
Citation: González-Campos, J.S.;

Arnedo-Moreno, J.;

Sánchez-Navarro, J. Self-Learning

Geometric Transformations: A

Framework for the “Before and After”

Style of Exercises. Mathematics 2022,

10, 1859. https://doi.org/10.3390/

math10111859

Academic Editor: David Pugalee

Received: 16 April 2022

Accepted: 26 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Self-Learning Geometric Transformations: A Framework for the
“Before and After” Style of Exercises
José Saúl González-Campos * , Joan Arnedo-Moreno and Jordi Sánchez-Navarro

Estudis d’Informàtica, Multimèdia i Telecomunicacions, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
jarnedo@uoc.edu (J.A.-M.); jsancheznav@uoc.edu (J.S.-N.)
* Correspondence: jsaulg@uoc.edu

Abstract: After the long period of mandatory distance learning, either synchronous or asynchronous,
caused by the COVID-19 pandemic, the existence of learning tools to support students in similar
scenarios is welcomed in many curriculum subjects. Geometric transformations are relevant in
mathematics and an omnipresent topic in the computer graphics curriculum that needs plenty of
visual tools and learning-by-doing environments. In this work, we propose a framework based on an
extended Translation-Rotation-Scale (TRS) pattern to generate composite transformations to support
a specific style of learning exercises that we call “before and after”. The pattern, together with specific
constraints to reduce the domain into a finite set of cases, allows the automatic exercises generation,
evaluation, and real-time feedback. Two pieces of software, called GTVisualizer and GTCards, were
developed to empirically test the proposed framework embedding it in a gaming environment. The
first tool supports the initial instruction and introduces the formal matrix-based methodology to
specify composite transformations; the second one provides a ludic environment where students
can drill and reinforce the subject by playing. Our initial results suggest that these tools are suitable
for learning geometric transformations; they helped students in simulated self-study mode achieve
comparable results to those students receiving the regular lecture materials and explanations in the
classroom. Moreover, the usage of the tools appears to favor a similar increasing effect on students’
visual-spatial abilities, similar to the obtained by taking an in-person course on computer graphics,
as measured with the Purdue Spatial Visualization Test.

Keywords: geometric transformations; higher education; computer graphics

MSC: 97U70

1. Introduction

In this study, we address the problem of how to structure educational exercises that
intend to make it easier for Computer Graphics (CG) students in self-study mode to learn
Geometric Transformations (GTs). GTs are an important subject in education and have
applications in many fields. It is an area of mathematics taught at all educational levels,
from elementary to higher, especially in the areas of Science, Technology, Engineering,
and Mathematics (STEM). In the United States, the Common Core State Standards (CCSS)
initiative [1] includes GTs from eighth grade. This standard proposes experimental ver-
ification of rotations, reflections, scales, translations, and understanding concepts about
consistency and similarity between 2D figures using compositions of GTs. In middle school,
the CCSS proposes to deepen the experimentation with transformations in the 2D plane.
For attending these recommendations, various mathematics education studies address the
theoretical-practical aspects of teaching GTs, aimed at the elementary and intermediate
levels of education [2–8]. Additionally, there is a generalized tendency to use the so-called
Dynamic Geometry Software (DGS), such as Cabri [9], Geometer’s Sketchpad [10], and
Geogebra [11], among others. An advantage of DGS is that it provides students with

Mathematics 2022, 10, 1859. https://doi.org/10.3390/math10111859 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111859
https://doi.org/10.3390/math10111859
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1888-8506
https://orcid.org/0000-0002-6430-6469
https://orcid.org/0000-0002-0311-1385
https://doi.org/10.3390/math10111859
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111859?type=check_update&version=2

Mathematics 2022, 10, 1859 2 of 22

a learning environment for exploration and experimentation. Numerous studies have
analyzed the impact of DGS on teaching GTs from different perspectives [9,10,12–16].

In higher education, particularly CG courses, the emphasis on teaching GTs is associ-
ated with the computational methods that allow rendering 2D and 3D scenes [17–19]. In
an introductory CG course, the study of transformations usually begins with translations,
rotations, reflections, and scales, applied in isolation; this subject can be introduced in 2D
and then extended to 3D. Later in the course, students can learn the composition of transfor-
mations. Once students are comfortable with these concepts, they approach the rendering
pipeline in detail. We detected a gap in proposals explicitly focused on designing learning
exercises for GTs in higher education and distance learning, which should comprehend:
(1) 3D environments, (2) matrix representation, (3) rendering-oriented processing, (4) local
and global coordinate systems, and (5) optimization of solutions (e.g., provide feedback
about unnecessary complexity in a submitted solution). Even for in-person education,
textbooks in this discipline generally focus only on two aspects of GTs: (1) their formal
representation and mathematical treatment, and (2) their implementation in a programming
language or software, leaving the teacher responsible for designing a learning strategy,
without further guidance on structuring the practice.

Learning GTs in higher education is not a trivial task for many students. It is often
necessary to use specialized tools such as physical models or 3D software that provides
a sandbox for free experimentation and learning-by-doing, complementing other study
materials. Some studies have addressed the degree of difficulty that some tasks related to
GTs intrinsically have as humans approach them. For example, a study by [20] found that
translations, reflections, and rotations involve similar skill factors, which in order of diffi-
culty are image recognition, transformations recognition, identification of transformations
parameters, and image construction. A translation is the most effortless perceived trans-
formation, followed by reflections and simple rotations [21]. Similar results found in [22]
show that translations and horizontal or vertical reflections are the easiest to understand. A
study on the classification of problem-solving strategies related to GTs [23] utilized five
types of questions which, in order of difficulty, were: (1) move, (2) reflect on a diagonal,
(3) rotate, (4) make a composition of transformations, and (5) establish the sequence of
transformations involved, given a figure in a “before” and “after” states. Together with an
empirical observation in the classroom, these studies clarify that many students struggle to
understand composite sequences of GTs; performing complex spatial abstractions demands
a strong cognitive ability [24].

From early 2020 until late 2021, when the COVID-19 pandemic made it mandatory for
students to take classes at home, many educational strategies common in the classroom were
no longer available; suddenly, students and teachers were using alternative tools through
different platforms. In the specific case of the Autonomous University of Juarez City (UACJ
by its Spanish name), some students dropped or failed the undergraduate course in CG due
to the difficulty in “connecting” the theoretical aspect of GTs with their visual representation
and effect on objects. Other students were frustrated with the available media, such as
video conferences, digital sketch pads, or screen-shared multimedia presentations. These
resources were perceived as insufficient to convey the visual content and provide the free
experimentation demanded to fully understand GTs. Similar scenarios were common in
higher education in different countries, academic programs, and individual courses [25,26].

As the situation progressed, we provided CG students with the early versions of two
software prototypes originally envisioned to support an online version of the CG course,
which the UACJ planned to offer in the future. The effect that these prototypes had on the
students’ performance confirmed (intuitively, by the close following of our students) that
video games were a good choice to motivate students at the time.

The research question we address in this study is whether students in self-study mode
(not attending in-person classes) and using specially designed software tools can achieve a
comparable GTs learning outcome to students taking a regular CG course in the classroom.

Mathematics 2022, 10, 1859 3 of 22

A complementary question is whether the students’ visual-spatial abilities are trained to a
comparable extent in both scenarios.

This paper summarizes the design foundations of two designed pieces of software and
the findings from an empirical test held with undergraduate students using this software
in Spring 2022 at the UACJ.

In the rest of this paper, Section 2 introduces GTs, from a learning perspective, as they
are usually treated in an introductory course in CG. It includes the matrix representation
and the concept of composition of transformations. Section 3 details a proposed framework
to generate learning exercises based on a standardized pattern for building compositions of
GTs. It is described how this pattern allows the optimization and comparison of solutions,
automates the generation of exercises, and provides the basis to associate exercises with
different degrees of difficulty. Additionally, in this section, we summarize the design and
features of two software tools that embedded the framework and how they were used in the
experimental test. Section 4 describes the results after testing the tools with undergraduate
students, Section 5 discusses the results, and Section 6 presents our conclusions and
future work.

2. Geometric Transformations

In the context of a CG course, it is advantageous to study the matrix representation of
GTs because it is the standard way in which the graphics accelerator hardware internally
manipulates transformations [27]. This treatment turns out to be a computationally efficient
method for calculating the new positions of an object’s vertices after some transformation.
This section briefly describes the 3D-transformations matrix format and addresses the
composition of transformations and the notions of local and global coordinate systems.
Instead of a mathematical emphasis, this section intends to provide an educational context,
putting in perspective the learning exercises that will be addressed later in this work.

2.1. Matrix Representation and Single Transformation

Matrices representing 3D transformations have a standard 4 × 4 format [28]. Depend-
ing on the type of transformation, certain matrix positions have a specific meaning, while
the rests are 1 s and 0 s (according to the identity matrix). The translation needs three
distances tx, ty, and tz (Figure 1a). Scale requires three factors Sx, Sy, and Sz (Figure 1b).
Mirror (reflection) also needs three factors, Mx, My, and Mz (Figure 1c), which share the
same matrix positions as the scale. A minus 1 factor indicates the mirror. Finally, three
fundamental rotations are defined on the X, Y, and Z axes, respectively (Figure 1d–f), where
θ indicates the rotation angle, measured in degrees.

Mathematics 2022, 10, 1859 3 of 22

The research question we address in this study is whether students in self-study
mode (not attending in-person classes) and using specially designed software tools can
achieve a comparable GTs learning outcome to students taking a regular CG course in the
classroom. A complementary question is whether the students’ visual-spatial abilities are
trained to a comparable extent in both scenarios.

This paper summarizes the design foundations of two designed pieces of software
and the findings from an empirical test held with undergraduate students using this soft-
ware in Spring 2022 at the UACJ.

In the rest of this paper, Section 2 introduces GTs, from a learning perspective, as
they are usually treated in an introductory course in CG. It includes the matrix represen-
tation and the concept of composition of transformations. Section 3 details a proposed
framework to generate learning exercises based on a standardized pattern for building
compositions of GTs. It is described how this pattern allows the optimization and com-
parison of solutions, automates the generation of exercises, and provides the basis to as-
sociate exercises with different degrees of difficulty. Additionally, in this section, we sum-
marize the design and features of two software tools that embedded the framework and
how they were used in the experimental test. Section 4 describes the results after testing
the tools with undergraduate students, Section 5 discusses the results, and Section 6 pre-
sents our conclusions and future work.

2. Geometric Transformations
In the context of a CG course, it is advantageous to study the matrix representation

of GTs because it is the standard way in which the graphics accelerator hardware inter-
nally manipulates transformations [27]. This treatment turns out to be a computationally
efficient method for calculating the new positions of an object’s vertices after some trans-
formation. This section briefly describes the 3D-transformations matrix format and ad-
dresses the composition of transformations and the notions of local and global coordinate
systems. Instead of a mathematical emphasis, this section intends to provide an educa-
tional context, putting in perspective the learning exercises that will be addressed later in
this work.

2.1. Matrix Representation and Single Transformation
Matrices representing 3D transformations have a standard 4 × 4 format [28]. Depend-

ing on the type of transformation, certain matrix positions have a specific meaning, while
the rests are 1 s and 0 s (according to the identity matrix). The translation needs three
distances tx, ty, and tz (Figure 1a). Scale requires three factors Sx, Sy, and Sz (Figure 1b).
Mirror (reflection) also needs three factors, Mx, My, and Mz (Figure 1c), which share the
same matrix positions as the scale. A minus 1 factor indicates the mirror. Finally, three
fundamental rotations are defined on the X, Y, and Z axes, respectively (Figure 1d–f),
where Ɵ indicates the rotation angle, measured in degrees.

Figure 1. Transformations matrices: (a) Translation, (b) Scale, (c) Mirror or reflection, (d) Rotation
on X axis, (e) Rotation on Y axis, (f) Rotation on Z axis.

Figure 1. Transformations matrices: (a) Translation, (b) Scale, (c) Mirror or reflection, (d) Rotation on
X axis, (e) Rotation on Y axis, (f) Rotation on Z axis.

A vertex is represented with a 4 × 1 matrix. Vertex transformation is done when a
transformation matrix multiplies a vertex matrix. Repeating this operation separately for
each vertex can be avoided if the 4 × 1 format is extended to a 4 × N matrix, where N is the
number of vertices. This notation allows a single multiplication and calculates all vertices

Mathematics 2022, 10, 1859 4 of 22

simultaneously, as shown in Figure 2, where an X-rotation is applied to vertices V1, V2, V3,
obtaining the transformed vertices V′1, V′2, V′3.

Mathematics 2022, 10, 1859 4 of 22

A vertex is represented with a 4 × 1 matrix. Vertex transformation is done when a
transformation matrix multiplies a vertex matrix. Repeating this operation separately for
each vertex can be avoided if the 4 × 1 format is extended to a 4 × N matrix, where N is the
number of vertices. This notation allows a single multiplication and calculates all vertices
simultaneously, as shown in Figure 2, where an X-rotation is applied to vertices V1, V2, V3,
obtaining the transformed vertices 𝑉ଵᇱ, 𝑉ଶᇱ, 𝑉ଷᇱ.

Figure 2. Applying a transformation to a group of vertices.

A single (not composite) transformation applies only one fundamental transfor-
mation (translation, rotation, scale, or mirror) to an object. This kind of exercise is usually
straightforward and intuitive to understand by a student since the change in the object’s
visual shape, from its original state to its final state, results from a single type of transfor-
mation.

2.2. Composite Sequences
Applying a single transformation can be generalized to multiple transformations (a

composite sequence). For learning purposes, the sequence is calculated first (multiplying
all transformation matrices in the sequence), and then the result is applied to the vertices
matrix. There is no limit to how many transformations can be included in a sequence.
However, the order in which transformations appear in a sequence is key to determining
the vertices’ final state, given the non-commutative property of matrices multiplication.
Thinking of the correct order of transformations in a sequence usually causes difficulties
for students because it requires a higher level of abstraction than a single transformation.
Students must be able to mentally imagine the cumulative effect of transformations in a
specific order. Another difficulty a student commonly faces is the equivalence of compo-
site sequences. There are different ways to achieve the same transforming effect on an
object. Two or more sequences can be equivalent, even if they do not intuitively appear
like that, as they may significantly differ in the number and type of utilized transfor-
mations.

2.3. Local and Global Coordinate Systems
When a 3D scene is built, various objects are usually placed in different locations and

orientations relative to the same 3D space. The whole scene has a coordinate system, usu-
ally called “global”, which serves as a fixed reference for all the objects in the scene. On
the other hand, each object can have its own coordinate system, usually called “local”,
which defines its vertices in its own space. This distinction between local and global sys-
tems can create additional difficulty for students when defining a composite sequence.
They must specify all the steps in the sequence by thinking “locally” or “globally”. When
focused on the local system, matrices should be thought of from left to right, while in the
other case, from right to left. What for one approach is the “first step”, for the other is the
“last step”, and vice versa. The difference lies only in the cognitive process of thinking a
sequence. Regardless of the case, the sequence of matrices will be the same after being
written.

Figure 2. Applying a transformation to a group of vertices.

A single (not composite) transformation applies only one fundamental transformation
(translation, rotation, scale, or mirror) to an object. This kind of exercise is usually straight-
forward and intuitive to understand by a student since the change in the object’s visual
shape, from its original state to its final state, results from a single type of transformation.

2.2. Composite Sequences

Applying a single transformation can be generalized to multiple transformations (a
composite sequence). For learning purposes, the sequence is calculated first (multiplying
all transformation matrices in the sequence), and then the result is applied to the vertices
matrix. There is no limit to how many transformations can be included in a sequence.
However, the order in which transformations appear in a sequence is key to determining
the vertices’ final state, given the non-commutative property of matrices multiplication.
Thinking of the correct order of transformations in a sequence usually causes difficulties
for students because it requires a higher level of abstraction than a single transformation.
Students must be able to mentally imagine the cumulative effect of transformations in a
specific order. Another difficulty a student commonly faces is the equivalence of composite
sequences. There are different ways to achieve the same transforming effect on an object.
Two or more sequences can be equivalent, even if they do not intuitively appear like that,
as they may significantly differ in the number and type of utilized transformations.

2.3. Local and Global Coordinate Systems

When a 3D scene is built, various objects are usually placed in different locations and
orientations relative to the same 3D space. The whole scene has a coordinate system, usually
called “global”, which serves as a fixed reference for all the objects in the scene. On the
other hand, each object can have its own coordinate system, usually called “local”, which
defines its vertices in its own space. This distinction between local and global systems can
create additional difficulty for students when defining a composite sequence. They must
specify all the steps in the sequence by thinking “locally” or “globally”. When focused on
the local system, matrices should be thought of from left to right, while in the other case,
from right to left. What for one approach is the “first step”, for the other is the “last step”,
and vice versa. The difference lies only in the cognitive process of thinking a sequence.
Regardless of the case, the sequence of matrices will be the same after being written.

2.4. The “Before and After” Style of Learning Exercise

As an educational strategy for learning GTs, a commonly utilized exercise requires
transforming an object from an initial to a final state [29]; it has been classified as one of the
most demanding learning activities involving GTs [23]. Figure 3 shows a real example used
in the classroom to introduce students to the concept of a composite sequence.

Mathematics 2022, 10, 1859 5 of 22

Mathematics 2022, 10, 1859 5 of 22

2.4. The “Before and After” Style of Learning Exercise
As an educational strategy for learning GTs, a commonly utilized exercise requires

transforming an object from an initial to a final state [29]; it has been classified as one of
the most demanding learning activities involving GTs [23]. Figure 3 shows a real example
used in the classroom to introduce students to the concept of a composite sequence.

Figure 3. An example of a “before and after” learning exercise.

The solution is a sequence of matrices that also involves the computation of the com-
posite matrix and the transformed vertices. The exercise provides enough information to
lead the student to a solution. Still, alternative solutions (different sequences) commonly
exist for the same exercise. Some students propose a solution using the explicit given in-
formation. In contrast, others tend to perform extra calculations to derive implicit infor-
mation and then use it in the matrices sequence. Although any sequence that achieves the
final state is correct, students are encouraged to find a sequence with few steps and use
the explicit information in the exercise; this is usually associated with a good understand-
ing of the core concepts and a neat logic to solve the problem.

3. Method
This section proposes a framework for designing learning exercises and classifying

their solutions. It will allow us to define a standard pattern for the composition of trans-
formations, simplify solutions to the minimum of essential steps, and provide feedback
on how close or far an arbitrary solution is from the optimal. We also describe here how
the model was implemented in two different educational tools. The first tool is a computer
program that allows students to experiment freely with composite sequences and gener-
ate exercises of varying degrees of difficulty. The second tool is a card-based video game
that provides a ludic environment to drill the GTs subject. These tools complement each
other; the first one provides a sandbox to learn the analytical and formal matrices treat-
ment, while the second one aims to consolidate the learning, in this case, by playing. Fi-
nally, we also explain the design of the empirical test conducted with undergraduate stu-
dents to measure their performance in a series of GTs exercises after using the tools.

3.1. Base Conditions for the Definition of Learning Exercises
This work demonstrates that a wide variety of exercises with an educational purpose

can be generated from a small set of cases involving restricted GTs, parameters, and states.
One advantage of these restrictions is that it allows the definition of a general framework
that characterizes a finite set of learning exercises and explains their common properties.
Another advantage is that any solution in this set can be uniformly represented, both in
its structure and complexity, highlighting its educational suitability. Additionally, the
proposed restrictions will facilitate the automatic generation of exercises and a mecha-
nized evaluation of solutions by software tools aimed at easing the GTs learning.

Figure 3. An example of a “before and after” learning exercise.

The solution is a sequence of matrices that also involves the computation of the
composite matrix and the transformed vertices. The exercise provides enough information
to lead the student to a solution. Still, alternative solutions (different sequences) commonly
exist for the same exercise. Some students propose a solution using the explicit given
information. In contrast, others tend to perform extra calculations to derive implicit
information and then use it in the matrices sequence. Although any sequence that achieves
the final state is correct, students are encouraged to find a sequence with few steps and use
the explicit information in the exercise; this is usually associated with a good understanding
of the core concepts and a neat logic to solve the problem.

3. Method

This section proposes a framework for designing learning exercises and classifying
their solutions. It will allow us to define a standard pattern for the composition of trans-
formations, simplify solutions to the minimum of essential steps, and provide feedback
on how close or far an arbitrary solution is from the optimal. We also describe here how
the model was implemented in two different educational tools. The first tool is a computer
program that allows students to experiment freely with composite sequences and generate
exercises of varying degrees of difficulty. The second tool is a card-based video game that
provides a ludic environment to drill the GTs subject. These tools complement each other;
the first one provides a sandbox to learn the analytical and formal matrices treatment, while
the second one aims to consolidate the learning, in this case, by playing. Finally, we also
explain the design of the empirical test conducted with undergraduate students to measure
their performance in a series of GTs exercises after using the tools.

3.1. Base Conditions for the Definition of Learning Exercises

This work demonstrates that a wide variety of exercises with an educational purpose
can be generated from a small set of cases involving restricted GTs, parameters, and states.
One advantage of these restrictions is that it allows the definition of a general framework
that characterizes a finite set of learning exercises and explains their common properties.
Another advantage is that any solution in this set can be uniformly represented, both
in its structure and complexity, highlighting its educational suitability. Additionally, the
proposed restrictions will facilitate the automatic generation of exercises and a mechanized
evaluation of solutions by software tools aimed at easing the GTs learning.

3.1.1. A Framework for Characterizing Learning Exercises and Their Solutions

The proposed exercises include visual and numerical information of an object in
a 3D coordinate system and ask for a solution, expressed as a composite sequence of
transformations that change the object from an initial to a final state. The exercise provides
the minimum necessary information to define both states unambiguously. Figure 4 is a
schematic representation of the proposed model. Relevant information should be provided
as “visual information” (as much as possible) because the visual aspect is essential to
understanding the effect of applying GTs.

Mathematics 2022, 10, 1859 6 of 22

Mathematics 2022, 10, 1859 6 of 22

3.1.1. A Framework for Characterizing Learning Exercises and Their Solutions
The proposed exercises include visual and numerical information of an object in a 3D

coordinate system and ask for a solution, expressed as a composite sequence of transfor-
mations that change the object from an initial to a final state. The exercise provides the
minimum necessary information to define both states unambiguously. Figure 4 is a sche-
matic representation of the proposed model. Relevant information should be provided as
“visual information” (as much as possible) because the visual aspect is essential to under-
standing the effect of applying GTs.

Figure 4. Model of learning exercise.

The following is a list of seven different solutions (among many others) to the exer-
cise shown in Figure 3. The matrix representation is omitted to save space. Transfor-
mations appear abbreviated as T(tx, ty, tz), Raxis(degrees), M(mx, my, mz), and S(sx, sy,
sz), where: (tx, ty, tz) are distances, (mx, my, mz) are reflections, and (sx, sy, sz) are scale
factors, in their respective axes. Additionally, the numbers directly recognizable from the
exercise description (explicit numeric information) are highlighted in red.
1. T(2, 18, 14) · Ry(−90°) · Rz(30°) · M(−1, −1, 1) · S(1.5, 0.35, 1) · T(−2, −4, −10)
2. T(2, 18, 14) · Rx(−30°) · S(1, 0.35, 1.5) · Ry(−90°) · Rz(180°) · T(−2, −4, −10)
3. T(2, 18, 14) · Ry(−90°) · Rz(210°) · S(1.5, 0.35, 1) · T(−2, −4, −10)
4. T(2, 18, 14) · Rx(60°) · S(1, 1.5, 0.35) · Ry(−90°) · Rz(−90°) · T(−2, −4, −10)
5. T(2, 18, 14) · Ry(−90°) · T(1.898, 2.712, −10) · Rz(210°) · S(1.5, 0.35, 1)
6. T(12, 20.712, 15.898) · Ry(−90°) · Rz(210°) · S(1.5, 0.35, 1)
7. Rx(60°) · T(12, 24.124, −9.988) · S(1, 0.75, 0.0875) · Ry(−90°) · Rz(−90°) · S(2, 4, 1)

These sequences raise the question: which solution is better? From a mathematical
point of view, they are all equivalent, as they produce the correct result. Some CG text-
books suggest a sequence with the pattern Translation-Rotation-Scale (TRS transfor-
mation) [30] for the general problem of an “instance transformation”. In a quick survey
held in the classroom, students were asked to choose their preferred solution to the prob-
lem, given the seven solutions shown in the previous list. A 92% of students preferred
solution 1, giving arguments such as “logical”, “clarity”, “similarity to exercise descrip-
tion”, and “easier to understand”, among others. This perception suggests that the best
composite sequence is not necessarily the one with fewer steps or strictly following a TRS
transform. It highlights a gap between a mathematical-only approach and an educational
approach. We propose the following framework to classify, intuitively, a solution as the
“preferred” one:
• Each step in the composite sequence should be a “basic” one.
• The “basic” steps are translations, scales, reflections (mirror), rotation X, rotation Y,

and rotation Z. Students understand better the scales and reflections as separate
transformations, according to the visual effect on the object; despite the fact that they
could be written as just one matrix if they are contiguous in a sequence (from a math-
ematical point of view). Additionally, rotations should be separated by axis because
they become meaningless for students if they appear combined in a single rotation
matrix. On the other hand, translations, scales, and reflections are well understood

Figure 4. Model of learning exercise.

The following is a list of seven different solutions (among many others) to the exercise
shown in Figure 3. The matrix representation is omitted to save space. Transformations
appear abbreviated as T(tx, ty, tz), Raxis(degrees), M(mx, my, mz), and S(sx, sy, sz), where:
(tx, ty, tz) are distances, (mx, my, mz) are reflections, and (sx, sy, sz) are scale factors, in
their respective axes. Additionally, the numbers directly recognizable from the exercise
description (explicit numeric information) are highlighted in red.

1. T(2, 18, 14) · Ry(−90◦) · Rz(30◦) ·M(−1, −1, 1) · S(1.5, 0.35, 1) · T(−2, −4, −10)
2. T(2, 18, 14) · Rx(−30◦) · S(1, 0.35, 1.5) · Ry(−90◦) · Rz(180◦) · T(−2, −4, −10)
3. T(2, 18, 14) · Ry(−90◦) · Rz(210◦) · S(1.5, 0.35, 1) · T(−2, −4, −10)
4. T(2, 18, 14) · Rx(60◦) · S(1, 1.5, 0.35) · Ry(−90◦) · Rz(−90◦) · T(−2, −4, −10)
5. T(2, 18, 14) · Ry(−90◦) · T(1.898, 2.712, −10) · Rz(210◦) · S(1.5, 0.35, 1)
6. T(12, 20.712, 15.898) · Ry(−90◦) · Rz(210◦) · S(1.5, 0.35, 1)
7. Rx(60◦) · T(12, 24.124, −9.988) · S(1, 0.75, 0.0875) · Ry(−90◦) · Rz(−90◦) · S(2, 4, 1)

These sequences raise the question: which solution is better? From a mathematical
point of view, they are all equivalent, as they produce the correct result. Some CG textbooks
suggest a sequence with the pattern Translation-Rotation-Scale (TRS transformation) [30]
for the general problem of an “instance transformation”. In a quick survey held in the
classroom, students were asked to choose their preferred solution to the problem, given the
seven solutions shown in the previous list. A 92% of students preferred solution 1, giving
arguments such as “logical”, “clarity”, “similarity to exercise description”, and “easier to
understand”, among others. This perception suggests that the best composite sequence is
not necessarily the one with fewer steps or strictly following a TRS transform. It highlights
a gap between a mathematical-only approach and an educational approach. We propose
the following framework to classify, intuitively, a solution as the “preferred” one:

• Each step in the composite sequence should be a “basic” one.
• The “basic” steps are translations, scales, reflections (mirror), rotation X, rotation

Y, and rotation Z. Students understand better the scales and reflections as separate
transformations, according to the visual effect on the object; despite the fact that
they could be written as just one matrix if they are contiguous in a sequence (from
a mathematical point of view). Additionally, rotations should be separated by axis
because they become meaningless for students if they appear combined in a single
rotation matrix. On the other hand, translations, scales, and reflections are well
understood as basic steps, no matter if they involve one or more axes at once; for
instance, T(4, 6, 2), S(2, 0.5, 1), or M(−1,−1, 1), are generally perceived well as a
“single” step.

• Transformations in the sequence should appear in the TRS order, but they should be
expressed as “basic” steps. It then becomes a T·R3·R2·R1·M·S order, where R1, R2, and
R3 are a permutation of Rx, Ry, and Rz (although not every exercise requires the three
rotations). We call this sequence the “extended TRS” order. Additionally, if the object
is out of the origin (in its initial conditions), the translation necessary to place it at
the origin should appear as an additional step in the sequence. The extended TRS

Mathematics 2022, 10, 1859 7 of 22

order becomes T1·R3·R2·R1·M·S·T0, where T0 translates the object to the origin, and
T1 translates it to its final location.

• Numerical information provided in the exercise should be explicitly identifiable in the
matrices’ content as much as possible. Students easily identify these numbers with the
exercise’s description and requirements.

• If two or more equivalent sequences fit the “basic” steps principle and the extended
TRS pattern, the sequence with fewer steps is the best candidate for the “preferred”
solution.

3.1.2. Reducing Cases in Transformations’ Parameters

The variety of transformations’ parameters can be limited to a few intentionally simple
cases. One advantage of this approach is that, given the simplicity of the selected cases,
some numerical information could be implicitly embedded in the visual information, if
desired. We propose a small set of possibilities for transformations, restricted to only those
shown in Table 1. The total options available are 21 rotations, 3 reflections, 6 scales, and
6 translations.

Table 1. Geometric transformations selected.

Transformations Axes Options Total Choices

Rotations X, Y, Z Multiples of 45 degrees
(positive/negative)

Rx(45◦), Rx(90◦), Rx(135◦), Rx(180◦)
Ry(45◦), Ry(90◦), Ry(135◦), Ry(180◦)
Rz(45◦), Rz(90◦), Rz(135◦), Rz(180◦)

Reflections (Mirrors) X, Y, Z All
Mx
My
Mz

Scales X, Y, Z Double, Half
Sx(0.5), Sx(2.0)
Sy(0.5), Sy(2.0)
Sz(0.5), Sz(2.0)

Translations X, Y, Z Fixed distance
(positive/negative)

Tx(1.0)
Ty(1.0)
Tz(1.0)

The exercise in Figure 3 can be rewritten to meet these restrictions. The new version
(see Figure 5) does not lose the essence or complexity of the old version. If students are
aware of the implemented restrictions, data written in blue can potentially be omitted
in Figure 5 and still be inferred from the visual information. The solution is expressed
following the extended TRS pattern.

Mathematics 2022, 10, 1859 8 of 22

Figure 5. Revised learning exercise with restrictions in place.

3.1.3. Reducing the Number of Object Views to Specific Symmetries
In the rest of this work, the object to be transformed is always a cube, which has the

advantage of being a fully symmetrical geometric body. An additional aspect of the in-
trinsic complexity of the scenarios utilized in learning exercises is the variety of states
(views) that an object can take when transformed. The degree of symmetry should be ap-
propriate to infer the rotations involved from the initial state intuitively. Figure 6 shows
how some views have an easy-to-understand symmetry while others do not.

Figure 6. Symmetric views.

In the specific case of view 4, unlike the other three, it does not have an intuitive
symmetry because faces appear in different sizes, the rotation angles are difficult to quan-
tify, and the edges do not appear aligned to any of the principal axes. The next step in our
work is to ensure that such asymmetric views are not a part of a learning exercise. In Fig-
ure 6, frontal views included a small area with the colors of adjacent faces; otherwise, the
same view might have multiple interpretations. Unfortunately, the restriction of using
only multiples of 45° in any rotation has two drawbacks. Firstly, not all views considered
symmetrical in Figure 6 can be generated under those conditions (e.g., view 3). Secondly,
some views that we decided to consider “asymmetrical” may result from the composition
of 45° rotations (e.g., view 4). Figure 7a shows the chosen views in this work. Figure 7b
compares cases 7, 8, 9, and 10, showing a slight symmetry loss that arises by avoiding the
35.26° rotations required by some perfectly symmetrical views, such as view 3 in Figure
6.

Figure 5. Revised learning exercise with restrictions in place.

Mathematics 2022, 10, 1859 8 of 22

3.1.3. Reducing the Number of Object Views to Specific Symmetries

In the rest of this work, the object to be transformed is always a cube, which has
the advantage of being a fully symmetrical geometric body. An additional aspect of the
intrinsic complexity of the scenarios utilized in learning exercises is the variety of states
(views) that an object can take when transformed. The degree of symmetry should be
appropriate to infer the rotations involved from the initial state intuitively. Figure 6 shows
how some views have an easy-to-understand symmetry while others do not.

Mathematics 2022, 10, 1859 8 of 22

Figure 5. Revised learning exercise with restrictions in place.

3.1.3. Reducing the Number of Object Views to Specific Symmetries
In the rest of this work, the object to be transformed is always a cube, which has the

advantage of being a fully symmetrical geometric body. An additional aspect of the in-
trinsic complexity of the scenarios utilized in learning exercises is the variety of states
(views) that an object can take when transformed. The degree of symmetry should be ap-
propriate to infer the rotations involved from the initial state intuitively. Figure 6 shows
how some views have an easy-to-understand symmetry while others do not.

Figure 6. Symmetric views.

In the specific case of view 4, unlike the other three, it does not have an intuitive
symmetry because faces appear in different sizes, the rotation angles are difficult to quan-
tify, and the edges do not appear aligned to any of the principal axes. The next step in our
work is to ensure that such asymmetric views are not a part of a learning exercise. In Fig-
ure 6, frontal views included a small area with the colors of adjacent faces; otherwise, the
same view might have multiple interpretations. Unfortunately, the restriction of using
only multiples of 45° in any rotation has two drawbacks. Firstly, not all views considered
symmetrical in Figure 6 can be generated under those conditions (e.g., view 3). Secondly,
some views that we decided to consider “asymmetrical” may result from the composition
of 45° rotations (e.g., view 4). Figure 7a shows the chosen views in this work. Figure 7b
compares cases 7, 8, 9, and 10, showing a slight symmetry loss that arises by avoiding the
35.26° rotations required by some perfectly symmetrical views, such as view 3 in Figure
6.

Figure 6. Symmetric views.

In the specific case of view 4, unlike the other three, it does not have an intuitive
symmetry because faces appear in different sizes, the rotation angles are difficult to quantify,
and the edges do not appear aligned to any of the principal axes. The next step in our
work is to ensure that such asymmetric views are not a part of a learning exercise. In
Figure 6, frontal views included a small area with the colors of adjacent faces; otherwise,
the same view might have multiple interpretations. Unfortunately, the restriction of using
only multiples of 45◦ in any rotation has two drawbacks. Firstly, not all views considered
symmetrical in Figure 6 can be generated under those conditions (e.g., view 3). Secondly,
some views that we decided to consider “asymmetrical” may result from the composition
of 45◦ rotations (e.g., view 4). Figure 7a shows the chosen views in this work. Figure 7b
compares cases 7, 8, 9, and 10, showing a slight symmetry loss that arises by avoiding the
35.26◦ rotations required by some perfectly symmetrical views, such as view 3 in Figure 6.

Mathematics 2022, 10, 1859 9 of 22

Figure 7. Restrictions placed on symmetric views: (a) Chosen views with rotations only in multiples
of 45 degrees; (b) Comparison of loss of symmetry in four views (7, 8, 9, and 10).

3.2. States Available for the Generation of Learning Exercises
With the predefined restrictions for transformations (Section 3.1.2) and symmetry

(Section 3.1.3), we are now able to quantify the number of states (views) available for the
learning exercises. There are 24 possible states for each symmetry case (see all 10 cases in
Figure 7a) by considering the cube and colors shown in Figure 8. These 24 states result
from the different orientations of how faces can appear in a view. For example, four pos-
sible views have a green front face (symmetry case 1). Similar views are possible when
other faces are oriented to the front. Under these considerations, there are 240 different
states (24 states/case × 10 cases).

Figure 8. Distinct views for the same face.

The presence of reflections doubles the number of states per case. It becomes 480
possible states (48 states/case × 10 cases). The 480 possible states are divided into two mu-
tually exclusive sets; Figure 9 summarizes their characteristics. Although the number of
states is finite (480), an infinite number of sequences generate those states. Section 3.3 will
address converting an arbitrary sequence that generates one of these 480 states into the
extended TRS pattern used to characterize the learning exercises. Additional states can be
generated from these 480 base states by allowing scales and translations in a sequence.

Figure 9. Total number of states due to rotations and reflections.

Figure 7. Restrictions placed on symmetric views: (a) Chosen views with rotations only in multiples
of 45 degrees; (b) Comparison of loss of symmetry in four views (7, 8, 9, and 10).

3.2. States Available for the Generation of Learning Exercises

With the predefined restrictions for transformations (Section 3.1.2) and symmetry
(Section 3.1.3), we are now able to quantify the number of states (views) available for the
learning exercises. There are 24 possible states for each symmetry case (see all 10 cases in
Figure 7a) by considering the cube and colors shown in Figure 8. These 24 states result from

Mathematics 2022, 10, 1859 9 of 22

the different orientations of how faces can appear in a view. For example, four possible
views have a green front face (symmetry case 1). Similar views are possible when other
faces are oriented to the front. Under these considerations, there are 240 different states
(24 states/case × 10 cases).

Mathematics 2022, 10, 1859 9 of 22

Figure 7. Restrictions placed on symmetric views: (a) Chosen views with rotations only in multiples
of 45 degrees; (b) Comparison of loss of symmetry in four views (7, 8, 9, and 10).

3.2. States Available for the Generation of Learning Exercises
With the predefined restrictions for transformations (Section 3.1.2) and symmetry

(Section 3.1.3), we are now able to quantify the number of states (views) available for the
learning exercises. There are 24 possible states for each symmetry case (see all 10 cases in
Figure 7a) by considering the cube and colors shown in Figure 8. These 24 states result
from the different orientations of how faces can appear in a view. For example, four pos-
sible views have a green front face (symmetry case 1). Similar views are possible when
other faces are oriented to the front. Under these considerations, there are 240 different
states (24 states/case × 10 cases).

Figure 8. Distinct views for the same face.

The presence of reflections doubles the number of states per case. It becomes 480
possible states (48 states/case × 10 cases). The 480 possible states are divided into two mu-
tually exclusive sets; Figure 9 summarizes their characteristics. Although the number of
states is finite (480), an infinite number of sequences generate those states. Section 3.3 will
address converting an arbitrary sequence that generates one of these 480 states into the
extended TRS pattern used to characterize the learning exercises. Additional states can be
generated from these 480 base states by allowing scales and translations in a sequence.

Figure 9. Total number of states due to rotations and reflections.

Figure 8. Distinct views for the same face.

The presence of reflections doubles the number of states per case. It becomes
480 possible states (48 states/case × 10 cases). The 480 possible states are divided into two
mutually exclusive sets; Figure 9 summarizes their characteristics. Although the number
of states is finite (480), an infinite number of sequences generate those states. Section 3.3
will address converting an arbitrary sequence that generates one of these 480 states into the
extended TRS pattern used to characterize the learning exercises. Additional states can be
generated from these 480 base states by allowing scales and translations in a sequence.

Mathematics 2022, 10, 1859 9 of 22

Figure 7. Restrictions placed on symmetric views: (a) Chosen views with rotations only in multiples
of 45 degrees; (b) Comparison of loss of symmetry in four views (7, 8, 9, and 10).

3.2. States Available for the Generation of Learning Exercises
With the predefined restrictions for transformations (Section 3.1.2) and symmetry

(Section 3.1.3), we are now able to quantify the number of states (views) available for the
learning exercises. There are 24 possible states for each symmetry case (see all 10 cases in
Figure 7a) by considering the cube and colors shown in Figure 8. These 24 states result
from the different orientations of how faces can appear in a view. For example, four pos-
sible views have a green front face (symmetry case 1). Similar views are possible when
other faces are oriented to the front. Under these considerations, there are 240 different
states (24 states/case × 10 cases).

Figure 8. Distinct views for the same face.

The presence of reflections doubles the number of states per case. It becomes 480
possible states (48 states/case × 10 cases). The 480 possible states are divided into two mu-
tually exclusive sets; Figure 9 summarizes their characteristics. Although the number of
states is finite (480), an infinite number of sequences generate those states. Section 3.3 will
address converting an arbitrary sequence that generates one of these 480 states into the
extended TRS pattern used to characterize the learning exercises. Additional states can be
generated from these 480 base states by allowing scales and translations in a sequence.

Figure 9. Total number of states due to rotations and reflections. Figure 9. Total number of states due to rotations and reflections.

Even with all the proposed restrictions in place (object, views, and parameters), the
number of states is broad enough (see Section 3.4.1) to generate learning exercises of varying
degrees of complexity that allow the student to understand the subject of GTs properly.

3.3. Automatic Exercises Generation and Solutions Feedback

The proposed exercises aim at two objectives: (1) facilitate the automatic generation of
exercises by a random selection of parameters while keeping in control of complexity, and
(2) provide automatic feedback about the solution’s quality. In the following, we define the
methods to achieve both objectives.

3.3.1. Automated Generation of Exercises with a Controlled Degree of Complexity

With the extended TRS pattern chosen to represent solutions, different learning exer-
cises can be automatically generated by replacing each element in the pattern with random
values for the predefined cases. According to Table 1 (Section 3.1.2), 36 possible transfor-
mations are being considered, which once distributed in the pattern gives the possibilities
shown in Figure 10, that is, 9,447,840 different states (or exercises).

Mathematics 2022, 10, 1859 10 of 22

Mathematics 2022, 10, 1859 10 of 22

Even with all the proposed restrictions in place (object, views, and parameters), the
number of states is broad enough (see Section 3.4.1) to generate learning exercises of var-
ying degrees of complexity that allow the student to understand the subject of GTs
properly.

3.3. Automatic Exercises Generation and Solutions Feedback
The proposed exercises aim at two objectives: (1) facilitate the automatic generation

of exercises by a random selection of parameters while keeping in control of complexity,
and (2) provide automatic feedback about the solution’s quality. In the following, we de-
fine the methods to achieve both objectives.

3.3.1. Automated Generation of Exercises with a Controlled Degree of Complexity
With the extended TRS pattern chosen to represent solutions, different learning ex-

ercises can be automatically generated by replacing each element in the pattern with ran-
dom values for the predefined cases. According to Table 1 (Section 3.1.2), 36 possible
transformations are being considered, which once distributed in the pattern gives the pos-
sibilities shown in Figure 10, that is, 9,447,840 different states (or exercises).

Figure 10. Total number of possible exercises.

One advantage of the pattern is that it eases the complexity selection by including or
excluding the pattern components. For example, the simplest complexity level may in-
clude only translations. The next level may require rotations in multiples of 90°. Then,
rotations could be extended to multiples of 45°. Upper complexity levels may require ro-
tations and reflections simultaneously. Scales can increase complexity if combined with
rotations and reflections, or they can be an intermediate level if required alone. Even more
complex sequences can involve all the pattern components in a single exercise.

3.3.2. Automatic Feedback on Solutions in Real-Time
When a student is solving an exercise, it is desirable to have a feedback mechanism

about how “best” a solution is according to the exercise description. A student should
know if there is a different, more straightforward way of expressing the solution. This
feedback can be given in real-time while the solution is still under construction, informing
whether current steps look good (or bad) or if unnecessary and redundant steps are de-
tected in the sequence. Two methods are necessary to automate the feedback. First, a
method to detect whether any two solutions are equivalent; this lets a student know
whether a solution is correct or not, comparing it against the exercise’s “preferred” solu-
tion. Second, a method to take an arbitrary sequence and convert it into one equivalent
and compliant with the extended TRS pattern, allowing a systematic sequences analysis.

Figure 10. Total number of possible exercises.

One advantage of the pattern is that it eases the complexity selection by including or
excluding the pattern components. For example, the simplest complexity level may include
only translations. The next level may require rotations in multiples of 90◦. Then, rotations
could be extended to multiples of 45◦. Upper complexity levels may require rotations and
reflections simultaneously. Scales can increase complexity if combined with rotations and
reflections, or they can be an intermediate level if required alone. Even more complex
sequences can involve all the pattern components in a single exercise.

3.3.2. Automatic Feedback on Solutions in Real-Time

When a student is solving an exercise, it is desirable to have a feedback mechanism
about how “best” a solution is according to the exercise description. A student should know
if there is a different, more straightforward way of expressing the solution. This feedback
can be given in real-time while the solution is still under construction, informing whether
current steps look good (or bad) or if unnecessary and redundant steps are detected in the
sequence. Two methods are necessary to automate the feedback. First, a method to detect
whether any two solutions are equivalent; this lets a student know whether a solution is
correct or not, comparing it against the exercise’s “preferred” solution. Second, a method
to take an arbitrary sequence and convert it into one equivalent and compliant with the
extended TRS pattern, allowing a systematic sequences analysis.

3.4. Software Tool 1: Geometric Transformations Visualizer

A software tool, the Geometric Transformations Visualizer (GTV), implemented the
proposed model of exercises and was developed using the C# language. In GTV, the
object transformed is a cube with its faces displayed in different colors to ease the visual
recognition of position and orientation in the 3D space. In addition, faces are slightly
curved to provide visual clues and avoid ambiguity in interpreting some views. There are
two modes of using GTV: (1) The software generates exercises with a chosen complexity
level, and students try to solve them; the software confirms when a solution is reached
or provides the solution if the user fails. (2) GTV also provides students with a free
experimentation environment where no exercises are generated. There is the freedom to add
transformations to the sequence to visualize the cube’s individual and accumulated effects.
Real-time feedback is provided as soon as a step is added. GTV has the 240 views (without
reflections) discussed in Section 3.2 and their corresponding composite matrices, already
precalculated and stored in an SQLite database. Another 915 equivalent combinations
were also included in the database to speed up the analysis. In the case of reflections, their
presence is analytically processed; for this reason, the complementary set of 240 views
(with reflections) is not embedded in the database.

Mathematics 2022, 10, 1859 11 of 22

3.4.1. System Architecture

The system architecture is depicted in Figure 11. There is a central element in the
system, the sequence manager, which maintains two sequences, the one given by the user
and the one optimized by GTV. Every step added into the sequence is instantly updated,
which leads to instant feedback and rendering.

Mathematics 2022, 10, 1859 11 of 22

3.4. Software Tool 1: Geometric Transformations Visualizer
A software tool, the Geometric Transformations Visualizer (GTV), implemented the

proposed model of exercises and was developed using the C# language. In GTV, the object
transformed is a cube with its faces displayed in different colors to ease the visual recog-
nition of position and orientation in the 3D space. In addition, faces are slightly curved to
provide visual clues and avoid ambiguity in interpreting some views. There are two
modes of using GTV: (1) The software generates exercises with a chosen complexity level,
and students try to solve them; the software confirms when a solution is reached or pro-
vides the solution if the user fails. (2) GTV also provides students with a free experimen-
tation environment where no exercises are generated. There is the freedom to add trans-
formations to the sequence to visualize the cube’s individual and accumulated effects.
Real-time feedback is provided as soon as a step is added. GTV has the 240 views (without
reflections) discussed in Section 3.2 and their corresponding composite matrices, already
precalculated and stored in an SQLite database. Another 915 equivalent combinations
were also included in the database to speed up the analysis. In the case of reflections, their
presence is analytically processed; for this reason, the complementary set of 240 views
(with reflections) is not embedded in the database.

3.4.1. System Architecture
The system architecture is depicted in Figure 11. There is a central element in the

system, the sequence manager, which maintains two sequences, the one given by the user
and the one optimized by GTV. Every step added into the sequence is instantly updated,
which leads to instant feedback and rendering.

Figure 11. GTV architecture.

The sequence optimizer is responsible for updating the system sequence after each
change in the user sequence. GTV continuously queries the database to ensure that the
sequence complies with the predefined symmetrical views. The sequence optimizer also
performs an alternative procedure for the non-symmetric views or when the coordinate
system loses orthogonality. The feedback message generator analyzes the user sequence
offering a series of explanations about sequence compliance with the extended TRS pat-
tern; it also alerts when unnecessary or redundant steps are in the sequence or when axes
lose orthogonality. The exercise manager assigns a degree of complexity to an exercise

Figure 11. GTV architecture.

The sequence optimizer is responsible for updating the system sequence after each
change in the user sequence. GTV continuously queries the database to ensure that the
sequence complies with the predefined symmetrical views. The sequence optimizer also
performs an alternative procedure for the non-symmetric views or when the coordinate
system loses orthogonality. The feedback message generator analyzes the user sequence
offering a series of explanations about sequence compliance with the extended TRS pattern;
it also alerts when unnecessary or redundant steps are in the sequence or when axes lose
orthogonality. The exercise manager assigns a degree of complexity to an exercise based on
the type of transformations required to solve it. Exercises are dynamically created (they
are not fixed or precompiled) by assigning random values to the allowed parameters. The
exercise manager also coordinates the rendering of the system-suggested solution if the
user gives up and requests it; otherwise, it alerts the user when a solution is reached.

3.4.2. GTV Interface

GTV interface (Figure 12) is divided into the following main areas: (1) Selection of
transformations added into the sequence. This selection corresponds precisely to the op-
tions described in Section 3. (2) Rendering area of the cumulative effect of transformations
on the object. It includes two renderings, the main view and a customizable auxiliary
view. (3) Rendering area for displaying an animation, step by step, with the effect of each
transformation in the sequence. (4) Generation of exercises. It includes a rendering area
that displays the goal and another area to choose the exercise complexity and launch it.
(5) Area for displaying the sequences of transformations. It displays two sequences of
matrices, the composed by the user and the automatically generated by the GTV. This area
also includes both a region for displaying the feedback messages and a color-coded bar that
visually informs the user about the solution’s “quality” from a learning point of view. An

Mathematics 2022, 10, 1859 12 of 22

extra feature in the interface allows selecting a “local” or “global” mode, which determines
how the steps in the sequence are treated, from left to right or from right to left.

Mathematics 2022, 10, 1859 12 of 22

based on the type of transformations required to solve it. Exercises are dynamically cre-
ated (they are not fixed or precompiled) by assigning random values to the allowed pa-
rameters. The exercise manager also coordinates the rendering of the system-suggested
solution if the user gives up and requests it; otherwise, it alerts the user when a solution
is reached.

3.4.2. GTV Interface
GTV interface (Figure 12) is divided into the following main areas: (1) Selection of

transformations added into the sequence. This selection corresponds precisely to the op-
tions described in Section 3. (2) Rendering area of the cumulative effect of transformations
on the object. It includes two renderings, the main view and a customizable auxiliary
view. (3) Rendering area for displaying an animation, step by step, with the effect of each
transformation in the sequence. (4) Generation of exercises. It includes a rendering area
that displays the goal and another area to choose the exercise complexity and launch it.
(5) Area for displaying the sequences of transformations. It displays two sequences of ma-
trices, the composed by the user and the automatically generated by the GTV. This area
also includes both a region for displaying the feedback messages and a color-coded bar
that visually informs the user about the solution’s “quality” from a learning point of view.
An extra feature in the interface allows selecting a “local” or “global” mode, which deter-
mines how the steps in the sequence are treated, from left to right or from right to left.

Figure 12. GTV interface.

3.5. Software Tool 2 (Video Game): Geometric Transformations Cards
The second tool is a cards videogame called GTCards [31], which was also designed

according to the exercises model described in this work and developed in the Unity engine
[32]. This section describes its main interface, game mechanics, difficulty levels, and game
elements design.

3.5.1. Main Interface
The game interface presents an object to be transformed and a series of cards in ran-

dom order that are used to build a solution. Figure 13 shows the main interface, which is
divided into the following main areas:
• The goal zone: In this area, a cube is visualized after some random transformations

are applied; this is the “goal”. The challenge is to figure out the correct ordering of
the cards to build a sequence of steps to transform the object from its initial state to
the “goal state”.

Figure 12. GTV interface.

3.5. Software Tool 2 (Video Game): Geometric Transformations Cards

The second tool is a cards videogame called GTCards [31], which was also designed
according to the exercises model described in this work and developed in the Unity en-
gine [32]. This section describes its main interface, game mechanics, difficulty levels, and
game elements design.

3.5.1. Main Interface

The game interface presents an object to be transformed and a series of cards in random
order that are used to build a solution. Figure 13 shows the main interface, which is divided
into the following main areas:

• The goal zone: In this area, a cube is visualized after some random transformations
are applied; this is the “goal”. The challenge is to figure out the correct ordering of the
cards to build a sequence of steps to transform the object from its initial state to the
“goal state”.

• The player zone: In this zone, when a new level starts, the cube appears in its initial
state (without transformations). When the player drags cards from the deck into the
sequence zone, the cube changes its state according to the transformations involved
and the ordering of the cards.

• The deck: This zone is automatically populated with cards at the beginning of a round
(an exercise). The game’s engine automatically chooses the type of cards and their
number according to the complexity level at the time. Once the cards appear in the
deck, the player can pick them up from this area and drop them into the sequence zone.

• The player dynamically decides the cards and their ordering during the round. The
sequence is built step by step by moving cards from the deck into the sequence zone.
The player can always change a partially built sequence by removing cards from the
sequence zone and returning them to the deck.

Mathematics 2022, 10, 1859 13 of 22

Mathematics 2022, 10, 1859 13 of 22

• The player zone: In this zone, when a new level starts, the cube appears in its initial
state (without transformations). When the player drags cards from the deck into the
sequence zone, the cube changes its state according to the transformations involved
and the ordering of the cards.

• The deck: This zone is automatically populated with cards at the beginning of a
round (an exercise). The game’s engine automatically chooses the type of cards and
their number according to the complexity level at the time. Once the cards appear in
the deck, the player can pick them up from this area and drop them into the sequence
zone.

• The player dynamically decides the cards and their ordering during the round. The
sequence is built step by step by moving cards from the deck into the sequence zone.
The player can always change a partially built sequence by removing cards from the
sequence zone and returning them to the deck.

Figure 13. GTCards: game’s main interface.

3.5.2. Visual Clues
The graphic design of the cards provides plenty of visual information regarding the

GT associated with a specific card. Some visual clues are embedded in the design to pre-
sent a cleaner interface with little numerical information displayed. However, hidden in-
formation can be consulted through a menu if a goal is not entirely understood. Some
examples of the available visual clues are the following: (1) A slight perspective projection
highlights scales, mainly in the Z direction; it also helps to better identify translations in
this axis. (2) The cube design, which includes a geometric pattern, highlights scales be-
cause this pattern looks distorted in their presence. (3) Giving each cube’s face a different
color helps recognize the rotations. (4) All transformations (mainly rotations and reflec-
tions) are better recognized with the included visualization of the coordinate system, with
different colors assigned to each axis.

3.5.3. Game Mechanics
When a round begins, the player must pick up as many cards from the deck zone as

card slots appear in the sequence zone. It means that the player knows in advance how
many cards compose the solution but does not know either which ones or their ordering.
The player fills slots by dragging and dropping cards as the solution is being built step by
step. When all the slots are occupied, the sequence is complete, and its animation is started
by playing step by step the cumulative effect on the cube of the transformations depicted
in the cards, from left to right. At the same time, the game’s engine evaluates the solution,
and the round ends with a message telling the player whether the solution was correct or
not. When the solution is correct, the score is updated, and a new goal (exercise) of a sim-
ilar or higher degree of difficulty is proposed; otherwise, the previous exercise is reloaded
in its initial conditions with exactly the same options (cards) in the deck zone.

To favor active thinking from the player when solving the challenges, the score is
lowered with each successive attempt to solve the same exercise. In this way, the highest

Figure 13. GTCards: game’s main interface.

3.5.2. Visual Clues

The graphic design of the cards provides plenty of visual information regarding the GT
associated with a specific card. Some visual clues are embedded in the design to present a
cleaner interface with little numerical information displayed. However, hidden information
can be consulted through a menu if a goal is not entirely understood. Some examples of
the available visual clues are the following: (1) A slight perspective projection highlights
scales, mainly in the Z direction; it also helps to better identify translations in this axis.
(2) The cube design, which includes a geometric pattern, highlights scales because this
pattern looks distorted in their presence. (3) Giving each cube’s face a different color helps
recognize the rotations. (4) All transformations (mainly rotations and reflections) are better
recognized with the included visualization of the coordinate system, with different colors
assigned to each axis.

3.5.3. Game Mechanics

When a round begins, the player must pick up as many cards from the deck zone as
card slots appear in the sequence zone. It means that the player knows in advance how
many cards compose the solution but does not know either which ones or their ordering.
The player fills slots by dragging and dropping cards as the solution is being built step
by step. When all the slots are occupied, the sequence is complete, and its animation is
started by playing step by step the cumulative effect on the cube of the transformations
depicted in the cards, from left to right. At the same time, the game’s engine evaluates the
solution, and the round ends with a message telling the player whether the solution was
correct or not. When the solution is correct, the score is updated, and a new goal (exercise)
of a similar or higher degree of difficulty is proposed; otherwise, the previous exercise is
reloaded in its initial conditions with exactly the same options (cards) in the deck zone.

To favor active thinking from the player when solving the challenges, the score is
lowered with each successive attempt to solve the same exercise. In this way, the highest
score corresponds to the first attempt. This strategy motivates the player to actively think
about the solution and intends to avoid the “minimal effort” of randomly choosing cards
just to fill the sequence slots and seeing what happens (correct or not), which would have a
minimal learning outcome.

In addition to the aforementioned policies, the elapsed time when solving an exercise
is also taken into account for both scoring and placing a time limit to complete the solution.
This pressure element is configured with caution (neither a significant reduction in score nor
a much limited time) to avoid the player’s random solutions just to escape penalizations.

The game’s engine provides diverse levels of difficulty that can be gradually unlocked,
from easier to harder. Although the levels of difficulty are predefined, the generation
of exercises is performed by randomly assigning transformations into the extended TRS
pattern. This feature makes much improbable the repetition of exercises during long
periods of using the game.

Mathematics 2022, 10, 1859 14 of 22

3.5.4. Difficulty Levels

The proposed mechanics allows a flexible adjustment in the exercise’s difficulty by
configuring some elements, such as

1. The solution has a predefined number of slots, and the deck zone has a predefined
number of cards. The arithmetic difference of these numbers is associated with the
degree of difficulty. For example, there are only 6 permutations if the solution zone
has three slots and the deck has three cards. Instead, there are 720 permutations if
the sequence has three slots and the deck has ten cards. Each permutation represents
a candidate solution (either correct or incorrect); that is, having a bigger number of
options is associated with a greater overall exercise complexity.

2. The complexity of a solution is directly related to its involved transformations. Lower
complexities, for example, result after applying few (maybe only one) and easily
perceived transformations, such as translations or very simple rotations. Instead,
higher complexities arise by mixing scales, reflections, and rotations, in a specific
order. Even with the same type of transformation, different degrees of difficulty can be
defined. For example, rotations of 90 degrees are more easily perceived than rotations
of 45 degrees.

As discussed earlier, limiting the available time to finish a problem impacts its difficulty
because decisions need to be made faster. However, in this proposal, this factor is considered
optional due to its opposition, to some extent, to the main goal of the serious game
(learning). It is preferable that students carefully analyze and provide a reasoned solution
instead of acting on impulse just to avoid the time expiration.

3.5.5. Cards Design

As part of the visual clues, that is, favoring the visual information, the cards’ design
(see Figure 14) has intuitive icons that suggest its associated transformations, similar to
those found in design software and other applications. Colors also have specific meanings,
for example, red is associated with transformations involving axis X, green with axis Y, and
blue with axis Z. Purple is a special case indicating that the card involves more than one
axis at once, that is, simultaneous translations, scales, or reflections. In addition to figures
and colors, letters and numbers complement the information. Letters explicitly denote the
axes and numbers the degrees, factors, distances, or presence of reflections, depending on
the card type.

Mathematics 2022, 10, 1859 15 of 22

Figure 14. Examples of card design. (a) Rotation of minus 90 degrees on Y-axis; (b) Reflection on X-
axis; (c) Scale factor of 0.5 on Z-axis; (d) Translation of −1 on X-axis; (e) Translation of one unit on X-
axis and one unit on Y-axis.

3.6. The Empirical Test
In this section, we detail the empirical test held with undergraduate students that

used the software tools developed in this study (GTVisualizer and GTCards) to support
the self-study of GTs. We describe the participants, the research strategy, and the recol-
lection of data.

3.6.1. The Participants
Participants in our study were students from the UACJ enrolled in the Computer

Systems Engineering program during the Spring 2022 term. They were in their third year
at the university. The CG group was integrated with 15 students enrolled in the Computer
Graphics course. The non-CG group was integrated with 19 students enrolled in other
courses. The age of students was from 19 to 31 for the CG group and 18 to 26 for the non-
CG group. The students’ gender is, in general, heavily biased toward males in the Com-
puter Systems program at the UACJ, so it is consistent with the ratios of 6/19 and 2/15
(females/males) in our experimental (non-CG) and control (CG) groups, respectively. For
our experimental group, we wanted to test the tools with students that had no previous
knowledge or training in GTs, simulating a real situation where students were studying
at home in asynchronous mode. For this reason, we invited students who had never taken
the undergraduate CG course offered by the university.

3.6.2. Research Design
We designed our research to be an empirical study (quasi-experiment) to test three

different cases, as described as follows:
• Case 1: Measure whether the non-CG and CG groups had a similar performance in a

test evaluating GTs knowledge (the GTs Test in this study). The test was the same for
both groups. We selected an independent t-test to compare whether there was statis-
tical evidence that the mean score obtained in the GTs Test by both groups was sig-
nificantly different. Regarding the estimation of the effect size, we calculated Cohen’s
d for this case.

• Case 2: Measure whether the performance solving the exercises generated by the soft-
ware tools and the performance on the GTs Test were correlated. We selected a biva-
riate analysis to test the strength of association between the scores obtained by each
student in these tasks. This analysis was only performed on the non-CG group (ex-
perimental group).

• Case 3: Measure whether the study of GTs had an impact on the visual-spatial abili-
ties of students. We selected a paired t-test (pre-test/post-test) to compare the perfor-
mance of students in the Purdue Spatial Visualization Test (PSVT). The same analysis
was independently performed on both the CG and the non-CG groups. The effect
size, in this case, was estimated through Cohen’s d for each group.

3.6.3. Recollection of Data
The recollection of data was divided into three stages: (1) recording the students’

scores obtained in the exercises generated by the software tools, (2) the scores obtained in
the GTs Test, and (3) the scores obtained in both the pre-test and post-test phases of the

Figure 14. Examples of card design. (a) Rotation of minus 90 degrees on Y-axis; (b) Reflection on
X-axis; (c) Scale factor of 0.5 on Z-axis; (d) Translation of −1 on X-axis; (e) Translation of one unit on
X-axis and one unit on Y-axis.

3.6. The Empirical Test

In this section, we detail the empirical test held with undergraduate students that
used the software tools developed in this study (GTVisualizer and GTCards) to support the
self-study of GTs. We describe the participants, the research strategy, and the recollection
of data.

3.6.1. The Participants

Participants in our study were students from the UACJ enrolled in the Computer
Systems Engineering program during the Spring 2022 term. They were in their third year
at the university. The CG group was integrated with 15 students enrolled in the Computer

Mathematics 2022, 10, 1859 15 of 22

Graphics course. The non-CG group was integrated with 19 students enrolled in other
courses. The age of students was from 19 to 31 for the CG group and 18 to 26 for the
non-CG group. The students’ gender is, in general, heavily biased toward males in the
Computer Systems program at the UACJ, so it is consistent with the ratios of 6/19 and
2/15 (females/males) in our experimental (non-CG) and control (CG) groups, respectively.
For our experimental group, we wanted to test the tools with students that had no previous
knowledge or training in GTs, simulating a real situation where students were studying at
home in asynchronous mode. For this reason, we invited students who had never taken
the undergraduate CG course offered by the university.

3.6.2. Research Design

We designed our research to be an empirical study (quasi-experiment) to test three
different cases, as described as follows:

• Case 1: Measure whether the non-CG and CG groups had a similar performance
in a test evaluating GTs knowledge (the GTs Test in this study). The test was the
same for both groups. We selected an independent t-test to compare whether there
was statistical evidence that the mean score obtained in the GTs Test by both groups
was significantly different. Regarding the estimation of the effect size, we calculated
Cohen’s d for this case.

• Case 2: Measure whether the performance solving the exercises generated by the
software tools and the performance on the GTs Test were correlated. We selected a
bivariate analysis to test the strength of association between the scores obtained by
each student in these tasks. This analysis was only performed on the non-CG group
(experimental group).

• Case 3: Measure whether the study of GTs had an impact on the visual-spatial abilities
of students. We selected a paired t-test (pre-test/post-test) to compare the performance
of students in the Purdue Spatial Visualization Test (PSVT). The same analysis was
independently performed on both the CG and the non-CG groups. The effect size, in
this case, was estimated through Cohen’s d for each group.

3.6.3. Recollection of Data

The recollection of data was divided into three stages: (1) recording the students’
scores obtained in the exercises generated by the software tools, (2) the scores obtained in
the GTs Test, and (3) the scores obtained in both the pre-test and post-test phases of the
PSVT. The first stage was held only for the non-CG group, while the other two stages were
for both the CG and non-CG groups. All the recollected data were captured from paper
into a worksheet and prepared to be analyzed in the statistical software (PSPP). The effect
size was calculated from standard formulas available in the literature [33]. We describe the
recollection of data here:

1. Scores obtained in exercises generated by the software tool: We held four sessions of
two hours each in the Computer Lab for the non-CG group to use the software tools. In
the first session, they received twenty minutes of a general introduction to the subject
of GTs, just to provide background but without any explanation of the methodology
and formal treatment of transformations composition. After the introduction, they
spent another ten minutes reviewing and understanding the GTVisualizer interface
with the help of the instructor. Students were aware that during the rest of the session,
they were not allowed to ask questions or clarify doubts about GTs, neither with fellow
students nor with the instructor; their only “teacher” would be the software. For the
rest of the session, they explored by themselves the software features, understood
the matrices format, created their own sequences compositions, and solved exercises
generated by the software. In the other three sessions, students used the second tool,
the GTCards game, to try to solve the auto-generated challenges. The conditions of
these last sessions were similar to those in the first one, with no communication with
other students or the instructor to simulate a real scenario where they were alone at

Mathematics 2022, 10, 1859 16 of 22

home using the software and learning GTs. At the end of each session, students were
provided with a series of exercises that were previously generated by the software
tools. All students solved the same exercises in a synchronous manner. Students were
provided with answer sheets to record their responses.

2. Scores obtained in the GTs Test: We wanted to compare the performance of both
groups on the subject of GTs by answering a written test. We prepared 20 problems,
including eight on general GTs knowledge and 12 about solving a series of “before and
after” exercises, similar in structure and complexity to the exercises typically solved
in the classroom in the CG course. Due to time constraints, the answers to the “before
and after” exercises were of simple selection (given five possible answers) instead
of performing calculations to get the transformed vertices, as usually is required in
the regular course. We wanted to compare the “normal” learning strategies held
in the classroom versus the proposed framework (materialized in the two software
tools). Similar performance of students in both groups would suggest that tools are
suitable to support the self-study of GTs and would be appropriate to be incorporated
as supporting tools in a distance-learning syllabus of CG.

3. Scores obtained in the PSVT: We applied the PSVT, developed by Guay [34], as a
complementary test. PSTV is a multiple-choice test suitable for individuals 13 or older
and has been used in engineering and sciences disciplines for more than 40 years to
empirically measure the cognitive ability related to visual-spatial intelligence. The
PSVT has been recognized [35] as a test with empirical reliability and validity evidence.
We wanted to learn whether a similar impact on these abilities would be triggered
by the “normal” coursework and study materials available for the CG students
compared with the new software tools used by the non-CG students. We prepared
a multimedia presentation with sixty problems; thirty problems on “rotations” and
thirty problems on “views”, as supplied in the PSVT. Each slide in the self-paced
animation corresponded to a single problem, and students had a fixed time (40 s) to
synchronously solve each problem. The assigned time per problem was set according
to the PSVT recommendation of twenty minutes per section.

4. Results

In this section, we detail the empirical test results held with undergraduate students
that used the two software tools developed to support the self-learning of GTs. Regarding
the PSVT, a paired t-test was performed on recollected data for both the CG and the non-CG
groups. The first group (CG) included PSVT historical records (2017 and 2018) from a
previous study [36], in addition to the present 2022 data, for a total of 113 records. The
null hypothesis was that the mean score in the PSVT remained the same in the pre-test
(before studying GTs) and the post-test (after studying GTs). Figure 15 shows that the mean
score increased from 38.41 to 43.81 with t113 = 8.01 and p < 0.001, so we rejected the null
hypothesis. Cohen’s d (effect size) was calculated as 0.491 from the means and standard
deviations in Figure 15.

Mathematics 2022, 10, 1859 17 of 22

the PSVT, a paired t-test was performed on recollected data for both the CG and the non-
CG groups. The first group (CG) included PSVT historical records (2017 and 2018) from a
previous study [36], in addition to the present 2022 data, for a total of 113 records. The
null hypothesis was that the mean score in the PSVT remained the same in the pre-test
(before studying GTs) and the post-test (after studying GTs). Figure 15 shows that the
mean score increased from 38.41 to 43.81 with t113 = 8.01 and p < 0.001, so we rejected the
null hypothesis. Cohen’s d (effect size) was calculated as 0.491 from the means and stand-
ard deviations in Figure 15.

Figure 15. Paired t-test for the Computer Graphics group.

A similar test was performed on the non-CG group before and after intensive ses-
sions using the software tools. Figure 16 shows the results of the test. In this case, the mean
score increased from 34.79 to 40.05 with t19 = 3.73 and p < 0.003, so we also rejected the null
hypothesis. Cohen’s d (effect size) was calculated as 0.502 from the means and standard
deviations in Figure 16.

Figure 16. Paired t-test for the non-Computer Graphics group.

Regarding students’ performance on the GTs Test, we applied it to the CG group and
the non-CG group; we performed an independent t-test on data to compare the mean
score in both groups to see if there was a significant difference. The null hypothesis was
that the mean score in the GTs Test was not significantly different when receiving the
“normal” classroom instruction or when only using the software tools. Figure 17 shows
that we can assume equality of variances as it was assessed by Levene’s Test (p = 0.495),
which in turn leads to an interpretation of a no significant difference (p = 0.103) between
the GTs Test’s mean scores in both groups; this implies accepting the null hypothesis.
Cohen’s d (effect size) for this independent t-test was calculated as 0.58 from value t = 1.68
and sample sizes of 19 and 15 in Figure 17.

Figure 15. Paired t-test for the Computer Graphics group.

Mathematics 2022, 10, 1859 17 of 22

A similar test was performed on the non-CG group before and after intensive sessions
using the software tools. Figure 16 shows the results of the test. In this case, the mean
score increased from 34.79 to 40.05 with t19 = 3.73 and p < 0.003, so we also rejected the null
hypothesis. Cohen’s d (effect size) was calculated as 0.502 from the means and standard
deviations in Figure 16.

Mathematics 2022, 10, 1859 17 of 22

the PSVT, a paired t-test was performed on recollected data for both the CG and the non-
CG groups. The first group (CG) included PSVT historical records (2017 and 2018) from a
previous study [36], in addition to the present 2022 data, for a total of 113 records. The
null hypothesis was that the mean score in the PSVT remained the same in the pre-test
(before studying GTs) and the post-test (after studying GTs). Figure 15 shows that the
mean score increased from 38.41 to 43.81 with t113 = 8.01 and p < 0.001, so we rejected the
null hypothesis. Cohen’s d (effect size) was calculated as 0.491 from the means and stand-
ard deviations in Figure 15.

Figure 15. Paired t-test for the Computer Graphics group.

A similar test was performed on the non-CG group before and after intensive ses-
sions using the software tools. Figure 16 shows the results of the test. In this case, the mean
score increased from 34.79 to 40.05 with t19 = 3.73 and p < 0.003, so we also rejected the null
hypothesis. Cohen’s d (effect size) was calculated as 0.502 from the means and standard
deviations in Figure 16.

Figure 16. Paired t-test for the non-Computer Graphics group.

Regarding students’ performance on the GTs Test, we applied it to the CG group and
the non-CG group; we performed an independent t-test on data to compare the mean
score in both groups to see if there was a significant difference. The null hypothesis was
that the mean score in the GTs Test was not significantly different when receiving the
“normal” classroom instruction or when only using the software tools. Figure 17 shows
that we can assume equality of variances as it was assessed by Levene’s Test (p = 0.495),
which in turn leads to an interpretation of a no significant difference (p = 0.103) between
the GTs Test’s mean scores in both groups; this implies accepting the null hypothesis.
Cohen’s d (effect size) for this independent t-test was calculated as 0.58 from value t = 1.68
and sample sizes of 19 and 15 in Figure 17.

Figure 16. Paired t-test for the non-Computer Graphics group.

Regarding students’ performance on the GTs Test, we applied it to the CG group and
the non-CG group; we performed an independent t-test on data to compare the mean score
in both groups to see if there was a significant difference. The null hypothesis was that
the mean score in the GTs Test was not significantly different when receiving the “normal”
classroom instruction or when only using the software tools. Figure 17 shows that we can
assume equality of variances as it was assessed by Levene’s Test (p = 0.495), which in turn
leads to an interpretation of a no significant difference (p = 0.103) between the GTs Test’s
mean scores in both groups; this implies accepting the null hypothesis. Cohen’s d (effect
size) for this independent t-test was calculated as 0.58 from value t = 1.68 and sample sizes
of 19 and 15 in Figure 17.

Mathematics 2022, 10, 1859 18 of 22

Figure 17. Independent t-test for the non-Computer Graphics group.

We also performed a bivariate correlation analysis on the scores obtained by the non-
CG students in the GTs Test and the scores this group obtained in the software-generated
exercises while learning and practicing GTs with the software tools. Figure 18 shows the
results of this analysis, with a moderate positive correlation (0.468) between these scores
with a significance of p = 0.05.

Figure 18. Bivariate correlations analysis on scores (GTs Test vs. scores using tools).

5. Discussion
After developing two educational tools based on the proposed framework and test-

ing them with undergraduate non-CG students, we provide our interpretation of the re-
sults in this section. In the particular case of interpreting the effect sizes, we are using
Hattie’s interpretation [37], which considers values of Cohens’ d = 0.4 as “the average that
summarizes the typical effect of all possible influences in education”; this means that val-
ues of d > 0.4 include those educational strategies that have a higher effect and make a
difference above the average results.

The PSVT results suggest that visual-spatial abilities can be trained through the study
and practice of GTs, either in the classroom (in person) or in self-study mode. Other stud-
ies had provided similar results in traditional classroom environments [36,38–45], so we
added additional evidence that it may also occur in the self-study case. The rejection of
the null hypothesis and the effect sizes of d = 0.491 and d = 0.502 in the CG and non-CG
groups, respectively, support our conclusions.

Regarding the students’ performance on the GTs Test, our findings suggest that alt-
hough a significant difference was not found between the scores obtained by the CG and
the non-CG groups, this is, in fact, a positive indication of the learning potential of the
software tools. Our main research question was about whether the use of the tools would
favor a learning outcome on GTs comparable with the one obtained with the regular in-
struction in the classroom. The statistical result of “no significant difference” means that
both educational strategies are, in effect, comparable. The real justification for the tools is
to support learning GTs in distance education, not necessarily to outperform the learning
outcome of classroom (in-person) instruction.

We found it interesting that students with no previous knowledge of CG and applied
GTs received similar results in the test as students taking the regular course. Certainly, we
expected that the tools would be able to potentiate the students’ GTs learning, but we

Figure 17. Independent t-test for the non-Computer Graphics group.

We also performed a bivariate correlation analysis on the scores obtained by the non-
CG students in the GTs Test and the scores this group obtained in the software-generated
exercises while learning and practicing GTs with the software tools. Figure 18 shows the
results of this analysis, with a moderate positive correlation (0.468) between these scores
with a significance of p = 0.05.

Mathematics 2022, 10, 1859 18 of 22

Mathematics 2022, 10, 1859 18 of 22

Figure 17. Independent t-test for the non-Computer Graphics group.

We also performed a bivariate correlation analysis on the scores obtained by the non-
CG students in the GTs Test and the scores this group obtained in the software-generated
exercises while learning and practicing GTs with the software tools. Figure 18 shows the
results of this analysis, with a moderate positive correlation (0.468) between these scores
with a significance of p = 0.05.

Figure 18. Bivariate correlations analysis on scores (GTs Test vs. scores using tools).

5. Discussion
After developing two educational tools based on the proposed framework and test-

ing them with undergraduate non-CG students, we provide our interpretation of the re-
sults in this section. In the particular case of interpreting the effect sizes, we are using
Hattie’s interpretation [37], which considers values of Cohens’ d = 0.4 as “the average that
summarizes the typical effect of all possible influences in education”; this means that val-
ues of d > 0.4 include those educational strategies that have a higher effect and make a
difference above the average results.

The PSVT results suggest that visual-spatial abilities can be trained through the study
and practice of GTs, either in the classroom (in person) or in self-study mode. Other stud-
ies had provided similar results in traditional classroom environments [36,38–45], so we
added additional evidence that it may also occur in the self-study case. The rejection of
the null hypothesis and the effect sizes of d = 0.491 and d = 0.502 in the CG and non-CG
groups, respectively, support our conclusions.

Regarding the students’ performance on the GTs Test, our findings suggest that alt-
hough a significant difference was not found between the scores obtained by the CG and
the non-CG groups, this is, in fact, a positive indication of the learning potential of the
software tools. Our main research question was about whether the use of the tools would
favor a learning outcome on GTs comparable with the one obtained with the regular in-
struction in the classroom. The statistical result of “no significant difference” means that
both educational strategies are, in effect, comparable. The real justification for the tools is
to support learning GTs in distance education, not necessarily to outperform the learning
outcome of classroom (in-person) instruction.

We found it interesting that students with no previous knowledge of CG and applied
GTs received similar results in the test as students taking the regular course. Certainly, we
expected that the tools would be able to potentiate the students’ GTs learning, but we

Figure 18. Bivariate correlations analysis on scores (GTs Test vs. scores using tools).

5. Discussion

After developing two educational tools based on the proposed framework and testing
them with undergraduate non-CG students, we provide our interpretation of the results
in this section. In the particular case of interpreting the effect sizes, we are using Hattie’s
interpretation [37], which considers values of Cohens’ d = 0.4 as “the average that summa-
rizes the typical effect of all possible influences in education”; this means that values of
d > 0.4 include those educational strategies that have a higher effect and make a difference
above the average results.

The PSVT results suggest that visual-spatial abilities can be trained through the study
and practice of GTs, either in the classroom (in person) or in self-study mode. Other studies
had provided similar results in traditional classroom environments [36,38–45], so we added
additional evidence that it may also occur in the self-study case. The rejection of the null
hypothesis and the effect sizes of d = 0.491 and d = 0.502 in the CG and non-CG groups,
respectively, support our conclusions.

Regarding the students’ performance on the GTs Test, our findings suggest that
although a significant difference was not found between the scores obtained by the CG
and the non-CG groups, this is, in fact, a positive indication of the learning potential of
the software tools. Our main research question was about whether the use of the tools
would favor a learning outcome on GTs comparable with the one obtained with the regular
instruction in the classroom. The statistical result of “no significant difference” means that
both educational strategies are, in effect, comparable. The real justification for the tools is
to support learning GTs in distance education, not necessarily to outperform the learning
outcome of classroom (in-person) instruction.

We found it interesting that students with no previous knowledge of CG and applied
GTs received similar results in the test as students taking the regular course. Certainly,
we expected that the tools would be able to potentiate the students’ GTs learning, but
we believed, before the experiment, that numerous and longer sessions of using the tools
would be necessary to achieve concrete results. In our experiment conditions, students
did not have unlimited time to use the software tools; the sessions were controlled in
duration and restricted from interaction and feedback with other students or the instructor
to simulate a real isolated and self-study condition. Even more, part of the sessions was
“wasted” solving pre-selected software exercises to later have a point of comparison with
the GTs Test (the correlations analysis); this time was subtracted from the time dedicated to
the exploration, experimentation, and learning, with the tools.

Regarding the moderate correlation found between the students’ scores obtained in the
training exercises and in the GTs Test (the non-CG group), we believe that a more realistic
measurement can be obtained if the evaluations (scheduled at the end of the training
sessions) are held starting from the second session, leaving out of evaluation the first
session. It is probably better to wait until students are more familiar with the tools’ interface,
grasp the basic GTs concepts, and better understand the exercises’ nature. Otherwise, a bad
early performance in the exercises may unfairly affect the overall correlation.

Our results should be interpreted accordingly with some limitations. (1) Regarding
the experimental design, it only included students from the UACJ and test materials of
the introductory CG course offered at this university. Therefore, the results should be
interpreted in this local environment. Although the syllabus of this course is based on

Mathematics 2022, 10, 1859 19 of 22

similar courses offered in other universities and replicates the standard treatment of GTs
in CG textbooks, further studies should be addressed to extrapolate results and arrive at
more general conclusions. (2) We waited until students were back in-person to perform the
experimental test; we preferred to simulate the self-study mode in a controlled environment
instead of releasing the tools to students without knowing how exactly they would use
them. Therefore, it was only a simulation of the real scenario where the tools will be used.
(3) Mainly due to the former limitation, we could not have a significant sample of students.
We were restricted by the number of CG students enrolled in Spring 2022; moreover, 15
of them consented to participate in the experiment. On the other hand, more non-CG
students were available, but we did not want a big difference in the sample size between
both groups.

Extending the testing to more participants is necessary to increase the measurements’
reliability. In addition, it is necessary to test the same tools with CG students; that is,
answer the question: will the “normal” learning strategies plus the usage of the tools
increase the students’ performance in the CG course? Former CG students informally
used the software during the COVID-19 lockdown, but current CG students only used the
“classroom” strategies in this study. Inviting non-CG students to our experiment allowed
us to better simulate not receiving the normal instruction in the classroom and, therefore,
the isolation and distance-learning factors.

6. Conclusions and Future Work

We developed a standardized framework to support a specific style of exercise we
called “before and after”, commonly used to teach GTs at different educational levels. We
directed the framework applicability to higher education, particularly CG, where GTs
are extensively treated with a matrix representation as an efficient method to formalize
composite sequences of transformations. We demonstrated that this framework could
be embedded in diverse software tools such as the GTVisualizer and GTCards, among
other possibilities. A central focus of this study was to enable tools suitable for distance
learning, either synchronous or asynchronous, as the forced situation lived with the pro-
longed COVID-19 pandemic and its repercussion on education. The developed tools were
designed to complement each other; GTVisualizer is focused on the early contact with
GTs, emphasizing the matrix format and the local and global coordinate systems to build
composite sequences. Instead, GTCards is a video game to continue drilling GTs concepts in
a ludic environment. Our empirical test on undergraduate students suggests that both tools
are adequate to distance learning environments due to similar results between students
learning GTs in the classroom (without the tools) and students in a simulated self-study
mode (with the tools). The experiment outcome confirmed our intuitive perception that
during the COVID-19 lockdown, the software tools were helpful for students enrolled in
CG at the time. In fact, a change in students’ performance and engagement in the course
was evident after using the tools in late 2021, compared with the frustration of earlier
students. Tools were made available to students for the first time in Spring 2021 once the
early prototypes were ready.

These results open the opportunity to design, implement, and offer an online version
of the CG classroom course; the availability and use of learning tools such as those proposed
in this work may attenuate some disadvantages of the self-study mode when learning
GTs. Students in the distance-learning modality may be closer to the advantages held by
in-person students who can use many resources, physical models, presential explanations,
and guided exercises that have been available for many years in the classroom to help learn
GTs.

Regarding the future work, we provide here a list of issues we consider relevant to
continuing this study:

1. As mentioned in the results section, a long-term test with larger sample sizes and
encompassing more academic terms (semesters) should be performed to validate the
current results.

Mathematics 2022, 10, 1859 20 of 22

2. Diverse computational techniques can be experimented with to “tune” the software
tools. For example: (1) Adjust the difficulty degree associated with exercises to
increase the “naturality” of how students perceive the increasing complexity as they
advance their learning. (2) The real-time feedback when student builds composite
sequences can be improved. (3) The video game can be enhanced with strategies to
increase engagement and fun without sacrificing its main “serious” objective.

3. Convert current tools from prototypes to more “consumable” learning tools with
embedded analytics and higher availability. This change would provide helpful
feedback on the learning outcomes in a broader spectrum with students with diverse
needs and backgrounds.

Author Contributions: Conceptualization, J.S.G.-C., J.A.-M. and J.S.-N.; methodology, J.S.G.-C.,
J.A.-M. and J.S.-N.; software, J.S.G.-C.; validation, J.A.-M.; formal analysis, J.S.G.-C.; investigation,
J.S.G.-C.; resources, J.A.-M.; data curation, J.S.G.-C.; visualization, J.S.G.-C.; supervision, J.A.-M. and
J.S.-N.; project administration, J.A.-M.; writing—original draft preparation, J.S.G.-C.; writing—review
and editing, J.S.G.-C., J.A.-M. and J.S.-N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All subjects gave their informed consent for inclusion before
they participated in the study. The study was conducted according to the guidelines of the UOC’s
Code of Good Practice in Research and Innovation and the European Code of Conduct for Research
Integrity, and approved by the Institutional Review Board (or Ethics Committee) of Universitat
Oberta de Catalunya (UOC) (protocol code “240619_jarnedo_Developing” and date of approval 23
July 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CCSS. Common Core State Standards. Available online: http://www.corestandards.org/ (accessed on 10 April 2022).
2. Ahmad, W.F.B.W.; Zaman, H.B. Integration of Multimedia in Visualising Geometric Transformations for Mathematics Education:

A Preliminary Review. Second Conf. Inf. Technol. Asia 2003, 3, 71–78.
3. Edwards, M.T. Visualizing Transformations: Matrices, Handheld Graphing Calculators, and Computer Algebra Systems. Math.

Teach. MT 2003, 96, 48. [CrossRef]
4. Kalinec-Craig, C.; Prasad, P.V.; Luna, C. Geometric transformations and Talavera tiles: A culturally responsive approach to

teacher professional development and mathematics teaching. J. Math. Arts 2019, 13, 72–90. [CrossRef]
5. Febrian, F.; Perdana, S. Triggering fourth graders informal knowledge of isometric transformation geometry through the

exploration of Malay cloth motif. J. Educ. Sci. 2018, 2, 26–36. [CrossRef]
6. Leonard, A.E.; Bannister, N.A. Dancing Our Way to Geometric Transformations. Math. Teach. Middle Sch. 2018, 23, 258–267.

[CrossRef]
7. O’Shea, T. Geometric Transformations and Musical Composition. Math. Teach. MT 1979, 72, 523. [CrossRef]
8. Williams, D.L. Math for Real: Hair Braiding. Math. Teach. Middle Sch. MTMS 2011, 16, 512. [CrossRef]
9. Bulent, G. Using dynamic geometry software to improve eighth grade students’ understanding of transformation geometry.

Australas. J. Educ. Technol. 2012, 28, 364–382. [CrossRef]
10. Belbase, S. Beliefs about Teaching Geometric Transformations with Geometers’ Sketchpad: A Reflexive Abstraction. J. Educ. Res.

2013, 3, 15–38. [CrossRef]
11. Andraphanova, N.V. Geometrical Similarity Transformations in Dynamic Geometry Environment Geogebra. Eur. J. Contemp.

Educ. 2015, 12, 116–128. [CrossRef]
12. Ferrarello, D.; Mammana, M.F.; Pennisi, M. Teaching/learning geometric transformations in high-school with DGS. Int. J. Technol.

Math. Educ. 2014, 21, 11–17.
13. Hollerbrands, K.F. The Role of a Dynamic Software Program for Geometry in the Strategies High School Mathematics Students

Employ. J. Res. Math. Educ. JRME 2007, 38, 164. [CrossRef]
14. Uygun, T. An inquiry-based design research for teaching geometric transformations by developing mathematical practices in

dynamic geometry environment. Math. Educ. Res. J. 2020, 32, 523–549. [CrossRef]

http://www.corestandards.org/
http://doi.org/10.5951/mt.96.1.0048
http://doi.org/10.1080/17513472.2018.1504491
http://doi.org/10.31258/jes.2.1.p.26-36
http://doi.org/10.5951/mathteacmiddscho.23.5.0258
http://doi.org/10.5951/MT.72.7.0523
http://doi.org/10.5951/MTMS.16.8.0512
http://doi.org/10.14742/ajet.878
http://doi.org/10.3126/jer.v3i2.8396
http://doi.org/10.13187/ejced.2015.12.116
http://doi.org/10.2307/30034955
http://doi.org/10.1007/s13394-020-00314-1

Mathematics 2022, 10, 1859 21 of 22

15. Jung, I. Student Representation and Understanding of Geometric Transformations with Technology Experience; University of Georgia:
Athens, GA, USA, 2002.

16. Turgut, M. Sense-making regarding matrix representation of geometric transformations in R2: A semiotic mediation perspective
in a dynamic geometry environment. ZDM 2019, 51, 1199–1214. [CrossRef]

17. Hearn, D.; Baker, P. Computer Graphics with OpenGL; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004.
18. Angel, E. Teaching a three-dimensional computer graphics class using OpenGL. ACM SIGGRAPH Comput. Graph. 1997, 31, 54–55.

[CrossRef]
19. Foley, J.D.; Van, F.D.; Van Dam, A.; Feiner, S.K.; Hughes, J.F.; Angel, E.; Hughes, J. Computer Graphics: Principles and Practice;

Addison-Wesley Professional: Boston, MA, USA, 1996.
20. Xistouri, X.; Pitta-Pantazi, D.; Gagatsis, A. Primary school students’ structure and levels of abilities in transformational geometry.

Rev. Latinoam. Investig. Mat. Educ. 2014, 17, 149–164. [CrossRef]
21. Perham, F. An Investigation into the Effect of Instruction on the Acquisition of Transformation Geometry Concepts in First Grade

Children and Subsequent Transfer to General Spatial Ability. 1978; pp. 229–241. Available online: https://eric.ed.gov/?id=ED159
062 (accessed on 15 April 2022).

22. Schultz, K.A.; Austin, J.D. Directional Effects in Transformation Tasks. J. Res. Math. Educ. 1983, 14, 95–101. [CrossRef]
23. Boulter, D.R.; Kirby, J.R. Identification of Strategies Used in Solving Transformational Geometry Problems. J. Educ. Res. 1994, 87,

298–303. [CrossRef]
24. Zimmerman, A.E.; Dean, R.S. Visual-Spatial Intelligence. In Encyclopedia of Child Behavior and Development; Goldstein, S., Naglieri,

J.A., Eds.; Springer: Boston, MA, USA, 2011; pp. 1548–1549.
25. Lederman, D. Will Shift to Remote Teaching Be Boon or Bane for Online Learning? Inside High. Ed 2020, 18. Available

online: https://www.insidehighered.com/digital-learning/article/2020/03/18/most-teaching-going-remote-will-help-or-hurt-
online-learning (accessed on 15 April 2022).

26. Crawford, J.; Butler-Henderson, K.; Rudolph, J.; Malkawi, B.; Glowatz, M.; Burton, R.; Magni, P.; Lam, S. COVID-19: 20 countries’
higher education intra-period digital pedagogy responses. J. Appl. Learn. Teach. 2020, 3, 1–20. [CrossRef]

27. Luebke, D.; Humphreys, G. How GPUs Work. Computer 2007, 40, 96–100. [CrossRef]
28. Vince, J. Mathematics for Computer Graphics; Springer: Berlin/Heidelberg, Germany, 2017; p. 505.
29. Balzano, E.; Sassi, E. TRASFORM: An Open Environment to Study Affine Geometric Transformations on the Plane. Educ. Train.

Technol. Int. 1990, 27, 92–109. [CrossRef]
30. Angel, E.; Shreiner, D. Interactive Computer Graphics: A Top-Down Approach with WebGL; Addison-Wesley: Boston, MA, USA, 2014;

p. 702.
31. González-Campos, J.S.; Arnedo-Moreno, J.; Sánchez-Navarro, J. GTCards: A Video Game for Learning Geometric Transformations:

A cards-based video game for learning geometric transformations in higher education. In Proceedings of the Ninth International
Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’21), Barcelona, Spain, 26–29 October 2021; pp.
205–209.

32. Unity. Unity Game Engine. Available online: https://unity.com/ (accessed on 10 April 2022).
33. Borenstein, M.; Hedges, L.V.; Higgins, J.; Rothstein, H. Introduction to Meta-Analysis; Wiley-Blackwell: Hoboken, NJ, USA, 2009.
34. Guay, R. Purdue Spatial Visualization Test-Visualization of Rotations, IN; Purdue Research Foundation: West Lafayette, IN, USA,

1976; Retrieved on 10 April 2022.
35. Maeda, Y.; Yoon, S.Y. A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization

tests: Visualization of Rotations (PSVT: R). Educ. Psychol. Rev. 2013, 25, 69–94. [CrossRef]
36. González Campos, J.S.; Sánchez-Navarro, J.; Arnedo-Moreno, J. An empirical study of the effect that a computer graphics course

has on visual-spatial abilities. Int. J. Educ. Technol. High. Educ. 2019, 16, 41. [CrossRef]
37. Hattie, J. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement, 1st ed.; Routledge: London, UK; New York,

NY, USA, 2009.
38. Blade, M.F.; Watson, W.S. Increase in spatial visualization test scores during engineering study. Psychol. Monogr. Gen. Appl. 1955,

69, 1–13. [CrossRef]
39. Miller, C. Enhancing visual literacy of engineering students through the use of real and computer-generated models. Eng. Des.

Graph. J. 1992, 56, 27–38.
40. Gerson, H.B.; Sorby, S.A.; Wysocki, A.; Baartmans, B.J. The development and assessment of multimedia software for improving

3-D spatial visualization skills. Comput. Appl. Eng. Educ. 2001, 9, 105–113. [CrossRef]
41. Sorby, S.A. Educational research in developing 3-D spatial skills for engineering students. Int. J. Sci. Educ. 2009, 31, 459–480.

[CrossRef]
42. Hartman, N.W.; Bertoline, G.R. Spatial abilities and virtual technologies: Examining the computer graphics learning environment.

In Proceedings of the Ninth International Conference on Information Visualisation (IV’05), London, UK, 6–8 July 2005; pp.
992–997.

http://doi.org/10.1007/s11858-019-01032-0
http://doi.org/10.1145/262171.262204
http://doi.org/10.12802/relime.13.1747
https://eric.ed.gov/?id=ED159062
https://eric.ed.gov/?id=ED159062
http://doi.org/10.2307/748577
http://doi.org/10.1080/00220671.1994.9941257
https://www.insidehighered.com/digital-learning/article/2020/03/18/most-teaching-going-remote-will-help-or-hurt-online-learning
https://www.insidehighered.com/digital-learning/article/2020/03/18/most-teaching-going-remote-will-help-or-hurt-online-learning
http://doi.org/10.37074/jalt.2020.3.1.7
http://doi.org/10.1109/MC.2007.59
http://doi.org/10.1080/1355800900270112
https://unity.com/
http://doi.org/10.1007/s10648-012-9215-x
http://doi.org/10.1186/s41239-019-0169-7
http://doi.org/10.1037/h0093697
http://doi.org/10.1002/cae.1012
http://doi.org/10.1080/09500690802595839

Mathematics 2022, 10, 1859 22 of 22

43. Martín-Dorta, N.; Saorín, J.L.; Contero, M. Development of a fast remedial course to improve the spatial abilities of engineering
students. J. Eng. Educ. 2008, 97, 505–513. [CrossRef]

44. Katsioloudis, P.; Jovanovic, V.; Jones, M. A Comparative Analysis of Spatial Visualization Ability and Drafting Models for
Industrial and Technology Education Students. J. Technol. Educ. 2014, 26, 88–101. [CrossRef]

45. Kösa, T.; Karakuş, F. The effects of computer-aided design software on engineering students’ spatial visualization skills. Eur. J.
Eng. Educ. 2018, 43, 296–308. [CrossRef]

http://doi.org/10.1002/j.2168-9830.2008.tb00996.x
http://doi.org/10.21061/jte.v26i1.a.6
http://doi.org/10.1080/03043797.2017.1370578

	Introduction
	Geometric Transformations
	Matrix Representation and Single Transformation
	Composite Sequences
	Local and Global Coordinate Systems
	The “Before and After” Style of Learning Exercise

	Method
	Base Conditions for the Definition of Learning Exercises
	A Framework for Characterizing Learning Exercises and Their Solutions
	Reducing Cases in Transformations’ Parameters
	Reducing the Number of Object Views to Specific Symmetries

	States Available for the Generation of Learning Exercises
	Automatic Exercises Generation and Solutions Feedback
	Automated Generation of Exercises with a Controlled Degree of Complexity
	Automatic Feedback on Solutions in Real-Time

	Software Tool 1: Geometric Transformations Visualizer
	System Architecture
	GTV Interface

	Software Tool 2 (Video Game): Geometric Transformations Cards
	Main Interface
	Visual Clues
	Game Mechanics
	Difficulty Levels
	Cards Design

	The Empirical Test
	The Participants
	Research Design
	Recollection of Data

	Results
	Discussion
	Conclusions and Future Work
	References

