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Abstract: In this article, an optimal timing fault tolerant control strategy is addressed for switched
stochastic systems with unknown drift fault for each switching point. The proposed controllers in
existing optimal timing control schemes are not directly aimed at the switched drift fault system,
which affects the optimal control performance. A cost functional with system state information
and fault variable is constructed. By solving the optimal switching time criterion, the switched
stochastic system can accommodate switching drift fault. The variational technique is presented
for the proposed cost function in deriving the gradient formula. Then, the optimal fault tolerant
switching time is calculated by combining the Armijo step-size gradient descent algorithm. Finally,
the effectiveness of the proposed controller design scheme is proved by the safe trajectory planning
for a four wheel drive mobile robot and numerical example.

Keywords: fault tolerant control; switching time fault; optimal timing control; switched stochastic
systems; four wheel drive mobile robot
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1. Introduction

The switched system is a complex kind of hybrid system, which consists of a family of
subsystems and a switch rule that coordinates the sequence of the subsystems. The switch
rule is triggered by switching signals [1,2]. Compared with nonswitching systems, switch-
ing systems have higher control flexibility. Switched systems with unstable subsystems
can be stabilized by designing reasonable switching rules [3,4]. Switched control systems
have been given considerable attention, not only to the inherent complexity, but also the
wide range of practical applications. There are numerous industrial control processes that
could be modeled as the switched systems, such as wind energy conversion [5], chemical
reactors [6], hybrid electric vehicles [7], robot motion planning [8], etc.

For switched systems, the optimal control problems have attracted wide attention
from researchers [9–11]. Different from the traditional continuous systems, the objective of
switched system optimal control is to calculate the optimal switching sequence and switch-
ing rules to optimize the cost function, see [12] for a recent survey. After years of develop-
ment, the optimal timing control of continuous systems has made great progress [13–16].
However, these conclusions may be infeasible when the systems are complex switched sys-
tems. For a class of autonomous systems in which the sequence of continuous dynamics is
predefined, the authors of [17] proposed the optimal time switching strategy by computing
the cost function and the gradient over an underlying time grid. Considering the relatively
simple cost functional, the study described in [18] combined with a gradient descent algo-
rithm gives the gradient formula for the switching time. The previous results mostly focus
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on the cost function containing only integral terms. Although the cost functional in [17]
is relatively more general, it cannot meet the needs of some special working conditions,
such as flexible satellite attitude optimization [19] or multi-agent vehicle formation plan-
ning [20]. It is necessary to study the time optimal switching problem of the generalized
cost functional with the integral term and terminal term.

Since disturbance terms often exist in practical systems, it is almost impossible to
construct an accurate mathematical model to describe practical switched systems [21–23].
At the same time, the stochastic disturbances lead to the stochastic characteristic of switched
systems. From a practical application point of view, stochastic switched systems can model
complex dynamics, uncertainty, randomness. Considering the inevitable effect of noise
and stochastic disturbance, the authors of [24] investigated the time optimal switching
strategy for linear stochastic switched systems. The optimal control strategy for discrete-
time bilinear systems is extended to switched linear stochastic systems in [25]. For general
multi-switched time-invariant stochastic systems, the authors of [26] proposed the time
optimization control approach by minimizing a cost functional with different costs defined
on the states. However, it is worth mentioning that the aforementioned schemes are only
applicable to systems in good operating conditions (i.e., fault free). Extra efforts are needed
to analyze the fault tolerant control problem for switched stochastic systems.

With the increasing demand for safety critical systems in both military and civilian
applications, the performance and safety issues need to be specially considered despite the
presence of faults [27]. This stimulates the research of a fault tolerant control system that can
accommodate unknown system faults and maintain its prespecified performance [28–30].
In consideration of the actuator fault, the authors of [31] designed the fault tolerant con-
troller for a class of uncertain switched nonlinear systems. The actuator saturation fault
has been investigated for a class of discrete-time switched systems [32]. For the switching
point perturbation, the robust optimal control of switched autonomous systems is derived
in [33]. For switched parabolic systems described by partial differential equations, the
boundary system fault is researched in [34]. With the above observations, the fault tolerant
control for stochastic switched systems has not been well developed yet. It is a common
phenomenon that the switching time fault occurs in practical switched engineering sys-
tems. The switching signals are easily subject to electromagnetic interference and unknown
abrupt phenomena such as component and interconnection failures. These factors can
induce the switch time to have a delay [31] and drift faults. In addition, from the optimal
control point of view, the cost function may increase rapidly and serious security accidents
have occurred during the control process when the switching time exceeds or lags behind
the designed optimal switch time. However, as far as we know, there are few results about
optimal fault tolerant control for switched stochastic systems with switched drift fault. The
challenges outlined above motivate us to focus on the optimal timing fault tolerant control
problem for switched stochastic systems.

The remainder of this article is arranged as follows: The problem formulation and
the control objective are stated in Section 2. Section 3 presents the main results for signal
switching, more switchings and optimal fault tolerant algorithm. Section 4 illustrates the
obtained result applications in a four wheel drive mobile robot and numerical example.
Section 5 provides some concluding remarks.

2. Problem Formulation

Consider the switched stochastic system depicted as follows:

ẋ(t) = Aix(t) + Biω(t), t ∈ [Ti−1, Ti], i ∈ [1, 2, · · · , N + 1], (1)

where x(t) ∈ <n is the state vector, Ai and Bi are a set of given constant real matrices of
appropriate dimensions. T0 denotes the initial time, T1, · · · , TN (T0 < T1 < · · · < TN <
TN+1 = Tf ) denote the time switching signal and Tf denotes the final time. ω is the
stochastic disturbance.
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Initial condition x0 ∈ <n is a stochastic vector with mean m0 and variance matrix P0,

E[x(t0)] = m0, Var[x(t0)] = E[(x0 −m0)(x0 −m0)
T ] = P0. (2)

By employing the property of mathematical expectation for the stochastic initial
vector, we have the mean vector m0 ∈ <n and variance matrix P0 ⊂ <n ×<n. Since the
discretization of the time and dynamic input approaches can bring about computation
explosions and result in inaccurate solutions, in this paper we focus on a class of switched
autonomous systems. Then, the switching time signals are the system input variables.

For the stochastic disturbance, the following condition is imposed.

Assumption 1. The stochastic disturbance ω is the zero-mean Gaussian white noise process, which
is independent of x(t0). The following statistical properties are satisfied:

Cov[ω(t), ω(τ)] = E[ω(t)ωT(τ)] = Q0δ(t− τ), (3)

Cov[x(t0), ω(τ)] = E[(x0 −m0)ω
T(τ)] = 0, (4)

where δ(t) is the Dirac delta function,

∫ +∞

−∞
δ(t)dt = 1, δ(t) =

{
0, t 6= 0,

+∞, t = 0.
(5)

The normal switching time is denoted as T = (T1, · · · , TN). The actuator switched
fault is an unpermitted deviation Tε of the designed standard switching signal input T.
The unknown switched drift fault for each switching point can be described as:

Tε = (T1 + ε1, · · · , Ti + εi · · · , TN + εN), (6)

where the εi is unknown drift parameters.

Assumption 2. The drift fault parameters are limited to the bounded region, −δi ≤ εi ≤ δi, where
δi is a given small positive constant. For δi, Ti + δi ≤ Ti+1, the predefined triggered sequence
of subsystems is continuous and there is no jump. In addition, the switched system states are
continuous at the switching time which is different from the general hybrid system.

Remark 1. Assumption 1 is reasonable and commonly used. In fact, for the practical engineering
system, the stochastic noise disturbance is generated by the equipment plant, and is independent of
the initial state of the system model. An actuator switched drift fault is a common type of fault. The
drift fault parameter εi is brought by electromagnetic interference, transmission delay, equipment
aging and mechanical wear in modern engineering applications. It is meaningful and reasonable to
limit the amplitude of the drift fault parameter εi. The subsystem triggered sequence does not jump.
Assumption 2 is the foundation of fault tolerant control switch system research.

Due to the stochastic characteristic of the system state x(t), the nominal cost functional
J0 is described as:

J0 = E{Ψ(x(t f )) +
N

∑
i=0

∫ Ti+1

Ti

Li+1(x(t))dt}, (7)

where Li+1(x(t)) = 1
2 xT(t)Qix(t) are the running cost functions. Ψ(x(t f )) =

1
2 xT(t f )PTx(t f )

denote the terminal cost term at the final time. The coefficient matrices PT = PT
T ≥ 0, Qi =

QT
i ≥ 0 are the weight matrices for the present and terminal states, where PT ⊂ <n ×<n

and Qi ⊂ <n ×<n.
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Motivated by the integral mean value theorem, a novel cost functional mechanism is
investigated to achieve an appropriate compromise between drift fault compensation and
the optimal process.

J = E{Ψ(x(t f )) +
1

2N ∏N
i=1 δi

∫ δ1

−δ1

· · ·
∫ δN

−δN

[
∫ T1+ε1

t0

L1(x(t))dt + · · ·

+
∫ Ti+1+εi+1

Ti+εi

Li+1(x(t))dt + · · ·+
∫ t f

TN+εN

LN+1(x(t))]dεN · · · dε1}. (8)

Remark 2. It is worth mentioning that the cost function (8) is the mean value of the integral over
the switch fault time Tε. When the drift fault parameter δi → 0, εi → 0, i.e., fault free, by utilizing
the L’Hôpital’s rule, the cost functional (8) becomes the nominal cost functional J0. The constructed
cost functional J includes system state information and a fault variable, then the optimal switching
time obtained by this cost functional is a relatively accommodated switching drift fault.In addition,
the proposed cost functional mixes the integral term and terminal term. Therefore, the cost functional
(8) we investigate in this paper is general and powerful enough to describe many industrial process.

Control objective: The main purpose of this paper is to deduce the gradient formula
for the corresponding cost function with respect to a switched stochastic system (1). Then,
under Assumptions 1 and 2, we solve the optimal switching signal criterion, such that the
the proposed cost function (8) is minimized in spite of the switched drift fault (6).

3. The Main Results

In this section, we firstly take N = 1 as one switching time for the system. By
employing the calculus of variations and some computation, the increment of the cost
functional will be deduced according to the switching signal increment. Based on the
gradient descent algorithm, the optimal time fault tolerant control of the switched stochastic
system is proposed. Then, the multi-switchings time case can be achieved as the single
switching time extension. Finally, the optimal fault tolerant algorithm is proposed with a
flow chart.

3.1. Single Switching

Consider the case of a single switching for the linear switched autonomous stochastic
system with switching time drift fault ε,

ẋ(t) =

{
A1x(t) + B1ω, t ∈ [t0, T1 + ε],

A2x(t) + B2ω, t ∈ [T1 + ε, t f ].
(9)

For the switching time, we take a positive variation ∆t. Compared with the nominal
system (9), we denote x̃ to represent the state trajectory of the system switching time after
the increment of ∆t, that is, the switching time is T1 + ε + ∆t. The increment system x̃ is
defined as:

˙̃x(t) =

{
A1 x̃(t) + B1ω, t ∈ [t0, T1 + ε + ∆t],

A2 x̃(t) + B2ω, t ∈ [T1 + ε + ∆t, t f ].
(10)

A portion of the grid is presented in Figure 1 to illustrate the different switching times.

Figure 1. Switching times within the time grid.
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In order to make the induced variation cost functional ∆J clear and easy to be repre-
sented, one can consider the statistical properties of the stochastic states with the nominal
system x and the increment systems x̃.

The second-order origin moment matrix of the system states x(t) and x̃(t) satisfy the
following matrix differential equation:

ṁx(t) =

{
A1mx(t) + mx(t)AT

1 + B1Q0BT
1 , t ∈ [t0, T1 + ε],

A2mx(t) + mx(t)AT
2 + B2Q0BT

2 , t ∈ [T1 + ε, t f ]
(11)

with the initial state mx(0) = P0 + m0mT
0 .

ṁx̃(t) =

{
A1mx̃(t) + mx̃(t)AT

1 + B1Q0BT
1 , t ∈ [t0, T1 + ε + ∆t],

A2mx̃(t) + mx̃(t)AT
2 + B2Q0BT

2 , t ∈ [T1 + ε + ∆t, t f ],
(12)

with the same initial state mx̃(0) = P0 + m0mT
0 = mx(0). Then, the second-order origin

moment matrix mx(t) and mx̃(t) have the uniform derivative equation on the interval
[t0, T1 + ε].

Next, we will analyze the induced variation cost functional J. The cost functional J
and J̃ have a main discrepancy with the nominal system state x and the increment systems
state x̃ on the interval [T1 + ε, T1 + ε + ∆t]. We subdivide the time interval according to the
background grid points falling between t0 and t f , after the switching time T1 + ε + ∆t. The
nominal cost functional J can be described as

J = E{Ψ(x(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ t f

T1+ε
L2dt]dε}

= E{Ψ(x(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ T1+ε+∆t

T1+ε
L2dt +

∫ t f

T1+ε+∆t
L2dt]dε}

.
= J0 + J1 + J2 + J3. (13)

The increment cost functional J̃ can be described as

J̃ = E{Ψ(x̃(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε+∆t

t0

L1dt +
∫ t f

T1+ε+∆t
L2dt]dε}

= E{Ψ(x̃(t f )) +
1
2δ

∫ δ

−δ
[
∫ T1+ε

t0

L1dt +
∫ T1+ε+∆t

T1+ε
L1dt +

∫ t f

T1+ε+∆t
L2dt]dε}

.
= J̃0 + J̃1 + J̃2 + J̃3. (14)

The major results in this paper are briefly summarized as the following theorem:

Theorem 1. For the linear switched autonomous stochastic system (9) with the single switching
time T1 and the unknown switching drift fault ε, if the system stochastic disturbance satisfies
Assumption 1 and the drift fault parameter satisfies Assumption 2, we design the general cost
functional J, as presented in Equation (13). Then, the derivative dJ/dT1 of the cost function J with
respect to the switching time T1 has the following form:

dJ
dT1

=
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 −Q2))dε

+
1
4δ

∫ δ

−δ

∫ t f

T1+ε
tr(eA2(t−T1−ε)M1eAT

2 (t−T1−ε)Q2)dtdε

+
1
2

tr((eA2(t f−T1−ε)M1eAT
2 (t f−T1−ε))PT), (15)
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where M1 = (A1 − A2)mx(T1 + ε) + mx(T1 + ε)(AT
1 − AT

2 ) + B1Q0BT
1 − B2Q0BT

2 ,
and mx(T1 + ε) takes the value of the following matrix differential equation at t = T1 + ε:

ṁx(t) = A1mx(t) + mx(t)AT
1 + B1Q0BT

1 ,

mx(0) = P0 + m0mT
0 . (16)

The cost function has the fault tolerant performance for the switching time fault.

Proof. According to the division of the time interval in Figure 1, through the following
four steps, we complete the proof of the theorem.

Step 1. On the interval t ∈ [t0, T1 + ε], the systems (9) and (10) can be redescribed as

ẋ(t) = A1x(t) + B1ω, t ∈ [t0, T1 + ε], (17)
˙̃x(t) = A1 x̃(t) + B1ω, t ∈ [t0, T1 + ε]. (18)

The induced variation in the cost functional J and J̃,

J̃1 − J1 = E{ 1
2δ

∫ δ

−δ

∫ T1+ε

t0

L1dtdε} − E{ 1
2δ

∫ δ

−δ

∫ T1+ε

t0

L1dtdε}

=
1
2δ

∫ δ

−δ

∫ T1+ε

t0

E(L1(x̃)− L1(x))dtdε

=
1
2δ

∫ δ

−δ

∫ T1+ε

t0

1
2

E(x̃T(t)Q1 x̃(t)− xT(t)Q1x(t))dtdε. (19)

Owing to the diagonal properties of weight matrices Q1, we obtain

E(xT(t)Q1x(t)) = E(tr(xT(t)Q1x(t))) = E(tr(x(t)xT(t)Q1))

= tr(E(x(t)xT(t))Q1) = tr(mx(t)Q1). (20)

Under the same initial condition x(0) = x̃(0), combining with (11), (12), (17) and (18),
we can conclude that

mx(t) = mx̃(t), t ∈ [t0, T1 + ε]. (21)

Then, Equation (20) is converted into

E(xT(t)Q1x(t)) = tr(mx(t)Q1) = tr(mx̃(t)Q1) = E(x̃T(t)Q1x(t)). (22)

Combining the above equation with (19), the following equation can be obtained:

J̃1 − J1 =
1
2δ

∫ δ

−δ

∫ T1+ε

t0

1
2

E(x̃T(t)Q1 x̃(t)− xT(t)Q1x(t))dtdε = 0. (23)

Step 2. On the interval t ∈ [T1 + ε, T1 + ε + ∆t], the systems in (9) and (10) are
described as

ẋ(t) = A2x(t) + B2ω, t ∈ [T1 + ε, T1 + ε + ∆t], (24)
˙̃x(t) = A1 x̃(t) + B1ω, t ∈ [T1 + ε, T1 + ε + ∆t]. (25)
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The increment of the cost function is

J̃2 − J2 =
1
2δ

∫ δ

−δ

∫ T1+ε+∆t

T1+ε
E(L2(x̃)− L1(x))dtdε

=
1
4δ

∫ δ

−δ

∫ T1+ε+∆t

T1+ε
E(x̃T(t)Q2 x̃(t)− xT(t)Q1x(t))dtdε

=
1
4δ

∫ δ

−δ

∫ T1+ε+∆t

T1+ε
tr(mx̃Q1 −mxQ2)dtdε. (26)

Consider the second-order origin moment matrix mx(t), mx̃(t) and Equations (11) and (12).
By applying Taylor expansion, mx(t) and mx̃(t) at T1 + ε can be calculated as:

mx(t) = mx(T1 + ε) + (A2mx(T1 + ε) + mx(T1 + ε)AT
2

+B2Q0BT
2 )(t− T1 − ε) + o(t− T1 − ε)

= mx(T1 + ε) + m1(t− T1 − ε) + o(t− T1 − ε), (27)

mx̃(t) = mx̃(T1 + ε) + (A1mx̃(T1 + ε) + mx̃(T1 + ε)AT
1

+B1Q0BT
1 )(t− T1 − ε) + o(t− T1 − ε)

= mx̃(T1 + ε) + m̃1(t− T1 − ε) + o(t− T1 − ε). (28)

It can be seen that mx(T1 + ε) = mx̃(T1 + ε) from (11) and (12). Note that at t =
T1 + ε + ∆t, the mx(t) is not equal to mx̃(t), then, we have

tr(mx̃Q1 −mxQ2) = tr(mx(T1 + ε)(Q1 −Q2) + o(t− T1 − ε)

+(m̃1Q1 −m1Q2)(t− T1 − ε)). (29)

Substituting the above equation into (26), one has

J̃2 − J2 =
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 −Q2)∆t

+
∫ T1+ε+∆t

T1+ε
(tr(M11)(t− T1 − ε) + o(t− T1 − ε))dtdε

=
1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 −Q2))∆t +

1
2

tr(M11)∆t2 + o(∆t)dε

=
∆t
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 −Q2))dε + o(∆t). (30)

By dividing ∆t on both sides of the above equation and taking the limit operation
∆t→ 0, one has

lim
∆t→0

J̃2 − J2

∆t
=

1
4δ

∫ δ

−δ
tr(mx(T1 + ε)(Q1 −Q2))dε. (31)

Step 3. On the interval t ∈ [T1 + ε + ∆t, t f ], the systems can be represented as

ẋ(t) = A2x(t) + B2ω, t ∈ [T1 + ε + ∆t, t f ], (32)
˙̃x(t) = A2 x̃(t) + B2ω, t ∈ [T1 + ε + ∆t, t f ]. (33)
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The increment of the cost function is

J̃3 − J3 =
1
2δ

∫ δ

−δ

∫ t f

T1+ε+∆t
E(L2(x̃)− L2(x))dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε+∆t
E(x̃T(t)Q2 x̃(t)− xT(t)Q2x(t))dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε+∆t
tr((mx̃ −mx)Q2)dtdε. (34)

Recalling the Taylor expansion at T1 + ε for the mx(t) and mx̃(t),

mx̃(T1 + ε + ∆t)−mx(T1 + ε + ∆t) = (m̃1 −m1)∆t + o(∆t)
.
= M1∆t + o(∆t). (35)

By applying Taylor series expansion at T1 + ε + ∆t, the mx(t) and mx̃(t) can be
described as

mx(t) = mx(T1 + ε + ∆t) + ṁx(T1 + ε + ∆t)(t− T1 − ε− ∆t)

+ · · ·+ m(n)
x (T1 + ε + ∆t)

(t− T1 − ε− ∆t)n

n!
, (36)

mx̃(t) = mx̃(T1 + ε + ∆t) + ṁx̃(T1 + ε + ∆t)(t− T1 − ε− ∆t)

+ · · ·+ m(n)
x̃ (T1 + ε + ∆t)

(t− T1 − ε− ∆t)n

n!
. (37)

By employing the mathematical calculations, we have

mx̃(t)−mx(t) = eA2(t−T1−ε−∆t)M1eAT
2 (t−T1−ε−∆t)∆t + o(∆t). (38)

Substituting the above equation into (34), and dividing it by ∆t and taking the lim ∆t→
0, we obtain

lim
∆t→0

J̃3 − J3

∆t
= lim

∆t→0

1
4δ∆t

∫ δ

−δ

∫ t f

T1+ε+∆t
tr((mx̃ −mx)Q2)dtdε

= lim
∆t→0

1
4δ∆t

∫ δ

−δ

∫ t f

T1+ε+∆t
tr(eA2(t−T1−ε−∆t)M12eAT

2 (t−T1−ε−∆t)Q2∆t)dtdε

=
1
4δ

∫ δ

−δ

∫ t f

T1+ε
tr(eA2(t−T1−ε)M1eAT

2 (t−T1−ε)Q2)dtdε. (39)

Step 4. For t = t f , we analyze the difference of terminal cost item of the cost functional,

J̃0 − J0 = E{Ψ(x̃(t f ))} − E{Ψ(x(t f ))}

= E{1
2

x̃T(t f )PT x̃(t f )−
1
2

xT(t f )PTx(t f )}

=
1
2

tr((mx̃(t f )−mx(t f ))PT). (40)

Recalling the Taylor expansion at T1 + ε + ∆t for the mx(t) and mx̃(t), we have

mx̃(t f )−mx(t f ) = eA2(t f−T1−ε−∆t)M1eAT
2 (t f−T1−ε−∆t)∆t + o(∆t). (41)
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Substituting the above equation into (40), and dividing it by ∆t and taking the lim ∆t→
0, we obtain

lim
∆t→0

J̃0 − J0

∆t
= lim

∆t→0

1
2∆t

tr((mx̃(t f )−mx(t f ))PT)

= lim
∆t→0

1
2∆t

tr((eA2(t f−T1−ε−∆t)M1eAT
2 (t f−T1−ε−∆t)∆t + o(∆t))PT)

=
1
2

tr((eA2(t f−T1−ε)M1eAT
2 (t f−T1−ε))PT). (42)

Combining the above four steps, we can complete the proof.

3.2. Multi-Switchings

In this subsection, we consider the case of more switchings (N > 1). Recall that the
switched stochastic systems (1) have N + 1 linear time-invariant autonomous stochastic
subsystems and the cost function (8) in Section 2. The major results in this paper with more
switchings are briefly summarized as the following theorem:

Theorem 2. For the linear switched autonomous stochastic system (1) with the multi-switching
time T and the unknown switching drift fault ε, if the system stochastic disturbance satisfies
Assumption 1 and the drift fault parameter satisfies Assumption 2, we design the general cost
functional J, as presented in Equation (8). Then, the partial derivatives ∂J(T)/∂Ti (i = 1, . . . , N)
with respect to the ith switching time have the following form:

∂J
∂Ti

=
1

2N+1 ∏N
i=1 δi

∫ δ1

−δ1

· · ·
∫ δN

−δN

(
tr
(

eAN+1(t f−TN−εN)ΓjNeA>N+1(t f−TN−εN)PT

)
+

N

∑
i=j

∫ Ti+1+εi+1

Ti+εi

tr
(

eAi+1(t−Ti−εi)Γjie
A>i+1(t−Ti−εi)Qi+1

)
dt

+tr
(
mx
(
Tj + εj

)(
Qj −Qj+1

)))
dεN · · ·dε1, (43)

where the symbol tr(·) is defined as the trace function

Γjj = Mj, j = 1, . . . , N,

Γji = eAi(Ti−Ti−1)Γj,i−1eA>i (Ti−Ti−1), i = j + 1, . . . , N,

Mj =
(

Aj − Aj+1
)
mx
(
Tj + εj

)
+ mx

(
Tj + εj

)(
A>j − A>j+1

)
+ BjQ0B>j − Bj+1Q0B>j+1.

The second-order origin moment matrix mx(t) satisfies the following matrix differential equation:

ṁx(t) =

{
Aimx(t) + mx(t)A>i + BiQ0B>i , t ∈ (Ti−1, Ti], i = 1, . . . , N,

AN+1mx(t) + mx(t)A>N+1 + BN+1Q0B>N+1, t ∈
(

TN , t f

)
mx(t0) = P0 + m0m>0 .

The cost function has the fault tolerant performance for the switching time fault.

3.3. Optimal Fault Tolerant Algorithm

After taking into account the gradient of the cost functional in the above theorems,
the next problem is to calculate the optimal switching time. In this subsection, the steepest
descent algorithm with Armijo step sizes is explained in Figure 2. By denoting the initial
parameters α ∈ (0, 1), β ∈ (0, 1) and λ(k) := βi(k), the step size can be designed as
i(k) = min

{
i ≥ 0 : J

(
τ(k)− βiDJ(τ(k))

)
− J(τ(k)) ≤ −αβi‖DJ(τ(k))‖2}.
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Figure 2. The steepest descent algorithm flow chart.

4. Simulation

In this section, the four wheel drive autonomous mobile robot system and numerical
example are proposed to prove the feasibility of the designed optimization fault tolerant
algorithm. The dynamic model of the four wheel drive mobile robot system represented in
reference [35] is subject to actuator faults. It is shown that even with external stochastic
disturbance and unknown switch draft fault in the actuator switched mechanism, the
proposed optimization fault tolerant algorithm can explain the safety switch control of the
different trajectory tasks for the autonomous mobile robot.

4.1. Practical Example

In consideration of the external stochastic disturbance, we select the lateral velocity
and yaw angle of the center of gravity as the state variables. The kinematic model of the
simplified four wheel drive mobile robot as shown in [35] is

ax =
dVx

dt
−Vy

dθ

dt
= V̇x −VyΩz,

ay =
dVy

dt
+ Vx

dθ

dt
= V̇y + VxΩz, (44)

where ax is the longitudinal acceleration, ay is the lateral acceleration, Vx and Vy are the
forward velocity and lateral velocity of vehicle mass center, respectively, Ωz is the yaw
motion around the Z axis. The mobile robot vehicle dynamics equation is as follows:

Max = M
(
V̇x −VyΩz

)
= Fx f cos δ f + Fxr − Fy f sin δ f ,

May = M
(
V̇y + VxΩz

)
= Fy f cos δ f + Fyr + Fx f sin δ f ,

IzΩ̇z = l1Fy f cos δ f − l2Fyr + l1Fx f sin δ f , (45)
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where δ f is the front wheel angle, Fx f and Fy f are the longitudinal and lateral forces of
the front wheel, respectively. Fxr and Fyr are the longitudinal and lateral forces of the
rear wheel, respectively. l1 is the distance from the center of mass to the front axis, and
l2 is the distance from the center of mass to the rear axis. In consideration of the lateral
characteristics of the tire, we have

Fy f = C f α f ,

Fyr = Crαr, (46)

where

α f = δ f −
l1Ωz + Vy

Vx
, αr =

l2Ωz −Vy

Vx
.

By substituting the kinematic model and the tire characteristics into the vehicle dy-
namics equation, we can obtain

V̇y = − 1
M

(
C f + Cr

)
Vx

Vy −
(

Vx +
l1C f − l2Cr

MVx

)
Ωz +

C f

M
δ f ,

Ω̇z = −
l1C f − l2Cr

IzVx
Vy −

l2
1C f + l2

2Cr

IzVx
Ω̇z +

l1C f

Iz
δ f . (47)

The forward velocity of the mobile robot along the X axis is considered constant. Then,
the car has only two degrees of freedom. In order to simplify the expressions, we introduce
the change in coordinates:

a11 = − 1
M

(
C f + Cr

)
Vx

, a12 = −
(

Vx +
l1C f − l2Cr

MVx

)
, b1 =

C f

M
,

a21 = −
l1C f − l2Cr

IzVx
, a22 = −

l2
1C f + l2

2Cr

IzVx
, b2 =

l1C f

Iz
,

x1 = Vy, x2 = Ωz. (48)

By employing the external stochastic disturbance on the front wheel angle δ f , we
select the coupling friction coefficients b1 = 0, b2 = 1 and b1 = 1, b2 = 0 to represent
the the switched stochastic systems term Biω. The forward velocity of the mobile robot
along the X axis is considered constant. Thus, the four wheel drive mobile robot system
has only two state variables, x1 = Vy, x2 = Ωz. In complex road conditions, the friction
coefficient of tires is different. In addition, we can note that the different trajectory tasks
require a different forward velocity Vx. Therefore, by different trajectory tasks, under
the complex road conditions and external stochastic disturbance, the following switched
stochastic systems equation is obtained for a four wheel drive mobile robot with safe
trajectory planning:

ẋ(t) =

{
A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, t f ],
(49)

where the system matrices are

A1 =

[
−1 0
1 2

]
, B1 =

[
0
1

]
, A2 =

[
1 1
0 −2

]
, B2 =

[
1
0

]
.

As presented in the four wheel drive mobile robot example, the robot safe trajectory
planning problems can be translated into the studied switched stochastic systems. Then,
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the proposed optimal timing fault tolerant control strategy can solve the safe trajectory
planning problem effectively.

In order to illustrate the effectiveness of the proposed algorithm with multi-switching
times, the system is repeatedly switched. The system is described by three switching points,
as follows:

ẋ(t) =


A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, T2],

A1x(t) + B1ω, t ∈ (T2, T3],

A2x(t) + B2ω, t ∈ (T3, t f ],

(50)

where the initial state x(0) = [1, 0]T , the initial time t0 = 0, the final time t f = 1, the
initial switching time T1 = 0.3, T2 = 0.5, T3 = 0.7. By the switch control mechanism, the
four wheel drive mobile robot system executes the desired different trajectory tasks. We
need to calculate the optimal switching time T1, T2, T3 to minimize the cost functional J.
The weight coefficient matrices are designed as the unit matrix. The steepest descent
parameters are α = β = 0.5, the threshold value ε = 0.05, kmax = 200. The experiments
are implemented with Matlab2015a on a desktop PC with i7-6700 3.4 GHz CPU, 16 GB
memory and Windows 1064 bit OS. The simulation results are described in Figures 3 and 4.

0 2 4 6 8 10
0

0.02

0.04

λ
(k
)

0 2 4 6 8 10 12
2.8

2.9

3

J
(τ
(k
))

0 2 4 6 8 10 12

Iterations k

0

5

‖d
J
(τ
(k
))
‖

Figure 3. The designed step size λ(k), the cost functional J(τ(k)) and gradient ‖dJ(τ(k))‖with k iterations.

The optimal switching time is T = [0.2609, 0.4677, 0.7749] after ten iterations. Based
on the proposed algorithm, we obtain the corresponding optimal cost J = 2.8185. From
Figure 3, it is easy to see that the cost J quickly converges to a minimum value and the
gradient function ‖dJ(τ(k))‖ reaches the termination value. In addition, the system state
trajectories with respect to the switching time signal τ(k) are illustrated in Figure 4.
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Figure 4. The trajectories of states x1(t) and x2(t).

The blue dotted lines explain the state trajectories with the iterate progress switching
time vector τ(k). As a comparison, the red solid line explains the optimal trajectories with
respect to the optimal switching time signal.

4.2. Numerical Example

Consider the following switched nonlinear systems:

ẋ(t) =


A1x(t) + B1ω, t ∈ [t0, T1],

A2x(t) + B2ω, t ∈ (T1, T2],

A3x(t) + B3ω, t ∈ (T2, T3],

A4x(t) + B4ω, t ∈ (T3, t f ],

(51)

where the system matrices are

A1 =

[
−1 1
0 2

]
, A2 =

[
1 0
1 −2

]
, A3 =

[
−1 0
1 2

]
, A4 =

[
1 1
0 −2

]

B1 = B3 =

[
0
1

]
, B2 = B4 =

[
1
0

]
.

We select the initial state x(0) = [1,−1]T , the initial time t0 = 0, the final time t f = 0.9,
the initial switching time T1 = 0.3, T2 = 0.5, T3 = 0.7. The weight coefficient matrices are
designed as Q1 = I, Q2 = 2I, Q3 = 3I, Q4 = 4I, P = I, where I denotes the unit matrix.
The cost function J(τ(k)) and the gradient function ‖dJ(τ(k))‖ with k iterations and the
trajectories of the states x1(t) and x2(t) are shown in Figures 5 and 6 when employing the
proposed optimal timing fault tolerant control strategy.
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Figure 5. The cost function J(τ(k)) and the gradient function ‖dJ(τ(k))‖ with k iterations.
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Figure 6. The trajectories of states x1(t) and x2(t).

It is worth noting that the switched subsystems are different in the numerical example
which can describe the more general systems.

5. Conclusions

In this paper, an novel optimal timing fault tolerant control algorithm is proposed
for switched stochastic systems with an unknown drift fault for each switching point.
The designed optimal timing fault tolerant controller can not only realize the optimal
performance, but also accommodate switching drift fault. Moreover, in this process, the
cost functional has the general form with the integral terms and the terminal terms with the
switched stochastic systems state variable. The variational technique is exploited to deduce
the gradient formula. The steepest descent algorithm with Armijo step sizes is utilized
to calculate the optimal switching time. The safety trajectory switching of a four wheel
drive vehicle is taken as a practical application case to illustrate the effectiveness of the
proposed method. Owing to the special structure of the gradient formula, how to extend
the suggested methods to large-scale systems, multi-agent systems and practical systems
are is a problem worthy of research.
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