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Abstract: The main component of a cryptographic system that allows us to ensure its strength against
attacks, is the substitution box. The strength of this component can be validated by various metrics,
one of them being the nonlinearity. To this end, it is essential to develop a design for substitution
boxes that allows us to guarantee compliance with this metric. In this work, we implemented a
hybrid between the stochastic fractal search algorithm in conjunction with opposition-based learning.
This design is supported by sequential model algorithm configuration for the proper parameters
configuration. We obtained substitution boxes of high nonlinearity in comparison with other works
based on metaheuristics and chaotic schemes. The proposed substitution box is evaluated using
bijectivity, the strict avalanche criterion, nonlinearity, linear probability, differential probability and
bit-independence criterion, which demonstrate the excellent performance of the proposed approach.

Keywords: cryptography; substitution box; opposition-based learning; metaheuristics; stochastic
fractal search

MSC: 37M99

1. Introduction

The explosive increase in the use of communication channels through digital media,
the use of automatic learning in the field of medicine, and the digitization of participatory
democratic means in the exchange of goods and services are some areas in which it is
strongly required that the concept of security is robustly associated. Cryptography allows
us to guarantee this property. Taking into account the symmetric block cipher scheme, for
example, advanced encryption standard, we observe that the main component of these
ciphers is the substitution box, which allows us to incorporate the concept of confusion,
obscuring the link between the secret key and cipher text [1] in our cipher system. The strength of
the substitution box present in the encryption system allows us to ensure its quality. There
are different metrics to analyze a substitution box: nonlinearity, strict avalanche criterion,
balance, bit independent criterion, and transparency order [2], to name a few. These
metrics are used to determine the weaknesses or strengths of the substitution box against
cryptanalysis [3,4]. In this work, we maximize the property of nonlinearity of substitution
boxes of 8 input bits and 8 output bits. Traditionally, substitution box design methods
can be grouped into the following schemes: algebraic, random, chaotic and heuristic
methods. Here, we use a population optimization algorithm based on fractal search,
the stochastic fractal search algorithm, which is inspired by fractals to comply with the
exploitation property and stochasticity to implement the exploration mechanism, allowing
the algorithm to efficiently traverse the search space. This metaheuristic is integrated with
opposition-based learning, whose main notion emerges from the concept of Yin-Yang,
and allows us to increase the degree of exploration of the first algorithm, through the
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generation of opposite populations and subsequent analysis of the best solutions that
are then operated by the optimization algorithm. We can increase the performance of
the proposed scheme by addressing the problem of the adequate selection of parameters
through the use of sequential model-based optimization for general algorithm configuration,
which gives us an optimal set of parameters for the execution of stochastic fractal search.
We have contrasted the execution of the hybrid algorithm with the classic version of the
algorithm, showing the best performance of the hybrid proposal. Experiments show that
the substitution boxes found have excellent cryptographic properties, which is compared
with the results of other types of substitution box design. We evaluated the proposed
substitution box based on bijectivity [5,6], nonlinearity, strict avalanche criteria, differential
uniformity, linear approximation probability, justifying being a correct scheme for the
generation of substitution boxes.

The organization of the work is defined as follows: the state of the art is introduced in
the next section. The substitution box problem is described in Section 3. Section 4 provides
an explanation of the optimization algorithm and opposition-based learning. Experimental
findings are presented in Section 5. Finally, conclusions and future works can be found in
Section 6.

2. State of the Art

During the last years, two research areas concerning the development of methods for
the generation of substitution boxes have been strongly promoted: optimization algorithms
and chaotic systems. In the set of works related to solving the substitution box design
problem, we can mention the following works: [7] proposed a construction method based
on a linear fractional transform, using the Box–Muller Transform, polarization decision,
and central limit algorithm. The results reported good values for nonlinearity and other
common metrics of security criteria. In [8], the authors reported a design combining the
cuckoo search algorithm with chaotic maps. The latter was used to generate the initial
population of the substitution box. Experiments showed that the substitution boxes were
found to have good qualities to resist linear and differential attacks. A design that occupies
the Mobius transformation was reported in [9]. The transformation was applied into
random values that were generated by a nonlinear combination of chaotic tent map and
sine map. The statistical analysis carried out showed good results, comparing the proposed
substitution boxes with others of public knowledge, such as AES or Skipjack. In [10], the
authors constructed a scheme utilizing the firefly algorithm. A discrete chaotic map fulfills
the function of initializing the population. The use of the latter does not contain fixed points,
which promotes the generation of chaotic sequences. The performance of this approach
is checked against general criteria: bijectivity, bit-independence criteria, strict avalanche
criteria, differential uniformity, linear approximation probability. The nonlinearity reaches
the value of 107.5 on average. An algebraic technique for building a promising substitution
box was proposed in [11]. The proposed substitution box is evaluated using standard
metrics such as the bit-independent criterion, strict avalanche criterion, and nonlinearity,
among others. Additionally, it was compared with another substitution box, including
Skipjack, Xyi, AES, Gray, APA and Prime. The work in [12] implemented an improved one-
dimensional chaotic logistic map that exhibits a strong chaotic behavior. The results were
exposed through statistical and algebraic analysis. The proposed substitution box obtained
an average nonlinearity of 108.13. Particle swarm optimization integrated with the chaotic
Renyi map for the initial population was presented in [13]. In the experiments, various
configurations for the parameters of the algorithm were considered, for example, setting the
number of iterations equal to 1000. On the other hand, it was proposed an image encryption
scheme that is based on the suggested substitution box. The analysis of results was carried
out using the majority logic criterion and other metrics. In [14], the authors considered a
design applying biometrics. In this case, characteristics of the fingerprints were used for the
construction of substitution boxes. The results were compared against chaotic and biometric
design schemes. The standard comparison metrics were used and, in addition, randomness,
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confidence interval and time consumption were also evaluated. A design that uses chaotic
logistic map for the generation of dynamic key-based substitution boxes was explained
in [15]. This work counteracted the repercussions of algebraic attacks. The results were
analyzed based on the conventional strength metrics of a substitution box. A random-restart
hill-climbing algorithm for the construction of substitution box was described in [16]. Their
objective function was nonlinearity. The results showed a reduction in the construction
time and also added an algorithm to optimize linear approximation probability without
affecting negatively the nonlinearity and biyectivity. In [17], the authors combined sine map
and logistic functions to form a new chaotic map that holds excellent dynamic and complex
properties, and this design was hybridized with algebraic techniques for the construction
of substitution boxes. Standard metrics, such as nonlinearity, strict avalanche criteria,
and linear approximation probability, were compared to other designs. The proposed
substitution box was applied to image encryption. The results were analyzed using majority
logic criterion. The utilization of piecewise linear chaotic map and quantum chaos for a key-
based approach was presented in [18]. The proposed substitution box was evaluated against
bijectivity, nonlinearity, strict avalanche criteria, bit independence criterion, differential
approximation probability, and key sensitivity. The Leaders and Followers combined with
hill-climbing was presented in [19]. An objective function was implemented that considers
the whole Walsh–Hadamard spectrum of substitution boxes. The experiments reported
that the method is resistant to classical cryptanalysis and side-channel attacks. In [20], the
authors proposed a modified firefly algorithm, that performs a random movement based
on the best firefly utilizing discrete chaotic maps. The experimental results revealed that
the proposed method complies with properties that guarantee the strength of a substitution
box. The work described in [21] is a genetic algorithm whose operators aim to maintain
bijectivity and improve the nonlinearity of the solutions. The initial population is generated
through a chaotic logistic map. The results show that the solutions are balanced and comply
with high nonlinearity. A composition between logistic, tent and sine map builds a new
chaotic map as explained in [22]. The qualities of the system were determined using the
Lyapunov exponents and entropy variation. They proposed an image encryption scheme
that showed good performance in complexity and execution times and that is also resilient
to types of attacks, which allows it to be used in private network security. In [23], the
authors presented the use of the leaders and followers algorithm in conjunction with hill
climbing. This hybrid is also improved by means of machine learning, whose purpose is to
determine the optimal moment of transition between exploration and exploitation. The
scheme used an objective function that incorporates nonlinearity and transparency order
in a weighted way. The results of this scheme are competitive with the results presented
in several publications and leave room for possible improvements, for example, the use
of deep learning, the formation of more complex objective functions using more than two
properties. An improved version of the work established in [24] was proposed in [25]. This
work proposed the cryptanalysis of an image encryption scheme, in which the formation
of the substitution boxes was performed using a combination of chaotic maps, involving
Lorenz [26] and Rossler [27]. The proposal in [28] utilized a heuristic evolution strategy
based on affine transformation and permutation process. The experiments were evaluated
according to standard criteria, fixed point analysis, and computational time. The proposed
substitution box was tested to encrypt images, and the suitability was assessed using
a majority logic criterion. It was concluded that the proposal is a feasible candidate to
be applied in the context of image security. The introduction of a Markov model was
given in [29]. This approach consists in stacking bitwise operations and solving them with
reinforcement learning. This approach generated results are comparable to the state of the
art. On the other hand, it included improvements to the SKINNY S-box implementation.
The training of the model took about a month of computation. Results are expressed
in terms of differential uniformity, linearity and number of nonlinear operations. The
method in [30] to build substitution boxes uses particle swarm optimization, with random
population. The proposed substitution box in combination with the chaotic Rossler map
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is employed to establish security in the storage and communication of images. Standard
metrics were used to demonstrate the quality of the proposed substitution boxes. The
images resulting from the encryption process were analyzed based on the histogram,
correlation coefficient, and entropy, among other metrics. In [31], the authors exposed a
design, implementing the Tiki-Taka optimization algorithm in combination with a chaotic
map selection method. Five chaotic maps are included for population generation. The
selection of the map is based on a reward–penalty mechanism. Common metrics are used
to evaluate the strength of the proposed substitution box, and the transparency order is
also included. It was shown that, thanks to the properties of chaotic systems—ergodicity,
pseudo randomness, and unpredictability—the performance of the original version of the
optimization algorithm is improved. A modified Pascal’s triangle in combination with
the equation of the elliptic curve was presented in [32]. The experiments demonstrate the
characteristics (differential approximation probability and linear approximation probability,
among others) of the proposed substitution box, which was also used to implement image
encryption and noise removal. For the comparison, common substitution boxes in the
literature were used, such as AES, Skipjack, Xyi, along with other works. The work in [33]
implemented the cuckoo search algorithm, which was enhanced in its search capacity and
convergence speed, using a discrete chaotic map for the initial population generation. The
results include nonlinearity, bijectivity, the bit-independence criterion, strict avalanche
criterion, differential uniformity, and linear probability. The proposed scheme generated
strong substitution boxes that meet the majority of cryptographic requirements.

One of the optimization algorithms that has emerged in recent times, and that has been
applied to solve various problems, is stochastic fractal search. In the original paper [34],
the proposed algorithm was evaluated using classic benchmark functions. The results were
compared with particle swarm optimization and artificial bee colony, among others. The set
of experiments also addressed the resolution of three different engineering design problems:
tension/compression of a spring, welded beam and pressure vessel. The results of these
experiments were compared against different algorithms: mathematical programming,
genetic algorithm, coevolutionary particle swarm optimization, nonlinear integer and
discrete programming, to name a few. These first results showed that the algorithm is
capable of being used in various types of problems. For example, the problem of measuring
the similarity between two overlapping sets of images is known as template matching. The
work in [35] used stochastic fractal search to solve this problem, comparing the experimental
results with algorithms, such as artificial bee colony and imperialist competitive algorithm,
among others. The results showed that the algorithm obtained a better performance
in contrast to other works present in the literature. The work in [36] used stochastic
fractal search to address the problem of the environmental–economic dispatch problem
in power systems operations, considering factors, such as physical restrictions, pollution,
and transmission losses. The results included a comparison with various optimization
algorithms. For example, the genetic algorithm, gravitational search algorithm, and six
other algorithms. The work confirmed the ability of the algorithm to achieve values close to
the global optimum within a short time frame. Stochastic fractal search was used to address
the problem of unmanned aerial vehicle path planning, finding good results in acceptable
times [37]. The problem of modeling photovoltaic systems includes the estimation of
parameters with the available values of voltage and current. In the work of [38], the
stochastic fractal search was incorporated as a mechanism for estimating the parameters
of the previously mentioned problem in order to obtain efficient models. The results
demonstrated the effectiveness of the algorithm in improving the capacity of the models,
showing better performance against other recently published algorithms. A solution to the
permutation flowshop scheduling problem was presented in [39], using stochastic fractal
search. To demonstrate the ability of the algorithm to solve this problem, several types of
instances were used. The algorithm was able to find solutions close to the known optima,
according to the results presented. The work presented in [40] used stochastic fractal search
for the parameter estimation of the support vector regression algorithm. The latter is
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used in solving the bearing life prediction problem. The results obtained were consistent
with those provided by other works in the literature. In the work of [41], the parameters
of a control algorithm for automatic voltage regulator were estimated using stochastic
fractal search. The results were compared with six other algorithms, showing an excellent
ability to solve this problem. In [42], stochastic fractal search was proposed as a solution
to the problem of visual tracking. The algorithm exhibited satisfactory results in difficult
instances of this problem in comparison with other state-of-the-art algorithms. Another
important aspect worth mentioning is the fact that stochastic fractal search was subject to
modifications in some works. For example, the work in [43], for the first time, used the
stochastic fractal search algorithm to solve complex multi-objective optimization problems.
The incorporation of the differential evolution as a stochastic fractal search operator was
proposed in [44]. The work in [45] used the chaotic maps of Chebyshev and Gauss/Mouse
as modifiers of the equations in the diffusion and the first update processes. The focus
on [46] incorporated Lévy flight and internal feedback information in the stochastic fractal
search.

In the work carried out by [47], a series of integrations between optimization algo-
rithms and machine learning techniques were exposed. One type of integration is where
machine learning techniques act as low-level components in metaheuristics. There is a com-
ponent category that performs the generation of initial solutions. In this type of component,
several examples of the use of opposition-based learning hybridized with metaheuris-
tics can be found in the literature. These works solve benchmark-type problems [48–52];
high-dimensional continuous optimization problems [53]; the reactive power dispatch
problem [54]; symbolic regression [55]; and load frequency control [56]. The central idea
in the use of opposition-based learning is that it provides complementary solutions to
improve the convergence of the search process, increase search space coverage and increase
the diversity of the population. To the best of our knowledge, there are no works in the lit-
erature that perform the integration between metaheuristics and opposition-based learning
to solve the substitution box design problem.

Works that use stochastic fractal search and opposition-based learning allow us to
affirm that the mentioned techniques are good candidates to present an integration between
both. Our contribution is to present a new hybrid scheme, composed of the stochastic
fractal search algorithm and opposition-based learning to solve the substitution box design
problem, which presents excellent results in terms of performance. We also incorporated
a tool that allows us to find an optimal algorithm configuration and thus establish a
high quality of the experiments performed, achieving consistency in the performance
of the algorithm. The resulting implementation, in conjunction with the formality of the
experiments, led to obtaining competitive results in terms of nonlinearity of the substitution
boxes found.

3. Substitution Box

Substitution boxes are the main component of an encryption system that allows us to
guarantee its strength. Ensuring that a substitution box has a high nonlinearity [57], we can
assert that the cryptographic system of which it is part will be resistant to various types of
attack [58].

A substitution box S is defined as a mapping function, that takes n input bits and
returns m output bits, S : Zn

2 ⇒ Zm
2 . It can be implemented as a lookup table or it can be

dynamically generated. Next, we present the mathematical basis of the substitution boxes
and the definition of the objective function to use.

Preliminaries

• Let f be a Boolean function defined as f : Fn
2 → Fm

2 , where n is the input bits and m.
We can mention several ways to represent a Boolean function: algebraic form, truth
table, and hexadecimal form, to name a few.
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• The representation in its algebraic normal form is built on the basis of the operations
of sum and product of the input variables. We can write f in the following way:

f (x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ · · · ⊕ an−1,nxn−1xn ⊕ a1,2...nx1x2 . . . xn (1)

where a0, a1, a1,2,...,n ∈ {0, 1}∗.
• The decimal representation of a Boolean function is based on a vector of length

2n, where n indicates the number of input bits. The elements of the vector are in
decimal form.

• The number of 1 present in the truth table representation of a Boolean function is
defined as the Hamming weight.

• If the elements present in the decimal representation are unique or the hamming
weight is equal to 2n−1, the Boolean function satisfies the balance property.

• The Hamming distance is calculated by counting all the differences in the output bits
of two Boolean functions.

• The maximum of the degrees of the monomials of the algebraic normal form is called
the algebraic degree.

• If the algebraic degree of a Boolean function is equal to one, the function is defined as
an affine Boolean function. An affine Boolean function can be described as

fa f f (x1,x2,...,xn) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x1 + a0 (2)

where ai ∈ {0, 1}. When a0 is zero, we get a linear Boolean function. A Boolean
function of n input bits, can have 2n+1 affine Boolean functions.

• The Walsh–Hadamard transformation F̂f (w) of Boolean function f with n variables is
defined as:

F̂f (w) = ∑
x∈Bn

f̂ (x)(−1)<w,x>

= ∑
x∈Bn

(−1) f (x)⊕<w,x>

= ∑
x∈Bn

f̂ (x)l̂w(x)

(3)

where f̂ is the polarity representation of a Boolean function, l̂w(x) is the signed
function of the linear function lw(x) =< w, x >, F̂f (w) ∈ [−2n, 2n], ∀w ∈ Bn and
F̂f (w) is known as a spectral walsh coefficient. The real-value vector of all 2n spectral
coefficients is referred to as the Walsh–Hadamard transformation spectrum. The
maximum absolute value, taken by F̂f , is given by: WHTmax( f ) = max(w∈Bn)|F̂f (w)|.

• The Hadamard matrix, is a binary matrix of dimensions 2n × 2n. For the elements
W(i, j), where i represents the rows and j represents the columns,

H2n =

[
H2n−1 H2n−1

H2n−1 −H2n−1

]
(4)

where 2 ≤ n ∈ N.
• In cryptography, one of the critical properties of a Boolean function is the nonlinearity.

The nonlinearity is the minimum distance between a Boolean function and any affine
Boolean function. A low nonlinearity value implies that a cryptographic algorithm
may be weak against linear or differential attacks. The distance between a Boolean
function f (x) and any affine Boolean function a(x) = a0 + l(x), can be calculated
as follows:
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d( f (x), a(x)) = wt( f (x)⊕ a(x))

=
2n−1

∑
x=0

( f (x)⊕ a(x))

=
1
2

2n−1

∑
x=0

(1− (−1) f (x)+a(x))

= 2n−1 − 1
2
(−1)a0

2n−1

∑
x=0

(−1) f (x)+l(x)

(5)

taking l(x) = 〈w, x〉 = w1x1 ⊕ · · · ⊕ wnxn, where w is the coefficient vector; we can
rewrite the above result as

d( f (x), a(x)) = 2n−1 − 1
2
(−1)a0

2n−1

∑
x=0

(−1) f (x)+〈w,x〉

= 2n−1 − 1
2
(−1)a0 S( f )(w)

(6)

where S( f )(w) is the Walsh–Hadamard transform of f (x) on w, 〈w, x〉 is the repre-
sentation of all affine boolean functions and a0 ∈ {0, 1}. Finally, the nonlinearity is
defined as follows:

nl( f ) = 2n−1 − 1
2

max|S( f )(w)| (7)

The objective function to be used by the optimization algorithm is the nonlinearity.

4. Stochastic Fractal Search Algorithm with Opposition Based Learning
4.1. Stochastic Fractal Search Algorithm

The fractal concept helps us to describe the shape of an object, which, regardless of
the level of visual distance we have from it, appears geometrically similar to the whole.
Random fractals can be generated by various iterative methods, for example, Gaussian
walks, trajectories of Brownian motion, and diffusion limited aggregation, among others.

In nature, there is a phenomenon known as dielectric breakdown (for example, light-
ning bolts and frost crystals), whose properties show that the branches that are generated
can be modeled as stochastic patterns and also include fractal properties [59]. This phe-
nomenon can be seen as a process of diffusion limited aggregation (DLA. Figure 1). The
steps in the DLA process can be described as follows: consider an initial particle, then other
particles are randomly generated around the initial particle by random walk, this process is
repeated until a cluster is formed. This cluster will have a fractal shape.

The fractal search algorithm is inspired by this phenomenon. It takes the concept of
diffusion limited aggregation as a search algorithm.

In [34], two metaheuristic algorithms are presented. The first one, fractal search, which
is based on the properties of fractals, aims to use a few iterations to achieve a good level
of efficiency and rapid convergence with adequate performance, but there are edges that
allow improvements, for example, the high number of parameters that must be properly
configured and the lack of communication between the solutions during the search process.
For these reasons, a second algorithm was developed called stochastic fractal search, whose
operators can be distinguished between two groups: diffusion and update.
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Figure 1. Fractal example using DLA.

The objective of the diffusion operator is exploitation, where each solution is diffused,
in order to find a global minimum and also prevent the algorithm from stagnating at a
local optimum. This operator generates new solutions by Gaussian walk from a particular
solution. Figure 2 represents this operator. To keep the number of solutions constant, only
the best solution generated by this process will be considered, and it will be compared with
the original solution of the diffusion process, and in the event that the new solution has a
better value of the objective function, the original solution will be replaced.

Figure 2. Diffusion operator.

In this process, there are two parameters. Walk is a random number between 0 and
1 uniformly distributed, and establishes which formula will be used to generate a new
solution, which can be (8) or (9). The second parameter involved is the maximum number
of solutions that are generated from a solution. We call this parameter the maximum number
of diffusion.

GW1 = Gaussian(µBP, σ) + (ε× BP− ε′ × Pi) (8)

GW2 = Gaussian(µP, σ) (9)
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where ε and ε′ are random numbers uniformly distributed in the [0, 1] interval. BP and
Pi are the best solution and the ith solution in the population, respectively. µP is exactly
equal to Pi. The parameter µBP is exactly equal to the best solution, BP. σ is the standard
deviation which is calculated as follows:

σ =

∣∣∣∣ log(j)
j
× (Pi − BP)

∣∣∣∣ (10)

where j is the current iteration. To the extent that iterations increase, the term log(j)
j is

oriented to reduce the size of the Gaussian jumps.
The update operator is oriented so that the solutions modify their position based

on the position of other solutions on the population. This operator allows us to comply
with the quality of exploitation, which is determined by random walks using Gaussian
distribution. Suppose we have a combinatorial optimization problem whose solutions
can be represented by a vector of d dimensions, and the domain of the solutions is in the
interval [LB, UB].

Pj = LB + ε× (UB− LB) (11)

where LB is the lower bound, and UB is the upper bound of the domain. ε is a uniformly
distributed random number defined in the range [0, 1]. After generating the initial popula-
tion and calculating the objective function of each of them, we proceed to identify the best
solution BP. In the diffusion process, all the solutions have made a move either around
their current position or the position of the best solution. The two updating processes are
aimed at improving the exploratory capacity of the algorithm. The first update procedure is
performed on each index of the solution vector, and the second procedure is aimed at mod-
ifying a solution based on other solutions of the population. This leads to an improvement
in the exploration capacity, which increases the diversity of the population. The first task of
the updating processes is to order the solutions based on a ranking formed by the value
of the objective function (nonlinearity). Then, to each solution a probability is assigned,
calculated by

Probi =
rank(Pi)

N
(12)

where rank(Pi) is the ranking of the solution Pi in relation to the population and N is
the total number of solutions. Then for each solution Pi, the jth index is updated if the
following condition is met:

Probi < ξ (13)

where ξ is a random number, with uniform distribution, in the range [0, 1]. To update the
respective index, the following formula is applied:

P′i (j) = Pr(j)− ε× (Pt(j)− Pi(j)) (14)

where P′i (j) is the new modified index of solution Pi, Pr(j) is j index of a random solution r,
ε is a random number from an uniform distribution in the interval [0, 1], Pt(j) is the j index
of a random solution t, and Pi(j) is the current j index of the analyzed solution.

At the beginning of the second update process, the solutions are ordered following the
same logic as in the first process. Then, if the condition Probi < κ is satisfied for a solution
P′i , where κ is a uniform distributed random number in the interval [0, 1], the following
equations can be applied:

P′′i =

{
P′i − ε̂× (P′t − BP) κ ≤ 0.5
P′i + ε̂× (P′t − P′r) κ > 0.5

(15)
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where P′′i is the modified solution, P′t and P′r are randomly selected solutions from the
population, and ε̂ are random numbers generated by the Gaussian normal distribution. The
modified solution P′′i will replace the original solution P′i only in the case of improvement
of the value of the target function.

In this work, we investigated the generation of the initial population under five schemes:

• Using a combination of chaotic maps. The first map is the logistic map (16) which
uses the parameter µ = [3.57, 4.0]. This map will iterate 1000 times, and the output is
used as input for the tent map (17). The tent map uses b = [0.5, 1.5] and also iterates
over 1000 times. The result of this operation allows us to form a vector of 256 unique
elements in the interval [0, 255] that will be our representation of a Boolean function.

xn+1 = µxn(1− xn) (16)

xn+1 =

{
xn
b , for xn ∈ [0, b]
(1−xn)

1−b , for xn ∈ [b, 1]
(17)

• Standard C++ functions for generating random numbers.
• Generation of random solutions together with the respective opposite solutions

and extracting half of each set, whose solutions present the best fitness to form the
initial population.

• Generation of random solutions in conjunction with the respective opposite solutions,
combining this set and using the best solutions.

• Generating random solutions in conjunction with the respective opposite solutions,
combining this set, selecting a subset of good solutions, and extracting a random set
from the latter to form the initial population.

The last scheme was the one that presented the best results in terms of average
nonlinearity of the initial population, so this scheme is used by the hybrid algorithm.

4.2. Opposition Based Learning

The idea of opposition [60] has been present since ancient times. We can see this
in different cultures, such as China, using the concept of Yin-Yang. This notion of the
opposite is considered to generate a learning scheme which allows us to describe the
perceived reality. These ideas are taken to the field of computing and are concretized with
the definition of opposite number [61] as follows:

Let x(x1, x2, . . . , xd) be a point in with d dimensions and x ∈ [ai, bi], i = 1, 2, 3, . . . , d.
The opposite of x is defined by x̆(x̆1, x̆2, . . . , x̆d) as follows:

x̆ = ai + bi − xi (18)

A two-dimensional representation can be seen in Figure 3. Opposition-based learning
follows the reasoning that it is beneficial to explore the search space using random direc-
tions in conjunction with the opposite directions simultaneously, which could raise the
probability of finding promising regions of the search space.

4.3. Integration

The use of opposition-based learning in our scheme occurs at the moment when the
last operator of the optimization algorithm ends. After completing the update II process, the
opposite population of the current population is generated. These two sets are combined
and ordered according to the fitness function. Then, the best m solutions are selected for the
next iteration. m is a parameter of stochastic fractal search that determines the number of
solutions to be generated. Algorithm 1 shows the pseudocode of the hybrid implementation.
At Lines 1–2, the parameters of stochastic fractal search are set, and the initial population
is generated. At Line 3 begins the main iteration. Lines 4–6 apply the diffusion process
for each solution in the population. Lines 7–9 execute the first update process for all the
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population, and then Lines 10–12 run the second update process for all solutions. Line 13
represents the process of opposition-based learning. In Figure 4, we can see a diagram of
the proposed implementation. In the upper part of the image, we can see the mechanism for
generating the initial population that will be processed by the optimization algorithm. The
three operators of the optimization algorithm that operate sequentially are also expressed.
Upon completion of the last operator, we determine whether the termination criteria have
been met. If it is negative, the generation process of the opposite population is continued to
later determine the solutions that will be incorporated again into the optimization process.

Figure 3. Two-dimensional opposition.

Figure 4. Stochastic fractal search with opposition-based learning.
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Algorithm 1 SFS OBL.
1: Set parameters stochastic fractal search
2: Generate initial population
3: while (i ≤ MaximumIteration) do
4: for i = 1 : m (m number of solutions) do
5: Diffusion(solutioni)
6: end for
7: for i = 1 : m (m number of solutions) do
8: Update1(solutioni)
9: end for

10: for i = 1 : m (m number of solutions) do
11: Update1(solutioni)
12: end for
13: Generate Oppossite Population and select m best solutions
14: end while

4.4. Sequential Model-Based Algorithm Configuration

The no-free-lunch theorem [62] states that no optimization algorithm is capable of
tackling all existing problems optimally. This theorem can be applied to the parameter
configuration of optimization algorithms. For this reason, the present work deals with this
problem using a tool to establish an adequate parameter configuration of the stochastic
fractal search algorithm. The selected tool is sequential model-based optimization for
general algorithm configuration, SMAC [63], whose strength lies in the use of Bayesian
optimization and racing mechanisms. SMAC is an iterative procedure that uses a surrogate
model to describe the way in which the optimization problem is related to the parameters of
the algorithm and analyzes its performance. The substitute model is used to propose a good
parameter setting. Table 1 shows the four parameters delivered to SMAC for the search
for an optimal configuration. The objective of the execution was set at the value of the
objective function (the alternative is to use the execution time of the optimization algorithm),
and a budget of 30 SMAC executions were established. The optimal configuration of the
stochastic fractal search is shown in Table 2.

Table 1. Scenario delivered to SMAC for execution.

Parameter Range Default

iterations [100, 400] 150
number population [10, 50] 25
walk [0.1, 1.0] 0.3
max number diffusion [1, 5] 1

Table 2. Results of SMAC execution.

Parameter Value

iterations 183
number population 36
walk 0.583946
max number diffusion 5

5. Results

A substitution box must meet certain requirements to be classified as a strong substitu-
tion box. In the literature, a set of metrics is considered standard to evaluate the competence
of the proposed substitution box. The metrics used are bijectivity, algebraic degree, the strict
avalanche criterion, nonlinearity, the bit-independence criterion, differential approximation
probability and linear approximation probability. The present scheme operates with 8-bit
input and output substitution boxes. The implementation of this work was done in C++
with the support of a library [64], which allowed analyzing the results of the algorithm. The
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experiments were executed using a dual Intel Xeon E5-2690 with 32 GB of RAM running
on Debian 10. The source code of this project is available in [65]. Regarding the results, we
can mention that the proposed substitution box achieves a better nonlinearity compared
to some works proposed in the literature. All generated substitution boxes satisfy the
property of bijectivity. The resistance to algebraic attacks is demonstrated based on the
value of algebraic immunity equal to 4. The strict avalanche criterion of the proposed
substitution box is 0.5005, whose difference is insignificant with respect to the ideal value.
The resistance to differential attacks of the proposed substitution box is based on a low
value of differential approximation probability equal to 0.046. Regarding the tolerance of
the proposed substitution box against linear attacks: this condition is fulfilled based on a
low value of linear approximation probability equal to 0.125.

5.1. Nonlinearity

The proposed S-box an its inverse representation are shown in Table 3 and 4 respec-
tively. In Table 5 shows a comparison of different works using the average nonlinearity of
the S-box coordinates only [66].

Table 3. Proposed S-box .

13 97 252 4 66 245 89 35 170 203 111 128 115 253 241 26
124 28 139 43 5 134 200 112 210 14 21 148 37 248 205 228
85 65 151 30 219 25 238 204 96 80 87 232 136 234 2 152

132 167 49 53 254 197 208 121 84 178 226 38 68 110 130 42
182 150 186 104 98 94 48 81 56 190 162 165 250 233 156 24
201 34 140 71 227 63 129 29 240 54 251 196 189 33 93 61
8 166 79 173 172 138 158 230 239 212 249 123 169 120 183 113
12 50 214 179 237 194 145 105 3 220 209 222 160 176 159 59

137 62 213 51 223 181 108 218 247 40 99 242 52 168 69 107
32 102 188 78 184 163 58 9 74 100 7 109 75 67 57 91

161 16 20 6 31 149 193 0 216 15 36 86 64 73 44 60
22 229 144 153 177 198 47 175 125 171 206 221 235 244 18 23

122 114 146 202 55 11 180 191 77 116 119 103 106 1 41 217
231 70 83 224 39 199 46 211 27 141 246 225 88 215 45 142
19 154 118 127 143 101 207 147 157 95 187 164 126 90 82 76

236 185 117 10 72 133 92 131 155 255 192 135 243 195 174 17

Table 4. Inverse S-box.

167 205 46 120 3 20 163 154 96 151 243 197 112 0 25 169
161 255 190 224 162 26 176 191 79 37 15 216 17 87 35 164
144 93 81 7 170 28 59 212 137 206 63 19 174 222 214 182
70 50 113 131 140 51 89 196 72 158 150 127 175 95 129 85

172 33 4 157 60 142 209 83 244 173 152 156 239 200 147 98
41 71 238 210 56 32 171 42 220 6 237 159 246 94 69 233
40 1 68 138 153 229 145 203 67 119 204 143 134 155 61 10
23 111 193 12 201 242 226 202 109 55 192 107 16 184 236 227
11 86 62 247 48 245 21 251 44 128 101 18 82 217 223 228

178 118 194 231 27 165 65 34 47 179 225 248 78 232 102 126
124 160 74 149 235 75 97 49 141 108 8 185 100 99 254 183
125 180 57 115 198 133 64 110 148 241 66 234 146 92 73 199
250 166 117 253 91 53 181 213 22 80 195 9 39 30 186 230
54 122 24 215 105 130 114 221 168 207 135 36 121 187 123 132

211 219 58 84 31 177 103 208 43 77 45 188 240 116 38 104
88 14 139 252 189 5 218 136 29 106 76 90 2 13 52 249
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Table 5. Experimental Results.

Method Min NL Max NL ACNV

[24,67] 84 106 100.0
[68] 100 106 103.0
[69] 98 108 103.2
[70] 100 106 103.2
[71] 96 108 103.5
[72] 101 108 103.8
[73] 100 106 104.0
[74] 100 108 104.75
[75] 104 108 105.7
[76] 102 108 106.0
[77] 106 108 106.0
[78] 104 110 106.2
[79] 104 110 106.5
[80] 106 108 106.5
[81] 102 110 106.5

[82,83] 106 108 106.7
[84] 104 108 106.7
[85] 106 110 107.0
[10] 106 108 107.5
[86] 106 110 107.75
[87] 108 108 108.0
[88] 104 110 108.0
[89] 106 110 108.5
[90] 108 112 109.0

This Work 106 112 109.25

[91–93] 112 112 112.0
[66] 112 112 112.0

5.2. Bijectivity

The bijectivity of a substitution box is guaranteed when the following equation
is satisfied:

wt

(
n

∑
i=1

ai fi

)
= 2n−1 (19)

where wt is the Hamming weight, ai ∈ {0, 1} and (a1, a2, . . . , an) 6= (0, 0, . . . , 0). All the
results obtained comply with this property.

5.3. Algebraic Degree

The resistance to various types of attack of a substitution box can be analyzed in terms
of the algebraic degree [94,95]. The proposed substitution box has an algebraic degree
of deg( f ) = 7, which is a good value for this metric. On the other hand, the criterion
of algebraic immunity, which indicates the resistance to algebraic attacks [96,97] of the
proposed substitution box, has a value of 4, which is the maximum value for a substitution
box of the dimensions used.

5.4. Strict Avalanche Criterion

Webster and Tavares [98] introduced the definition of the strict avalanche criterion.
This concept aims at the idea that if we change a single input bit, the output bits would
change with a probability of 1

2 . The proposed substitution box is analyzed using the
dependency matrix shown in Table 6. The strict avalanche criterion of the proposed
substitution box is 0.5005, which has a very low deviation from 0.5, the ideal value. This
allows us to establish that the proposed substitution box exhibits a good avalanche effect
and meets the aforementioned criteria.
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Table 6. Dependency matrix for avalanche effect.

0.5000 0.4219 0.5156 0.4688 0.4844 0.4531 0.5469 0.4531
0.4844 0.5000 0.4844 0.5625 0.4688 0.5313 0.5313 0.4531
0.4844 0.5313 0.4844 0.4844 0.5469 0.5313 0.5000 0.4531
0.4531 0.4531 0.4688 0.5781 0.4844 0.5313 0.5469 0.5156
0.4844 0.4688 0.5156 0.4688 0.4844 0.5625 0.4375 0.5156
0.5000 0.5000 0.5469 0.5000 0.5000 0.4688 0.5625 0.4844
0.5000 0.5000 0.5000 0.5781 0.4531 0.5000 0.4688 0.4688
0.5313 0.5156 0.5781 0.5156 0.4844 0.5000 0.4688 0.5625

5.5. Bit-Independent Criterion

The bit-independent criterion, BIC, specifies that when any single input bit i is changed,
the output bits j and k should change independently for all i, j and k. In Table 7, the results
of this metric are presented.

Table 7. Bit-independent criterion.

0 104 104 104 104 108 100 106
104 0 102 102 98 104 102 100
104 102 0 102 106 106 106 106
104 102 102 0 100 96 106 108
104 98 106 100 0 108 106 106
108 104 106 96 108 0 104 104
100 102 106 106 106 104 0 102
106 100 106 108 106 104 102 0

5.6. Differential Approximation Probability

An S-box, having differential uniformity, establishes a unique correspondence between
an input differential ∆x to an output differential ∆y. A low value of maximum differential
approximation probability determines that the substitution box is immune against differ-
ential cryptanalysis. The differential uniformity of a substitution box is measured with
differential approximation probability (DAP), which can be described as

DAP(∆x → ∆y) =
#{x ∈ X|S(x)⊕ S(x⊕ ∆x) = y}

2m

where X is the collection of all input values, and 2m is the number of elements. The
maximum DAP for the proposed S-box is 0.046. The low value of this property confirms
that the proposed substitution box is tolerant against differential attacks. Table 8 shows
comparative results with other works.

Table 8. Comparison of max differential probability of some S-boxes.

S-Box DAP

This work 0.046
[85] 0.039
[69] 0.046
[68] 0.046
[71] 0.039
[72] 0.054
[70] 0.039
[74] 0.046
[99] 0.046
[100] 0.046
[13] 0.031
[101] 0.047
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Table 8. Cont.

S-Box DAP

[102] 0.039
[103] 0.031
[104] 0.055
[91] 0.015
[92] 0.015
[93] 0.031
[88] 0.046
[87] 0.039
[79] 0.039
[76] 0.039
[75] 0.039
[84] 0.039

5.7. Linear Approximation Probability

The maximum value of the imbalance of an event can be expressed with linear approx-
imation probability LP. Two masks are applied to the parity of the input and output bits:
Γx, Γy, respectively. In the work [4], the definition of LP is described by

LP = max
Γx,Γy 6=0

∣∣∣∣#{x ∈ X | x · Γx = S(x) · Γy}
2n − 1

2

∣∣∣∣ (20)

where X is the set of all possible inputs, and 2n is the number of elements. A small value
of this property confirms that the proposed substitution box is resistant to linear attacks.
The maximum value of LP for our proposed S-box is 0.125, and a comparison is shown in
Table 9.

Table 9. Comparison of linear approximation probability of some S-boxes.

S-Box LP

This work 0.125
[90] 0.093
[83] 0.132
[80] 0.132
[73] 0.132
[11] 0.132
[105] 0.140
[106] 0.125
[10] 0.125
[107] 0.132
[108] 0.125
[13] 0.132
[101] 0.148
[102] 0.137
[103] 0.113
[104] 0.132
[91] 0.062
[92] 0.142
[93] 0.102
[88] 0.139
[87] 0.140
[79] 0.117
[84] 0.132

5.8. Comparison without Opposition Based Learning

Using the same parameters provided by SMAC, we carried out the execution of
experiments, considering only the optimization algorithm.
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We consider an effective operator as the one that has managed to find a better solution
in a given iteration. The optimization algorithm is composed of three movements: diffusion,
update I and update II. These three movements are represented in Figure 5. We observe
the number of times an operator manages to find an improved solution in the respective
iteration. We can see that the diffusion operator in the SFS version achieves a higher
percentage of effectiveness in relation to the total number of operations performed in
that version of the algorithm. In general, the update II operator has a low percentage of
effectiveness in both algorithms, so it can be a study to improve in future work.

In Figure 6, we observe a comparison between the two versions of the algorithm in
relation to the iterations carried out, and the best fitness found for each iteration. It can
be seen that the hybrid algorithm has a better performance compared to the standard
algorithm. We can attribute this behavior to the fact that the hybrid algorithm has a
stronger diversification component, which allows us to explore the search space with
greater efficiency. This feature ensures that the hybrid algorithm does not get caught in a
local optimum.

Figure 5. Effective operators.

Figure 6. Fitness per iteration.
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During the execution of both algorithms, the population is stored for each iteration.
With both sets, five solution clusters are generated for each one of them. Figure 7 shows the
five clusters with the solutions generated by the hybrid version of the algorithm. Figure 8
displays the five clusters with the version of the algorithm that only includes SFS.

This comparison is useful to verify that the hybrid version has a better performance
than the standard version. It is observed that the standard version does not generate
solutions whose fitness is greater than 108. It is also established that there is a smaller
number of inferior solutions in terms of fitness in the hybrid version.The SFS version
generates solutions that are under the nonlinearity of 104, which does not happen in the
hybrid version.

Figure 7. SFS OBL clusters of solutions.

Figure 8. SFS clusters of solutions.
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5.9. Brief Image Analysis

The proposed substitution box was used in a simple image encryption application.
This consists of a substitution of the pixels of an image by the values present in the
substitution box. We used four common images that can be seen in Table 10, along with
the respective encryption. The proposed substitution box was compared with other well-
known substitution boxes, such as AES, Camellia, Safer and Skipjack. To analyze the results,
a set of metrics known as the majority logic criterion was used. This set includes entropy,
correlation, contrast, energy, and homogeneity. We also included the analysis using the
number of pixel change rate and the unified average changing intensity. We can observe
that the performance of the proposed substitution box, in this brief analysis, is similar to
that of substitution boxes known in the literature, even though in some cases, it has better
attributes than the latter ones. The results in Table 11 show that the proposed substitution
box is feasible to be included in the design of image encryption algorithms.

• The randomness of the information present in the encrypted image is measured with
entropy. Values close to 8 are preferable.

Entropy = ∑
i

p(xi)log2

(
1

p(xi)

)
(21)

• Comparing the values between neighboring pixels determines the degree of similarity
between them, which is known as correlation.

Correlation = ∑
(i− µi)(j− µj)

σiσj
(22)

• The energy is a measure of the localized change of the image.

Energy = ∑ p(i, j)2 (23)

• Contrast is a measure of luminance that allows one object to be distinguished from another.

Contrast = ∑|i− j|2 p(i, j) (24)

• Homogeneity determines the relationship between the elements of the gray level
co-occurrence matrix with respect to its diagonal.

Homogeneity = ∑
p(i, j)

1 + |i− j| (25)

• Number of pixel change rate are designed to test the number of changing pixels
between two encrypted images.

NPCR =
∑M

i=1 ∑N
j=1 d(i, j)

M× N
d(i, j) =

{
0 C1(i, j) = C2(i, j)
1 C1(i, j) 6= C2(i, j)

(26)

• Unified average changing intensity is designed to test the number of mean intensities
modified between two encrypted images.

UACI =
1

M× N

[
∑M

i=1 ∑N
j=1 C1(i, j)− C2(i, j)

255

]
(27)
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Table 10. Original image and encrypted versions using different substitution boxes.

Image Proposed AES Camellia Safer Skipjack

Table 11. Image analysis.

Sbox Image Entropy Correlation Contrast Homogeneity Energy NPCR UACI

Proposed cameraman 7.8963 0.0756 14.3905 0.0304 0.0052 0.9957 0.3509
house 7.8023 0.3008 37.7356 0.0798 0.0084 0.9944 0.3257
lena 7.9233 0.2116 25.5224 0.0990 0.0212 0.9946 0.3089
baboon 7.9107 0.1242 31.3474 0.0412 0.0055 0.9949 0.3009

Aes cameraman 7.8604 0.0475 14.1664 0.0309 0.0053 0.9982 0.3343
house 7.7912 0.2642 40.3050 0.0794 0.0086 0.9982 0.3301
lena 7.9289 0.2023 29.0630 0.1038 0.0222 0.9979 0.2956
baboon 7.9108 0.0776 32.6460 0.0408 0.0054 0.9984 0.3039

Camellia cameraman 7.8734 0.0440 12.3571 0.0313 0.0052 0.9948 0.2968
house 7.8284 0.1495 36.7644 0.0782 0.0083 0.9980 0.3209
lena 7.9014 0.1687 27.5230 0.0986 0.0214 0.9983 0.2754
baboon 7.9059 0.0777 28.8319 0.0406 0.0056 0.9978 0.2715

Safer cameraman 7.8686 0.0992 12.2388 0.0317 0.0053 0.9959 0.3177
house 7.7647 0.3108 32.5408 0.0767 0.0082 0.9878 0.3494
lena 7.9338 0.1927 26.0448 0.0999 0.0216 0.9954 0.3185
baboon 7.8983 0.1541 27.1982 0.0414 0.0054 0.9919 0.3018

Skipjack cameraman 7.8624 0.0590 9.6959 0.0332 0.0055 0.9976 0.3309
house 7.7418 0.2369 37.4516 0.0822 0.0090 0.9961 0.3553
lena 7.9186 0.1660 23.1028 0.1038 0.0219 0.9946 0.2955
baboon 7.9046 0.1171 27.8579 0.0438 0.0057 0.9944 0.2995

6. Conclusions

A strong substitution box allows us to establish a good degree of security for a sym-
metric block cipher. It is the only nonlinear component that contributes to the confounding
property established by Shannon. For these reasons, a robust and efficient replacement box
design is of vital importance.

In this work, we implemented a hybrid scheme using stochastic fractal search and
opposition-based Learning, maximizing the nonlinearity property of the substitution boxes.
Opposition-based learning allowed us to perform a much more comprehensive search
space exploration in contrast to just using stochastic fractal search. The hybrid proposal
establishes a clear improvement over the version that only uses stochastic fractal search,
either in the greater quantity of good solutions found as well as in the superior quality of
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these. The use of sequential model-based algorithm configuration allowed us to establish
a set of optimal parameters of the stochastic fractal search algorithm and carry out the
execution of experiments in a standardized way.

The results obtained in this work prove to be competitive with other techniques present
in the literature. Even so, there is room to incorporate improvements. For instance, using
other opposition-based learning schemes, for example, quasi opposition, fitness-based
opposition, reflected extended opposition, quasi-reflection, partial opposition, to name a
few. Using several opposition-based learning schemes at the same time, we could establish
a reward and punishment system that can identify which opposition algorithm to use at
a given moment in the execution of the metaheuristic. We could also generate a parallel
work scheme, where each thread or core works with a different opposition system and
the resulting populations can be communicated between the different threads in order to
generate an increase in the diversity of the total population and enhance the exploratory
capacity of the scheme.
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14. Şengel, Ö.; Aydın, M.A.; Sertbaş, A. An efficient generation and security analysis of substitution box using fingerprint patterns.
IEEE Access 2020, 8, 160158–160176. [CrossRef]

15. Malik, M.S.M.; Ali, M.A.; Khan, M.A.; Ehatisham-Ul-Haq, M.; Shah, S.N.M.; Rehman, M.; Ahmad, W. Generation of highly
nonlinear and dynamic aes substitution-boxes (s-boxes) using chaos-based rotational matrices. IEEE Access 2020, 8, 35682–35695.
[CrossRef]

http://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1162/EVCO_a_00191
http://dx.doi.org/10.3390/sym11030437
http://dx.doi.org/10.3390/e21030245
http://dx.doi.org/10.1109/ACCESS.2019.2893176
http://dx.doi.org/10.1109/ACCESS.2019.2956385
http://dx.doi.org/10.1007/s00521-018-3557-3
http://dx.doi.org/10.1007/s11042-019-07957-8
http://dx.doi.org/10.1109/ACCESS.2020.3004449
http://dx.doi.org/10.1109/ACCESS.2020.3021055
http://dx.doi.org/10.1109/ACCESS.2020.2973679


Mathematics 2022, 10, 2172 22 of 25

16. Ibrahim, S.; Abbas, A.M. A novel optimization method for constructing cryptographically strong dynamic s-boxes. IEEE Access
2020, 8, 225004–225017. [CrossRef]

17. Ahmad, M.; Al-Solami, E.; Alghamdi, A.M.; Yousaf, M.A. Bijective S-Boxes Method Using Improved Chaotic Map-Based Heuristic
Search and Algebraic Group Structures. IEEE Access 2020, 8, 110397–110411. [CrossRef]

18. Peng, J.; Pang, S.; Zhang, D.; Jin, S.; Feng, L.; Li, Z. S-boxes construction based on quantum chaos and pwlcm chaotic mapping.
In Proceedings of the 2019 IEEE 18th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), Milan,
Italy, 23–25 July 2019; pp. 1–6.

19. Freyre-Echevarría, A.; Martínez-Díaz, I.; Pérez, C.M.L.; Sosa-Gómez, G.; Rojas, O. Evolving nonlinear s-boxes with improved
theoretical resilience to power attacks. IEEE Access 2020, 8, 202728–202737. [CrossRef]
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