0.594, 0.287, 0.367) (0.801, 0.095, 0.121)
(0.256, 0.389, 0.180) (0.393, 0.102, 0.597) (0.435, 0.134, 0.596) (0.795, 0.112, 0.280) (0.000, 0.000, 1.000) (0.286, 0.327, 0.179)
(0.692, 0.134, 0.128) (0.643, 0.260, 0.189) (0.000, 0.000, 1.000) (0.279, 0.321, 0.340) (0.788, 0.103, 0.211) (0.327, 0.256, 0.441)
(0.297, 0.216, 0.310) (0.781, 0.118, 0.171) (0.181, 0.310, 0.490) (0.497, 0.115, 0.324) (0.237, 0.310, 0.212) (0.505, 0.123, 0.486)


The weights are assigned to the companies as follows.

W(p1) = 0.5, W(p2) = 0.4, W(p3) = 0.8, W(p4) = 0.3, W(p5) = 0.6, W(p6) = 0.3

so that ΣW(pi) = 2.9. Hence,

W =
(
0.500 0.400 0.800 0.300 0.600 0.300

)
Thus, the SFSS-matrix for choice values is C = 1

ΣW(pi)

(
ψE ×Wt) = 1

2.900×
(0.469, 0.131, 0.630) (0.589, 0.128, 0.338) (0.811, 0.008, 0.213) (0.638, 0.213, 0.419) (0.291, 0.316, 0.362) (0.429, 0.214, 0.586)
(0.234, 0.346, 0.189) (0.000, 0.000, 1.000) (0.783, 0.132, 0.189) (0.789, 0.102, 0.289) (0.278, 0.118, 0.346) (0.000, 0.000, 1.000)
(0.271, 0.213, 0.348) (0.769, 0.139, 0.169) (0.000, 0.000, 1.000) (0.532, 0.243, 0.411) (0.291, 0.381, 0.293) (0.781, 0.131, 0.639)
(0.795, 0.142, 0.231) (0.249, 0.321, 0.256) (0.330, 0.142, 0.479) (0.359, 0.134, 0.651) (0.594, 0.287, 0.367) (0.801, 0.095, 0.121)
(0.256, 0.389, 0.180) (0.393, 0.102, 0.597) (0.435, 0.134, 0.596) (0.795, 0.112, 0.280) (0.000, 0.000, 1.000) (0.286, 0.327, 0.179)
(0.692, 0.134, 0.128) (0.643, 0.260, 0.189) (0.000, 0.000, 1.000) (0.279, 0.321, 0.340) (0.788, 0.103, 0.211) (0.327, 0.256, 0.441)
(0.297, 0.216, 0.310) (0.781, 0.118, 0.171) (0.181, 0.310, 0.490) (0.497, 0.115, 0.324) (0.237, 0.310, 0.212) (0.505, 0.123, 0.486)




0.500
0.400
0.800
0.300
0.600
0.300



=


(0.5564, 0.1520, 0.3928)
(0.3954, 0.1310, 0.4275)
(0.3276, 0.1734, 0.5340)
(0.5053, 0.1910, 0.4050)
(0.3301, 0.1635, 0.5322)
(0.6289, 0.1399, 0.4484)
(0.3616, 0.2278, 0.3399)


The score function values of alternatives are given in Table 4 and the ranking of companies/alternatives
is shown in Figure 2.
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Table 4. Score function values of alternatives.

X S = µ2 − η2 Ranking

x1 0.1322 2

x2 −0.0436 7

x3 −0.2080 6

x4 0.0548 3

x5 −0.2010 5

x6 0.1749 1

x7 0.0367 4

Table 4 demonstrates that ranking of companies is as follows,

x6 � x1 � x4 � x7 � x5 � x3 � x2.

The ranking of companies is also shown in the Figure 2.

Figure 2. Ranking of companies.

Hence, the firm should invest 45% of the capital on x6, 25% on x1, 20% on x4 and the rest
10% on x7.

6. AHP-TOPSIS Approach for Environmental Mitigation with SFS-Topology

This section examines the use of SFSS-topology in multi-criteria group decision making
(MCGDM). Following the AHP-TOPSIS extension to SFSSs, we will explore how to save
the environment considering the factors polluting the environment and SFSS-topology.
AHP- TOPSIS is one of the most-often-used strategies in solving such issues. Though, every
strategy has advantages and disadvantages, depending on the problem at hand.

Case study
Environmental degradation in Pakistan comprises air quality, water contamination, traffic
noise, global warming, chemical abuse, desertification, natural catastrophes, dunes, and
storms. A worldwide environmental-performance index (EPI) has previously labelled
Pakistan’s air quality as deplorable. Global warming poses a serious threat to the lives
of the citizens in the state. Emissions of greenhouse gases, increasing urbanization, and
deforestation all play a role in the current state of affairs. Climate change is running amok
in low-income countries such as Pakistan. It is not alone in being helpless, as advanced
economies—most notably China and the United States—postpone lowering emissions.
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Global warming will have a significant impact on Pakistan, as well as the Maldives and
many other island nations. In contrast to many other countries that have addressed the
issue of global emissions at the UN, Pakistan is doing little to safeguard its future. Regular
agricultural cycles have helped Pakistan’s economy weather several crises. However, if
the IPCC Article is accurate, the country will be underwater by 2050. Already, Pakistan
is struggling with a slew of environmental challenges. Many lives have been lost due to
weather extremes, which also have a major impact on crop cycles and harvests. Floods
decimated Pakistan’s two main cities this year: Karachi and Islamabad. Due to landslides,
Pakistan’s commercial lifeline with China, the 806-kilometer Karakoram Highway, was shut
down many times for multiple days. There was considerable deforestation in the northern
part of Kohistan and the southern part of Jaglot, which led to the deadly landslides. The
logging mafias are swiftly clearing old-growth forests north of Shimshal and east of the
Skardu Valley, virtually insuring future environmental catastrophes. The state government
appears utterly unconcerned about the looming crisis. Not much effort has been put
towards meeting its goal of producing 60% of its power from renewable sources by 2030.
More than 60% of the country’s electricity is generated from fossil fuels at the moment.
Figure 3 shows the key environmental issues in Pakistan.

Figure 3. Key environmental issues in Pakistan.

Economic ramifications of environmental devastation
Agriculture and fishing employ more than two-thirds of the workforce in Pakistan and
produce over a quarter of the country’s total output. Increased use of finite natural resources
is necessary for economic growth. Oddly, the very thing that is enabling this country to
develop also constitutes a danger to its long-term safety and stability. A total of 70 percent
of Pakistan’s population lives in rural areas and suffers from high poverty levels, according
to the World Bank. To make money, these people rely on utilization and conservation, which
they tend to misuse. This leads to greater ecological damage, whic,h in turn, enhances
impoverishment. This has culminated in a “vicious downward spiral of impoverishment
and environmental degradation,” as stated by the World Bank. Pollution-related wellness
factors influence both urban and rural dwellers, as per a 2013 World Bank evaluation.
Air quality is the state’s most critical environmental challenge. Not only do these global
impacts harm Pakistanis, but they often put the country’s business in jeopardy. In the article,
growing industrialization, globalization, and vehicular use are anticipated to aggravate
the situation.

Water pollution
Pakistan is rated as a water-stressed country by the World Economic forum. The Kabul
River flows from Afghanistan into Pakistan; whereas the Indus, Jhelum, Chenab, Ravi, and
Sutlej Rivers flow from India into Pakistan. Under the Indus Waters Treaty of 1960, water
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from the Ravi and Sutlej waters is redirected upstream to India for household consumption.
The Indus (main stem), Jhelum, and Chenab rivers supply water to the agricultural lands
of Punjab and Sindh, though not to the remainder of the region. Pakistan’s economy and
the welfare of millions of Pakistanis are strongly effected by resource depletion. With
the Law of the Sea Convention and canal diversion, Pakistan’s rivers have fewer diluting
flows. The size of the economy, as well as a lack of water treatment, have caused a spike in
water pollution. To provide water to people, dumped raw sewage is drained into rivers
and the ocean, and unsanitary pipes are used. Water contamination makes it increasingly
challenging to acquire safe drinking water and elevates the likelihood of developing an
illness carried through raw sewage. There are many ailments that may be largely attributed
to filthy water in Pakistan, because of this. Indeed, 45 percent of infant deaths and 60
percent of aquatic infections are caused by diarrhoea.

Noise pollution
Some of Pakistan’s urbanized areas are plagued by a substantial amount of noise pollution.
Noise pollution is generally triggered by traffic, including vehicles, automobiles, lorries,
wheelers, and water tankers. An analysis found that Karachi’s main route seemed to have
an average noise level of 90 dB and may reach as high as 110 dB. As a matter of fact, this
surpasses the 70 dB limit set by the “International Organization for Standardization (ISO)”.
According to the studies, the Environmental Quality Agency’s ambient noise standard in
Pakistan is 85 decibels (dB). This threshold of noise pollution might have an influence on
both auditory and quasi abilities. There seems to be a diversity of non-auditory clinical
depression, notably insomnia, hearing and myocardial sickness, neuroendocrine sensitivity
to loudness, and mental disorders. There are only a few, inconsistent noise regulations and
policies in place. There is no culpability and the municipal and regional environmental
conservation agencies are unable to intervene due to various statutory limitations and a
loss of specific norms and regulations, which hinders them from doing so.

Air pollution
Wellbeing has been shown to be disproportionately affected by air pollution. For Pak-
istanis who habitually inhale dirty air, nanoparticle matter variations are a big concern.
Respiratory difficulties have been associated to SPM in Pakistan’s largest cities, according
to the research. Sustainable fuels such as liquefied petroleum gas (LPG) and improved
transportation construction and sustainability can significantly minimize urban air pollu-
tion in Pakistan. The government can also adopt mitigation policies to reduce emissions.
Pollution levels are increasing in Pakistan’s metro areas. Karachi’s urban air pollution is
one of the worst in the world, having a devastating impact on both human development
and health. Unsustainable energy use combined with the increased utilisation of auto-
mobiles, unauthorized corporate emissions, and debris and polymer combustion have all
contributed to urban air pollution. According to the Sindh Environmental Conservation
Department, urban air quality is approximately four times that proposed by the World
Health Organization. These contaminants contribute to “respiratory disorders, impaired
vision, vegetation degradation, and crop production”. Economic production leads to air
pollution. An unavoidable byproduct and insufficient air pollution legislation have led to
cities’ poor air quality. Abid Omar founded the Pakistan ambient air initiative in 2018, to
evaluate the country’s major cities’ air quality. In Pakistan, the US State Department has
established three elevated air-quality monitoring units. To overcome such environmental
issues, various aspects should be taken under view and numerous efforts are required in
order to obtain environmentally friendly conditions. Some are listed below:

• The establishment of a large tree plantation.
• Going paperless has the potential to significantly reduce the rate of deforestation

on Earth.
• The number of diesel-powered automobiles that pollute the atmosphere should

be reduced.
• An effective system for treating and managing sewage should be put in place.
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• The practice of living a water-conserving lifestyle should be encouraged.

One of the most crucial objectives is to achieve an appropriate and effective level
of environmental remediation and protection. Policymakers and decision makers must
acknowledge that a sustainable plan for solving global crises must be a consistent effort
comes from a long approach that combines all stakeholders. Inevitably, the project’s
performance is determined by organizational commitment and dedication at every phase of
the process, in addition to endorsement of adequate systems and guidelines at all levels. A
method to tackle the ecological disaster has several merits, some of which are listed below.

• Recovering a susceptible and priceless expedient.
• Increasing the efficacy of currently available systems.
• Exploiting infrastructure’s massive financial assets.
• Extending the systems’ average life duration.
• Increasing revenue from environmental mitigation services.
• Energy-demand reduction.
• Decrease in the service’s carbon footprint.

In order to locate and accentuate the finest solution to environmental issues, a thorough
structure of tactics is developed in this study. To be sustainable, the plan chosen must be in
harmony with the ecological sector’s integrated approach. Rather than a laborious process
of making recommendations that account for the fact that many particular objectives
and opportunities exist in the market, a well-organized approach that can be articulated
promptly and succinctly must account for concerns of various individuals and those of the
constitutionally sound authorities. Decisions are being made by legislators and selection
analysts who are well-versed in the process. A review of the literature on environmental
strategic planning undertaken with professionals and authorities, as well as information
concerning the region of convenience’s domestic life, resulted in the improvement of these
measures. Climate-remediation approaches were applied in the environmental distribution
network. When a long-term ecological safeguard system exists, clear provisions are often
in place. Appraisal attributes are used to assess the effectiveness of each methodology.
To choose the optimal method, first, the critical nature of grading parameters should be
understood. Attributes are given in Table 5 as the strategies to overcome environmental
crises, and judgement criteria are given in Table 6.

Table 5. Strategies for environmental mitigation.

Code Strategies

A1 Forest conservation

A2 Disaster mitigation

A3 Environmental legislation

A4 Eliminate the use of fossil-fuel vehicles

A5 Eliminate single-use plastics

A6 Agriculture that is sustainable

A7 Mitigation of environmental aspects of aviation
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Table 6. Explanation of the evaluation criteria.

Code Strategies Explanation

Ć1 Cost figure Expenditure associated with the implementation
of the criteria

Ć2 Benefit period Calculation of the effective life span of the criteria

Ć3 Energy Saved For a solution to be viable, it must be able to cut
energy consumption and global-warming emissions.

Ć4 Supply reliability The criteria may be preferable if it is capable of saving
a long-term service and easing supply constraints.

Ć5 Flexibility The criteria should be tailored to meet diverse needs and
uncertainties in order to be more flexible.

Ć6 Social acceptance If the criteria has ability to be accepted by the localities.

The linguistic terms for judging alternatives are listed in Table 7.

Table 7. Linguistic terms for judging alternatives.

Linguistic Terms Score Index

Equal importance (EI) 1
Moderate importance (MI) 3
Strong important (SI) 5
Very-strong importance (VI) 7
Extreme importance (EXI) 9

Note that:

1. Intermediate values for two consecutive linguistic terms will be (IV1), (IV2), (IV3),
(IV4) as 2, 4, 6, 8, respectively

2. Values for inverse composition for each linguistic term will be the reciprocal of its
score index.
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Algorithm 2 AHP-TOPSIS.

Step 1. Consider D = {Di : i = 1, 2, · · ·, l} as a set of decision makers, A = {Aj : j = 1, 2, · · ·, m}
as a set of alternatives and C = {Ćk : j = 1, 2, · · ·, n} as a set of parameters/criterion.

Step 2. By selecting the linguistic terms from Table 7, pair-wise comparison matrix is constructed
as

[Wij]n×m =



W11 W12 · · · W1m
W21 W22 · · · W2m

...
...

. . .
...

Wi1 Wi2 · · · Wim
...

...
. . .

...
Wn1 Wn2 · · · Wnm


where Wij is the values assigned by the experts Di to the alternative Aj by considering
linguistic terms as given in Table 7.

Step 3. Compute normalized pair-wise comparison matrix

[$̂ij]n×m =



$̂11 $̂12 · · · $̂1m
$̂21 $̂22 · · · $̂2m

...
...

. . .
...

$̂i1 $̂i2 · · · $̂im
...

...
. . .

...
$̂n1 $̂n2 · · · $̂nm


where $̂ij =

Wij
Σm

i=1Wij
.

Step 4. Obtain the weighted vectorW = (w1, w2, · · · , wm)

where wi =
Σm

j=1 $̂ij

m .
Step 5. Calculate the consistency to check whether the calculated values are correct or not. For this

purpose, follow the steps given below

i. Take the pair-wise comparison matrix from Step 2.
ii. Multiply this matrix by the weight vectorW = (w1, w2, · · · , wm), such as Pij = Wij × wj

for j = 1, 2, · · · , m.

iii. Now, calculate eigen values λi, for i = 1, 2, · · · , m given that λi =
∑m

j=1 Pij

wi
.

iv. Obtain the value of λmax using, λmax = ∑m
i=1 λi

m .
v. Calculate the value of the consistency index (CI), such that

CI = λmax−m
m−1

where, m is the number of compared elements.
vi. Obtain the value of consistency ratio (CR), utilizing

CR = CI
RI

where, random index (RI) is the consistency index of the randomly generated pair-wise
matrix.

vii. Check whether CR follows the inequality, CR < 0.10. If yes, then the weights are
consistent. Otherwise, use different linguistic scores in Step 2.
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Algorithm 2 Cont.

Step 6. Write the SFSS decision matrix

Di = [vi
jk]m×n =



Ć1 Ć2 · · · Ćn

A1 vi
11 vi

12 · · · vi
1n

A2 vi
21 vi

22 · · · vi
2n

...
...

. . .
...

Aj vi
j1 vi

j2 · · · vi
jn

...
...

. . .
...

Am vi
m1 vi

m2 · · · vi
mn


where vi

jk is the SFSS-element of ith decision maker to jth alternative under kth criteria, such

that Di (i = 1, 2, · · ·, l) makes an SFSS-topolgy. Then, we obtain the aggregating matrix using

D1 + D2 + · · ·+ Dl
l

= [v̇jk]m×n

Step 7. Obtain the weighted SFSS decision matrix

[v̈jk]m×n =



v̈11 v̈12 · · · v̈1n

v̈21 v̈22 · · · v̈2n
...

...
. . .

...

v̈j1 v̈j2 · · · v̈jn
...

...
. . .

...

v̈m1 v̈m2 · · · v̈mn


where v̈jk = wk × v̇jk.

Step 8. In order to obtain the SFSS-valued positive ideal solution (SFSV-PIS) and SFSS-valued

negative ideal solution (SFSV-NIS), we employ, in order,

SFSV-PIS = {v̈+1 , v̈+2 , · · · , v̈+m}

=
{
(∨j v̈jk)

}

where,

∨j v̈jk = {(max{µjk(x)}, min{γjk(x)}, min{ηjk(x)})|x ∈ X}

and

SFSV-NIS = {v̈−1 , v̈−2 , · · · , v̈−m}

=
{
(∧j v̈jk

}

where,

∧j v̈jk = {(min{µjk(x)}, max{γjk(x)}, max{ηjk(x)})|x ∈ X}
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Algorithm 2 Cont.

Step 9. SFSS–Euclidean distances of each alternative from SFSV-PIS and SFSV-NIS, respectively,

are computed as;

d+j =

√
Σm

k=1

{(
µjk − µ+

k
)2

+
(
γjk − γ+

k
)2

+
(
ηjk − η+

k
)2
}

and

d−j =

√
Σm

k=1

{(
µjk − µ−k

)2
+
(
γjk − γ−k

)2
+
(
ηjk − η−k

)2
}

Step 10. Calculate the coefficient of closeness amongst each alternative and the ideal solution,

using

C−j (v̈j) =
d−j

d+j + d−j
∈ [0, 1]

Step 11. We can determine the preferred choices by putting them into decreasing (or increasing)

order.

The flow chart of AHP-TOPSIS for SFSS information is given in Figure 4.

Example 17. As an illustration of Algorithm 2, the demonstrative example for environmental
mitigation strategies is presented.

Step 1 Let A = {A1, · · ·, A7} be the collection of alternatives and C = {Ć1, · · ·, Ć6} be the
collection of evaluation criteria as given in Table 3 and Table 4, respectively. We will use the set
D = {D1, · · ·, D4} to refer to a group of policymakers / decision makers who have been asked to
score each approach on the basis of how well it meets each of the evaluation criteria in terms of SFNs.

Step 2 We determined the relative importance of each criteria with respect to our goal in Table 8.
Whereas, in Table 9, a pair-wise comparison matrix is created with the help of the linguistic terms
from Table 7.

Step 3 Then, we obtained normalized pair-wise comparison matrix, which is given in Table 10.

Step 4 Therefore, the required criteria weights are calculated, as shown in Table 11.

Table 8. Relative importance of criteria.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

Ć1 EI IV2 VI MI SI IV1

Ć2 IV2 EI IV1 VI IV2 SI

Ć3 VI IV1 EI MI IV3 EXI

Ć4 MI VI MI EI SI VI

Ć5 SI IV2 IV2 SI EI IV2

Ć6 IV1 SI EXI VI IV2 EI
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AHP TOPSIS

Score the criteria by using 

linguistic terms

Construct a pair-wise comparison 

matrix

Compute the normalized pair-

wise comparison matrix
Write the SFS-decision matrix of each 

specialist

Obtain the Aggregated matrix

Weighted aggregated matrix

Find the values of SFSV-PISand SFSV-

NIS

SFS-Euclidean distance

Calculate the closeness coefficients

Ranking

Calculate the criteria weights

SFS-

Topology

D1 D2

D3 D4

Compute the 

eigen values

Obtain the 

value of CI

Calculate CR 

value

Check inequality

CR < 0.10

Consist-

ency of 

weights

Is the consistency ratio less than 0.1?

No Yes

Criteria weights are consistent

Figure 4. Flow chart of Algorithm 2 for AHP-TOPSIS.

Table 9. Pair-wise comparison matrix.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

Ć1 1.000 4.000 7.000 3.000 5.000 2.000

Ć2 0.250 1.000 0.500 7.000 4.000 5.000

Ć3 0.143 2.000 1.000 3.000 6.000 9.000

Ć4 0.333 0.143 0.333 1.000 5.000 0.143

Ć5 0.200 0.250 0.167 0.200 1.000 4.000

Ć6 0.500 0.200 0.111 7.000 0.250 1.000
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Table 10. Normalized pair-wise comparison matrix.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

Ć1 0.243 0.527 0.768 0.142 0.235 0.095

Ć2 0.061 0.132 0.055 0.330 0.188 0.236

Ć3 0.035 0.263 0.110 0.142 0.282 0.426

Ć4 0.081 0.019 0.037 0.047 0.235 0.007

Ć5 0.049 0.033 0.018 0.009 0.047 0.189

Ć6 0.122 0.026 0.012 0.330 0.012 0.047

Table 11. Criteria weights.

Ć1 0.335

Ć2 0.167

Ć3 0.210

Ć4 0.071

Ć5 0.058

Ć6 0.092

Step 5 Criteria weights are consistent, as they fulfil the requirement that CR < 0.10.

Step 6 The evaluations of decision makers in terms of decision matrices D1, D2, D3, and D4
are expressed in Table 12, Table 13, Table 14, and Table 15, respectively. The rows represent the
alternatives and the columns represent the parameters in these matrices. Then, the collection of
decision matrices forms an SFSS-topology.

Table 12. Decision matrix D1.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (0.82, 0.03, 0.21) (0.19, 0.35, 0.28) (0.79, 0.16, 0.31) (0.68, 0.21, 0.40) (0.24, 0.39, 0.41) (0.65, 0.13, 0.37)

A2 (0.16, 0.07, 0.78) (0.41, 0.23, 0.56) (0.34, 0.19, 0.59) (0.42, 0.32, 0.38) (0.65, 0.17, 0.39) (0.47, 0.21, 0.51)

A3 (0.52, 0.28, 0.37) (0.45, 0.31, 0.36) (0.17, 0.38, 0.41) (0.34, 0.47, 0.29) (0.46, 0.11, 0.52) (0.62, 0.18, 0.25)

A4 (0.47, 0.32, 0.38) (0.27, 0.47, 0.38) (0.80, 0.04, 0.36) (0.35, 0.41, 0.28) (0.71, 0.13, 0.29) (0.56, 0.29, 0.34)

A5 (0.73, 0.18, 0.26) (0.19, 0.37, 0.49) (0.47, 0.21, 0.52) (0.61, 0.24, 0.38) (0.52, 0.32, 0.47) (0.43, 0.24, 0.26)

A6 (0.43, 0.21, 0.35) (0.27, 0.36, 0.53) (0.61, 0.28, 0.31) (0.71, 0.09, 0.25) (0.15, 0.39, 0.53) (0.67, 0.21, 0.19)

A7 (0.83, 0.04, 0.19) (0.38, 0.27, 0.57) (0.46, 0.19, 0.52) (0.75, 0.18, 0.26) (0.59, 0.28, 0.37) (0.37, 0.28, 0.49)
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Table 13. Decision matrix D2.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A2 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A3 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A4 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A5 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A6 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

A7 (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

Table 14. Decision matrix D3.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (0.62, 0.21, 0.38) (0.39, 0.41, 0.28) (0.84, 0.07, 0.19) (0.19, 0.37, 0.64) (0.48, 0.25, 0.53) (0.23, 0.48, 0.51)

A2 (0.70, 0.18, 0.27) (0.53, 0.24, 0.36) (0.63, 0.15, 0.31) (0.34, 0.28, 0.59) (0.61, 0.14, 0.32) (0.63, 0.17, 0.28)

A3 (0.53, 0.23, 0.46) (0.19, 0.46, 0.51) (0.47, 0.32, 0.35) (0.56, 0.19, 0.43) (0.37, 0.41, 0.46) (0.46, 0.21, 0.43)

A4 (0.43, 0.26, 0.37) (0.25, 0.31, 0.42) (0.76, 0.25, 0.24) (0.28, 0.39, 0.51) (0.21, 0.42, 0.38) (0.18, 0.36, 0.59)

A5 (0.35, 0.29, 0.44) (0.46, 0.39, 0.49) (0.39, 0.17, 0.61) (0.51, 0.08, 0.48) (0.75, 0.19, 0.10) (0.31, 0.27, 0.48)

A6 (0.15, 0.37, 0.72) (0.23, 0.41, 0.53) (0.59, 0.14, 0.47) (0.61, 0.04, 0.39) (0.52, 0.28, 0.39) (0.79, 0.05, 0.20)

A7 (0.54, 0.16, 0.61) (0.17, 0.49, 0.35) (0.52, 0.27, 0.41) (0.62, 0.19, 0.40) (0.81, 0.16, 0.19) (0.59, 0.26, 0.38)

Table 15. Decision matrix D4.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A2 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A3 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A4 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A5 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A6 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

A7 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (1.00, 0.00, 0.00)

As a result, we arrive at an aggregated decision matrix that looks like Table 16, computed by using
D1+D2+D3+D4

4
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Table 16. Aggregated decision matrix.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (0.6100, 0.0600, 0.3975) (0.3950, 0.1900, 0.3900) (0.6575, 0.0575, 0.3750) (0.4675, 0.1450, 0.5100) (0.4300, 0.1600, 0.4850) (0.4700, 0.305, 0.4700)

A2 (0.4650, 0.0625, 0.5125) (0.4850, 0.1175, 0.4800) (0.4925, 0.0850, 0.4750) (0.4400, 0.1500, 0.4925) (0.5650, 0.0775, 0.4275) (0.5250, 0.0950, 0.4475)

A3 (0.5125, 0.1275, 0.4575) (0.4100, 0.1925, 0.4675) (0.4100, 0.1750, 0.4400) (0.4575, 0.1300, 0.4950) (0.4575, 0.1300, 0.4950) (0.5200, 0.0975, 0.4200)

A4 (0.4750, 0.1450, 0.4375) (0.3800, 0.1950, 0.4500) (0.6400, 0.0725, 0.4000) (0.4075, 0.2000, 0.4475) (0.4800, 0.1375, 0.4175) (0.4350, 0.1625, 0.4825)

A5 (0.5200, 0.1175, 0.4250) (0.4125, 0.1900, 0.4950) (0.4650, 0.0950, 0.5325) (0.5300, 0.0800, 0.4650) (0.5675, 0.1275, 0.3925) (0.4350, 0.1275, 0.435)

A6 (0.3950, 0.1450, 0.5175) (0.3750, 0.1925, 0.5150) (0.5500, 0.1050, 0.4450) (0.5800, 0.0325, 0.4100) (0.4175, 0.1675, 0.4800) (0.6150, 0.0650, 0.3475)

A7 (0.5925, 0.0500, 0.4500) (0.3875, 0.1900, 0.4800) (0.4950, 0.1150, 0.4825) (0.5925, 0.0925, 0.4150) (0.6000, 0.1100, 0.3900) (0.4900, 0.1350, 0.4675)

Step 7 Then, we calculated the weighted SFSS decision matrix, given in Table 17.

Table 17. Weighted decision matrix.

Ć1 Ć2 Ć3 Ć4 Ć4 Ć6

A1 (0.2044, 0.0201, 0.1332) (0.0660, 0.0317, 0.0651) (0.1381, 0.0121, 0.0788) (0.0332, 0.0103, 0.0362) (0.0249, 0.0093, 0.0281) (0.0433, 0.0281, 0.0432)

A2 (0.1558, 0.0209, 0.1717) (0.4081, 0.0196, 0.0802) (0.1034, 0.0179, 0.0998) (0.0312, 0.0107, 0.0350) (0.0328, 0.0045, 0.0248) (0.0483, 0.0087, 0.0412)

A3 (0.1717, 0.0427, 0.1533) (0.0684, 0.0321, 0.0781) (0.0861, 0.0368, 0.0924) (0.0325, 0.0092, 0.0351) (0.0266, 0.0075, 0.0287) (0.0478, 0.0090, 0.0386)

A4 (0.1591, 0.0486, 0.1466) (0.0635, 0.0326, 0.0752) (0.1344, 0.0152, 0.0840) (0.0289, 0.0142, 0.0318) (0.0278, 0.0080, 0.0242) (0.0400, 0.0150, 0.0444)

A5 (0.1742, 0.0394, 0.1424) (0.0689, 0.0317, 0.0827) (0.0977, 0.0199, 0.1118) (0.0376, 0.0057, 0.0330) (0.0329, 0.0074, 0.0228) (0.0400, 0.0117, 0.0400)

A6 (0.1323, 0.0486, 0.1734) (0.0626, 0.0321, 0.0860) (0.1155, 0.0221, 0.0935) (0.0412, 0.0023, 0.0291) (0.0242, 0.0097, 0.0278) (0.0566, 0.0060, 0.0319)

A7 (0.1984, 0.0168, 0.1508) (0.0647, 0.0317, 0.0802) (0.1040, 0.0242, 0.1013) (0.0421, 0.0066, 0.0295) (0.0348, 0.0064, 0.0226) (0.0451, 0.0124, 0.0430)

Step 8 Then, we obtained the SFSS-valued positive ideal solution (SFSV-PIS) and SFSS-valued
negative ideal solution (SFSV-NIS).
SFSV-PIS = {℘̈+

1 , ℘̈+
2 , ℘̈+

3 , ℘̈+
4 , ℘̈+

5 , ℘̈+
6 }

=
{
(0.2044, 0.0168, 0.1332), (0.4081, 0.0196, 0.0651), (0.1381, 0.0121, 0.0788),

(0.0421, 0.0023, 0.0291), (0.0348, 0.0045, 0.0226), (0.0566, 0.0060, 0.0319)
}

.

SFSV-NIS = {℘̈−1 , ℘̈−2 , ℘̈−3 , ℘̈−4 ℘̈−5 , ℘̈−6 }
=
{
(0.1323, 0.0486, 0.1734), (0.0626, 0.0326, 0.0860), (0.0861, 0.0368, 0.1118),

(0.0289, 0.0142, 0.0362), (0.0242, 0.0097, 0.0287), (0.0400, 0.0281, 0.0444)
}

.

Step 9 The SFSS-Euclidean distances of each alternative from SFSV-PIS and SFSV-NIS are
computed as given in Table 18 and Table 19, respectively.

Table 18. Positive ideal solution.

d+1 = d+(v̈1, SFSV-PIS) 0.3440

d+2 = d+(v̈2, SFSV-PIS) 0.0785

d+3 = d+(v̈3, SFSV-PIS) 0.3490

d+4 = d+(v̈4, SFSV-PIS) 0.3510

d+5 = d+(v̈5, SFSV-PIS) 0.3467

d+6 = d+(v̈6, SFSV-PIS) 0.3589

d+7 = d+(v̈7, SFSV-PIS) 0.3475
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Table 19. Negative ideal solution.

d−1 = d−(v̈1, SFSV-NIS) 0.1119

d−2 = d−(v̈2, SFSV-NIS) 0.3497

d−3 = d−(v̈3, SFSV-NIS) 0.0545

d−4 = d−(v̈4, SFSV-NIS) 0.0725

d−5 = d−(v̈5, SFSV-NIS) 0.0619

d−6 = d−(v̈6, SFSV-NIS) 0.0518

d−7 = d−(v̈7, SFSV-NIS) 0.0850

Step 10 Each alternative was compared to the ideal solution in Table 20, in order to compute its
closeness coefficient.

Table 20. Closeness coefficient.

C−1 (v̈1) 0.2454

C−2 (v̈2) 0.8167

C−3 (v̈3) 0.1351

C−4 (v̈4) 0.1712

C−5 (v̈5) 0.1515

C−6 (v̈6) 0.1261

C−7 (v̈7) 0.1965

Step 11 The preference order of the alternatives, therefore, is

v̈2 � v̈1 � v̈7 � v̈4 � v̈5 � v̈3 � v̈6

Figure 5 shows the ranking of of strategies based on the closeness coefficients.

Figure 5. Ranking of strategies.

Since the ranking of v̈2 is highest, we conclude that disaster mitigation should be our first
preference to resolve the environmental crisis.

Comparison analysis and sensitivity analysis
The advantages of SFSSs are described in Table 21.
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Table 21. Advantage of SFSSs.

Models Advantages and Limitations

Soft set (SS) An SS deals with uncertainty in terms of a parameterized
(Molodtsov [35]) collection of the subsets of the universe.

It can not deal with spherical fuzzy information.

Spherical fuzzy set It deals with spherical fuzzy information in terms of
(SFS) ([17–19]) three indexes of PMD, ND, and NMD.

It can not deal with parameterizations.

Spherical fuzzy soft A strong hybrid model of SS and SFS to deal with uncertainty
set ([82]) in terms of a parameterized collection of spherical fuzzy subsets.

It defines classes of parameters and their approximate elements.

The ranking of alternatives by the proposed AHP-TOPSIS using SFSSs is

v̈2 � v̈1 � v̈7 � v̈4 � v̈5 � v̈3 � v̈6.

The ranking of alternatives using AHP-TOPSIS [74] with PFSs is

v̈2 � v̈1 � v̈7 � v̈5 � v̈4 � v̈6 � v̈3

We see that the ranking is little changed but the optimal alternative remains the same. The
proposed AHP-TOPSIS is a robust MCGDM approach based on spherical fuzzy soft sets. It
is superior to existing approaches as it is a hybrid technique of AHP and TOPSIS, as well as
it being designed for a hybrid model of soft sets and spherical fuzzy sets.

7. Conclusions

The topological structure on spherical fuzzy soft sets (SFSSs) provides a new approach
for computational intelligence, data analysis, and fuzzy modeling. This paper covers a
wide range of topics related to SFSS-topology. SFSS-topology is constructed using the
ideas of SFSS extended union, SFSS restricted intersection, null SFSS, and absolute SFSS.
Meanwhile, in order to elaborate, the different features of SFSS-topology, such as SFSS open
sets, SFSS-closed sets, the SFSS interior, the SFSS closure, the SFSS exterior and so on, are
specified. A number of relevant examples and proofs are included to elaborate the concept.
This study also highlights the SFSS base, SFSS sub-base, and SFSS-separation axioms.
The interdependency between these “spherical fuzzy soft set separation axioms” are also
analyzed. SFSS-topology is an extension of soft topology and picture fuzzy topology.
Using the well-known and widely employed techniques CVM and the AHP-TOPSIS, we
demonstrate two real-world MCGDM applications using SFSSs and SFSS topologies. In
order to make it easier to visualize the process, the appropriate algorithms and flowcharts
are included. In this study, we expanded the CVM to SFSSs and applied it to an investment
in the stock market. We also included a case study illustrating the AHP-TOPSIS technique
for resolving environmental crises in Pakistan. We displayed the final data with the help of
a bar diagram and chart to efficiently analyze various alternatives and clarify the concepts
effectively. Developing a multilevel environmental management strategy is viewed as a
key and effective solution for addressing the challenge of insufficient and inadequate life
resources. Although this article focuses on hybrid sets of fuzzy sets, it has the potential
to be applied to other types of structures. A wide range of application areas are possible,
comprising science and medicine, information processing, machine learning, automation,
signal processing as well as industry, finance, and development studies, among others.
Research in the topic is expected to expand after reviewing this research.
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