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Abstract: Guaranteeing security in information exchange is a challenge in public networks, such
as in the highly popular application layer Message Queue Telemetry Transport (MQTT) protocol.
On the one hand, chaos generators have shown their usefulness in masking data that can be recovered
while having the appropriate binary string. Privacy can then be accomplished by implementing syn-
chronization techniques to connect the transmitter and receiver, among millions of users, to encrypt
and decrypt data having the correct public key. On the other hand, chaotic binary sequences can be
generated on Rapsberry Pis that can be connected over MQTT. To provide privacy and security, the
transmitter and receiver (among millions of devices) can be synchronized to have the same chaotic
public key to encrypt and decrypt data. In this manner, this paper shows the implementation of
optimized chaos generators on Raspberry Pis that are wirelessly connected via MQTT for the IoT
protocol. The publisher encrypts data that are public to millions of interconnected devices, but
the data are decrypted by the subscribers having the correct chaotic binary sequence. The image
encryption system is tested by performing NIST, TestU01, NPCR, UACI and other statistical analyses.

Keywords: chaos; IoT; metaheuristic; MQTT; NIST; NPCR; random binary string; Raspberry Pi;
TestU01; UACI

MSC: 37N35

1. Introduction

From the seminal work of Lorenz [1], chaos theory has shown advantages in the design
of secure communication systems to mask [2] and encrypt information [3–7]. Nowadays,
chaos theory is an interdisciplinary branch that states the interconnections, feedback loops,
patterns, repetition, fractals, self-similarity and self-organization in complex systems re-
gardless of the apparent randomness [8]. The main property of a chaotic system is often
related to the high sensitivity of the system’s response to the initial conditions (i.e., small
changes can lead to significant differences in the dynamics of the chaotic system).

Recent applications of chaotic systems include the development of optimization meth-
ods [8] and the design of privacy-enhanced communication protocols for lightweight
Internet of Things (IoT) devices [9]. As mentioned in [10], security is a key problem for
the transmission, interchange and storage process of multimedia systems and applications,
so research efforts have been focused on this open problem. On the side of ubiquitous
sensing in public and wireless networks, data protection is a challenge in IoT applications,
in which a connected device publishes data that are read by millions of interconnected
heterogeneous and pervasive devices. The MQTT communication approach is based on
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a publish–subscribe model (https://mqtt.org/ (accessed on 1 March 2022)), where nei-
ther have notions about the existence of the other and rely on a third party, called the
broker, who distributes the messages to all connected devices. Therefore, the publisher
only needs to send its data once without knowing how many subscribers will be served
by the broker. For instance, the authors in [11] used fractional-order chaotic maps for
secure communication in IoT-based smart devices. Fractional-order chaotic systems can be
synchronized, but recent works just synchronized master–slave topologies [12,13]. The chal-
lenge is synchronizing any number of devices to share secure data on public networks and
guaranteeing privacy. Herein, we propose the use of chaotic binary strings to synchronize
a publisher (transmitter) with any number of subscribers (receivers) so that the data can be
recovered just by the subscriber having the correct chaotic binary string (public key), while
the remaining connected devices can read a kind of noisy data.

Chaotic systems have been implemented in different analog and digital electronic
devices [7], and in both cases, the exactness depends on the numerical method or approx-
imation to solve the fractional-order derivatives. This paper shows the implementation
of chaotic systems using Raspberry Pis (RPis) to exploit their computer-on-board capabil-
ities. In this manner, each RPi is ready to generate chaotic binary strings to encrypt and
decrypt an image that can be processed wirelessly over MQTT for the IoT protocol. Chaotic
systems can also be designed using integrated circuit technology, as shown in [14–17].
The challenges are related to the design of low-power IoT devices for lightweight applica-
tions and the development of secure and private communication systems. In this manner,
to guarantee privacy, this paper shows the synchronization of a publisher (transmitter) with
multiple subscribers (receivers) using chaotic binary strings in MQTT for the IoT protocol.
We also perform National Institute of Standards and Technology (NIST) and TestU01 tests
to guarantee the randomness of the chaotic binary strings and perform other statistical
analyses to avoid attacks for the encryption and decryption of images. The encryption
system is implemented using IoT devices such as RPis.

The rest of the paper is organized as follows. Section 2 summarizes the classification
of chaotic systems and their optimization and describes the generation of random binary
strings that are verified by NIST and TestU01 tests. Section 3 shows the synchronization of
optimized chaotic systems by applying two methods: Hamiltonian forms and the observer
approach, which is given in Section 3.1, and the OPCL synchronization method, given
in Section 3.2. The hardware implementation of an image encryption system in MQTT
based on Raspberry Pis is given in Section 4, where some images are encrypted and
analyzed. Finally, the conclusions are summarized in Section 5.

2. Chaotic Systems and Random Binary Strings

Chaotic systems are modeled by ordinary differential equations (ODEs), which can
be of an integer or fractional order. The dynamical characteristics can be measured by
evaluating the Lyapunov exponents (LEs) and Kaplan–Yorke dimension DKY. For systems
having three ODEs, one can evaluate three LEs, with one being negative, one being zero
(or very close to zero) and one being positive. Chaotic behavior exists if the system has one
positive LE. For systems having more than three ODEs, one can evaluate more than one
positive LE, where the highest is known as the maximum LE (MLE) and the system is said
to have hyperchaotic behavior. The chaotic time series associated to each state variable can
be transformed to binary strings whose randomness is measured by statistical tests such as
NIST and TestU01.

Sprott published a collection of chaotic systems consisting of three ODEs, where the
nonlinearity is given by multiplying two state variables and having a low number of coeffi-
cients [18]. Other well-known chaotic systems having three ODEs are the Lorenz, Rössler,
Chua, Chen and Lü systems. If the ODEs have defined and unique equilibrium points,
the system generates self-excited attractors; otherwise, hidden attractors exist. However,
the ODEs have particular parameter values to generate chaotic behavior [19], and those
values can be found by generating bifurcation diagrams. The initial conditions must also

https://mqtt.org/
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be close to the equilibrium point or the attraction region to generate a chaotic attractor.
In all published works, the authors provide the parameter values the initial conditions
of a mathematical model to reproduce chaotic behavior. However, one may get different
chaotic behavior depending on the numerical method and step size h that is used [20].
Once a chaotic system is solved by a numerical method, the time series can be used to
evaluate the LE spectrum and DKY. The mathematical model can be used to evaluate
these characteristics by applying Wolf’s method [21]. That aside, if one has experimental
chaotic time series, one can use the free software called time series analysis (TISEAN
(https://www.pks.mpg.de/tisean/Tisean_3.0.1/index.html, accessed on 1 March 2022))
to estimate the LE spectrum and DKY [22]. Considering the chaotic Chen system given in
Equation (1), and by setting a = 35.0, b = 3.0 and c = 28.0, one can find three equilibrium
points: EP1 located at x1 = x2 = 7.9372 and x3 = 21.0, EP2 located at x1 = x2 = −7.9372
and x3 = 21.0 and EP3 at x1 = 0, x2 = 0 and x3 = 0. These EPs are used to evaluate the
Jacobian and find the eigenvalues in order to verify the stabilized regions [20]:

ẋ1 = a(x2 − x1),
ẋ2 = (c− a)x1 − x1x3 + cx2,
ẋ3 = x1x2 − bx3.

(1)

Mathematically speaking, all integer-order chaotic systems, such as the one given
in Equation (1), can be transformed to their fractional-order versions. In this case, the
fractional-order Chen system can be denoted by Equation (2), which generates chaotic
behavior if a = 35, b = 3, c = 28 and the fractional orders q1 = q2 = q3 = 0.96. The system
can be simulated by applying the Grünwald–Letnikov method with the initial conditions
x10 = x20 = x30 = 0.01, h = 0.001 and memory length L = 32. The LEs are evaluated
by TISEAN and are equal to LE1 = 3.5317, LE2 = 0.0037 and LE3 = −21.379. Furthermore,
DKY = 2.1654, thus confirming chaotic behavior:

Dq1
t x1 = a(x2 − x1),

Dq2
t x2 = (c− a)x1 − x1x3 + cx2,

Dq3
t x3 = x1x2 − bx3.

(2)

Both integer- and fractional-order chaotic systems can be optimized by applying meta-
heuristics, as shown in [23], in order to increase the randomness to improve its application
in image encryption, as detailed in the following sections. However, finding the parameters
that generate chaotic behavior is not a trivial task, and the challenge is formulating the
problem to be solved in an intuitive fashion (e.g., applying heuristics [24]), where the
solutions provide acceptable values for the objective functions in either mono-objective
or multi-objective optimization [25,26]. For instance, the non-dominated sorting genetic
algorithm (NSGA-II) has been adopted as one of the best multi-objective algorithms [27].
In this work, it was applied to two objective functions: maximizing MLE and DKY, both of
which are in conflict and can be ranked on the Pareto front.

According to [23], the Chen system is optimized by NSGA-II, and Table 1 shows the
non-optimized values of Equation (1) in the first row (a = 35, b = 3 and c = 28, while
LE+ = 2.0440 and DKY = 2.1698) and five optimal solutions from rows 2 to 6. The complete
Pareto front using an initial population of 120 individuals for 100 generations is shown
in Figure 1. The parameters were set in the ranges a in [33.0,45.0], b in [0.1,5.0] and c in
[20.0,28.0]. Figure 2 shows the attractors of the six cases given in Table 1.

https://www.pks.mpg.de/tisean/Tisean_3.0.1/index.html
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Figure 1. Pareto front after optimizing LE+ and DKY of the Chen system in Equation (1) when
applying NSGA-II.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Chaotic attractors of the Chen system in Equation (1) using the parameters of the: (a) first
row, (b) second row, (c) third row, (d) fourth row, (e) fifth row, and (f) sixth row, given in Table 1.
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Table 1. Optimization results of Equation (1) applying NSGA-II, listing the non-optimized parameters
in the first row and five optimal solutions taken from the Pareto front shown in Figure 1.

a b c LE+ DKY

35.0 3.0 28.0 2.0440 2.1698
35.514979 2.6385232 27.582793 2.6800429 2.2042597
35.488084 2.6193955 27.584261 2.6794532 2.2050013
33.532833 1.4708819 27.400097 2.4047606 2.2425449

33.0 1.2355012 27.714443 2.2429468 2.2592703
33.0 1.0910769 27.836426 2.2172809 2.2663249

The chaotic time series can be used to generate random binary strings, in which the
challenge is guaranteeing the randomness. This work applies MOD255 to convert the real
values to binary values. In this case, the sampling period is estimated by applying the auto-
correlation function to the chaotic time series [28]. This analysis increases the entropy [29].
Figure 3a shows the autocorrelation of x1 in the Chen system, and Figure 3b details the first
zero crossing at iteration 127, meaning that one can sample every 127 iterations, and the
real value is multiplied by a large number (in this work, 10,000,000). Finally, by applying
MOD255, one obtains 8 bits (bytes) that are concatenated to the next ones to generate the
random binary string that is used to encrypt images, as detailed in the next sections.

The randomness of the binary strings is evaluated herein by performing two statistical
tests, namely NIST [30] and TestU01 [31]. Considering the fractional-order Chen system
in Equation (2), whose optimized parameters are a = 39.2601, b = 3.2218 and c = 29.7607,
we performed NIST tests for two cases. The first case consisted of 100 binary strings of
1,000,000 bits, and the second had the same binary string, but we applied post-processing
with XOR operations for every 5 bits [32]. Table 2 shows the NIST results without and with
XOR operations as post-processing.

Table 2. NIST tests of the binary sequences from the fractional-order Chen system in Equation (2)
using optimized parameters (a = 39.2601, b = 3.2218 and c = 29.7607) and without and with XOR
post-processing. The symbol “*” means that the test was unsatisfactory, so one can see that the
randomness was successful when applying XOR post-processing.

Statistical p-Value Proportion p-Value Proportion
Test without XOR without XOR with XOR with XOR

Frequency 0.021932 96/100 0.657933 99/100
BlockFrequency 0.494136 98/100 0.319084 98/100

CumulativeSums 0.002230 87/100 * 0.236810 99/100
CumulativeSums 0.002357 95/100 * 0.455937 99/100

Runs 0.797481 99/100 0.137282 99/100
LongestRun 0.887251 100/100 0.657933 99/100

FFT 0.192597 99/100 0.616305 99/100
ApproximateEntropy 0.977971 100/100 0.000555 98/100

Serial 0.076439 100/100 0.115387 100/100
Serial 0.042955 100/100 0.000513 100/100

LinearComplexity 0.256352 94/100 * 0.759756 98/100

The same binary strings were used for the TestU01 statistical test to verify the uni-
formness of the strings, which results are given in Table 3. Four classes of modules are
considered in TestU01: those implementing random number generators, statistical tests,
batteries of predefined tests, and the ones considering whole families of generators.
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(a)

(b)

Figure 3. (a) Autocorrelation of the chaotic time series x1 of the Chen system. (b) Detail of the
correlation with the first zero crossing.
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Table 3. TestU01 results for the binary sequences from the fractional-order Chen system in Equation (2)
using optimized parameters (a = 39.2601, b = 3.2218 and c = 29.7607) when applying XOR post-
processing using the version TestU01 1.2.3.

Statistical Number of Bits Total Time Total Not Passed Eps Value
Set Test Tests Tests

Rabbit 100,000,000 00:01:04.78 40 1 MultinomialBitsOver <1× 10−300

8 Fourier3 <2.5× 10−39

alphabit1 100,000,000 00:00:02.14 17 3 MultinomialBitsOver <1× 10−300

4 MultinomialBitsOver <1× 10−300

alphabit2 100,000,000 00:00:02.50 17 3 MultinomialBitsOver <1× 10−300

4 MultinomialBitsOver <1× 10−300

The batteries of the predefined tests were applied herein to evaluate the binary strings
of the fractional-order Chen system in Equation (2) with optimized parameters (a = 39.2601,
b = 3.2218 and c = 29.7607). A file of 100 binary strings of 1,000,000 bits was generated to
execute the tests with 3 sets of 40, 17 and 17 tests, respectively, obtaining the results given
below. Afterward, another file was generated using the same Chaotic system with the same
optimized parameters but applying post-processing, where it can be appreciated that all
the tests passed. The random binary strings were used to encrypt images in MQTT for the
IoT protocol as detailed in Section 4.

3. Synchronization of Optimized Chaotic Systems

Two identical or different chaotic systems can be synchronized to have the same behav-
ior, where the challenge is minimizing or even cancelling a synchronization error [33]. The
seminal works on synchronizing two chaotic systems in the master–slave topology belong to
Pecora and Carroll [34,35]. Recent synchronization techniques include Hamiltonian forms
and the observer approach [2], open-plus-close-loop (OPCL) [36,37], sliding mode [38–40],
the Kalman filter [41] and adaptive control [42–44], among others [45–48]. In this work,
Hamiltonian forms and the observer approach and the OPCL synchronization method
were applied because they guaranteed avoiding the error, and therefore the recovery of
data was 100%.

3.1. Hamiltonian Forms and Observer Approach

The synchronization technique based on Hamiltonian forms and the observer ap-
proach considers that any chaotic system can be described as an initial value problem of
the form ẋ = f (x) [2]. In such a case, the Hamiltonian approximation can be described by
Equation (3), where ∂H is the gradient vector of an energy function H, which is positive
definite in Rn. H is a quadratic function defined by H(x) = 1

2 XT Mx, with M as a symmet-
rical and positive definite matrix. J(x) and S(x) are matrices representing the conservative
and non-conservative parts of the system, respectively, and must satisfy the conditions
J(x) + JT(x) = 0 and S(x) = ST(x). One may add a destabilizing vector such as F(x) to
describe the non-linearities of the system, and the Hamiltonian form is then defined by
Equation (4):

ẋ = J(x)
∂H
∂x

+ S(x)
∂H
∂x

, x ε Rn. (3)

ẋ = J(x)
∂H
∂x

+ S(x)
∂H
∂x

+ F(x), x ε Rn. (4)
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With the system with a destabilizing vector and a non-linear output, one obtains
Equation (5), where y is a vector denoting the output of the system. In addition, if ξ is a
vector of the estimated states of x, and if η is the estimated output in terms of ξ, then an
observer for Equation (4) can be given by Equation (6), where K is a vector of constant
gains and determined by Sylvester’s criterion for negative definite matrices, and therefore,
the synchronization is guaranteed by accomplishing the following two theorems [2]:

ẋ = J(y)
∂H
∂x

+ S(y)
∂H
∂x

+ F(y), x ε Rn,

y = C
∂H
∂x

, y ε Rm.
(5)

ξ̇ = J(y)
∂H
∂ξ

+ S(y)
∂H
∂ξ

+ F(y) + K(y− η),

η = C
∂H
∂ξ

.
(6)

Theorem 1. The state x of the nonlinear system in Equation (5) can be global, exponential and
asymptotically estimated by the state of an observer of the form in Equation (6) if the pair of matrices
(C,S) is observable.

Theorem 2. The state x of the nonlinear system in Equation (5) can be global, exponential and
asymptotically estimated by the state of an observer of the form in Equation (6) if and only if there
exists a constant matrix K such that the symmetric matrix in Equation (7) be negative definite:

[W − KC] + [W − KC]T = [S− KC] + [S− KC]T = 2[S− 1
2
(KC + CTKT)]. (7)

Considering Equation (2), one can synchronize two identical systems as follows: the
master system can be described using subindex m to find Equation (8), and the energy
function is defined by Equation (9). By combining these equations, the master system in
Hamiltonian form is given in Equation (10):

Dq1
t xm1 = a(xm2 − xm1),

Dq2
t xm2 = (c− a)xm1 − xm1xm3 + cxm2,

Dq3
t xm3 = xm1xm2 − bxm3.

(8)

H(x) =
1
2
[x2

m1 + x2
m2 + x2

m3]. (9)

Dq1
t xm1

Dq2
t xm2

Dq3
t xm3

 =

 0 a− c/2 0
c/2− a 0 0

0 0 0

∂H
∂x

+

−a c/2 0
c/2 c 0

0 0 −b

∂H
∂x

+

 0
−xm1xm3
xm1xm2

. (10)

The master system is synchronized with a slave one, which is obtained from Equa-
tion (2) by adding a gains vector multiplied by an error that is the difference of the states
variable in their master and slave topologies. The gains vector is obtained by verifying
the pair of matrices (C, S) and creating the slave through an observer for Equation (10).
Using the optimized parameters of the coefficients (a = 39.260116, b = 3.2218111 and
c = 29.760754), the gains are set to k1 = k2 = k3 = 10. As a result, the observer is given by
Equation (11), and therefore, the Hamiltonian form with the observer approach of the slave
is given in Equation (12):
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Dq1
t xs1

Dq2
t xs2

Dq3
t xs3

 =

 0 a− c
2 0

c
2 − a 0 0

0 0 0

∂H
∂x

+

−a c
2 0

c
2 c 0
0 0 −b

∂H
∂x

+

 0
−xs1xs3
xs1xs2

+

10
10
10

(y− η). (11)

Dq1
t xs1 = a(xs2 − xs1) + 10(xm1 − xs1),

Dq2
t xs2 = (c− a)xs1 − xs1xs3 + cxs2 + 10(xm2 − xs2),

Dq3
t xs3 = xs1xs2 − bxs3 + 10(xm3 − xs3).

(12)

The portraits of the synchronization of the master–slave systems are shown in Figure 4.
The chaotic time series are shown in Figure 5, and the synchronization error is given in
Figure 6, where one can appreciate that synchronization was reached around iteration
900. The hardware implementation will have a speed depending on the clocks required to
complete one iteration during the synchronization process, as shown in Section 4.

(a) (b)

(c)

Figure 4. Portraits of the master–slave variables of Equation (2) synchronized by Hamiltonian forms
and by setting a = 39.260116, b = 3.2218111 and c = 29.760754, and k1 = k2 = k3 = 10: (a) x1, (b) x2

and (c) x3.
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Figure 5. Time series of the master–slave systems of Equation (2) synchronized by Hamiltonian
forms, as shown in Figure 4.

Figure 6. Synchronization errors from Figures 4 and 5, applying Hamiltonian forms and the observer
approach.

3.2. OPCL Synchronization Method

The synchronization method, known as open-plus-closed-loop (OPCL), combines
controlling systems in open and closed loops. It is a heterogeneous method allowing
evaluation of the parameters of the master and slave, thus providing flexibility for the
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control and stabilization of the systems. In this manner, for a system given in the form
ẋ = f (x), the master system is denoted by Equation (13), where x1m(t), x2m(t) and x3m(t)
denote the state variables associated with Equation (2). The slave system is given by
Equation (14), where x1s(t), x2s(t) and x3s(t) denote the state variables, and D(v(t), u(t))
is given in Equation (15), with D1 and D2 as the open and closed loop parts, respectively,
and given by Equations (16) and (17):

d
dt

u(t) = F(u(t)) = F(x1m(t), x2m(t), x3m(t)); u ∈ R3. (13)

d
dt

v(t) = F(v(t)) + D(v(t), u(t)) = F(x1s(t), x2s(t), x3s(t)) + D(v(t), u(t)); v ∈ R3. (14)

D(v(t), u(t)) = D1(u(t)) + D2(v(t), u(t)). (15)

D1(u(t)) =
du(t)

dt
− F(u(t)). (16)

D2(v(t), u(t)) =
(

H − δ

δt
F(u(t))

)
e(t). (17)

H is an arbitrary matrix and constant called Hurwitz such that the simplicity of the sale
system depends on the selection of this matrix, in which one can add constants to obtain the
gain function. The synchronization error in OPCL is defined as e(t) = v(t)− u(t), and this
must tend toward zero to accomplish synchronization, which can be verified by a Taylor
series [49]. An important condition for successful synchronization is that the real parts of
the eigenvalues in H must be negative. This is a necessary condition because H can have
eigenvalues equal to zero so the synchronization can occur [36].

Lets us consider again Equation (2), where the master system is proposed as in
Equation (18). One can propose that the open loop be null or zero (D1(u(t)) = 0) so one
can propose the closed loop. In this case, one can define the partial derivative of the master
system given in Equation (19), and H is proposed by Equation (20), where P1 has values
that are proposed to reduce the complexity of H and to obtain the closed loop contribution
(In this case, P1 = −33, and a = 39.260116, b = 3.2218111 and c = 29.760754). As P1 is
known, the eigenvalues of H are given in Equation (21), all of them having a negative
real part to accomplish synchronization. The contribution of the closed loop is given in
Equation (22), so the slave system can be proposed by Equation (23):

Dq1
t xm1 = a(xm2 − xm1),

Dq2
t xm2 = (c− a)xm1 − xm1xm3 + cxm2,

Dq3
t xm3 = xm1xm2 − bxm3.

(18)

δ

δt
F(u(t)) =

 −a a 0
c− a− xm3 c −xm1

xm2 xm1 −b

. (19)

H =

 −a a 0
c− a p1 + c 0

0 0 −b

. (20)

λ1 = −3.2218, λ2 = −21.2496− 6.9692i, λ3 = −21.0 + 6.9692i. (21)
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D2 =

 −a a 0
c− a p1 + c 0

0 0 −b

−
 −a a 0

c− a− xm3 c −xm1
xm2 xm1 −b

(vt − ut)

=

 0
xm3 ∗ (xs1 − xm1) + P1 ∗ (xs2 − xm2) + xm1 ∗ (xs3 − xm3)

−xm2 ∗ (xs1 − xm1)− xm1 ∗ (xs2 − xm2)

.

(22)

Dq1
t xs1 = a(xs2 − xs1),

Dq2
t xs2 = (c− a)xs1 − xs1xs3 + cxs2 + xm3 ∗ (xs1 − xm1) + P1 ∗ (xs2 − xm2) + xm1 ∗ (xs3 − xm3),

Dq3
t xs3 = xs1xs2 − bxs3 − xm2 ∗ (xs1 − xm1)− xm1 ∗ (xs2 − xm2).

(23)

The master–slave synchronization is performed using Equations (18) and (23). Figure 7
shows the phase diagrams to illustrate the synchronization by OPCL. The time series are
shown in Figure 8, and synchronization was accomplished by iteration 2500, as shown in
Figure 9.

When comparing the synchronization results when applying Hamiltonian forms
versus OPCL, one can see that for Equation (2), the Hamiltonian forms method was faster
than OPCL, taking 900 and 2500 iterations to eliminate the error, respectively.

(a) (b)

(c)

Figure 7. Portraits of the master–slave variables synchronized by OPCL: (a) x1, (b) x2 and (c) x3,
setting a = 39.260116, b = 3.2218111 and c = 29.760754 with P1 = −33.
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Figure 8. Times series of the master–slave systems synchronized by OPCL, as shown in Figure 7.

Figure 9. Synchronization errors from Figures 7 and 8 when applying the OPCL method.

4. Hardware Implementation of an Image Encryption System on MQTT Based on Chaos

Once two chaotic systems are synchronized, they have the same behavior, and one can
use the master system to encrypt an image that can be recovered by the slave. The channel
can be wired or wireless, as performed herein by implementing the systems on MQTT
for the IoT protocol. An intruder cannot recover the data because he or she must be
synchronized with the transmitter and must have the same chaotic binary string, as detailed
herein.
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Figure 10 sketches the proposed system that is implemented on MQTT. The broker
controls the communication among nodes that can become publishers (transmitter) or
subscribers (receiver), but they have embedded a chaotic oscillator of different topologies,
with different state variables, different parameters and different step sizes. This provides a
preliminary key to perform private communication between a publisher and any number
of subscribers. Another important thing is that the chaotic systems can have different initial
conditions, and they synchronize as described in Section 3.

The systems sketched in Figure 10 can be programmed on RPis as shown in Figure 11.
Raspberry Pi 2 is taken as the publisher that sends data to the broker (Raspberry Pi 1), which
can be read by all subscribers (from Raspberry-Pi 3 to n). However, if the data are encrypted
by a chaotic binary string, then the subscribers need to have the chaotic system to recover
the original data. All subscribers can read the published data, but the synchronization
between the publisher with any subscriber occurs by embedding the chaotic system and the
synchronization method in the appropriate RPis. The chaotic binary strings are generated
as detailed in [7].

The physical implementation of the secure transmission system is shown in Figure 12,
where one can see four RPis labeled as publisher, broker, subscriber and hacker. The four
RPis are monitored using the software “Microsoft Remote Desktop”, which visualizes the
remote desks as shown in Figure 13. It works under the identification of the IP addresses of
each RPi. The configuration window is shown in Figure 14, where the IP address of the
RPi, denoted as “PC name”, the “User account” and the name of the node, which can be
the same as the user account, can be appreciated. The other parameters can be left with the
default values. One can visualize any number of nodes (RPis) connected under the MQTT
protocol via Wi-Fi. The RPis can be in different local networks, and they can be connected
through external servers that can be connected to the broker.

Figure 10. MQTT protocol using chaotic systems in the nodes controlled by a broker for image en-
cryption.
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Figure 11. Secure transmission of data on MQTT protocol using Raspberry Pis synchronized by
chaotic systems, which are embedded as sketched in Figure 10.

Figure 12. Physical realization of the secure communication system on MQTT for IoT protocol
using RPis.
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Figure 13. Remote desktops of the RPis shown in Figure 12.

Figure 14. Configuration of software “Microsoft Remote Desktop”.

Before transmitting an image, the scheme in Figure 12 must be synchronized. This
process is performed by publishing the values of the state variables at each iteration, which
are provided by a numerical method, and the subscriber answers, sending the error between
the read value and the one created by its embedded chaotic system. When the error is zero,
the synchronization is successful as shown in Figure 15. Figure 15a shows the error when
the publisher and subscriber are not synchronized (i.e., an intruder who does not embed
the chaotic system must not have the opportunity to decrypt the data). Figure 15b shows
the error when applying Hamiltonian forms and the observer approach, and Figure 15c
shows the error when applying the OPCL method. The programming of the RPis was
performed using Python and the 32-bit floating point format. The time taken to produce a
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synchronization error equal to 0 was 2.1 s on average when using 3B+ RPis, which include
a wireless LAN 802.11 b/g/n of 2.4 GHz.

(a) (b)

(c)
Figure 15. Synchronization errors in Figure 12 programmed in Python when the publisher and
subscriber (a) never synchronize (hacker case), (b) synchronize with Hamiltonian forms and (c) syn-
chronize with OPCL method.

RGB images are encrypted by the random binary string generated by the Chen system
in the publisher, as shown in Figure 12. The image is published in the broker, and after
a subscriber synchronizes with the publisher, the image can be recovered. As the hacker
does not synchronize, he or she cannot recover the image. Figures 16 and 17 show the
experimental results, in which one can see the original image, the image encrypted by
the publisher, and the image recovered by the subscriber. Table 4 shows the correlation
analyses.

(a) (b) (c)

Figure 16. Encrypting Lena: (a) original Image, (b) encrypted image and (c) recovered image.
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(a) (b) (c)

Figure 17. Encrypting Baboon: (a) original image, (b) encrypted image and (c) recovered image.

Table 4. Correlations between original and encrypted images (OEI) and between original and
recovered images (ORI) transmitted using Raspberry Pis applying Hamiltonian forms and using
Chen system.

Image Correlation OEI Correlation ORI

Lena 512 × 512 pixels 0.0066 1.0
Baboon 512 × 512 pixels 0.0109 1.0

Other security tests were applied herein. The histogram analyses were performed
according to [50] and are shown in Figure 18. For Lena, one can see that the Chen system
was quite good for providing a uniform distribution to resist statistical attacks.

The key space was established by taking into account the initial conditions (x10, x20
and x30), parameters of the chaotic system (a, b and c), and step size (h). By applying
Hamiltonian forms, we added the gains (kx1, kx2 and kx3) so that all of them added up to 10
variables for the synchronized system, and since the implementation used 32-bit precision,
it gave a key space of 2320. When applying the OPCL method, the gains k were replaced
by the Hurwitz parameters (p1 and p2) so that 9 parameters existed, and the key space
became 2288.

The correlation analysis for adjacent pixels (horizontal, vertical or diagonal) [51] is
shown in Table 5 for Lena (512 × 512 pixels). Figure 19 shows the distribution of the
correlation of 10,000 pairs of adjacent pixels in vertical, horizontal and diagonal directions.
As one can see, the adjacent pixels of the original image (left column) were highly correlated,
but for the encrypted image (right column), the correlation changed, meaning that the
dispersion was random.

Table 5. Correlation coefficients (vertical, horizontal and diagonal) among adjacent pixels in original
and encrypted Lena images using Chen system.

Correlation Original Image Encrypted Image

Vertical 0.9895 −0.0013
Horizontal 0.9796 0.0080
Diagonal 0.9689 −0.0113

The entropy analysis helped to appreciate the security of the cipher algorithm [52]. The
Shanon H (s) entropy is defined by Equation (24), and the ideal value for a fully disordered
image was eight. In this work, for the original Lena image (512 × 512 pixels), it was 7.27,
and for the encrypted version using the Chen system, it was 7.9997. The entropy analyzed
by colors yielded 7.9993, 7.9992 and 7.9992 for red, green and blue, respectively:
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H(s) =
2N−1

∑
i=0

P(si)Log2(
1

P(si)
)bit. (24)

Finally, we performed differential attack analyses, known as NPCR and UACI [53].
Table 6 shows the results for the encrypted Lena image (512 × 512 pixels) using the Chen
system. As one can see, all the critical values given in [53] were passed.

(a) (b)

(c) (d)

(e) (f)

Figure 18. Histograms of Lena: (a) original image (red color), (b) encrypted image of R, (c) original
image (green color), (d) encrypted image of G, (e) original image (blue color) and (f) encrypted image
of B.
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(a) (b)

(c) (d)

(e) (f)

Figure 19. Correlation of adjacent pixels for Lena (512× 512 pixels). The left column shows (a) vertical,
(c) horizontal and (e) diagonal directions of the original image, and the right column shows (b) vertical,
(d) horizontal and (f) diagonal directions of the encrypted image using the Chen system.

Table 6. NPCR and UACI analyses for encrypted Lena image (512 × 512 pixels).

Analysis Color Value (%) Test with Critical Values [53]

NPCR

R 99.5803 successful
G 99.6246 successful
B 99.5834 successful

RGB 99.5961 successful

UACI

R 33.3723 successful
G 33.4408 successful
B 33.3834 successful

RGB 33.3834 successful
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5. Conclusions

In this work, integer- and fractional-order chaotic systems were applied to encrypt
color images that were transmitted under MQTT for the IoT protocol using Raspberry
Pis, which were connected via Wi-Fi. The Chen system was the case study for generating
random binary strings that were evaluated by the NIST and TestU01 tests. The best random
sequence was obtained by performing post-processing with XOR. This random sequence
was applied in the encryption process over MQTT, in which the publisher was synchro-
nized with a subscriber by applying two synchronization methods, namely Hamiltonian
forms and the OPCL method. In this manner, our proposed encryption method can be
summarized as follows. The publisher sends an encrypted image that is only recovered
by the subscriber that is embedding the same chaotic system; otherwise, the subscriber
only reads noise-like data. This provides more privacy and security, and the average time
for synchronization was measured to be 2.1 s over MQTT using Raspberry Pis over Wi-Fi.
The encryption and decryption process for a color image such as Lena (512 × 512 pixels)
took approximately 214 s. The proposed encryption/decryption system based on chaos un-
der MQTT was tested by security and differential attack methods. All the tests—histogram,
correlation among 10,000 pairs of adjacent pixels, entropy, NPCR and UACI,—were passed
successfully, thus confirming the usefulness of chaotic systems in adding more security to
MQTT for the transmission of encrypted images.
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