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Abstract: With the continuous development of economy and society, power demand forecasting has
become an important task of the power industry. Accurate power demand forecasting can promote
the operation and development of the power supply industry. However, since power consumption is
affected by a number of factors, it is difficult to accurately predict the power demand data. With the
accumulation of data in the power industry, machine learning technology has shown great potential
in power demand forecasting. In this study, gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost) and light gradient boosting machine (LightGBM) are integrated by stacking to
build an XLG-LR fusion model to predict power demand. Firstly, preprocessing was carried out on
13 months of electricity and meteorological data. Next, the hyperparameters of each model were
adjusted and optimized. Secondly, based on the optimal hyperparameter configuration, a prediction
model was built using the training set (70% of the data). Finally, the test set (30% of the data) was
used to evaluate the performance of each model. Mean absolute error (MAE), root mean square error
(RMSE), mean absolute percentage error (MAPE), and goodness-of-fit coefficient (Rˆ2) were utilized
to analyze each model at different lengths of time, including their seasonal, weekly, and monthly
forecast effect. Furthermore, the proposed fusion model was compared with other neural network
models such as the GRU, LSTM and TCN models. The results showed that the XLG-LR model
achieved the best prediction results at different time lengths, and at the same time consumed the least
time compared to the neural network model. This method can provide a more reliable reference for
the operation and dispatch of power enterprises and future power construction and planning.

Keywords: power demand forecasting; model fusion; gradient boosting decision tree (GBDT);
extreme gradient boosting (XGBoost); light gradient boosting machine (LightGBM)

MSC: 62R07

1. Introduction

Electricity is one of the most important basic energy sources in the world. It can
provide basic support for industrial production and processing, and sustain people’s daily
life. Since there is no high-quality storage carrier for electric energy at this stage, low storage
efficiency occurs when battery packs or pumped energy storage power stations are solely
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adopted. Therefore, power generation should be roughly equal to the demand, otherwise
it will lead to consequences like the wasting of resources [1]. In addition, thermal power
generation is the main way of generating electricity in most parts of the world, so excessive
power generation will also cause serious environmental pollution. Furthermore, in the
course of modern electric power development, there have been numerous incidents of
insufficient power supply and shortage of power which seriously affected China’s economic
and social development. In the United States, from 14 February 2021 on, widespread rolling
blackouts in Texas amid extremely cold weather left millions of people living without
electricity. About 30% of the power generating units in Texas were off-grid during the
extreme weather. Moreover, starting on 23 September 2021, many places in Northeastern
China issued notifications of power rationing and implemented the policy of orderly
power consumption for non-residents. The occurrence of the above-mentioned events
was caused by insufficient power supply to a certain extent. However, at the same time
there existed inappropriate prior power dispatching caused by the inaccurate estimation
of power demand. It can be seen that the supply capacity of the power industry is closely
related to the national macroeconomic development. If the total power required by a
population can be predicted in advance, the waste of power resources can be avoided to the
greatest extent. The economic benefits of power enterprises can be improved and damage
to the environment can be reduced. The ever-increasing demand for power resources has
also led to higher requirements for power operation and management. Any deviation will
bring incalculable losses. At this stage, China’s “smart grid” is developing at rapid speed.
The construction of power facilities, power supply and power sales all depend on accurate
forecasts of power demand [2].

Power demand forecasting refers to making predictions about the electricity demand
of the electricity market in the future. Generally, it is divided into three categories ac-
cording to the time span: short-term forecasting, medium-term forecasting and long-term
forecasting. Short-term forecasting generally refers to forecasting using the day as the
smallest unit. Commonly used methods include the linear recursive least squares method
and the state space method based on a Kalman filter, etc. [3]. Medium-term forecasting
generally refers to forecasting based on months or quarters as the smallest unit. Commonly
used methods include the seasonal index method and the ARIMA model method [4].
Long-term forecasting generally refers to forecasting by year as the smallest unit, and
the commonly used methods mainly include the moving average method and the neural
network method [5]. From the perspective of forecasting characteristics, the amount of
historical data utilized in short-term forecasting is relatively large, and it will be affected dif-
ferently during different holidays, so comprehensive consideration is needed in forecasting;
the data of medium-term forecasting has obvious seasonal characteristics, so it is necessary
to carry out forecasting in combination with this feature. For long-term forecasting, due
to limited historical data and many external interference factors, it is necessary to fully
mine data characteristics during forecasting so as to obtain better forecasting results. With
regard to short-term forecasting, it can provide corresponding decision-making guidance
for real-time grid dispatching [6]; while long-term forecasting can provide data support for
expansion of both the grid and its capacity on the basis of guiding power system planning
and construction [7].

In the past, power forecasting technology mainly applies to time series in statistics [8],
multiple linear regression [9], ARIMA [10], and other methods. Due to their simplicity
in theory and because they require less amounts of calculation, these methods are more
frequently applied in the initial research on power forecasting. However, it is to carry out
forecasting in combination with external factors, thus the forecasting accuracy is largely
limited, which makes it difficult to meet the actual needs. Since the 1980s, researchers begin
to introduce intelligent algorithms from other fields into electricity forecasting. In 1991,
PARK D. C. and other scholars first used artificial neural networks for power prediction
and achieved satisfactory results [11]. Compared with traditional statistical prediction
methods, artificial intelligence technology can analyze and learn from a large amount of
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data in a short period of time, and significantly improve the prediction accuracy, which has
obvious advantages.

At present, the methods adopted by domestic researchers more often refer to neural
networks [12–14], support vector machines [15], and the joint model [16]. Reference [17]
proposes a power demand forecasting model based on a second-order gray neural network.
First, the wavelet sequence is used to perform stationarity processing on the original data
set, and then the power demand is predicted using a second-order gray neural network.
Reference [18] adopts the grayscale model of a neural network to predict the power demand,
and obtains a relatively good prediction effect. Reference [19] proposes a LSSVM_PSO
model for power demand forecasting. The model utilizes a particle swarm optimization
algorithm to adjust the learning rate to reduce the prediction error of the support vector
machine and improve its reliability. Compared with the least squares support vector
machine, this method achieves higher convergence rates and prediction performance.
Reference [20] combines the feedback of the neural network and ARMA models to predict
the power generation of wind power plants, and this model achieves high accuracy and
interpretability. Reference [21] proposes a power load forecasting model based on extreme
gradient enhancement to solve the problem whereby traditional forecasting models have
difficulty in dealing with massive data when power data grows exponentially in some
cases. Through the analysis of meteorological factors and the long-term regularity of the
daily power load, the model achieves higher prediction accuracy and smoother prediction
error compared with traditional machine algorithms. Reference [22] combines the two
models of Xgboost and ARMA, and uses the power consumption data of enterprise users
to make predictions. Through a series of comparative experiments, it is found that this
method achieves more accurate prediction results than traditional methods.

Through the above analysis, and in view of the problems that short- and medium-
term power data is less informative and difficult to predict, after considering the impact of
meteorological factors on power consumption, this paper integrates LGB, XGB and GBDT,
and fully explores the correlation between electricity demand and weather data through
the integrated model. The model is trained by using the time series relationship existing in
the data so as to obtain a more accurate prediction effect.

2. Data Source and Data Processing
2.1. Data Source

The data in this paper came from the 13-month electricity consumption data of a
city in China published on the Internet. The original data set contains five attribute
items, including historical electricity consumption, temperature, humidity, wind speed
and rainfall. All data was collected every 15 min, that is, the data of five attribute items
was recorded once every 15 min. The specific data set is shown in Table 1, where time
represents the time of data recording.

Table 1. Weather and Electricity Consumption Data.

Date Temperature Humidity Wind Speed

Time 00:00 00:15 . . . 23:45 00:00 00:15 . . . 23:45 00:00 00:15 . . . 23:45
Year 1
Day 1 14.29 14.12 . . . 13.28 47.97 48.42 . . . 74.28 3.5 3.3 . . . 1.6

Year 1
Day 2 17.59 17.37 . . . 16.74 47.42 48.46 . . . 71.16 1.28 1.14 . . . 0.27

Year 1
Day 3 20.89 20.72 . . . 16.72 48.12 48.84 . . . 70.66 0.94 0.91 . . . 0.23

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Year 2
Day 31 18 18 . . . 18.25 80 80.25 . . . 54.75 3 3.25 . . . 5.75
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Table 1. Cont.

Date Temperature Humidity Wind Speed

Date Rainfall Electricity consumption

Time 00:00 00:15 . . . 23:45 00:00 00:15 . . . 23:45
Year 1
Day 1 0 0 . . . 0 45,208.29 44,342.25 . . . 40,985.48

Year 1
Day 2 0 0 . . . 0 39,887.65 39,531.59 . . . 55,027.02

Year 1
Day 3 0 0 . . . 0 53,562.43 52,851.47 . . . 57,401.79

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Year 2
Day 31 0 0 . . . 0 35,890.91 35,227.22 . . . 34,784.86

In order to verify the effectiveness of the model, the data set was divided into a training
set and a test set before model training according to the power demand forecasting tasks of
different durations. The training set accounted for 70% of the original data, and the test set
accounted for 30%.

2.2. Data Cleaning

The data item of electricity consumption in the data used in this paper was analyzed,
and a data trend diagram was drawn, as shown in Figure 1. It can be seen that the data
fluctuated significantly since the 41st day of Year 1. Since the original data came from a
certain city in China, it was speculated that this period should be during the Chinese Lunar
New Year, when a large number of urban migrant workers returned to their hometowns to
celebrate the New Year, and a large number of enterprises and institutions stopped work
and production during this period, resulting in large fluctuations in electricity consumption.
In order to reduce the impact of the abnormal fluctuation on prediction results, this paper
classified the data of 15 days after the 41st day of Year 1 as abnormal data and deleted it
from the data set.
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2.3. Data Normalization

The main goal of data normalization was to scale the original data within a fixed
interval according to certain rules to eliminate the influence of different data dimensions
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in the original data so as to ensure that the model training results were not affected by
the original data dimensions. In this paper, according to Equation (1), five attribute items
including electricity consumption, temperature, humidity, wind speed and rainfall in the
original data were normalized to the [0,1] interval [23].

x̂i =
xi − Xmin

Xmax − Xmin
(1)

In the equation, x̂i is the normalized value of the ith value of the sample, xi is the ith value
of the sample, Xmin is the minimum value of the sample, and Xmax is the maximum value
of the sample.

3. Methodology
3.1. Boosting and Decision Tree

Ensemble learning completes the learning task by constructing and combining mul-
tiple learners. By combining multiple learners, it is often possible to obtain significantly
better generalization performance compared to a single learner. There are three common
ensemble learning ideas, including bagging, boosting, and stacking.

Boosting is a kind of algorithm that can upgrade a weak learner to a strong learner.
The working mechanism is as follows: firstly, train a base learner from the initial training
set, and then adjust the distribution of training samples according to the performance
of the base learner, so that the training samples made by the previous base learner will
receive more attention in the follow-up. The next base learner is then trained based on the
adjusted sample distribution. This is repeated until the number of base learners reaches the
specified value N, and finally the N base learners are weighted together. The flow chart of
the algorithm is shown in Figure 2:
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Figure 2. Boosting Flow Chart.

A decision tree is an important model in ensemble learning, and its core is a tree
structure, as shown in Figure 3. The figure represents the mapping relationship between
object attributes and object values. The root node and inner node represent the segmentation
of features, and each branch denotes the output of the feature corresponding to the parent
node in the regional space here.

Decision trees are generally divided into classification trees and regression trees.
Classification trees are often used in class division, while regression trees are often used
in numerical prediction [24]. During the growth of the regression tree, each leaf node
can get a predicted value, and the threshold of each feature value is exhausted during
segmentation. The optimal segmentation variable and optimal segmentation point are
found by minimizing the squared error, and then the minimized square error is utilized to
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find the most credible segmentation basis so as to ensure that the predicted value of the
current branch node is unique, or at a certain artificial threshold. If the data of each leaf
node is not unique, the average value of the node data is used as the predicted value.
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The growth of the above regression tree generally has the following five steps:
Step 1: Enter the training data set, as follows:

T = {(x1, y1), (x2, y2), · · · (xn, yn)}, xi ∈ X ∈ Rn, yi ∈ Y ∈ Rn (2)

Step 2: Traverse all feature variables j. When the fixed segmentation variable j is
encountered, segmentation point s is scanned.

minj,s[minc1 ∑xi∈R1(j,s)(yi − c1)
2 + minc2 ∑xi∈R2(j,s)(yi − c2)

2] (3)

At this time, the optimal segmentation variable j and the segmentation point s with
the smallest overall square error loss are obtained.

Step 3: After the segmentation scheme at the value s of the first attribute j is obtained,
calculate the output of the two sub-regions:

R1(j, s) = { x
∣∣∣x(j) ≤ s} (4)

R2(j, s) = { x
∣∣∣x(j) ≤ s} (5)

Step 4: Continue to call steps 2 and 3 for the two sub-regions to find the optimal
variable characteristics of each branch node. The growth of the regression tree ends when
all regions meet the threshold or exhaust all attributes for its growth.

Step 5: The input space is divided into M regions, R1, R2, · · · , RM, and there is a fixed
output value cm in each divided unit region. The final decision tree is generated as follows:

f (x) = ∑M
m=1 cm I(x ∈ Rm) (6)

3.2. Gradient Boosting Decision Algorithm

The gradient boosting decision algorithm is a representative algorithm in the boosting
series of algorithms, which consists of multiple decision trees, and the conclusions of all
trees are accumulated as the final answer [25]. The main idea of the gradient boosting
decision tree is to take advantage of the squared error to denote the loss function, in which
each regression tree learns the conclusions and residuals of all previous trees, and fits a
current residual regression tree. The residual is the difference between the true value and
the predicted value. The boosting tree is the accumulation of the regression trees generated
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by the entire iterative process. However, the gradient boosting decision tree requires that
the weak learner must be a CART regression tree model, and GBDT requires that the sample
loss predicted by the model be as small as possible during model training. The process of
using GBDT as a regression algorithm to predict the power demand is as follows:

Assume that the training set samples are T = (x1, y1), (x2, y2), . . . , (xm, ym), the max-
imum number of iterations is T, the loss function commonly uses mean square error
function L(y, f (x)) = (y− f (x))2, and the output is the strong learner f (x). The regression
algorithm process is as follows:

Step 1: Initialize the weak learner. The mean of C can be set to the mean of the
sample y.

f0(x) = argmin
m

∑
i=1

L(yi, c) (7)

Step 2: For the number of iterations t = 1, 2, 3 . . . T, calculate the negative gradient for
samples i = 1, 2, 3 . . . m.

rti = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= ft−1(x)

(8)

Step 3: Use (xi, rti)i = 1, 2, 3, . . . , m to fit a CART regression tree to get the tth regression
tree. Its corresponding leaf node area is Rtj, j = 1, 2, 3, . . . , J, where J is the number of leaf
nodes of the regression tree t.

Step 4: With regard to the leaf region j = 1, 2, 3, . . . , J, there is the best fitting value at
this time.

ctj = argmin ∑
xi∈Rtj

L(yi, ft−1(xi) + c) (9)

Step 5: Update the strong learner.

ft(x) = ft−1(x) + ∑J
j=1 ctj, I

(
x ∈ Rtj

)
(10)

Finally, the expression of the strong learner f (x) is obtained:

f (x) = fT(x) = f0(x) + ∑T
t=1 ∑J

j=1 ctj, I
(
x ∈ Rtj

)
(11)

GBDT can be applied to most regression problems [26,27]. For dense data such as
electricity demand, a variety of distinguishing features and feature combinations can be
found through this model, which has strong generalization and expression ability to achieve
a better fitting effect.

3.3. LightGBM Model

In order to improve model training efficiency and reduce memory consumption, based
on the traditional GBDT algorithm, the Light Gradient Boosting Machine (LightBGM)
algorithm is proposed [28]. The pre-sorting algorithm commonly used in the boosting
algorithm performs feature selection and splitting. This method can accurately find the
splitting point, but the memory usage and computational cost are high. Therefore, the
LightBGM algorithm uses Histogram to improve the speed of processing training samples.
The Histogram algorithm constructs a piecewise function in advance before training,
converts continuous eigenvalues into K discrete bin values, and then establishes a histogram
containing K items. The constructed histogram is utilized to traverse the training samples.
During this process, the LightBGM algorithm accumulates statistics in the histogram
according to K discrete values and finally finds the best split point from the discrete values.
This method can significantly reduce the computational memory and computational cost,
and significantly improve the computational speed.
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In addition, the leaves of the GBDT algorithm use a level-wise growth method, which
does not distinguish the leaves of the same layer. However, in fact, the split of many
leaves brings a low gain, which brings the waste of computing resources and memory
resources [29]. In response to this problem, the LightBGM algorithm adopts a more efficient
Leaf-wise algorithm that grows according to leaves. It splits by finding the largest splitting
gain from a certain layer of leaves and repeats it continuously, which enables the algorithm
to achieve higher accuracy under the same number of splits. Meanwhile, overfitting can be
avoided by limiting the depth of the tree when the sample size is small.

It can be seen from the above that the LightBGM algorithm, based on the core idea of
the GBDT algorithm, improves the feature splitting process and tree growth method by
introducing a new method, which makes the model simpler, requires less computational
cost, and achieves more accurate predictions.

3.4. XGBoost Algorithm

Based on the decision tree boosting optimization model, the XGBoost algorithm
converts weak learners into strong learners through iteration [29]. In the XGBoost algorithm,
the CART regression tree is used as a weak learner to first determine the optimal structure
of the tree, such as the number of leaf nodes and the depth of the tree. Next, the distributed
forward additive model is adopted. Each time a single tree is generated, the weight of the
last misclassified data is increased and used for the current tree, and the overall error of the
model is gradually reduced by continuously adding trees until the end of training [30].

When the XGBoost algorithm is adopted to train samples, the model for each tree is
as follows:

ft(x) = wq(x), w ∈ RT , q : Rd{1, 2, · · · , M} (12)

In the equation, w is the leaf node score value. x represents the input sample data, q(x)
denotes the leaf node corresponding to the sample x, and M is the number of leaf nodes of
the tree. The equation for adding the mth tree to the model is as follows:

ˆ
y
(l)

i =
m

∑
k=1

fk(xi) =
ˆ
y
(m−1)

i + fm(xi) (13)

To train a single CART tree [31], the objective function needs to be determined first:

Obj(θ) =
n

∑
i=1

L

(
yj,

ˆ
y
(l)

i

)
+

m

∑
k=1

Ω( fK) (14)

The objective function is divided into two parts, including loss function L and regu-
larization Ω. For regression, the loss of the square of the residual between the predicted
value and the true value, that is, the L2 loss, is generally used to evaluate the degree of
model fitting, and the regularization term acts as a penalty term for the model to prevent
overfitting. The regularization term is defined as:

Ω( fm) = rM +
1
2

λ
M

∑
j=1

w2
j (15)

In the equation, M refers to the number of leaf nodes and wj refers to the L2 regularity
of leaf node scores. r and λ are used to control the complexity of the tree. From this, the
regularization term can be calculated. Equations (12), (13), and (15) are brought into the
objective function, and the second-order Taylor formula is used to obtain the form of the
leaf node of the mth tree, which is as follows:

Objm(θ) =
n
∑

i=1

[
giwq(xi)

1
2 hiw2

q(xi)

]
+ 1

2 λ
M
∑

j=1
w2

j

= ∑M
j=1

[(
∑i∈Ij

gi

)
wj +

1
2

(
∑i∈Ij

hi + λ
)

w2
j

]
+ rM

(16)
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Let Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi. Bring them into Equation (16) and obtain the partial
derivative of the objective function with respect to wj. Set the value of the derivative
function to 0, and obtain:

w∗j = −
Gj

Hj + λ
(17)

Bring it into the objective function and obtain:

Obj∗ = −1
2 ∑M

j=1

G2
j

Hj + λ
+ rM (18)

This paper used Obj∗ to evaluate the quality of a single CART regression tree structure.
XGBoost enumerated the splitting schemes of all features from the tree with a depth of 0
and calculated its objective function value to determine the optimal structure of the tree.
When the tree reached the maximum depth and the sum of the sample weights was less
than the set threshold, the establishment of the decision tree was stopped. The sampling
ratio of each tree was controlled by the set parameters, and the structure training process of
a tree was finally optimized through parameter adjustment.

XGBoost applied boosting to carry out the next round of training after training one
tree, obtaining the optimized training model structure through continuous iteration. After
one iteration, XGBoost multiplied the weight of the leaf node and the learning rate, thereby
weakening the influence of each tree and providing a larger learning space for subsequent
trees. Finally, the optimal number of iterations of the model was determined, and the
training of the model was completed.

3.5. LR Model

The LR model is mainly represented by a conditional probability distribution P(Y|X)
in the form of a parameterized logistic distribution. Among them, the value range of X as a
random variable is a real number, and the value range of X as a random variable is 1 or 0.
The conditional distribution of the LR model is as follows:

P(Y = 1|x) = exp(w·x + b)
1 + exp(w·x + b)

(19)

P(Y = 0|x) = 1
1 + exp(w·x + b)

(20)

In the equation, x ∈ Rn refers to the input, Y ∈ {0, 1} refers to the output, w ∈ Rn and
b ∈ R are the parameters, w is the weight vector, b is the bias, and w·x is w and the inner
product of x.

For a given input x, P(Y = 1|x) and P(Y = 0|x) can be solved according to
Equations (19) and (20). Logistic regression compares two conditional probability values
and finds a class with a larger probability value, thereby assigning input x to that class.

The weight vector w and the input vector x are extended to get w =
(

w(1), w(2), · · ·w(n), b
)T

,

x =
(

x(1), x(2), · · · x(n), 1
)T

. At the moment, the LR model is as follows:

P(Y = 1|x) = exp(w·x)
1 + exp(w·x) (21)

(Y = 0|x) = 1
1 + exp(w·x) (22)

The probability of an event occurring divided by the probability of an event not
occurring is the probability of the event. At this time, assume that the probability of an
event occurring is p, the probability of it not occurring is 1− p, thus the probability of the
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event is p
1−p . The logarithmic probability of the event is as follows, which can also be called

the logit function.

logit(p) = log
p

1− p
(23)

For logistic regression, the following equation can be obtained from Equations (21) and (22).

log
P(Y = 1|x)

1− P(Y = 1|x) = w·x (24)

It can be seen from the above equation that in the LR model, the logit function with
the output Y = 1 has a linear relationship with the input x. The value domain of the linear
function w·x is the real number domain, and the input x can be split by a linear function.

Since x ∈ Rn+1, w ∈ Rn+1, the linear function w·x can be converted into a probability
by taking advantage of Equation (19):

(Y = 1|x) = exp(w·x)
1 + exp(w·x) (25)

When the linear function w·x infinitely approaches positive infinity, the value of the condi-
tional probability approaches 1; when the linear function w·x infinitely approaches negative
infinity, the value of the conditional probability approaches 0.

A training dataset T = (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Rn, yi ∈ {0, 1},
is given. The maximum likelihood estimation method is used here to estimate the LR
model parameters.

(Y = 1|x) = π(x) (26)

P(Y = 0|x) = 1− π(x) (27)

At this moment, the likelihood function is ∑m
i=1[π(xi)]

yi [1− π(xi)]
1−yi , and the log-

likelihood function is

L(w) =
m
∑

i=1
[yi log π(xi) + (1− yi) log(1− π(xi))]

=
m
∑

i=1

[
yi log π(xi)

1−π(xi)
+ log(1− π(xi))

]
=

m
∑

i=1
[yi(w·xi)− log(1 + exp(w·xi))]

(28)

The estimated value of w can be obtained by solving the local maximum of Equation (28).
Next, we optimize the objective function, which is the log-likelihood function. In

logistic regression, gradient descent and quasi-Newton methods are often used. Assume
that ŵ is the maximum likelihood estimate of w, and the resulting LR model is

P(Y = 1|x) = exp(ŵ·x)
1 + exp(ŵ·x) (29)

(Y = 0|x) = 1
1 + exp(ŵ·x) (30)

Due to the limited learning ability of the LR model, it is often necessary to combine it
with other models [32]. Corresponding feature combinations are obtained by other models
through training, and then the LR model gives the corresponding predicted values.

4. Power Demand Forecasting Model Based on Stacking

In view of the fact that no single model can meet the requirements of training per-
formance and stability well, this paper attempts to use the Stacking to synthesize the
advantages of various boosting models [33]. Moreover, combining it with the LR regression
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model enables the fusion model to have strong discrimination and stability, and does not
require too frequent iterations on the basis of achieving good results.

The overall design of model training and testing in this study is shown in Figure 4.
First, the original data is cleaned and normalized, and then the power demand forecasting
model based on stacking is trained to obtain the corresponding forecasting model. Next,
the test data is used for prediction.
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The process of model training is then described in detail. Through the previous
analysis, it can be found that the power demand data involved in this study has strong
regularity in the time series when they are divided by day, month and season after the data
on special holidays is removed. Meanwhile, the amount of data is limited, so the model
based on decision tree is more suitable for solving this kind of problem. Three models,
including GBDT, XGBoost and LightGBM, have their own advantages and disadvantages in
predicting different scenarios. The fusion of the three models can achieve a joint gain effect.
Stacking is an ensemble framework for hierarchical models [34]. The first layer is composed
of a number of different base learners. This paper selected three models, including GBDT,
XGBoost and LightGBM. When each model was adjusted to achieve good results, they were
integrated to predict, thereby reducing the deviation of the model and achieving better
results. The LR regression model was selected for the second layer, which further avoided
the occurrence of overfitting, effectively reduced the variance of the model, and made the
model more stable. The specific steps of the power demand forecasting model based on
stacking are as follows:

Step 1: First, the overall data set consisting of meteorological factor and power demand
was divided into training data (training set) and prediction data (testing set). Then the
training samples were divided into k groups of data with the same amount.

Step 2: The training data set was trained multiple times with each base learner. Each
training utilized k− 1 pieces of data as training samples, and the remaining one was used
as a validation set. The data of meteorological factor in the validation set was utilized to
predict power demand, so as to obtain k copies of the prediction data through the validation
set. In addition, the prediction samples would be predicted during each training process to
obtain k copies of prediction data. It should be noted that only the training set needs to do
this step. The validation set and test set do not need it.
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Step 3: Combine the k pieces of prediction data obtained through the validation set to
get new training sample data. The obtained k pieces of prediction data were averaged to
obtain new prediction data. The specific process is shown in Figure 5.
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Step 4: Input the data obtained in Step 3 into the second layer, and finally get the final
prediction result. The process is shown in Figure 6.

The power demand model constructed in this paper used GBDT, XGBoost and Light-
GBM, the three boosting models in the first layer of the stacking framework. The second
layer of the stacking framework adopted the LR model to directly output the prediction
results. The overall framework of the model is shown in Figure 6.
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The optimal parameters of each basic model are summarized in Table 2. In this study,
some key hyperparameters in GBDT, XGBoost, and LightGBM algorithms were adjusted,
as shown in Table 2. Table 2 also explains the specific meaning of these hyperparameters.
According to the maximum average precision, the best value of each set of hyperparameters
is obtained, as shown in Table 2.
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Table 2. Summary of Hyperparameters of Each Basic Model.

Algorithm Hyperparameters Meanings Optimal Values

GBDT

n_estimators Number of trees 100
Learing_rate Shrinkage coefficient of each tree 0.1
Max_depth Maximum depth of a tree 5

Min_samples_leaf Minimum number of samples for leaf nodes 1
Min_samples_split Minimum number of samples for nodes split 2

subsample The number of samples used by the base
model during training 0.85

XGBoost

n_estimators Number of trees 120
Learing rate Shrinkage coefficient of each tree 0.1
Max_depth Maximum depth of a tree 5

Colsample_bytree Subsample ratio of columns for tree construction 0.9
Subsample Subsample ratio of training samples 0.8

Gamma Penalty items cut off for each additional leaf 0

LGB

n_estimators Number of trees 100
learing rate Shrinkage coefficient of each tree 0.1
Max_depth Maximum depth of a tree 1
num_leaves Number of leaves for each tree 63

5. Results and Analysis
5.1. Evaluation Indicators

Power demand forecasting calculates the power consumption demand for a period
of time in the future based on the internal relationship between the historically recorded
power consumption data and the corresponding meteorological information. The estimated
power consumption demand often has some errors compared with the actual power
demand. The smaller the error, the higher the accuracy of the model, and the closer the
fit between estimated and actual power consumption demand curve, which means the
better performance of the model. Therefore, the objective evaluation of the model is of
great significance for analyzing the quality of the model.

In this paper, four commonly used model evaluation indicators, including mean
absolute error (MAE), root mean square error (RMSE), mean absolute percentage error
(MAPE), and goodness-of-fit coefficient (R2) were used to evaluate a single deterministic
model. The formulas are as follows:

MAE =
1
n ∑n

n=1

∣∣Qobs,n −Qsim,n
∣∣ (31)

RMSE =

√
1
n ∑n

n=1(Qobs,n −Qsim,n)
2 (32)

MAPE =
1
n ∑n

n=1

∣∣∣∣Qobs,n −Qsim,n

Qobs,n

∣∣∣∣ (33)

R2 = 1− ∑n
n=1
(
Qsim,n −Qobs

)2

∑n
n=1
(
Qobs,n −Qsim

)2 (34)

In the formula, Qsim,n represents the predicted value, Qobs,n represents the true value,
Qsim represents the mean of the predicted value, and Qobs represents the mean of the
actual value.

The smaller the index value in Formulas (31)–(33), the smaller the error of the forecast
model. The closer the index value in Formula (34) is to 1, the higher the accuracy of the
forecast model [35], the better the fit between the measured value and the predicted value.
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5.2. Forecast Results of Short-Term Power Demand in Different Seasons

With regard to verification of the effect of forecasting seasonal power demand, one
day of data was randomly selected from the test set for testing, and the accuracy of power
demand forecasting at different times of the day in a certain season was examined. The
results of the multi-model fusion model XLG-LR constructed in this paper for forecasting
power demand in different seasons are shown in Figure 7. It can be seen that the prediction
results of the XLG-LR model were not as good as other models in some periods, but in
most periods the predicted results were the closest to the true value.

The results of this method and other methods are shown in Table 3. It can be seen that
compared with the three models of XGB, LGB and GBDT, the XLG-LR model in this paper
achieved the best results in the prediction of power demand in different seasons under
the four evaluation indicators. In terms of different seasons, the XLG-LR model achieved
the best prediction results in summer, and the prediction in winter was worse than the
other three seasons. The result of R2 = 0.9901 was obtained in the prediction of electricity
demand in summer, which showed that the predicted electricity demand curve and the
real electricity demand curve were close to complete fitting.

Table 3. Evaluation Index for Four-season Power Demand Forecasting of Each Model.

Season Model MAE RMSE MAPE R2

Spring

XGB 1213.4418 1554.2933 1.8522 0.9831
LGB 1012.9526 1375.8327 1.6001 0.9868

GBDT 912.9945 1339.8951 1.3692 0.9875
XLG-LR 944.2574 1324.2092 1.4290 0.9878

Summer

XGB 1247.6122 1649.8398 1.5219 0.9876
LGB 1030.1353 1511.3040 1.3164 0.9896

GBDT 1096.8353 1529.8322 1.3537 0.9893
XLG-LR 1012.3726 1476.2730 1.2631 0.9901

Autumn

XGB 1160.6954 1449.4663 1.6403 0.9815
LGB 911.2942 1285.7159 1.3205 0.9854

GBDT 870.9885 1254.6281 1.2401 0.9861
XLG-LR 849.6115 1212.4954 1.2145 0.9870

Winter

XGB 1023.2532 1324.5908 1.5672 0.9831
LGB 883.9934 1200.4895 1.3971 0.9861

GBDT 818.3961 1173.3652 1.2690 0.9867
XLG-LR 820.0982 1165.8157 1.2753 0.9869
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5.3. Power Demand Forecasting Results on a Weekly Basis

In actual production, the power sector usually needs to plan the production and
scheduling of the next week at the end of one week. Therefore, forecasting power demand in
units of weeks has practical significance in guiding the power sector to arrange production
scheduling. In order to evaluate the power demand forecasting on a weekly basis, the
data of seven consecutive days was randomly selected from the test set for testing, and
the accuracy of the power demand forecasting at different periods in the seven days was
examined. Figure 8 shows the results of power demand on a weekly basis of forecast by the
model XLG-LR. It can be seen that in addition to the XGB model, LGB, GBDT and XLG-LR
models all performed better on forecasting the trend of electricity demand in a week, in
which the forecast of XLG-LR model was the closest to the true value.
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The results of the XLG-LR model in this paper and other methods are shown in Table 4.
It can be seen that the four models were all close to 1 in terms of R2 indicator, suggesting
that the prediction results of each model can better approach the true value. However,
the XLG-LR model improved by 35.42%, 2.97% and 4.03% respectively in terms of MAE
compared with the three models of XGB, LGB and GBDT. It showed that the XLG-LR model
proposed in this paper could achieve more accurate prediction results in power demand
forecasting on a weekly basis.

Table 4. Evaluation Index for Power Demand Forecasting of Each Model on a Weekly Basis.

Model MAE RMSE MAPE R2

XGB 594.2615 791.7733 1.9130 0.9846
LGB 395.4956 513.2147 1.2803 0.9935

GBDT 399.8788 514.8469 1.2610 0.9935
XLG-LR 383.7544 494.0599 1.2118 0.9940
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5.4. Power Demand Forecasting Results on a Monthly Basis

The power demand forecasting on a monthly basis can support power companies
making monthly planning and reasonably arranging production scheduling. In order to
evaluate the power demand forecasting in monthly units, the data of 30 consecutive days
was randomly selected from the test set, and the accuracy of the power demand forecasting
at different periods during the 30 days was examined. Figure 9 shows the power demand
forecasting results on a monthly basis forecast by the model XLG-LR. It can be seen from
the figure that, similar to the power demand forecasting on a weekly basis, except for
the XGB model, the LGB, GBDT and XLG-LR models could better predict the trend of
electricity demand in one month, and the prediction of the XLG-LR model was the closest
to the true value.

Mathematics 2022, 10, 2148 19 of 31 
 

 

The results of the XLG-LR model and other methods are shown in Table 5. It can be 
seen that the four models are all close to 1 in terms of 𝑅ଶ indicator, suggesting that the 
prediction results of each model could better approach the true value. However, in terms 
of MAE, RMSE and MAPE, the XLG-LR model achieved the minimum value compared 
with the three models of XGB, LGB and GBDT, indicating that the XLG-LR model 
proposed in this paper could obtain more accurate forecast results when forecasting 
electricity demand on a monthly basis. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cont.



Mathematics 2022, 10, 2148 19 of 30Mathematics 2022, 10, 2148 20 of 31 
 

 

 
(d) 

Figure 9. Power Demand Forecasting Results on a Monthly Basis. (a) XGB model; (b) LGB model; 
(c) GBDT model; (d) XLG-LR model. 

Table 5. Evaluation Index for Power Demand Forecasting of Each Model on a Monthly Basis. 

Model MAE RMSE MAPE 𝑹𝟐 
XGB 1236.2132 1707.0689 2.1563 0.9858 
LGB 746.6062 1084.8685 1.2888 0.9942 

GBDT 714.0283 1046.9850 1.1948 0.9946 
XLG-LR 700.9373 1032.5632 1.1818 0.9948 

6. Discussion 
It can be seen from the above experiments that although the power demand could be 

well predicted using GBDT, XGBoost and LightGBM models, the prediction results made 
by different algorithms under different scenarios were not stable. Two reasons may 
account for this. One is that the data characteristics in the different scenarios were not the 
same, which would affect the model training and learning process. The other reason is 
related to the data set used in this paper having a limited amount of data, which would 
affect the quality of the data to a certain extent. As data-driven methods, the prediction 
performance of GBDT, XGBoost, and LightGBM models was greatly affected by the 
quantity and quality of training data. Therefore, in order to effectively solve these 
problems, this paper proposes an XLG-LR model for power demand forecasting based on 
stacking, which effectively solves various problems existing in the single use of GBDT, 
XGBoost and LightGBM models. Experiments suggest that the XLG-LR model in this 
paper has achieved high accuracy in different forecasting scenarios, effectively improving 
the power demand forecasting accuracy. 

In recent years, with the continuous development of neural networks, a growing 
number of scholars have begun to apply neural networks into power demand forecasting 
[36], and frequently used models include the gated recurrent unit (GRU) [37], long short-
term memory networks (LSTM) [38], and the temporal convolutional network (TCN) [39], 
etc. In order to verify the advancement and effectiveness of the XLG-LR model, the power 
demand data of this paper was used to train the above GRU, LSTM, TCN models and the 
XLG-LR model, and utilized the test set to test the training results. 

As a long-term memory neural network, LSTM is widely used for correlation 
learning and prediction in sequence data. Since the vanishing gradient of recurrent neural 
network (RNN) hinders the network from learning long-term dependencies, LSTM 
reduces the occurrence of the problem by introducing the forget gate, input gate and 
output gate, which can achieve better results. On the basis of this method, Wang et al. [40] 

Figure 9. Power Demand Forecasting Results on a Monthly Basis. (a) XGB model; (b) LGB model;
(c) GBDT model; (d) XLG-LR model.

The results of the XLG-LR model and other methods are shown in Table 5. It can be
seen that the four models are all close to 1 in terms of R2 indicator, suggesting that the
prediction results of each model could better approach the true value. However, in terms of
MAE, RMSE and MAPE, the XLG-LR model achieved the minimum value compared with
the three models of XGB, LGB and GBDT, indicating that the XLG-LR model proposed in
this paper could obtain more accurate forecast results when forecasting electricity demand
on a monthly basis.

Table 5. Evaluation Index for Power Demand Forecasting of Each Model on a Monthly Basis.

Model MAE RMSE MAPE R2

XGB 1236.2132 1707.0689 2.1563 0.9858
LGB 746.6062 1084.8685 1.2888 0.9942

GBDT 714.0283 1046.9850 1.1948 0.9946
XLG-LR 700.9373 1032.5632 1.1818 0.9948

6. Discussion

It can be seen from the above experiments that although the power demand could be
well predicted using GBDT, XGBoost and LightGBM models, the prediction results made by
different algorithms under different scenarios were not stable. Two reasons may account for
this. One is that the data characteristics in the different scenarios were not the same, which
would affect the model training and learning process. The other reason is related to the data
set used in this paper having a limited amount of data, which would affect the quality of
the data to a certain extent. As data-driven methods, the prediction performance of GBDT,
XGBoost, and LightGBM models was greatly affected by the quantity and quality of training
data. Therefore, in order to effectively solve these problems, this paper proposes an XLG-LR
model for power demand forecasting based on stacking, which effectively solves various
problems existing in the single use of GBDT, XGBoost and LightGBM models. Experiments
suggest that the XLG-LR model in this paper has achieved high accuracy in different
forecasting scenarios, effectively improving the power demand forecasting accuracy.

In recent years, with the continuous development of neural networks, a growing num-
ber of scholars have begun to apply neural networks into power demand forecasting [36],
and frequently used models include the gated recurrent unit (GRU) [37], long short-term
memory networks (LSTM) [38], and the temporal convolutional network (TCN) [39], etc.
In order to verify the advancement and effectiveness of the XLG-LR model, the power
demand data of this paper was used to train the above GRU, LSTM, TCN models and the
XLG-LR model, and utilized the test set to test the training results.
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As a long-term memory neural network, LSTM is widely used for correlation learning
and prediction in sequence data. Since the vanishing gradient of recurrent neural network
(RNN) hinders the network from learning long-term dependencies, LSTM reduces the
occurrence of the problem by introducing the forget gate, input gate and output gate, which
can achieve better results. On the basis of this method, Wang et al. [40] forecast short-term
photovoltaic power and this study conducts comparative experiments. Temporal CNN
(TCN) is a simple one-dimensional convolutional network that can be applied to time
series data. The layers in the network have temporal properties and are used to learn
global and local features of the data. Convolutional layers also help improve model latency,
allowing prediction to conduct parallel processing. Based on this method, Wang et al. [41]
predicts the short-term electricity consumption of industrial users, and this study carries
out comparative experiments. As for the GRU model, more attention is paid to the role of
gate control, especially the feature weight introduced into its formula to enhance the ability
to extract data features. Based on the method, Gao et al. [42] carries out short-term power
load forecasting. A power load in the next 48 h with one hour as a unit is predicted. In this
study, a comparative experiment is conducted on the basis of this method.

During the comparison, the relevant parameters in the GRU, LSTM and TCN models
need to be set. The parameter settings of each model are shown in Table 6 during the
comparative experiment stage.

Table 6. Parameter Settings of Each Model.

TCN GRU LSTM

batchsize 50 50 50
epoch 20 20 20

verbose 2 2 2
Nb_filters 5 5 5
activation linear relu relu

kernel_size 2 — —
dropout 0.01 0.01 0.01

optimizer adam adam adam
Run_units — 16 16

return_sequences — false false
losses MeanAbsoluteError MeanAbsoluteError MeanAbsoluteError

In the training and testing of the power demand forecasting model based on stacking,
the input form of data refers to data usage × data feature number. In contrast with this
model, when GRU, LSTM and TCN are trained and tested, the form of data input refers to
data usage × data feature number × time window length. The size of the time window
needs to be adjusted according to the forecast demand of different durations.

First, four methods were used to compare the seasonal power demand forecasting,
and the same training set and test set as Section 5.2 were utilized to carry out experiments
to investigate the accuracy of power demand forecasting in different periods of a day in a
certain season. The prediction results of the four models for different seasons of electricity
demand are shown in Figure 10. It can be seen that the XLG-LR model was the closest to
the true value in most time periods.
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The comparison between the XLG-LR model in this paper and the other three neural
network methods is shown in Table 7. It can be seen that compared with the three models
of GRU, LSTM and TCN, the XLG-LR model has significant advantages in forecasting
power demand in different seasons under the four evaluation indicators.

Secondly, four methods were used to compare power demand forecasting in weeks,
and the same training set and test set as in Section 5.3 were utilized to conduct experiments
to examine the accuracy of power demand forecasting at different time periods in a week.
The prediction results of the four models for the trend of electricity demand in one week
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are shown in Figure 11. It can be seen that the three models GRU, LSTM and TCN had
obvious prediction deviations in the periods of high and low electricity demand, while
the XLG-LR model could accurately predict the change trend of power demand in most
time periods.

Table 7. Four-season Power Demand Forecasting of Different Models.

Season Model MAE RMSE MAPE R2

Spring

TCN 1391.5866 1821.2366 2.3494 0.9769
GRU 2005.0183 2518.0632 3.5355 0.9558
LSTM 1269.7824 1574.1374 2.0255 0.9827

XLG-LR 944.2574 1324.2092 1.4290 0.9878

Summer

TCN 2337.1998 2953.7105 2.9954 0.9604
GRU 1968.0719 2443.3270 2.78523 0.9729
LSTM 1568.0717 1944.5349 2.0158 0.9828

XLG-LR 1012.3726 1476.2730 1.2631 0.9901

Autumn

TCN 1131.3771 1849.1958 1.6581 0.9698
GRU 1262.4749 1529.5060 1.8689 0.9794
LSTM 1059.8789 1393.1455 1.5416 0.9829

XLG-LR 849.6115 1212.4954 1.2145 0.9870

Winter

TCN 1159.8787 1520.9946 1.9049 0.9777
GRU 1521.1682 1856.1513 2.5641 0.9668
LSTM 1058.4183 1397.4117 1.6953 0.9812

XLG-LR 820.0982 1165.8157 1.2753 0.9869
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Figure 11. Comparison of Power Demand Forecasting of Different Models on a Weekly Basis. (a) TCN
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The comparison between the XLG-LR model and the other three neural network
methods are shown in Table 8. It can be seen that compared with the three models of
GRU, LSTM and TCN, the XLG-LR model had obvious advantages in the power demand
forecasting on a weekly basis under the four evaluation indicators, and all indicators were
ahead of other models.

Table 8. Power Demand Forecasting of Different Models on a Weekly Basis.

Model MAE RMSE MAPE R2

TCN 458.1456 611.5984 1.5005 0.9908
GRU 546.6451 697.3183 1.7744 0.9881

LSTM 442.0174 605.2217 1.4582 0.9910
XLG-LR 383.7544 494.0599 1.2118 0.9940
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Then four methods were used to compare the power demand forecasting on a monthly
basis, and the same training set and test set as Section 5.3 were utilized to conduct exper-
iments to examine the accuracy of power demand forecasting at different time periods
during the 30 days. Figure 12 shows the forecast results of the four models for the trend
of electricity demand in one month. It can be seen from the figure that the three models
of GRU, LSTM and TCN had obvious forecast deviations in the period of low electric-
ity demand, while the XLG-LR model could basically match the real demand in most
time periods.
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The comparison between the XLG-LR model and the other three neural network
methods are shown in Table 9. It can be seen that compared with the three models of GRU,
LSTM and TCN, the XLG-LR model had significant advantages in forecasting electricity
demand on a monthly basis under the four evaluation indicators, and the curve fitting
effect was the best and the power demand forecast error was the smallest.

Table 9. Comparison of Power Demand Forecasting of Different Models on a Monthly Basis.

Model MAE RMSE MAPE R2

TCN 807.7706 1212.6045 1.4354 0.9928
GRU 820.3134 1222.5821 1.3882 0.9927
LSTM 811.6063 1217.4424 1.4310 0.9928

XLG-LR 700.9373 1032.5632 1.1818 0.9948

The prediction time of the model was related to the convenience of the model in reality.
This paper adopted the same training data to compare the time consumption of the XLG-LR
model and the other three neural network methods in the prediction stage. The specific
structure is shown in Table 10.

Table 10. The Time Required for Power Demand Forecasting of Different Models in Different Scenarios.

Forecasting Scenario Model Predict Time(s)

Short-term power
demand forecasting
in different seasons

Spring

TCN 0.0745
GRU 0.0587
LSTM 0.0630

XLG-LR 0.0018

Summer

TCN 0.4250
GRU 0.0629
LSTM 0.0610

XLG-LR 0.0016

Autumn

TCN 0.0646
GRU 0.0622
LSTM 0.0626

XLG-LR 0.0019

Winter

TCN 0.0665
GRU 0.0579
LSTM 0.0616

XLG-LR 0.0022

Power demand forecasting on a weekly basis

TCN 0.1432
GRU 0.1042
LSTM 0.1080

XLG-LR 0.0026

Power demand forecasting on a monthly basis

TCN 0.4341
GRU 0.2859
LSTM 0.2748

XLG-LR 0.0041

It can be seen from the table that the XLG-LR model could complete the prediction in
the shortest time in each forecasting scenario. And the time required was at least one order
of magnitude different than the other three neural network methods, which fully showed
that the XLG-LR model had an absolute advantage in prediction time.

Through the above comparative experiments, it could be considered that the XLG-
LR model had obvious advantages in terms of prediction accuracy and prediction time
consumption compared with the classical neural network algorithms. The construction of
the XLG-LR model mainly relies on the principle of a decision tree, and the global optimal
solution is finally obtained by continuously optimizing the local optimal solution in the
solving process. The neural network needs to compare the data features extracted from
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the test data with the trained model to give the optimal solution. However, the data in the
training model has numerous features as well as a certain similarity, so it performs not as
well as the XLG-LR model in terms of accuracy and time consumption. Therefore, it can be
considered that the XLG-LR model in this study could achieve ideal prediction results for
the power demand forecasting in different scenarios.

Although the method proposed in this paper has achieved relatively ideal power de-
mand forecasting results, there are still some problems that need to be solved in the future.

(1) The dataset is relatively small and contains a limited amount of information. At
present, the dataset used in this paper has only 13 months of data, which reduces the
generalization and reliability of the model to a certain extent. The GBDT, XGBoost and
LightGBM algorithms used in this paper can achieve better prediction results on small data
sets, but if the data is more abundant, it should be able to achieve better prediction results.
Therefore, in future research and exploration, the current dataset can be supplemented by
collecting more months of data to build a larger and more informative dataset for electricity
demand forecasting.

(2) More indicators other than meteorological factors may also be able to influence the
forecast results. The electricity demand can be affected by many factors, including the level
of local economic development and industrial structure. Although the indicators used in
this study can exert the necessary influences on electricity demand to a certain extent, some
other indicators may also affect it. Therefore, in the future, researchers can learn of other
factors affecting electricity demand indicators from experts in related fields, and collect
more index data that can have an impact on electricity demand to supplement the current
data set.

7. Conclusions

Regarded as an important task in the power industry, power demand forecasting
guarantees normal operation of economic development, sustains people’s daily life, and
directs electric power production. This study utilized 13 months of electricity and meteoro-
logical data and adopted three models: GBDT, XGBoost and LightGBM, in order to build
an XLG-LR power demand forecasting model based on stacking fusion. After the data
was divided into a training set and a test set, the above four models were trained, and the
test set was used to verify the feasibility of the model. The experiments in this study were
carried out under the following software and hardware conditions. Software conditions
required python3.7, tensorflow2.8.0, with the sklearn, seaborn, numpy, matplotlib, and the
pandas development kits installed. The hardware environment required that the graphics
card model was AMD Radeon(TM) Vega 8 Graphics and that the memory was 8 GB.

Verification started with different time lengths such as seasonal forecasting, weekly
forecasting and monthly forecasting. It was found that under different time lengths, except
for the XGBoost model, the GBDT, LightGBM and XLG-LR models all achieved relatively
satisfactory results, among which the XLG-LR model proposed in this paper works best.
From the perspective of prediction accuracy, the overall prediction accuracy ranked as
XLG-LR > GBDT > LightGBM > XGBoost. In addition, this paper also compared the power
demand prediction results of the XLG-LR model with that of the three mainstream neural
network models of TCN, GRU and LSTM. The results showed that the XLG-LR model in
this paper can also achieve the best experimental results in this dataset compared to the
neural network model. Through the above discussion, the reliability and validity of the
XLG-LR model in this paper for power demand forecasting was verified. When the power
demand data or the meteorological data changes, only a new data set is needed to train
the model to form a new prediction model, which can cope with the data changes and
carry out the corresponding prediction. The method in this study can also be applied to
power demand forecasting in other regions, and a new data set is needed to train a new
forecasting model. In addition, the method has been encapsulated into corresponding
software with good interoperability. It will be able to be used in a wider range of practical
applications in the days to come.
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In the future, more power demand data can be collected to build a larger power
demand database so as to verify the accuracy and advancement of the algorithm in this
paper in power demand forecasting. At the same time, under the premise that the amount
of data is sufficient enough, this method could be adopted to carry out long-term electricity
demand forecasting, such as forecasting the electricity demand in the next year. In addition,
electricity demand is also closely related to other factors besides meteorological ones, such
as the level of economic development and the regional industrial layout. In the days to
come, these data can be supplemented to improve the prediction accuracy of this method.
Furthermore, the method can also be applied to other fields, including the prediction of
water demand and coal resource demand.
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