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Abstract: This article suggests a novel enhanced slime mould optimizer (ESMO) that incorporates
a chaotic strategy and an elitist group for handling various mathematical optimization benchmark
functions and engineering problems. In the newly suggested solver, a chaotic strategy was integrated
into the movement updating rule of the basic SMO, whereas the exploitation mechanism was
enhanced via searching around an elitist group instead of only the global best dependence. To handle
the mathematical optimization problems, 13 benchmark functions were utilized. To handle the
engineering optimization problems, the optimal power flow (OPF) was handled first, where three
studied cases were considered. The suggested scheme was scrutinized on a typical IEEE test grid, and
the simulation results were compared with the results given in the former publications and found to
be competitive in terms of the quality of the solution. The suggested ESMO outperformed the basic
SMO in terms of the convergence rate, standard deviation, and solution merit. Furthermore, a test
was executed to authenticate the statistical efficacy of the suggested ESMO-inspired scheme. The
suggested ESMO provided a robust and straightforward solution for the OPF problem under diverse
goal functions. Furthermore, the combined heat and electrical power dispatch problem was handled
by considering a large-scale test case of 84 diverse units. Similar findings were drawn, where the
suggested ESMO showed high superiority compared with the basic SMO and other recent techniques
in minimizing the total production costs of heat and electrical energies.

Keywords: slime mould optimizer; chaotic behavior; elitist group; optimal power flow; fuel costs;
heat and electrical power dispatch problem

MSC: 68T20

1. Introduction

The term “optimization process” relates to the procedure of determining the optimal
settings for certain system characteristics in order to complete the design, operation, or
planning tasks at the lowest possible cost [1]. Practical implementations and issues in
artificial intelligence and machine learning are, in general, unconstrained or discrete [2]. As
a result, finding optimal alternatives using standard mathematically based programming
approaches is difficult [3]. Therefore, numerous optimization techniques were created
in recent years to enhance the efficiency of several systems and minimize computing
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costs. Conventional optimization techniques have several flaws and restrictions, such
as convergence to local optima and an undefined search space. Furthermore, they only
provide a single-based solution [4].

On the other hand, effective optimization techniques must be applied when solv-
ing real-world optimization problems. In electrical power systems, they are necessary
for the effective integration [5], analysis, control, and administration of modern design
network processes [6]. OPF is a multi-modal, non-linear, non-differentiable, non-convex,
and constrained minimization problem that involves fulfilling a combination of operating,
technological, and security constraints, as well as picking optimal control variable values.
OPF aims to lower energy generation and distribution operating costs by controlling control
variables while keeping economic, technical, and environmental considerations in view [7].

Moreover, from the perspective of economic and environmental conservation, the
combined heat and electrical power dispatch (CHEPD) problem has piqued the attention
of several scholars. Numerous approaches to the CHPED issue were developed over
time, including computational approaches and meta-heuristic methods. Power plants of
thermal nature use fossil fuels, such as gas, coal, or oil to generate electricity. During the
production of electricity, high-temperature heat is used to create steam power. Despite
this, low-temperature heat is wasted via cooling systems, flue gas, and other means. As
a result, a thermal power plant’s efficiency is reduced to 50 to 60%. However, during the
heating process, several forms of pollution, such as sulfur, nitrogen, and carbon dioxide, are
produced, causing the warming effect and harming the ecological landscape. Cogeneration
systems where heat and power producers generate energy at the minimum potential costs
while minimizing pollutants are referred to as combined heat and power economic dispatch
(CHEPD) [8].

Meta-heuristic algorithms have received a lot of interest and have been used to manage
a wide range of optimization issues. They have common aspects, including the search
strategy, which comprises two stages [9], the first of which is termed diversification (explo-
ration), and the second is called intensification (exploitation). The meta-heuristic method
creates randomized operations in the first stage to investigate various searching space areas.
The optimization approach then attempts to find the best solution in the searching area in
the second stage. To prevent entrapment at an optimum, an efficient meta-heuristic opti-
mization technique must strike a balance between the exploration and exploitation phases.

Physics-based algorithms, evolutionary algorithms, swarm intelligence algorithms,
and human-based algorithms are the four main types of meta-heuristic algorithms. Physical
rules, such as the Henry gas solubility algorithm [4] and equilibrium algorithm (EA) [10–13],
motivate physics-based algorithms. Evolutionary algorithms were developed by modeling
biological evolutionary characteristics, such as mutations, crossovers, and selections, as
described in [14,15] regarding the genetic algorithm and in [16] regarding the evaluation
strategy. Swarm intelligence algorithms, such as jellyfish search optimization (JFSO) [17],
grasshopper optimization GO [18], JFSO [17], GO [18], heap-based technique (HT) [19],
whale optimization algorithm (WOA) [20], manta rays foraging optimization (MRFO) [21],
marine predators algorithm (MPA) [22], particle swarm optimization [23], and artificial bee
colony [24], are a series of techniques influenced by swarming and animal group behavior.

A slime mould optimizer (SMO) is a novel technique that was developed by con-
sidering the spreading and foraging behavior of slime mould and presented in 2020 by
Li et al. [25]. The basic SMO has a unique mathematical model and very competitive
results, along with a simple code structure. The gradient-free SMO method simulates
positive and negative feedbacks of the propagation wave of slime mould. It has been
used to address various real engineering optimizing issues because of its high globally
searching ability and resilience, such as economic emission dispatch [26], optimal power
flow [27], operation of cascade hydropower stations [28], demand estimation of urban
water resources [29], and design optimization problems [30]. Added to that, other recent
versions of the SMO were effectively presented, such as the leader SMO (LSMO) [31],
equilibrium SMO (EQSMO) [32], adaptive opposition SMO (AOSMO) [33], and fitness-
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distance-balance SMO (FDBSMO) [34]. Additionally, different statistical comparisons of
the competing meta-heuristic optimization were reviewed [35,36], where numerous runs
of different optimizers can be effectively compared. Both studies stated the importance of
the statistical comparison of stochastic optimizations and displayed the significance of the
Friedman ranking test, Wilcoxon rank-sum test, and the convergence rates in terms of the
average, median, and best obtained results.

However, in the present period, SMO still has several drawbacks, such as low compu-
tation precision and a premature convergence rate on specific benchmark problems [29].
Hence, in this study, an enhanced slime mould optimizer (ESMO) that uses chaotic behavior
and an elitist group was proposed for solving engineering problems. The proposed ESMO
provided two modifications to the standard SMO to enhance its performance. At first, to
enhance the exploitation searching feature, an elitist group was created and updated to
store the best individuals in each iteration. Second, to enhance the exploration searching
feature, a logistic map that uses chaotic behavior was designed to boost the searching
in a highly stochastic nature. The main contributions proposed in this study are listed
as follows:

• A chaotic logistic mapping and an elitist group were combined with SMO to formulate
a novel ESMO with better performance.

• The standard SMO and the proposed ESMO were applied to several benchmark
functions and different practical engineering problems, including the OPF in power
systems and the CHEPD combined heat and power systems.

• When handling different uni-modal and multi-modal functions, the proposed ESMO
provided better performance than the original SMO and miscellaneous recent algo-
rithms.

• When handling the OPF, the proposed ESMO demonstrated superiority over sev-
eral reported techniques in minimizing the fuel costs, the losses, and the pollutant
emissions.

• When handling the CHEPD problem, the proposed ESMO achieved the minimum
total production costs against several reported techniques

• Moreover, better robustness and stability were demonstrated by the proposed ESMO
compared with different recent SMO versions.

2. Enhanced Slime Mould Optimizer
2.1. Standard Slime Mould Optimizer

The slime mould optimizer (SMO) is a novel optimizer that relies on the oscillation
pattern of slime mould in reality. It has a distinctive computational framework that uses
dynamic weights to imitate the processes to produce positive and negative responses of the
slime mould propagation wave to constitute the optimized route for attaching food [25].
An initial SMO population of n individuals is used for every d-dimensional optimizing
task. Equation (1) initializes each member in the population as a vector with d entries.

Yj(0) = Ymin + rand(0, 1)·[Ymax −Ymin] j = 1 : n (1)

where Ymin and Ymax are the solutions representing the control variables’ minimum and
maximum bounds.

In the standard SMO, there are two stages, namely, the approach and food wrap-
ping [37]. In the first stage, because slime mould may pursue food based on the scent in the
air, this behavior can be represented using the formula below:

Yj(It + 1) =

{
Yb(It) + υ1·(W·Yr1(It)−Yr2(It)) Pr > r

υ2·Yj(It) Pr ≤ r
j = 1 : n (2)

where It is the present iteration, Yj is the slime mould position, Yb is the position with the
greatest odor concentration, and Yr1 and Yr2 are two solutions chosen at random from the
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population. The slime mould selection behavior is replicated by two components, namely,
υ1 and υ2, where υ2 decreases linearly from 1 to 0. W is the weight of the search agent,
while r is a random value between [0, 1]. The Pr formula is written as follows:

Pr = tanh|S(j)−OBF| j = 1 : n (3)

where S(j) denotes the present individual’s fitness score and OBF denotes the overall best
fitness score over all the iterations. The following is the formula for υ1:

υ1 = [−arctanh
(

1− 2
maxIt

)
, arctanh

(
1− 2

maxIt

)
] (4)

where the maximum number of iterations is represented by maxIt. The following is the
weight W [38,39]:

W(Indexsmell(j)) =


1 + r· log

(
BF−S(j)
BF−WF + 1

)
, condition

1− r· log
(

BF−S(j)
BF−WF + 1

)
, others

j = 1 : n (5)

Condition indicates the first half of the population and r is a randomized value within
[0, 1]. The optimal and worst values acquired in the current iteration are denoted by BF
and WF, respectively, and Indexsmell represents the sorted series of fitness ratings:

Indexsmell = sort(S) (6)

When searching, the second stage computationally models the contraction mechanism
of slime mould’s venous tissue arrangement. The slime mould may change the searching
behaviors based on the food quality that it eats. The slime mould’s exact model for adjusting
its location is as follows:

Yj(It + 1) =


Ymin + rand(0, 1)·[Ymax −Ymin]

Yb(It) + υ1·(W·Yr1(It)−Yr2(It))

υ2·Yj(It)

rand < z

Pr > r

Pr ≤ r

(7)

where rand and r are randomized values within [0, 1]. z is a parameter that determines
how well a balancing process can explore and utilize data, and distinct values may be used
depending on the situation. Figure 1 explains the steps of the SMO.
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Figure 1. Flowchart of the SMO.

2.2. Proposed ESMO

In this section, an enhanced slime mould optimizer (ESMO) that uses chaotic be-
havior and an elitist group algorithm is presented to improve the performance of the
standard SMO.
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The SMO’s performance is improved by two changes. To enhance the exploitation
searching feature, an elitist group, with a size of five individuals, is created and updated to
store the best four individuals in each iteration besides the mean individual, just like the
equilibrium pool in EA [9], as follows:

Yj(It + 1) = YElitist(It) + υ1·(W·Yr1(It)−Yr2(It)) i f Pr > r (8)

YElitist(It) = rand
(
[Yb1; Yb2; Yb3; Yb4; YAvg]

)
(9)

where YElitist is the elitist group with a size of five individuals, Yb is the position with the
greatest odor concentrations, and YAvg is the mean position over the first four greatest
concentrations. Therefore, the first four positions are stored in the elitist group besides the
average position. In each iteration, the best four individuals are updated and the mean
individual over them is calculated.

Based on this, exploitation searching is supported in various preferred directions.
Furthermore, to enhance the exploration searching feature, a logistic map that uses chaotic
behavior is designed to boost the searching in a highly stochastic nature [40]. Based on that,
a produced vector (Cm) is created via the chaotic logistic map as follows:

Cmj(It + 1) = 4Cmj(It)(Cmj(It)− 1)) (10)

Cm(0) = rand(1, dim) (11)

Using Equation (11), a vector is generated in each iteration for each dimensional
variable, as described in Figure 2. As shown, a highly stochastic nature is provided using
the utilized chaotic logistic map, which supports the exploration searching feature.
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As a result, the standard SMO’s updating process is adjusted, and the slime mould’s
new positions are adjusted as follows:

Yj(It + 1) =


Ymin + rand(0, 1)·[Ymax −Ymin]

YElitist(It) + υ1·(W·Yr1(It)−Yr2(It))
υ2·Cmj·Yj(It)

rand < z

Pr > r

Pr ≤ r

(12)

Based on the chaotic behavior and elitist group algorithm, the proposed ESMO’s main
steps are depicted in Figure 3.
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3. Application for Benchmark Optimization Functions

The results of the effectiveness and functionality evaluations of the suggested ESMO
and SMO are presented in this section. They were examined using seven uni-modal and
six multi-modal benchmark functions. Their detailed data are tabulated in Tables 1 and 2
in terms of their mathematical models, variable dimensions, and the considered ranges.

Table 1. Data of the tested uni-modal benchmark functions.

Function Range Dimension (d) Minimum

Fu1 = ∑
d

j = 1xj
2 [−100, 100] 30 0

Fu2 = ∑
d

j = 1

∣∣∣xj

∣∣∣+ Πd
j=1

∣∣∣xj

∣∣∣ [−10, 10] 30 0

Fu3 = ∑
d

j = 1

(
∑

j
i− 1xi

)2
[−100, 100] 30 0

Fu4 = maxj

{∣∣∣xj

∣∣∣, 1 < j < d
}

[−100, 100] 30 0

Fu5 = ∑
d− 1
j = 1

[
100(x j+1−xj

2) + (xj − 1)2
]

[−30, 30] 30 0

Fu6 = ∑
d

j = 1

([
xj + 0.5

])2 [−100, 100] 30 0

Fu7 = ∑
d

j = 1jxj
4 + random[0, 1] [−128, 128] 30 0

Table 2. Data of the tested multi-modal benchmark functions.

Function Range d Min.

Fm1 = ∑
d

j = 1

(
−xj sin(

√∣∣∣xj

∣∣∣)) [−500, 500] 30 −418.9829 × d

Fm2 = ∑
d

j = 1

(
xj

2 − 10 cos(2πxj) + 10
)

[−5.12, 5.12] 30 0

Fm3 = −20 exp

(
−0.2

(
1
d ∑

d
j = 1xj

2
) 1

2
)
− exp

(
1
d ∑

d
j = 1 cos(2πxj)

)
+ 20 + e [−32, 32] 30 0

Fm4 = 1
4000 ∑

d
j = 1xj

2 −Πd
j=1 cos

(
xj√

j

)
+ 1 [−600, 600] 30 0

Fm5 = π
d 10 sin(πz1) + ∑

d− 1
j = 1

[(
zj−1

)2(
1 + 10 sin2(πzj+1)

)]
+(zd − 1)2 + ∑

d
j = 1 u

(
xj, 10, 100, 4

)
where, zj =

1+xj
4 + 1, u(xj, α, β, γ) =


β(xj − α)γ

0
β(−xj − α)γ

i f xj > α

i f −a <xj < α

i f xj < α

[−50, 50] 30 0

Fm6 = 0.1

 ∑
d

j = 1 (xj − 1)2
[
1 + sin2(3πxj + 1)

]
+ sin2(3πx1) + (xd − 1)2[1 + sin2(3πxd)

]
+

d
∑

j=1
u
(

xj, 5, 100, 4
) [−50, 50] 30 0

The suggested ESMO were assessed in comparison to the standard SMO, sine cosine
algorithm (SCA) [41], salp swarm algorithm (SSA) [42], whale optimization algorithm
(WOA) [20], multiverse optimizer (MVO) [43], PSO [44], and DE [45], as depicted in [25].
The parameters were chosen depending on those employed by the original source in the
study or those generally utilized by other researchers. The detailed data of the parameter
settings of these implemented techniques are described in Appendix A (Table A1).

To ensure fairness and consistency during the comparison, the methods were run
under similar conditions. The numbers of solution individuals and iterations were assigned
to be 30 and 1000, respectively. To minimize the effects of randomness in the algorithms,
thirty run times were considered for each function and the mean outcome was used. The
means, standard deviations (STds), and medians were used to analyze the outcomes for
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the purpose of quantifying them. Their comparisons for uni-modal and multi-modal
optimization functions are tabulated in Tables 3 and 4, respectively. As illustrated, the
suggested ESMO had a stronger resilience in terms of obtaining the smallest mean, STd
and median in more than 50% of benchmark functions. For uni-modal functions, the
suggested ESMO always provided the capability to find the minimum median fitnesses of
0, 0, 0, 0, 0.057554, 0.000436, and 5.98 × 10−5, respectively, for the seven tested functions.
Furthermore, it showed great performance in terms of the means and STds compared
with SMO, SCA, SSA, WOA, MVO, PSO, and DE. Similar findings were obtained for the
multi-modal benchmark functions. The suggested ESMO always provided the capability to
find the minimum median fitnesses of −12,569.5, 0, 8.88 × 10−16, 0, 0.000204, and 0.00047,
respectively, for the six tested functions, with great performance in terms of the means and
STds compared with the others.

Table 3. Comparisons of the mean, STd, and median fitnesses for the uni-modal benchmark functions.

Function Index ESMO SMO SCA SSA WOA MVO PSO DE

Fu1

Mean 0 0 0.015244 1.23 × 10−8 4.32 × 10−153 0.318998 128.8037 3.03 × 10−12

STd 0 0 0.029989 3.54 × 10−9 2.28 × 10−152 0.11206 15.36838 3.45 × 10−12

Median 0 1.08 × 10−64 93.6 183 2.34 × 10−54 940 142 0.000401

Fu2

Mean 0 5.33 × 10−207 1.15 × 10−5 0.848146 5.03 × 10−104 0.38893 86.07543 3.72 × 10−8

STd 0 0 2.74 × 10−5 0.941518 1.59 × 10−103 0.137834 65.29881 1.2 × 10−8

Median 0 5.93 × 10−58 0.00806 8.9 3.42 × 10−34 13.9 112 0.00224

Fu3

Mean 0 0 3261.997 236.6219 20,802.28 48.11246 406.9626 24,230.57
STd 0 0 2935.038 155.5471 10,554.39 21.77526 71.30926 4174.379

Median 0 0.0822 27,500 2940 53,000 4610 606 30,000

Fu4

Mean 0 2.30 × 10−197 20.53249 8.254602 45.70634 1.076968 4.498158 1.965929
STd 0 0 11.04664 3.287966 26.93504 0.310884 0.329339 0.430531

Median 0 1.31 × 10−25 75.3 16.2 46.1 14 4.79 13.2

Fu5

Mean 2.286848 0.42779 532.7126 135.5698 27.26543 407.9465 154736 46.12942
STd 6.936666 0.637 1907.446 174.1213 0.57447 615.329 36,039 27.29727

Median 0.057554 9.89 1,580,000 7770 27.3 86,300 185,000 140

Fu6

Mean 0.000477 0.000879 4.550121 0 0.100557 0.323756 132.779 3.1 × 10−12

STd 0.000281 0.000415 0.357049 0 0.110525 0.097394 15.189 1.46 × 10−12

Median 0.000436 0.597 33.7 204 0.101 934 145 0.000411

Fu7

Mean 7 × 10−5 8.84 × 10−5 0.024382 0.095541 0.000986 0.020859 111.0068 0.026937
STd 6.31 × 10−5 7.12 × 10−5 0.020732 0.05053 0.001147 0.009584 21.5378 0.006322

Median 5.98 × 10−5 0.000408 0.604 0.159 0.00266 0.142 111 0.0544

Table 4. Comparisons of the mean, STd and median fitnesses for the multi-modal benchmark functions.

Function Index ESMO SMO SCA SSA WOA MVO PSO DE

Fm1

Mean −12,569.5 −12,569.4 −3886.1 −7816.8 −11,630.6 −7744.9 −6728.1 −12,409.8
STd 0.018169 0.1 225.6 842.3 1277.5 693.4 650.2 149.2

Median −12,569.5 −12,600 −3820 −6980 −11,500 −5590 −6720 −9930

Fm2

Mean 0 0 18.35521 56.61307 0 112.7184 369.2446 59.28367
STd 0 0 21.43693 12.89967 0 24.57189 18.68261 6.07679

Median 0 0.996 72.2 138 0 233 373 86

Fm3

Mean 8.88 × 10−16 8.88 × 10−16 11.32308 2.25688 3.97 × 10−15 1.14572 8.41508 4.64 × 10−7

STd 0 0 9.66101 0.72068 2.03 × 10−15 0.70341 0.41051 1.38 × 10−7

Median 8.88 × 10−16 8.88 × 10−16 14.2 5.03 4.09 × 10−15 7.7 8.75 0.00566

Fm4

Mean 0 0 0.23534 0.01009 0 0.57543 1.03228 9.76 × 10−11

STd 0 0 0.2248 0.01067 0 0.08747 0.00489 2.13 × 10−10

Median 0 0 1.29 2.75 0 8.98 1.04 0.00756

Fm5

Mean 0.000813 0.001195 2.290194 5.542545 0.005205 1.294524 4.80322 3.63 × 10−13

STd 0.001482 0.001422 2.958865 3.122247 0.003512 1.103471 0.8667 3.4 × 10−13

Median 0.000204 0.0142 34,800,000 21.7 0.00521 12.7 5.16 5.03 × 10−5

Fm6

Mean 0.001589 0.001577 518.6869 1.010473 0.181197 0.081286 23.19158 1.69 × 10−12

STd 0.003359 0.003 2782.845 4.701096 0.166955 0.043182 4.195613 1.16 × 10−12

Median 0.00047 0.145 17,800,000 95.1 0.181 1780 28.8 0.000244
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Additionally, a Friedman ranking test of the mean obtained fitness was executed for
the uni-modal and multi-modal benchmark functions for the suggested ESMO, SMO, SCA,
SSA, WOA, MVO, PSO, and DE, as depicted in Table 5.

Table 5. Friedman ranking test results of the mean obtained fitness for the uni-modal and multi-modal
benchmark functions.

Function ESMO SMO SCA SSA WOA MVO PSO DE

Fu1 1.5 1.5 5 4 7 6 8 3
Fu2 1 2 4 6 7 5 8 3
Fu3 1.5 1.5 6 4 7 3 5 8
Fu4 1 2 7 6 8 3 5 4
Fu5 2 1 7 5 3 6 8 4
Fu6 3 4 7 1 5 6 8 2
Fu7 1 2 5 7 3 4 8 6
Fm1 2 1 8 5 4 6 7 3
Fm2 1.5 1.5 4 5 1.5 7 8 6
Fm3 1.5 1.5 8 6 3 5 7 4
Fm4 1.5 1.5 6 5 1.5 7 8 4
Fm5 2 3 6 8 4 5 7 1
Fm6 3 2 8 6 5 4 7 1

Summation 22.5 24.5 81 68 59 67 94 49
Mean rank 1.6071429 1.75 5.7857143 4.8571429 4.2142857 4.7857143 6.7142857 3.5

Final Ranking 1 2 7 6 4 5 8 3

As shown, the suggested ESMO had higher robustness, as it occupied the first rank,
with a mean rank of 1.607. On the other hand, the standard SMO occupied the second rank,
with a mean rank of 1.75. In ascending order, the other algorithms were DE, WOA, MVO,
SSA, SCA, and PSO, with mean ranks of 3.5, 4.2142857, 4.7857143, 4.8571429, 5.7857143,
and 6.7142857, respectively.

4. Application for Engineering Optimization Problems
4.1. Optimal Power Flow in Electric Power Systems

Regarding the OPF issue, the control variables can be seen as follows:

• (Pgen1, Pgen2, . . . , PgenNgen) denote the active output powers of the generators.
• (Qcap1, Qcap2, . . . , QcapNq) denote the absorbing or injecting reactive powers via

switched reactors and capacitors, respectively.
• (Vgen1, Vgen2, . . . , VgenNgen) denote the generator voltages.
• (Ta1, Ta2, . . . , TaNt) denote the transformer tap settings.

where Ngen, Nq, and Nt reflect the number of generators, reactive power sources, and
tap changers, respectively.

Additionally, the dependent variables can be seen as follows:

• (VLoad1, . . . , VLoadNPQ) denote the load bus voltage magnitudes.
• (Qgen1, Qgen2, . . . , QgenNgen) denote the reactive power of the generators.
• (S1, . . . , SNF) denote the transmission line loadings.

4.1.1. Minimization of the Fuel Costs

The OPF problem can be mathematically solved to minimize the fuel generation costs
(F1), as described in Equation (13):

F1 =
Ng

∑
k=1

akPgenk
2 + bkPgenk + ck (13)

where ak, bk, and ck are the cost coefficients of the generator k.
This minimization target should be handled by maintaining different equality con-

straints, as described in Equations (14)–(20), and inequality constraints, as described in
Equations (21) and (22).
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Pgenmin
k
≤ Pgen

k
≤ Pgenmax

k
, k = 1 : Ngen (14)

Vgenmin
k
≤ Vgen

k
≤ Vgenmax

k
, k = 1 : Ngen (15)

Qgenmin
k
≤ Qgen

k
≤ Qgenmax

k
, k = 1 : Ngen (16)

Tamin
L ≤ TaL ≤ Tamax

L , L = 1 : Nt (17)

Qcapmax
var ≤ Qcapvar ≤ Qcapmax

var , var = 1 : Nq (18)

VLoadmin
j ≤ VLoadj ≤ VLoadmax

j , j = 1 : NPQ (19)

|SLine| ≤ Smax
Line, Line = 1 : Nf (20)

Pgenk − PLoadk −Vk

Nb

∑
j=1

Vj(Gkjcos θkj + Bkjsin θkj) = 0, k = 1 : Nb (21)

Qgenk −QLoadk + Qcapk −Vk

Nb

∑
j=1

Vj(Gkjsinθkj − Bkjcosθkj) = 0, k = 1 : Nb (22)

where PLoad and QLoad denote the active and reactive power demands, respectively; θkj is
the phase angle difference between bus k and j; and Bkj is the mutual susceptance between
bus k and j.

In the standard IEEE 30-bus system, the proposed ESMO and SMO were used. Thirty
simulated tests were conducted for both the proposed ESMO and SMO, with a maximal
number of iterations of 300 and a population number of 50. As illustrated in Figure 4, the
basic IEEE 30-bus system consisted of 30 buses, 4 on-load tap changers, 9 capacitive sources,
6 generators, and 41 lines. The statistics for the allowable boundaries of reactive power
production, buses, and transmission lines were derived from [46]. The allowable generator
voltages were 1.1000 and 0.9500 p.u. for the minimum and maximum, respectively.
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To minimize the fuel costs case, the proposed ESMO, standard SMO, and other recent
versions of the SMO of LSMO [31], EQSMO [32], AOSMO [33], and FDBSMO [34] were
performed. Table 6 describes the parameter settings of each applied algorithm to solve
the OPF issue. As shown, the same number of function evaluations was maintained at
15,000 times and the same number of implementations was maintained at 30 times. These
considerations guarantee a fair comparison with equivalent fitness functions between the
applied methods.

Table 6. Parameter settings of the proposed ESMO and other recent SMO versions when minimizing
the costs.

Variables SMO Proposed ESMO LSMO [31] EQSMO [32] AOSMO [33] FDBSMO [34]

Number of individuals 50 50 50 50 25 50
Number of iterations 300 300 300 300 300 300

Number of function evaluation
per each individual 1 1 1 1 2 1

Total number of runs 30

Total number of function
evaluations 15,000

The attained outputs of the proposed ESMO and other recent versions of the SMO,
i.e., LSMO [31], EQSMO [32], AOSMO [33], and FDBSMO [34], are displayed in Table 7.
In addition, Figure 5 depicts their average, median, and best convergence characteristics.
The proposed ESMO clearly beat the other versions of the SMO in terms of reducing fuel
costs. The proposed ESMO achieved the best value of 799.1134 USD/h, while the SMO
achieved 799.202 USD/h vs. 901.96 USD/h in the initial condition. Furthermore, LSMO,
EQSMO, AOSMO and FDBSMO achieved 799.2048692, 799.1730514, 799.1745189, and
799.12964 USD/h, respectively.
Table 7. Optimal results of the proposed ESMO and other recent SMO versions when minimizing
the costs.

Variables Initial SMO Proposed ESMO LSMO EQSMO AOSMO FDBSMO

Vgen 1 1.0500 1.099969602 1.1 1.1 1.1 1.1 1.1
Vgen 2 1.0400 1.088343999 1.087639528 1.088106605 1.088033924 1.087606497 1.087707536
Vgen 5 1.0100 1.061815867 1.061513432 1.062283384 1.062101361 1.061700294 1.060850352
Vgen 8 1.0100 1.069580017 1.070329805 1.070401666 1.069533777 1.069257672 1.06859214
Vgen 11 1.0500 1.099998144 1.1 1.1 1.1 1.099942632 1.1
Vgen 13 1.0500 1.1 1.1 1.1 1.1 1.1 1.1
Ta 6–9 1.0780 1.045635918 1.044369846 1.063643374 1.051376567 1.004989363 1.064422161
Ta 6–10 1.0690 0.931759565 0.911612439 0.9007877 0.929805666 0.974457082 0.9
Ta 4–12 1.0320 1.007802744 0.991122526 1.008046557 1.017551823 0.997683162 0.995096784
Ta 28–27 1.0680 0.971018798 0.964707994 0.963876332 0.979926365 0.977898669 0.972079256
Qcap 10 0 4.208618458 4.901566432 4.136822869 1.498053882 4.976971243 4.327592577
Qcap 12 0 1.451796819 4.383148586 4.94482842 0.696142216 4.884154333 4.667399693
Qcap 15 0 1.306875509 2.483268955 4.786681393 4.792743533 4.728549757 0.045181547
Qcap 17 0 5 4.998164786 2.130295748 5 4.958379139 4.998203992
Qcap 20 0 1.961100674 4.998940961 3.343858724 4.804278029 4.984821012 4.839667485
Qcap 21 0 4.803911173 4.984963132 4.602756718 5 4.602619108 4.998527988
Qcap 23 0 4.967076344 4.929896773 1.465312443 1.168975994 4.626528243 3.897113281
Qcap 24 0 4.996077919 5 4.836618584 4.927208177 4.641278115 5
Qcap 29 0 0.669299515 2.003815544 0.086094576 1.751011024 4.731956237 2.870308756
Pgen 1 99.2400 177.0369 177.054 177.4292091 177.0980781 177.3830955 177.2475961
Pgen 2 80 48.6588889 48.54725268 48.33560014 48.51216059 48.69172993 48.5077348
Pgen 5 50 21.33672043 21.38583045 21.2845056 21.22712818 21.3520339 21.23838842
Pgen 8 20 21.16227193 21.36222862 21.43941889 21.03134239 20.61578115 21.13968009
Pgen 11 20 11.9200414 11.93816688 11.58454651 12.18081624 11.95169297 11.91470514
Pgen 13 20 12.01013994 12.00255919 12 12 12.08219303 12.00039502

F1 901.9600 799.202 799.1134 799.2048692 799.1730514 799.1745189 799.12964
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In particular, after utilizing the suggested ESMO and other SMO versions, Figure 6
depicts the box plot of the thirty obtained fitnesses of the derived fuel costs. As shown,
the suggested ESMO was effective at producing the lowest fuel cost values. In terms of
the mean fuel costs, the suggested ESMO achieved a value of 799.2483 USD/h, whereas
the SMO obtained a value of 799.437 USD/h. In terms of the maximum fuel costs, the
suggested ESMO achieved a value of 799.2483 USD/h, whereas the SMO obtained a value
of 799.5056 USD/h. Moreover, the ESMO provided a lower STd of 0.074835 compared with
0.085524 for the SMO.

In addition, Table 8 compares the outcomes of reducing the FCs (case 1) with nu-
merous different methods, including MCSO [49], improved electromagnetism-like algo-
rithm (IEOA) [50], NBO [51], CSO [52], black-hole-based optimization approach (BH-
BOA) [53], adaptive GO (AGO) [54], improved moth–flame optimization (IMFO) [55],
teaching–learning algorithm (TLA) [56], developed grey wolf algorithm (DGWA) [57],
moth swarm algorithm (MSA) [58], grasshopper optimizer (GO) [54], symbiotic organisms
search (SOS) [59], imperialist competitive algorithm (ICA) [60], differential harmony search
algorithm (DHSA) [61], and GA [62]. As shown, the proposed ESMO and the SMO obtained
minimum fuel costs of 799.1134 USD/h and 799.202 USD/h, respectively, which were lower
than the other techniques.
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Table 8. Comparisons of the ESMO and other reported algorithms after minimizing the costs.

Method F1

Proposed ESMO 799.1134
SMO 799.202

LSMO 799.2048692
EQSMO 799.1730514
AOSMO 799.1745189
FDBSMO 799.12964

MCSO [49] 799.3332
IEOA [50] 799.688
NBO [51] 799.7516
CSO [52] 799.8266

BHBOA [53] 799.9217
AGO [54] 800.0212
IMFO [55] 800.3848
TLA [56] 800.4212

DGWA [57] 800.433
MSA [58] 800.5099
GO [54] 800.9728
SOS [59] 801.5733
ICA [60] 801.843

DHSA [53] 802.2966
GA [62] 802.1962

4.1.2. Minimization of the Power Losses

Based on the preferences of power system operators, the OPF problem can be mathe-
matically solved to minimize the power losses (F2), as described in Equation (23) [63]:

GLs =
Nb

∑
k=1

Nb

∑
j=1

Gkj(Vk
2+V j

2−2(VkVjcos θkj)) (23)

where Gkj indicates the conductance of the line connected between buses k and j.
To minimize the power losses, the proposed ESMO and other SMO versions were

performed, and their attained outputs are displayed in Table 9. In addition, Figure 7
depicts the convergence characteristics of the suggested ESMO and other SMO versions.
The proposed ESMO clearly beat the other SMO versions in terms of reducing the power
losses, as the proposed ESMO achieved the lowest value of 2.852 MW vs. 5.83 MW in the
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initial condition. Furthermore, the SMO, LSMO, EQSMO, AOSMO, and FDBSMO achieved
2.873, 2.8789, 2.87089, 2.869748, and 2.86545 MW, respectively. In particular, after utilizing
the suggested ESMO and other SMO versions, Figure 8 depicts the box plot of the thirty
obtained fitnesses of the derived power losses.

Table 9. Optimal results of the proposed ESMO and other recent SMO versions when minimizing
the losses.

Variables Initial SMO Proposed ESMO LSMO EQSMO AOSMO FDBSMO

Vgen 1 1.0500 1.1 1.1 1.1 1.1 1.1 1.099989573
Vgen 2 1.0400 1.097879 1.098038 1.097501943 1.096319677 1.097285716 1.09804085
Vgen 5 1.0100 1.079229 1.080119 1.079199519 1.080009144 1.078852719 1.081198314
Vgen 8 1.0100 1.088195 1.087402 1.087596906 1.08475669 1.087053678 1.088314909
Vgen 11 1.0500 1.1 1.099767 1.098598489 1.099455244 1.1 1.1
Vgen 13 1.0500 1.099676 1.1 1.1 1.1 1.1 1.1
Ta 6–9 1.0780 1.063533 1.070752 1.049470818 1.065452822 1.07056185 1.030097886
Ta 6–10 1.0690 0.905539 0.9 0.915931488 0.905932713 0.902753197 0.936000592
Ta 4–12 1.0320 0.985392 0.989256 1.000010356 0.985437987 0.992873237 0.987993017
Ta 28–27 1.0680 0.978031 0.973971 0.9844877 0.970903402 0.978152907 0.974034656
Qcap 10 0 4.977853 4.9364 2.838936239 4.993922257 3.950366074 0.706305597
Qcap 12 0 1.455635 4.832076 4.97359854 0.889625335 1.660906262 4.999986635
Qcap 15 0 1.525858 5 1.020706924 3.062849892 4.649982156 4.118956228
Qcap 17 0 3.578362 4.996391 4.525460006 4.999200578 4.650398836 4.986290979
Qcap 20 0 4.680336 4.706986 3.43393887 4.834020113 5 3.660338716
Qcap 21 0 4.99174 5 3.172761986 4.991919357 4.996140588 4.999935911
Qcap 23 0 3.525662 2.901574 4.355145722 2.759336009 4.962344585 4.11599159
Qcap 24 0 4.865855 4.973277 4.974977192 4.843678606 4.702638138 5
Qcap 29 0 1.472307 2.171079 2.732949574 0.863015243 3.022489789 2.035194665
Pgen 1 99.2400 51.33 51.26 51.29182179 51.27089863 51.2719091 51.28320001
Pgen 2 80 79.93523 79.99628 80 80 79.9978392 79.9824479
Pgen 5 50 50 50 50 50 50 50
Pgen 8 20 35 35 35 35 35 35
Pgen 11 20 30 30 29.99833311 30 30 29.99994255
Pgen 13 20 40 40 39.98873995 40 40 39.99986133

F2 5.832400 2.873533 2.852083 2.87889486 2.870898634 2.869748299 2.865451787
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k k

Ngen
E Pgen2

k k k k k k
k 1

F3 (A Pgen B Pgen C )/100 D e
=

= + + +  (24)

Figure 7. Convergences of the proposed ESMO and other recent SMO versions when minimizing the
losses. (a) Average convergence; (b) Median convergence; (c) Best convergence.
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As shown, the suggested ESMO was the most effective version at producing the lowest
power losses. In terms of mean power losses, the suggested ESMO achieved a value of
2.8677 MW, whereas the SMO, LSMO, EQSMO, AOSMO, and FDBSMO obtained values
of 2.99839, 2.942707, 2.970576, 2.910941, and 2.933065 MW, respectively. In terms of the
maximum power losses, the suggested ESMO achieved a value of 2.914 MW, whereas
the SMO, LSMO, EQSMO, AOSMO, and FDBSMO obtained values of 3.3243, 3.148561,
3.155098, 3.073784, and 3.118624 MW, respectively. Moreover, the ESMO provided the
lowest STd of 0.01269 relative to 0.113264, 0.071125, 0.100712, 0.051942, and 0.069051 for
the SMO, LSMO, EQSMO, AOSMO, and FDBSMO, respectively.

4.1.3. Minimization of the Total Producing Emissions

Nowadays, there is great interest in the production of pollutant gases all over the
world. Thus, the OPF problem can be mathematically solved to minimize the total produced
emissions (F3), as described in Equation (24):

F3 =
Ngen

∑
k=1

(A kPgenk
2 + BkPgenk + Ck)/100 + DkeEkPgenk (24)
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where Ak, Bk, Ck, Dk, and Ek are the atmospheric coefficients of the produced emissions of
each generator k.

For minimizing the emissions, the proposed ESMO and SMO were used, and their
attained outputs are displayed in Table 10.

Table 10. Optimal results of the proposed ESMO and other recent SMO versions for minimizing
the emissions.

Variables Initial SMO Proposed ESMO LSMO EQSMO AOSMO FDBSMO

Vgen 1 1.0500 1.1 1.1 1.1 1.1 1.1 1.1
Vgen 2 1.0400 1.096354 1.096357 1.097996578 1.096180409 1.098807122 1.096206734
Vgen 5 1.0100 1.079503 1.07941 1.081597125 1.079346054 1.082941938 1.078506486
Vgen 8 1.0100 1.08681 1.087166 1.091032082 1.085989926 1.09400001 1.087012582
Vgen 11 1.0500 1.099738 1.1 1.099085656 1.098269993 1.061797205 1.1
Vgen 13 1.0500 1.099207 1.099834 1.099950061 1.099485885 1.1 1.099966593
Ta 6–9 1.0780 1.015615 1.0526 1.032079855 1.023655322 1.0731266 1.019289849
Ta 6–10 1.0690 0.937388 0.916771 0.959351211 0.930001004 0.916026262 0.931165942
Ta 4–12 1.0320 0.999944 0.990658 0.98533689 0.990800687 0.993867339 1.020575999
Ta 28–27 1.0680 0.981544 0.98187 0.994597626 0.975205887 1.007583168 0.995172232
Qcap 10 0 0.000111 4.549616 1.927801467 1.797372234 4.782056182 2.358931836
Qcap 12 0 1.88548 4.9999 4.548228762 1.309795523 3.716423429 4.15318608
Qcap 15 0 3.020388 0.394847 4.804725694 1.050136129 1.255422697 4.866707435
Qcap 17 0 3.067737 0.776326 1.87954392 1.406471174 4.820877558 0.180389178
Qcap 20 0 3.655352 4.999903 1.041218586 4.984295346 4.91890748 1.612733824
Qcap 21 0 2.024077 4.629759 4.1317633 4.604957817 4.999765024 0.554657733
Qcap 23 0 2.303044 4.597308 4.763479851 5 1.04876913 3.612030106
Qcap 24 0 4.141412 4.884661 3.603719722 3.7248026 3.728962339 4.94272429
Qcap 29 0 2.648556 3.467423 4.636432124 0.477582774 4.938723233 1.611635229
Pgen 1 99.2400 63.9794 63.9824 63.93708603 63.90248253 63.93782153 64.09423067
Pgen 2 80 67.450805 67.4480204 67.52824811 67.53597051 67.54182947 67.36693912
Pgen 5 50 50 49.99984589 50 50 49.99957803 50
Pgen 8 20 35 34.99975216 35 35 35 34.99988911
Pgen 11 20 29.99976934 30 30 30 30 30
Pgen 13 20 40 40 39.9999523 40 40 40

F3 0.23909633 0.204700981 0.20469247 0.20470874 0.20470045 0.204713264 0.204707036

In addition, Figure 9 depicts the convergence characteristics of the suggested ESMO
and other SMO versions. The proposed ESMO clearly beat the other SMO versions in terms
of reducing the total producing emissions, as the proposed ESMO achieved the lowest
value of 0.20469247 ton/h vs. 0.23909633 ton/h in the initial condition for the SMO, while
the other SMO versions achieved 0.204700981, 0.20470874, 0.20470045, 0.204713264, and
0.204707036 ton/h using LSMO, EQSMO, AOSMO, and FDBSMO, respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 33 
 

 

  

(a) (b) 

 
(c) 

Figure 9. Convergences of the proposed ESMO and other recent SMO versions when minimizing 
the emissions. (a) Average convergence; (b) Median convergence; (c) Best convergence. 

For this case, Table 11 shows a comparison with other meta-heuristics optimizers. As 
shown, the suggested ESMO attained the minimum emissions of 0.20469247 ton/h. It out-
performed the other meta-heuristics of adaptive real coded biogeography-based optimi-
zation (ARBO) [64], Jaya algorithm [65], Stud Krill herd algorithm (KHA) [66], AGO [54], 
MCSO [49], KHA [66], GO [54], modified TLA [67], NBO [49], and CSO [49]. 

Additionally, after utilizing the suggested ESMO and other SMO versions, Figure 10 
depicts the box plot of the thirty obtained fitnesses of the derived emissions. As shown, 
the suggested ESMO was effective at producing the lowest emissions. In terms of mean 
emissions, the suggested ESMO achieved a value of 0.20471 ton/h, whereas the SMO, 
LSMO, EQSMO, AOSMO, and FDBSMO obtained values of 0.20482, 0.204835, 0.204798, 
0.204789, and 0.204778 ton/h, respectively. In terms of the maximum emissions, the sug-
gested ESMO achieved a value of 0.204893 ton/h, whereas the SMO, LSMO, EQSMO, 
AOSMO, and FDBSMO obtained values of 0.204949, 0.204991, 0.204919, 0.204953, and 
0.204862 ton/h, respectively. Furthermore, the ESMO provided the lowest STd of 3.54 × 
10−5 relative to 8.12 × 10−5, 8.56 × 10−5, 7.14 × 10−5, 7.18 × 10−5, and 5.43 × 10−5 for the SMO, 
LSMO, EQSMO, AOSMO, and FDBSMO, respectively. 

Table 11. Comparisons of the ESMO and other reported algorithms for minimizing the emissions. 

Algorithm F3  
Proposed ESMO 0.20469247 

SMO 0.204700981 

Figure 9. Cont.



Mathematics 2022, 10, 1991 18 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 33 
 

 

  

(a) (b) 

 
(c) 

Figure 9. Convergences of the proposed ESMO and other recent SMO versions when minimizing 
the emissions. (a) Average convergence; (b) Median convergence; (c) Best convergence. 

For this case, Table 11 shows a comparison with other meta-heuristics optimizers. As 
shown, the suggested ESMO attained the minimum emissions of 0.20469247 ton/h. It out-
performed the other meta-heuristics of adaptive real coded biogeography-based optimi-
zation (ARBO) [64], Jaya algorithm [65], Stud Krill herd algorithm (KHA) [66], AGO [54], 
MCSO [49], KHA [66], GO [54], modified TLA [67], NBO [49], and CSO [49]. 

Additionally, after utilizing the suggested ESMO and other SMO versions, Figure 10 
depicts the box plot of the thirty obtained fitnesses of the derived emissions. As shown, 
the suggested ESMO was effective at producing the lowest emissions. In terms of mean 
emissions, the suggested ESMO achieved a value of 0.20471 ton/h, whereas the SMO, 
LSMO, EQSMO, AOSMO, and FDBSMO obtained values of 0.20482, 0.204835, 0.204798, 
0.204789, and 0.204778 ton/h, respectively. In terms of the maximum emissions, the sug-
gested ESMO achieved a value of 0.204893 ton/h, whereas the SMO, LSMO, EQSMO, 
AOSMO, and FDBSMO obtained values of 0.204949, 0.204991, 0.204919, 0.204953, and 
0.204862 ton/h, respectively. Furthermore, the ESMO provided the lowest STd of 3.54 × 
10−5 relative to 8.12 × 10−5, 8.56 × 10−5, 7.14 × 10−5, 7.18 × 10−5, and 5.43 × 10−5 for the SMO, 
LSMO, EQSMO, AOSMO, and FDBSMO, respectively. 

Table 11. Comparisons of the ESMO and other reported algorithms for minimizing the emissions. 

Algorithm F3  
Proposed ESMO 0.20469247 

SMO 0.204700981 

Figure 9. Convergences of the proposed ESMO and other recent SMO versions when minimizing the
emissions. (a) Average convergence; (b) Median convergence; (c) Best convergence.

For this case, Table 11 shows a comparison with other meta-heuristics optimizers.
As shown, the suggested ESMO attained the minimum emissions of 0.20469247 ton/h.
It outperformed the other meta-heuristics of adaptive real coded biogeography-based
optimization (ARBO) [64], Jaya algorithm [65], Stud Krill herd algorithm (KHA) [66],
AGO [54], MCSO [49], KHA [66], GO [54], modified TLA [67], NBO [49], and CSO [49].

Table 11. Comparisons of the ESMO and other reported algorithms for minimizing the emissions.

Algorithm F3

Proposed ESMO 0.20469247
SMO 0.204700981

Stud KHA [66] 0.2048
ARBO [64] 0.2048
Jaya [65] 0.204834
AGO [54] 0.20484

MCSO [49] 0.2048911
KHA [66] 0.2049
GO [54] 0.20492

Modified TLA [67] 0.20493
CSO [49] 0.2051355
NBO [49] 0.2052063

Additionally, after utilizing the suggested ESMO and other SMO versions, Figure 10
depicts the box plot of the thirty obtained fitnesses of the derived emissions. As shown, the
suggested ESMO was effective at producing the lowest emissions. In terms of mean emis-
sions, the suggested ESMO achieved a value of 0.20471 ton/h, whereas the SMO, LSMO,
EQSMO, AOSMO, and FDBSMO obtained values of 0.20482, 0.204835, 0.204798, 0.204789,
and 0.204778 ton/h, respectively. In terms of the maximum emissions, the suggested ESMO
achieved a value of 0.204893 ton/h, whereas the SMO, LSMO, EQSMO, AOSMO, and
FDBSMO obtained values of 0.204949, 0.204991, 0.204919, 0.204953, and 0.204862 ton/h,
respectively. Furthermore, the ESMO provided the lowest STd of 3.54 × 10−5 relative to
8.12 × 10−5, 8.56 × 10−5, 7.14 × 10−5, 7.18 × 10−5, and 5.43 × 10−5 for the SMO, LSMO,
EQSMO, AOSMO, and FDBSMO, respectively.
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4.1.4. Wilcoxon Rank-Sum Test of the Implemented SMO Versions

In this part, the two-sided Wilcoxon rank-sum test was used, which is equivalent
to a Mann–Whitney U-test, in order to return the p-values. The proposed ESMO was
considered against each SMO version for the three cases studied and the test was executed.
Table 12 displays the p-values that were found for each OPF fitness minimization. For
the costs minimization, the majority of the p-values were less than 0.05, which indicated
that the test rejected the null hypothesis at the default 5% significance level. For the losses
minimization, the p-values, which were 7.39× 10−11, 2.37× 10−10, 3.82× 10−10, 5.0 × 10−9,
and 2.02 × 10−8 for SMO, LSMO, EQSMO, AOSMO, and FDBSMO, respectively, were less
than 0.05. Similar findings were attained for the emissions minimization, where the p-values
were 3.82 × 10−09, 7.38 × 10−10, 5.53 × 10−8, 8.1 × 10−10, and 1.43 × 10−8 for SMO, LSMO,
EQSMO, AOSMO, and FDBSMO. Therefore, the Wilcoxon rank-sum test rejected the null
hypothesis between the implemented SMO versions.

Table 12. Wilcoxon rank-sum test of the proposed ESMO against the other SMO versions.

Variables SMO LSMO EQSMO AOSMO FDBSMO

p-value
Costs minimization 2.13 × 10−4 5.6 × 10−7 0.0251 0.0468 0.5997
Losses minimization 7.39 × 10−11 2.37 × 10−10 3.82 × 10−10 5.00 × 10−9 2.02 × 10−8

Emissions minimization 3.82 × 10−9 7.38 × 10−10 5.53 × 10−8 8.10 × 10−10 1.43 × 10−8

4.1.5. Evaluation of the Chaotic Strategy and Elitist Group with the ESMO

In this part, the two proposed differences in ESMO (chaotic strategy and elitist group)
were evaluated independently and together in order to study the influence of those mecha-
nisms on the behavior of the ESMO versus a standard SMO. The SMO with only the elitist
group (SMO_Elitist), SMO with only the chaotic strategy (SMO_Chaotic), and the proposed
ESMO, which involved both the chaotic strategy and elitist group, were assessed. For the
three cases studied, SMO_Elitist, SMO_Chaotic, and the proposed ESMO were run with
the same parameter settings that were previously defined in Table 6. Their obtained best,
mean, worst, and STd values are recorded in Table 13. As shown, great enhancements
are illustrated in the three cases studied, especially in the robustness behavior. For the
costs minimization, the STd improvement was found to be 6.6379 and 74.9000% relative to
SMO_Elitist and SMO_Chaotic, respectively. For the losses minimization, the STd improve-
ment was found to be 87.4008 and 84.2415% relative to SMO_Elitist and SMO_Chaotic,
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respectively. For the emissions minimization, the STd improvement was found to be 50.4891
and 54.5761% relative to SMO_Elitist and SMO_Chaotic, respectively.

Table 13. Evaluation of the chaotic strategy and elitist group with the ESMO.

Case Study Index Proposed ESMO SMO_Elitist SMO_Chaotic

Costs
minimization

Best 799.1133854 799.1730514 799.1932399
Mean 799.248253 799.2955193 799.3774219
Worst 799.4369998 799.4791913 799.694656
STd 0.074834721 0.079802162 0.1308863

STd improvement - 6.6379% 74.9000%

Losses
minimization

Index Proposed ESMO SMO_Elitist SMO_Chaotic
Best 2.852083219 2.870898634 2.876550431

Mean 2.867769783 2.970575502 2.971105614
Worst 2.914049709 3.155098093 3.18800886
STd 0.012689716 0.100712161 0.080521342

STd improvement - 87.4008% 84.2415%

Emissions
minimization

Index Proposed ESMO SMO_Elitist SMO_Chaotic
Best 0.20469247 0.20470045 0.204710214

Mean 0.204710428 0.204798429 0.20481888
Worst 0.204893097 0.204919011 0.204947592
STd 3.53586 × 10−5 7.14083 × 10−5 7.78415 × 10−5

STd improvement - 50.4891% 54.5761%

4.2. Optimal Combined Heat and Electrical Power Dispatch Problem

The combined heat and electrical power dispatch (CHEPD) problem was handled
by considering a large-scale test case of 84 diverse units. The CHEPD’s main purpose
was to identify the best amount for heat and electrical power from heat-only generators,
power-only generators, and co-generators in order to keep fuel prices low while meeting
heat and electrical power needs and limitations exactly. Its objective was to minimize the
system’s total production costs. As a result, the generation cost reduction goal (F) may be
expressed as:

F =
NG

∑
k=1

Ck(Pk) +
NH

∑
j=1

Cj(Hj) +
NCHP

∑
i=1

Ci(Pi, Hi) (25)

where NG, NH, and NCHP are the numbers of the power-only, heat-only, and co-generator
units, respectively, while Ck(Pk) [68], Cj(Hj), and Ci(Pi, Hi) are, respectively, the cost func-
tions for the power-only, heat-only, and co-generator units, as follows:

Ck(Pk) = α1k(Pk)
2 + α2kPk + α3k +

∣∣α4k sin(α5k(Pk,min − Pk))
∣∣ (26)

Cj(Hj) = ϕ1j(Hj)
2 + ϕ2j Hj + ϕ3j (27)

Ci(Pi, Hi) = β1i(Pi)
2 + β2iPi + β3i + β4i(Hi)

2 + β5i Hi + β6i HiPi (28)

where α1, α2, α3, α4, and α5 are the cost coefficients of the power units; ϕ1, ϕ2, and ϕ3 are
the cost coefficients of the heat units; and β1, β2, β3, β4, β5, and β6 are the cost coefficients
for the co-generator units.

Added to this, inequality constraints of this issue must be satisfied in terms of the
capacity of the power-only, heat-only, and co-generator units, as follows:

Pmin
k ≤ Pk ≤ Pmax

k k = 1 : NG (29)

Hmin
j ≤ Hj ≤ Hmax

j j = 1 : NH (30)

Pmin
i ≤ Pi ≤ Pmax

i i = 1 : NCHP (31)

Hmin
i ≤ Hi ≤ Hmax

i i = 1 : NCHP (32)
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where the superscripts “min” and “max” indicate the minimum and maximum limits.
Moreover, equality constraints of this issue must be satisfied in terms of the power

and heat balance, respectively, as follows:

NG

∑
k=1

Pk +
NCHP

∑
i=1

Pi = Pdemand (33)

NH

∑
j=1

Hj +
NCHP

∑
i=1

Hi = Hdemand (34)

where Hdemand and Pdemand are the system heat demand and electric demand, respectively.
For the CHEPD problem, a sizable case study with 84 different units was addressed.

An electrical power load of 12,700 MW and a heat load of 5000 MWth were maintained
for this system, which included twenty-four co-generation units, forty power-only units,
and twenty heat-only units. Ref. [69] contains the complete data of the considered system
and Table 14 tabulates the power and heat outputs from the power-only, heat-only, and
co-generator units depending on the proposed ESMO and SMO algorithms. In addition,
Figure 11 depicts the convergence characteristics of the suggested ESMO and SMO. The
proposed ESMO clearly beat the SMO in terms of reducing the total production costs, as a
lower fuel cost in the CHEPD system of USD 289,498.2 was obtained using the proposed
ESMO compared to USD 290,362.8 using the conventional SMO.

Table 14. Results of the 84-unit CHEPD system from the production costs minimization using SMO
and ESMO.

Unit SMO ESMO Unit SMO ESMO Unit SMO ESMO

P1 113.9974 73.44459 P38 109.9748 90.6213 H51 125.9833 107.7456
P2 74.05953 113.2413 P39 109.9961 109.9997 H52 113.3157 123.7505
P3 92.04989 99.33216 P40 511.3279 511.2792 H53 77.79472 77.54494
P4 133.6151 180.4777 P41 86.87628 108.6506 H54 116.0015 82.17562
P5 89.39002 94.273 P42 113.3483 152.9563 H55 96.60794 81.74176
P6 106.2412 107.4841 P43 116.9203 108.1153 H56 94.59446 82.75072
P7 261.9628 186.3668 P44 152.2478 123.2221 H57 42.32534 40.50032
P8 292.9954 297.196 P45 91.89126 92.14206 H58 44.5064 41.83042
P9 299.9997 287.3499 P46 41.66998 62.4102 H59 48.60778 47.76195

P10 204.7936 204.7983 P47 53.36528 74.27693 H60 47.00024 40.429
P11 243.5362 168.7863 P48 61.44711 80.61822 H61 41.26132 20.30929
P12 318.5471 318.4253 P49 107.9406 105.2862 H62 22.28054 30.79636
P13 304.6454 394.3084 P50 140.602 126.0701 H63 32.20353 20.44812
P14 304.6668 484.0242 P51 119.0138 86.26312 H64 22.91647 33.83084
P15 484.0212 484.0372 P52 96.18743 114.7725 H65 374.0721 385.4842
P16 483.8587 304.5231 P53 43.25877 42.94842 H66 372.5447 382.6649
P17 489.4774 489.294 P54 87.49657 48.31214 H67 375.9403 385.8598
P18 489.3831 489.3403 P55 65.05127 47.80923 H68 377.0608 382.8618
P19 511.3923 511.334 P56 62.70521 48.98129 H69 59.96803 59.99895
P20 512.2124 511.3195 P57 15.44486 11.2051 H70 60 59.99983
P21 530.2838 545.5427 P58 20.53013 14.27382 H71 59.99945 60
P22 532.1481 523.2856 P59 30.11782 28.11363 H72 59.99984 60
P23 523.3675 524.2476 P60 26.34874 11.00413 H73 59.99217 59.99981
P24 526.3741 523.6606 P61 81.77664 35.68019 H74 59.987 60
P25 523.7434 523.3108 P62 40.43841 58.77151 H75 60 59.99856
P26 523.3641 523.5737 P63 61.95136 36.01009 H76 60 59.99951
P27 10 10 P64 41.4247 65.42881 H77 120 120
P28 10.00883 10.00009 H41 108.0767 120.3123 H78 119.9998 119.9986
P29 10.00068 10 H42 122.9207 145.1812 H79 119.9982 119.9995
P30 96.97777 95.47952 H43 124.954 120.0116 H80 120 119.9997
P31 162.9052 189.9992 H44 144.741 128.4933 H81 120 120
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Table 14. Cont.

Unit SMO ESMO Unit SMO ESMO Unit SMO ESMO

P32 189.9974 189.9996 H45 119.7918 120.0113 H82 119.9875 120
P33 162.2703 190 H46 76.44105 94.34085 H83 120 119.9995
P34 168.6657 171.2658 H47 86.52864 104.5896 H84 120 120
P35 199.9998 199.827 H48 93.48256 110.0641 Sum (Pg) 5000.0000 5000.0000
P36 168.4265 171.566 H49 119.885 118.4221 Sum (Hg) 12,700.0000 12,700.0000
P37 61.2683 103.6635 H50 138.2295 130.0936 F (USD) 290,362.8 289,498.2
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Table 15 contrasts the effectiveness of the suggested ESMO, which gave the optimal
operating costs, with other current optimization methods, such as JFSO [70], WOA [69],
MPA [71], IMPA [71], and the hybrid HT and JFSO (HT-JFSO) [70]. The suggested ESMO
had the lowest costs and achieved the highest performance among the various optimizers,
as shown in the table. This comparison validated the suggested ESMO’s efficacy and
superiority. Furthermore, Figure 12 depicts the box plot of the thirty obtained fitness of the
derived production costs. As shown, the suggested ESMO was effective at producing lower
fuel cost values. In terms of the mean fuel costs, the suggested ESMO achieved a value of
290,894.1 USD/h, whereas the SMO obtained a value of 291,812.6 USD/h. In terms of the
maximum fuel costs, the suggested ESMO achieved a value of 293,371.5 USD/h, whereas
the SMO obtained a value of 293,884.7 USD/h.

Table 15. Comparison of ESMO, SMO, and other reported techniques for the CHEPD problem.

Optimizer F (USD)

Proposed ESMO 289,498.2
SMO 290,362.8

JFSO [70] 290,323.8
WOA [69] 290,123.97
MPA [71] 294,717.7
IMPA [71] 289,903.8
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4.3. Friedman Ranking Test for Engineering Optimization Problems

Additionally, a Friedman ranking test of the best, mean, worst, and standard deviation
obtained fitnesses was executed for the considered optimization cases of the OPF engineer-
ing problems for the suggested ESMO, SMO, LSMO, EQSMO, AOSMO, and FDBSMO, as
depicted in Table 16. In this table, the great ability of the proposed ESMO at finding the
first rank compared to the others is clearly shown.

Table 16. Friedman ranking test for OPF engineering problems.

Function Index Proposed ESMO SMO LSMO EQSMO AOSMO FDBSMO

Costs minimization

Best 1 5 6 3 4 2
Mean 2 5 6 4 3 1
Worst 3 5 6 4 2 1
STd 2 5 6 3 4 1

Losses minimization

Best 1 5 6 4 3 2
Mean 1 6 4 5 2 3
Worst 1 6 4 5 2 3
STd 1 6 4 5 2 3

Emissions minimization

Best 1 3 5 2 6 4
Mean 1 5 6 4 3 2
Worst 2 4 6 3 5 1
STd 1 5 6 3 4 2

Summation 17 60 65 45 40 25
Mean rank 1.416667 5 5.416667 3.75 3.333333 2.083333

Final ranking 1 5 6 4 3 2

4.4. Friedman and Post Hoc Tests for Engineering Optimization Problems

Moreover, Friedman and accompanying post hoc tests were implemented, where each
method had a statistical distribution based on the outcome of its independent executions.
For the OPF results, the related results are described in Table 17 by means of Friedman’s
ANOVA table in MATLAB. Moreover, the distribution of the outcomes for each case study
is displayed in Appendix A. From this table, the null hypothesis was always rejected for all
cases studied, where the probability of the p-value was always very small. For the first case
regarding costs minimization, the recorded p-value was 9.5818 × 10−7. For the second case
regarding losses minimization, the recorded p-value was 3.65118 × 10−14. For the third
case regarding emissions minimization, the recorded p-value was 7.18362 × 10−12.
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Table 17. Friedman’s ANOVA table (MATLAB) for the OPF results.

Case Study Source SS df MS Chi-sq Prob > Chi-sq

Costs
minimization

Columns 125.933 5 25.1867 35.98 9.5818 × 10−7

Error 399.067 145 2.7522
Total 525 179

Losses
minimization

Columns 252.533 5 50.5067 72.15 3.6512 × 10−14

Error 272.467 145 1.8791
Total 525 179

Emissions
minimization

Columns 213.867 5 42.7733 61.1 7.1836 × 10−12

Error 311.133 145 2.1457
Total 525 179

Added to this, the accompanying post hoc test is tabulated in Table 18. The second
column shows the difference between the estimated group means (DGM). The first and
third columns show the lower and upper limits for 95% confidence intervals for the true
mean difference, which are addressed by “LCI” and “UCI”, respectively. The last column
containing the p-value for a hypothesis test shows that the corresponding mean difference
was equal to zero. The majority of p-values were very small, which indicated that the
proposed ESMO yield differed across all three minimization tasks.

Table 18. Post hoc test of the compared methods (MATLAB).

Costs Minimization

Compared Methods LCI DGM UCI p-Value

ESMO vs. SMO −2.8432 −1.4667 −0.0901 0.0289
ESMO vs. LSMO −3.6099 −2.2333 −0.8568 0.0001

ESMO vs. EQSMO −2.3099 −0.9333 0.4432 0.3823
ESMO vs. AOSMO −2.1765 −0.8 0.5765 0.561
ESMO vs. FDBSMO −1.1432 0.2333 1.6099 0.9968

SMO vs. LSMO −2.1432 −0.7667 0.6099 0.6071
SMO vs. EQSMO −0.8432 0.5333 1.9099 0.8799
SMO vs. AOSMO −0.7099 0.6667 2.0432 0.7391
SMO vs. FDBSMO 0.3235 1.7 3.0765 0.0058
LSMO vs. EQSMO −0.0765 1.3 2.6765 0.0769
LSMO vs. AOSMO 0.0568 1.4333 2.8099 0.0356
LSMO vs. FDBSMO 1.0901 2.4667 3.8432 0
EQSMO vs. AOSMO −1.2432 0.1333 1.5099 0.9998
EQSMO vs. FDBSMO −0.2099 1.1667 2.5432 0.1508
AOSMO vs. FDBSMO −0.3432 1.0333 2.4099 0.267

Losses Minimization

Compared Methods LCI DGM UCI p-Value

ESMO vs. SMO −5.1099 −3.7333 −2.3568 0
ESMO vs. LSMO −4.1432 −2.7667 −1.3901 0

ESMO vs. EQSMO −4.3432 −2.9667 −1.5901 0
ESMO vs. AOSMO −3.1099 −1.7333 −0.3568 0.0045
ESMO vs. FDBSMO −3.9765 −2.6 −1.2235 0

SMO vs. LSMO −0.4099 0.9667 2.3432 0.3415
SMO vs. EQSMO −0.6099 0.7667 2.1432 0.6071
SMO vs. AOSMO 0.6235 2 3.3765 0.0005
SMO vs. FDBSMO −0.2432 1.1333 2.5099 0.1757
LSMO vs. EQSMO −1.5765 −0.2 1.1765 0.9985
LSMO vs. AOSMO −0.3432 1.0333 2.4099 0.267
LSMO vs. FDBSMO −1.2099 0.1667 1.5432 0.9994
EQSMO vs. AOSMO −0.1432 1.2333 2.6099 0.1091
EQSMO vs. FDBSMO −1.0099 0.3667 1.7432 0.9742
AOSMO vs. FDBSMO −2.2432 −0.8667 0.5099 0.4695
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Table 18. Cont.

Emissions Minimization

Compared Methods LCI DGM UCI p-Value

ESMO vs. SMO 1.7235 3.1 4.4765 0
ESMO vs. LSMO −1.6099 −0.2333 1.1432 0.9968

ESMO vs. EQSMO −0.7432 0.6333 2.0099 0.779
ESMO vs. AOSMO −0.7765 0.6 1.9765 0.8161
ESMO vs. FDBSMO −0.2765 1.1 2.4765 0.2033

SMO vs. LSMO −4.7099 −3.3333 −1.9568 0
SMO vs. EQSMO −3.8432 −2.4667 −1.0901 0
SMO vs. AOSMO −3.8765 −2.5 −1.1235 0
SMO vs. FDBSMO −3.3765 −2 −0.6235 0.0005
LSMO vs. EQSMO −0.5099 0.8667 2.2432 0.4695
LSMO vs. AOSMO −0.5432 0.8333 2.2099 0.515
LSMO vs. FDBSMO −0.0432 1.3333 2.7099 0.064
EQSMO vs. AOSMO −1.4099 −0.0333 1.3432 1
EQSMO vs. FDBSMO −0.9099 0.4667 1.8432 0.9287
AOSMO vs. FDBSMO −0.8765 0.5 1.8765 0.9062

In a similar manner, Friedman and accompanying post hoc tests were implemented
described in Tables 19 and 20, respectively. Moreover, the distribution of the outcomes for
each case study is displayed in Appendix A. From both tables, the null hypothesis was
completely rejected, where the p-value based on Friedman’s ANOVA and accompanied
post hoc tests were 0.0003 and 0.000261, respectively.

Table 19. Friedman’s ANOVA table (MATLAB) for the CHEPD results.

Case Study Source SS df MS Chi-sq Prob > Chi-sq

Costs
minimization

Columns 6.66667 1 6.66667 13.33 0.0003
Error 8.33333 29 0.28736
Total 15 59

Table 20. Post hoc test of the compared methods (MATLAB) for the CHEPD results.

Costs Minimization

Compared Methods LCI DGM UCI p-Value

ESMO vs. SMO 0.308831 0.666667 1.024502 0.000261

5. Conclusions

In the current study, an enhanced slime mould optimizer (ESMO) was proposed. The
proposed ESMO was tested on 13 benchmark functions. In this study, the proposed ESMO
incorporated a chaotic strategy and an elitist group to handle well-known engineering
optimization problems called the optimal power flow and combined heat economic load
dispatch. A chaotic strategy was integrated into the movement updating rule of the basic
SMO, whereas the exploitation mechanism was enhanced via searching around an elitist
group instead of only the global best dependence. To handle mathematical optimization
problems, three cases were considered for the OPF problem. Applications were scrutinized
on a typical IEEE test grid. The simulation results were compared with the results given
in the former publications and were found to be competitive in terms of the quality of the
solution. The second engineering application was the combined heat and electrical power
dispatch problem, which was handled by considering a large-scale test case of 84 diverse
units. Competitive findings were achieved using the suggested ESMO that surpassed the
basic SMO and other recent techniques regarding minimizing the total production costs
of heat and electrical energies. Moreover, the suggested ESMO outperformed the other



Mathematics 2022, 10, 1991 26 of 30

optimization methods examined in terms of convergence rate, as well as solution merits.
Furthermore, the statistical efficacy authenticated the quality of the suggested ESMO.

Considering the high efficacy of the suggested ESMO in the above-mentioned studies,
it is mentioned that the proposed method should be tested for sufficiency when attempting
to solve the OPF issue with the increasing penetration of renewable energies in electrical
power networks in the future. It may also be designed for AC–DC power grids with the
incorporation of modern voltage source converters. The limitation of the methodology
adopted in this work, like the other meta-heuristic techniques, is a dependence on the
parameter settings. Fortunately, only two parameter settings are required for the proposed
ESMO, which are the numbers of individuals and iterations.
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Appendix A

Table A1 describes the parameter settings of the implemented techniques related to
Tables 3 and 4.

Table A1. Parameter settings of the implemented techniques.

Algorithm Parameter Settings

ESMO Adaptive parameters

SMO Adaptive parameters

SCA A = 2

SSA c1 = c2 ∈ [0, 1]

WOA
a1 = [2, 0]

a2 = [−2, −1]
b = 1

MVO travelling distance rate ∈ [0.6, 1]
existence probability ∈ [0.2, 1]

PSO c1 = c2 = 2
vMax = 6

DE crossover probability = 0.5
scaling factor = 0.5

Figures A1–A3 show the distribution of the outcomes for each case study in the OPF
problem for different objectives.
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