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Abstract: Artificial intelligence (AI) is an important link between online consumers and the tourism
industry. AI-chatbots are the latest technological advancement that have shaped the tourism industry.
AI-chatbots are a relatively new technology in the hospitality and tourism industries, but little is
known about their use. The study aims to identify factors influencing AI-chatbot adoption and their
use in improving customer engagement and experiences. Using an offline survey, researchers collected
data from 530 respondents. Using the structural equation modeling technique, the conceptual
model was empirically tested. According to the results, the S-O-R theoretical framework is suitable
for evaluating chatbot adoption intentions. Additionally, the structural model supported the ten
hypotheses, validating the suggested directions of substantial impacts. In addition to practitioners
and tourism managers, this study also has broad implications for scholars.

Keywords: S-O-R model; AI-chatbots; cognitive attitude; affective attitude; anthropomorphism;
travelers’ intention; technology adoption; PLS-SEM; multivariate analysis

MSC: 62H15

1. Introduction

Artificial intelligence (AI) increasingly drives interactions between online consumers
and the tourism industry [1,2]. Indeed, technological advancements (such as AI-chatbots
and automation) are transforming the tourism industry’s functions today [3,4]. For instance,
AI-chatbots are now so integrated into the online experience that consumers cannot tell
if they are communicating with a chatbot or a human [5]. Adam et al. [6] posited, “AI-
based chatbot is a particular type of chatbot designed for turn-by-turn conversations with
human users based on the textual input”. Chatbots can be interacted with through text
or voice and assisted by intelligent back-end technologies to facilitate communication [7].
Consumers and service providers benefit from travel chatbots since they can use them for
travel planning, booking, and support, while companies gain from increased engagement,
revenue prospects, and competitive advantages [3]. Tussyadiah and Miller [8] discussed
the application of AI-chatbots in hotels, emphasizing both the social and economic benefits
of interacting with consumers since they can use personal data, deliver consistent services,
and be aware of customers’ needs. It is anticipated that chatbot applications and other
technology-enabled alternatives will improve business sustainability in the long run [9].

Since technology impacts all generations, a better understanding of consumer adoption
of AI-chatbots is essential for the growth of the tourism industry [10,11]. To conduct
sustainable business, the tourism sector must utilize new technologies to change how
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it communicates with consumers. Many research studies on AI-chatbots have focused
on their technological features [7], consumers’ inferences of human characteristics to AI-
chatbots, and their consequences on interaction [12]. While AI-chatbots are an emergent
technology in the hospitality and tourism industry, little research has investigated their
adoption [13–15]. To ensure the long-term deployment of AI-chatbots, more empirical
research must be conducted on customers’ perceptions of and attitudes towards AI-chatbots
in this context [16]. Given the current context, tourism literature does not reveal the extent
to which interacting with a stand-alone chatbot might affect customers’ positive attitude,
as opposed to an interactive website. While technology imperative models, such as the
“Technology Acceptance Model” (TAM), offer knowledge about AI-chatbot adoption in
developing contexts, they tend to focus primarily on early adoption and lack insight into
how attitudes are formed through functional websites and resulting purchases [17]. It is
argued that the adoption process occurs sequentially and could be better comprehended
using the “Stimulus-Organism-Response” (S-O-R) approach. As a result, to determine
the attributes that lead consumers to adopt AI-chatbots, we have proposed the following
research questions.

RQ1. What are the key attributes that determine the attitude towards adopting AI-
based chatbots in tourism?

RQ2. To what extent does consumer attitude influence their responses to tourism chatbots?
The S-O-R approach is a comprehensive theoretical approach for analyzing the rela-

tionship between stimulus, organism, and response [18]. The following reasons make it
appropriate for us to answer our research questions. First, the S-O-R approach is based on
a coherent approach, incorporating principles from several disciplines such as information
systems, psychology, and consumer behavior. Second, this approach provides a more
holistic understanding of consumers’ cognitive and affective feelings, as well as their sub-
sequent actions as a result of their engagement with the shopping experience [19]. Third,
no research has utilized the S-O-R theoretical framework to analyze the influence of AI-
chatbot characteristics on future adoption intentions in developing markets. Therefore, this
study aims to examine AI-chatbot adoption uniquely to support the travel and hospitality
industries by understanding the key attributes that drive the adoption of AI-chatbots.

Although the literature around AI-chatbots is gradually increasing, it is vivid. Over
the recent past, a few papers have been published on AI chatbots, however, their focus had
largely been on the health industry [20,21], financial services [22,23] or retailing/brand [24].
Hence, a lack of studies on AI-chatbots in tourism warrants a need for the current research.
Consequently, this study pioneers to provide deeper insights into AI-chatbots and tech-
nological automation from varied perspectives; first, this study sought to analyze factors
influencing chatbot adoption in tourism, resulting in better theoretical and managerial
understanding. For instance, the findings of this study will aid tourism companies in
enhancing customer experiences and interactions through AI-chatbots. Second, this study
examines how social behavior triggered by anthropomorphism can impact consumers’
cognitive and affective attitudes. Third, the current study examines whether AI-chatbots
have the notion to control interactivity without textual information. Therefore, the current
study seeks to fill the void in the literature by examining consumers’ intention to adopt
AI-chatbots in tourism.

2. Literature Review
2.1. S-O-R Theory

As Mehrabian and Russell [25] proposed, the S-O-R approach is based on the clas-
sic stimulus-response notion, which was first proposed by Woodworth [26]. The S-O-R
approach has been extensively applied to the study of the human decision-making pro-
cess [27]. Environmental signals are viewed as a ‘stimulus’ [28] that induces and modulates
consumers’ cognitive and affective behavior [29,30]. Furthermore, the S-O-R model is
based on both internal and external elements, with ‘stimuli’ such as brand image, product
function, and visual aesthetics leading to intuitive and cognitive ‘response’ in consumer
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behavior [31] and ‘organism’ acting as both a mediator and an internal factor [32]. This
model’s overarching assumption is that it will “stimulate emotions” to elicit the required
responses from consumers. More precisely, “stimuli” is recognized as the environmental
factors experienced by individuals [33] that will stimulate them [34]. “Stimuli” is described
in this study as the distinctive characteristics of the chatbot that would arouse its users. The
second block, “organism”, can be characterized as an individual’s emotional and cognitive
state and their subconscious act of intervening between stimuli and responses [35]. For
example, in this study, the “organism” comprises the consumers’ affective and cognitive
attitudes toward chatbot adoption. Finally, consumers’ behavioral repercussions or out-
comes to the environment have been described as the third factor, “response”. Therefore,
adoption intention can be argued to reflect approach behavior and, consequently, regarded
as a response element in this study.

The S-O-R approach has been used in a variety of areas, including online purchas-
ing [35], online retail websites [35], and the tourism industry [18]. Consequently, we utilized
the underpinnings of the S-O-R approach to explore consumers’ organism processes and
responses to the AI-chatbots in the context of the travel industry.

2.2. Perceived Usability

Following the definition established by Hoehle and Venkatesh [36], we define “chatbot
usability” as the extent to which AI-chatbots are utilized to accomplish a specific objective
with quality and efficiency. As such, it integrates “components of design”, “ease of use”,
and “perceived usefulness” [36]. Furthermore, according to a survey, consumers often view
organizations employing AI-chatbots as innovative as they can initiate communication or
demonstrate the usability of their products on platforms [37]. In the context of customer
encounters, we may presume that if a chatbot is effective (e.g., well-designed, informa-
tive, and convenient to use), the consumer would have a more positive feeling toward
AI-chatbots and experience more authority [38]. When an AI-chatbot is easy to use, the
interaction works better and feels more natural. With such an engagement, consumers are
less likely to question the chatbot, less inclined to consider it creepy, and more receptive
to using them. Prior scholars have noted a significant relationship between perceived
usability and attitude in different contexts, for instance, blockchain technology [39], social
media transactions [40], and AI-powered online travel services [41]. In the context of chat-
bots, Kasilingam [42] highlighted the significant positive relationship between perceived
usability and attitude components. Furthermore, scholars have mentioned that perceived
usability and its components have positively influenced the various dimensions of attitude.
Hence, we formulate the following hypotheses:

Hypothesis 1 (H1). There is a positive relationship between perceived usability and cognitive
attitude toward AI-chatbots.

Hypothesis 2 (H2). There is a positive relationship between perceived usability and affective
attitude toward AI-chatbots.

2.3. Interactivity

Perceived interactivity is a vital characteristic of efficient online or in-person commu-
nication [43]. The literature has identified three aspects of perceived interaction: perceived
interactivity as a technical feature, information sharing mechanism, and user percep-
tion [44]. According to the theoretical explanation of interactivity [45], both a chatbot and
an interactive website have interactive media qualities that determine the various aspects
of perceived interaction. Furthermore, a recent meta-analysis found that perceived inter-
activity helped create favorable user attitudes [46]. Interactivity is a key feature of digital
technologies [47] that directly impacts the consumer experience [48]. Previous researchers
have found that AI technologies stimulate a high degree of interactivity [49–51]. Park
and Yoo [52] recently demonstrated that perceived interactivity with augmented reality
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influences mental imagery, which leads to a positive consumer attitude. Many cognitive,
emotional, and behavioral reactions associated with consumer experiences are influenced
by interactivity [53]. Therefore, we propose the following hypotheses:

Hypothesis 3 (H3). There is a positive relationship between interactivity and cognitive attitude
toward AI-chatbots.

Hypothesis 4 (H4). There is a positive relationship between interactivity and affective attitude
toward AI-chatbots.

2.4. Perceived Intelligence

The term perceived intelligence was created by AI [54,55], including competency, knowl-
edge transmission, responsiveness, intelligence, and reasonable reply of chatbot [56–58].
Concerning AI-chatbots, perceived intelligence is concerned with the capability to com-
prehend and provide a response by interpreting natural speech and producing favorable
results [59,60]. Previous research [61] has suggested that perceived intelligence is one of
the key determinants of robot adoption in the context of hotel service robots. Furthermore,
Yu [62] discovered that perceived intelligence is related to robots’ competence to speak
multiple languages, articulation, and ability to offer the service. Prior research has found a
strong link between perceived intelligence and chatbot adoption. According to researchers,
since cognitive and reasoning capacity in data processing has become an essential com-
ponent of many AI algorithms [63], intelligence seems to be a crucial identity for any
AI-powered system [64].

Similarly, Dellermann et al. [65] stated that digital tools have begun to play a vital
role in consumers’ lives, and their intelligence is perpetuating as a result of learning.
In their study, Yang et al. [66] stated that automation intelligence could improve retail
operations and provide personalized service to consumers. Since the literature suggests
that perceived intelligence comprises both functional and hedonic attributes, this study
considers perceived intelligence a key attribute of AI-chatbots since it requires interaction
and cooperation to offer a proficient service to consumers for travel planning, and postulates
the following hypotheses.

Hypothesis 5 (H5). There is a positive relationship between perceived intelligence and cognitive
attitude toward AI-chatbots.

Hypothesis 6 (H6). There is a positive relationship between perceived intelligence and affective
attitude toward AI-chatbots.

2.5. Anthropomorphism

Anthropomorphism is closely related to human traits and behavior concerning non-
human entities such as AI-chatbots and robots [67]. It strengthens consumers’ confidence
and sense of stability, resulting in a more positive attitude [55,68]. The literature on
anthropomorphism of AI-chatbots discusses how using AI-chatbots for small conversations
and dialogues has increased users’ perceptions of chatbot trustworthiness, competence, and
involvement [69]. Similarly, Araujo [70] reported that consumers’ impressions of engaging
with other social entities favorably impacts their emotional attachment to a chatbot company.
Research suggested that the anthropomorphic attributes of AI-chatbots are an important
predictor of consumers’ attitudes [7,62,71]. Although no previous studies have looked into
how anthropomorphic characteristics of AI-chatbots influence attitude dimensions, it is
likely that human-like characteristics of chatbots are linked to both consumers’ cognitive
and affective attitudes. Thus, we postulate the following hypotheses:

Hypothesis 7 (H7). There is a positive relationship between anthropomorphism and cognitive
attitude toward AI-chatbots.
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Hypothesis 8 (H8). There is a positive relationship between anthropomorphism and affective
attitude toward AI-chatbots.

2.6. Affective and Cognitive Attitude

Attitude is a broad, long-term assessment of an individual, location, or thing [71].
Attitude is a multidimensional construct with various dimensions such as cognition, affect,
value, and consciousness [72]. Following Eroglu’s [29] categorization of attitude, we
employed two dimensions of attitude: affective attitude and cognitive attitude. Individuals’
cognitive attitude describes how much they like or dislike an object based on its value
and functions [73]. However, affective attitude concerns an individual’s emotions and
feelings from experiencing an object [72]. Attitude has been employed in many studies and
contexts [71]. Consumer attitudes and purchasing intention or behavior have a significant
and favorable relationship [74,75]. We assumed a significant positive association between
cognitive and affective attitude and purchase intention, and hence proposed the following
hypotheses:

Hypothesis 9 (H9). There is a positive relationship between cognitive attitude and adoption
intention toward AI-chatbots.

Hypothesis 10 (H10). There is a significant relationship between the affective attitude and adoption
intention toward AI-chatbots.

3. Method
3.1. Research Instrument

The items used to measure the constructs in the current study were adapted from the
prior literature related to AI-chatbots (Table A1). Perceived usability, with nine items, was
taken from Chen et al. [76]. Interactivity was adapted from Arghashi and Yuksel [77] with
four items. Perceived intelligence was assessed with five items adapted from Pillai and Si-
vathanu [3]. The scale of anthropomorphism was adopted from Melián-González et al. [78],
with four items. Consumers’ affective and cognitive attitudes were assessed using the five
items and four items borrowed from Suprarno [79]. Finally, consumers’ intention to adopt
AI-chatbots was assessed with four items adapted from Melián-González et al. [78]. All the
items were scored on a seven-point Likert scale, with one representing “strongly disagree”
and seven representing “strongly agree”. In order to test the validity of the measuring
items, a pilot study was carried out with 30 travelers who had prior experience utiliz-
ing the AI-chatbot-based travel services. The travelers were drawn from a Government
Engineering Institute.

3.2. Data Collection and Respondents

There were two parts to the survey questionnaire. The first half of the survey contains
demographic data from respondents, while the second contains structured questionnaires
covering relevant variables. The data was collected in the National Capital Territory of
Delhi (NCT), which had been chosen because of the higher churning rate of the working
population, practically capturing representation throughout the country. NCT is also a
certain territory and the provincial capital of India, with a cosmopolitan society and a repu-
tation as a learning center in the country’s north. Purposive sampling, a non-probability
sampling approach, was utilized in the current study. This method is preferred for data
collection when the population is unknown and getting responses from the complete sam-
pling frame is challenging [80]. The respondents were approached at the Delhi airport
using an intercept survey method.

Furthermore, for the current study, an airport intercept survey is a better sampling
strategy as it entails receiving responses from consumers traveling and using AI-chatbots
and other self-service technology during travel. The survey was conducted between 1 April
and 15 April 2022. Accordingly, 700 questionnaires were handed to airport visitors, and
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563 responses were received. Following the initial screening, 530 valid questionnaires were
selected for data analysis, yielding an 80.42% response rate. The demographic descriptions
of the respondents are depicted in Table 1.

Table 1. Demographic details.

Variables Categories Frequency Percentage

Gender
Male 361 68.11

Female 169 31.89

Age

18–30 273 51.5
31–45 148 27.9
46–60 97 18.3

Above 60 12 2.3

Education
Bachelor 316 59.6
Master 198 37.3
Ph.D. 16 3.1

Household Income/Month (INR)

30,000–50,000 29 5.5
50,001–70,000 134 25.3
70,001–90,000 219 41.3
Above 90,000 148 27.9

3.3. Analytical Method

To empirically validate the conceptual model (see Figure 1) and the hypothesized
relations amongst the research constructs, we employed Anderson and Gerbing’s [81]
‘two-step technique’ of ‘structural equation modeling’ (SEM) using Adanco software. Next,
following Hair et al. [82] and Sadiq et al. [83], we conducted a preliminary analysis to
look for outliers and missing data before processing with statistical analysis of the data;
following which, we conducted a data normality test, along with a common method
bias test.
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4. Results
4.1. Construct Reliability and Validity

Outer loadings, Joreskog’s rho (ρ), average variance extracted [84,85], and Mcdonald’s
omega (ω) [86,87] for each construct were examined to measure both construct reliability
and validity. The extracted Omega and Joreskog’s values exceeded the cut-off value of
0.70 [84,88,89] for all the constructs (see Table 2).

Table 2. Reliability and validity of research model.

Variable Items Code FL 1 AVE 2 ω 3 ρ 4

Perceived usability

PU1 0.82 0.63 0.82 0.87
PU2 0.80
PU4 0.76
PU5 0.79

Interactivity

INT1 0.87 0.67 0.87 0.88
INT2 0.81
INT3 0.82
INT4 0.77

Perceived intelligence

PIE1 0.78 0.64 0.86 0.88
PIE2 0.83
PIE3 0.82
PIE4 0.76

Anthropomorphism

ANH1 0.73 0.57 0.82 0.84
ANH2 0.72
ANH3 0.76
ANH4 0.80

Affective attitude

AA1 0.89 0.75 0.90 0.93
AA2 0.87
AA3 0.91
AA4 0.83
AA5 0.84

Cognitive attitude

CA1 0.81 0.58 0.84 0.85
CA2 0.77
CA3 0.70
CA4 0.76

Intention to adopt chatbots

INA1 0.86 0.72 0.89 0.91
INA2 0.89
INA3 0.81
INA4 0.84

Notes: 1 = factor loading; 2 = average variance extracted; 3 = Mcdonald’s omega; 4 = Joreskog’s rho.

The AVE for all the constructs was calculated to test construct validity, and the results
exceeded the recommended level of 0.50 [90]. Affective attitude had a maximum AVE
value of 0.75 with a minimum AVE value of 0.57 for anthropomorphism. Furthermore, the
discriminant validity of factors was confirmed through HTMT, whereby the values were
found to be less than the proposed value of 0.90 [91] (see Table 3).

4.2. Common Method Bias

Following the first check, we tested the constructs for common method bias in SPSS by
executing “Harman’s single factor test” [83]. About 34.227 percent of variation in the initial
components was less than the suggested value of 50% [92]. This proves that AI-chatbots’
data set lacked common method bias. Finally, we re-confirmed the CMB issue through the
marker variable technique; herein, too, the results highlighted that our study was free from
any CMB issues.
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Table 3. Discriminant validity.

Variables 1 2 3 4 5 6 7

Perceived usability 0.79
Interactivity 0.47 0.82

Perceived intelligence 0.44 0.58 0.80
Anthropomorphism 0.51 0.36 0.47 0.75

Affective attitude 0.58 0.45 0.52 0.57 0.87
Cognitive attitude 0.47 0.42 0.39 0.36 0.43 0.76

Intention to adopt chatbots 0.39 0.31 0.37 0.28 0.59 0.57 0.85

4.3. Structural Model

The structural model enabled us to conceptually build relations to reflect the proposed
hypotheses and statistically test them [93]. We confirmed the fitness of the model through
“standardized root mean square residual” (SRMR), “unweighted least squares discrepancy”
(dULS), and “geodesic discrepancy” (dG). Herein, it may be noted that the values obtained
for each measure must be lower than those in HI99 [94]. Thus, as per recommendation
of Henseler [94], the fit indices in the structural model were found to be satisfactory
(SRMR = 0.081, dULS = 1.242, dG = 0.352) (see Table 4).

Table 4. Model Fit Values.

Observed Value HI195 HI199 Recommended Values

SRMR 0.081 0.099 0.141 <0.080 [95] and
<HI99 [94]

dULS 1.242 1.766 4.052 <HI99 [94]
dG 0.352 0.453 0.645 <HI99 [94]

Further, the findings revealed that perceived usability positively influenced consumers
cognitive attitude (H1: ß = 0.47, p < 0.001) and affective attitude towards (H2: ß = 0.22,
p < 0.01) AI-chatbots. Similarly, the coefficient values of other factors that lead to cognitive
and affective attitude include interactivity (H3: ß = 0.48, p < 0.001), (H4: ß = 0.46, p < 0.001),
perceived intelligence (H5: ß = 0.58, p < 0.001), (H6: ß = 0.37, p < 0.001), and anthropomor-
phism (H7: ß = 0.52, p < 0.001), (H8: ß = 0.44, p < 0.001); thus, even they were found to
be positively significant. Further, cognitive attitude (H9: ß = 0.29, p < 0.01), and affective
attitude (H10: ß = 0.26, p < 0.01) had positively and significantly influenced consumers’
chatbot adoption intention (see Table 5). Therefore, all hypotheses considered under the
current study were supported.

Table 5. Hypotheses results.

Number Path Estimate p-Value Supported?

H1 PU → CA 0.47 <0.001 Yes
H2 PU → AA 0.22 <0.01 Yes
H3 INT → CA 0.48 <0.001 Yes
H4 INT → AA 0.46 <0.001 Yes
H5 PIE → CA 0.58 <0.001 Yes
H6 PIE → AA 0.37 <0.001 Yes
H7 ANH → CA 0.52 <0.001 Yes
H8 ANH → AA 0.44 <0.001 Yes
H9 CA → INA 0.29 <0.01 Yes
H10 AA → INA 0.26 <0.01 Yes

R2 value for CA (51.7%), AA (48.1%), and INA (39.4%).
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5. Discussion

The findings show that the S-O-R approach for chatbot adoption intention is a suit-
able theoretical approach with a bi-dimensional attitude. Furthermore, all ten proposed
hypotheses were supported in the structural model, validating the suggested directions of
substantial impacts.

Hypotheses 1 and 2 examine the association between perceived usability and attitude
toward chatbot adoption. The significant association between usability and attitude in-
dicates that AI-chatbots with high usability generate a personalized experience, address
customers’ concerns, make consumers feel secure and respected, and cause consumers
to recognize retail organizations that utilize AI-chatbots as innovative. Furthermore, ac-
cording to Seffah and Metzker’s [96] effectiveness usability criteria, respondents desire a
technology to be useful, which measures how well it aids respondents in achieving and
completing their goals or tasks with AI technology [96].

Testing hypotheses 3 and 4 reveals a positive association between interactivity and
attitude, showing that interactivity can impact consumers’ favorable reactions and, as a
result, strengthen their attitude and intent to use chatbot services. Our findings agree with
Park and Yoo [52], who underlined the importance of interaction in enhancing consumers’
attitudes and reactions to smart devices.

Hypotheses 5 and 6 examine the relationship between perceived intelligence and
chatbot adoption attitudes. Despite the lack of a concrete theoretical basis for such an
argument, the finding of this study suggests that perceived intelligence is a crucial AI
element that influences consumers’ attitudes toward AI-chatbots. Though several studies
have supported the idea that perceived intelligence is a key component of AI, more research
is needed [67].

The association between anthropomorphism and attitude toward chatbot aim was
tested with hypotheses 7 and 8. The influence of anthropomorphism on attitude in the
AI chatbot’s service was significant, indicating that consumers will have a more positive
attitude to AI chatbots and will utilize them if they are more human-like. The results of the
current study are similar to those of previous studies that conclude anthropomorphism-
based services can improve consumers’ attitudes and behavioral intentions [97].

Furthermore, according to hypotheses 9 and 10, consumers’ affective and cognitive
attitudes were significant predictors of AI-chatbot adoption. The findings indicate that
consumers are not only fascinated with the technical aspects of chatbots, but are also inter-
ested in the product’s functional benefits. Based on these findings, it was confirmed that
the S-O-R model was effective at predicting consumer chatbot adoption intentions and the
dominance of cognitive assessments of AI chatbots over affective assessments. As a result
of the current study, chatbot qualities (perceived usability, interactivity, perceived intelli-
gence, and anthropomorphism) are significant predictors of consumer attitudes, influencing
their adoption intention toward AI-chatbots in tourism. Furthermore, the current study’s
findings indicate that when using AI-chatbots for vacation planning, consumers make
rational and functional decisions rather than emotional ones. Thus, the S-O-R approach
and bi-dimensional perspective to attitude, i.e., affective and cognitive attitude, lead to a
greater understanding of consumers’ adoption intention of AI-chatbots.

6. Implications
6.1. Theoretical Contribution

Theoretically, this work adds to the extant literature in several ways. Firstly, using
the S-O-R approach as a theoretical framework in the current study expands the present
understanding of AI-chatbots. Implementing the S-O-R model provides meaningful insight
into the literature by taking a step-by-step approach to forecast consumer’s AI-chatbots
adoption intention, with chatbot attributes serving as stimuli, cognitive and emotional
attitude serving as an organism, and adoption intention serving as a response. This study in
particular adds to our compendium of knowledge on how AI attributes such as perceived
usability, perceived intelligence, interactivity, and anthropomorphism operate as stimuli



Mathematics 2022, 10, 2190 10 of 15

to influence consumer’s AI-chatbot adoption. This study pioneers identifying AI-chatbot
key factors as substantial triggers that influence consumers’ internal states to determine
AI-chatbot adoption.

Furthermore, the study attempts to identify certain attributes of chatbots as significant
influences on consumers’ internal feelings and perceptions of AI technology, which is
distinct from traditional data systems in terms of consumer perception. As a result, the
current study adds to the existing knowledge about AI technology in AI-chatbots and
other automated robots and devices. Secondly, by introducing attitude elements into the
structural model, the current study contributes to a deeper understanding of consumers’
rational and emotional assessments of chatbot adoption intention. Finally, by developing a
conceptual model for chatbot adoption, this study responds to a call for more empirical
studies on AI technology in the tourism sector, as there are limited studies in the literature
that examine how tourism is transforming due to the intervention of evolving technologies
such as AI and automation [4].

6.2. Managerial Implications

The current study provides invaluable insights for practitioners and managers by
identifying the factors influencing consumers’ intentions to adopt AI-chatbots in tourism.
AI-chatbot marketers and developers must guarantee consumers’ that AI-chatbots are both
beneficial and simple to use for booking trips online. Regarding interactivity and perceived
intelligence, developers of AI-chatbots must ensure that AI-chatbots give relevant informa-
tion and rationally regulate the tourism business by giving actual solutions. Interactivity
is a distinct attribute of AI-chatbots that stimulates positive consumer attitudes toward
AI-chatbots adoption. Therefore, service providers must create simple, controlled, intuitive,
creative, and interesting AI-chatbots so that customers can easily connect with them. They
must design a chatbot with a high capacity for engagement and inspiration, allowing users
to interact promptly, manage effectively, manipulate, and engage with information.

Since anthropomorphism and perceived usability are predictors of adoption inten-
tion [7], developers of AI-chatbots must also ensure that AI-chatbots have anthropomor-
phous attributes so that users perceive AI-chatbots to be realistic, alive, and human-like.
Therefore, managers can ensure that AI-chatbots interact in multiple languages, providing
clients with an easily operated interface. The implications of this study for managers
are simple: people utilize AI-chatbots primarily because they anticipate them to perform
effectively. In this regard, early chatbot deployments are recommended to be as basic as
possible; otherwise, potential consumers may be hesitant to adopt AI-chatbots if their early
experiences were unsatisfactory.

7. Limitations and Future Research Directions

Although the current study adds to theoretical and practical aspects, it has significant
limitations, suggesting that further research should be conducted to fill those gaps. First,
the scope of the present study is limited to the adoption intention of AI-chatbots in the
tourism industry. Therefore, future studies should examine consumers’ actual adoption or
continued intention of using AI-chatbots. Second, since we surveyed AI-chatbot consumers
in India, the current study has geographic constraints. Therefore, future researchers must
replicate this study in several developed and developing nations within the same or
different contexts.

Further, to uncover other elements impacting human–chatbot interactions, future re-
search should examine consumers’ chatbot adoption intention by increasing the sample size
and employing alternative theoretical frameworks and methodological approaches. Third,
this study employed a non-probability purposive sampling method for data collection.
Consequently, to have a better understanding of research, future studies should employ the
probability sampling method. Fourth, in the AI industry, privacy and security are serious
concerns. Future research should look at what organizations and end consumers believe
about these challenges to develop solutions that address their concerns. Finally, while the
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current study did not contain any moderating variables, future studies can incorporate
moderating variables (such as gender, experience, industry type, and trust).
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Appendix A

Table A1. Measurement Scale.

Variable Items Code Items

Perceived usability

PU1 Learning to navigate through e-commerce websites is simple with assistance from
the chatbot

PU2 Searching with assistance from the chatbot saves me time

PU3 The chatbot makes e-commerce websites easy to use and effortless

PU4
The chatbot is able to initiate conversation for further discussion (e.g., by offering

suggestions or presenting the functionality of products or services on
e-commerce websites)

PU5 The chatbot provides customers with specific, preferred information

PU6 The chatbot provides clear, easy-to-read information

PU7 The chatbot provides a complete solution to my problems

PU8 The chatbot is aware of the context during a conversation

PU9 The chatbot is able to solve my problems

Interactivity

INT1 I was in control of my conversation through the chatbot

INT2 I had some control over the results of the chatbot that I wanted to see

INT3 I was in control over the pace to get information

INT4 Chatbot had the ability to respond to my specific needs quickly

Perceived intelligence

PIE1 I feel that chatbots for tourism are competent

PIE2 I feel that chatbots for tourism are knowledgeable

PIE3 I feel that chatbots for tourism are responsible

PIE4 I feel that chatbots for tourism are intelligent

PIE5 I feel that chatbots for tourism are sensible
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Table A1. Cont.

Variable Items Code Items

Anthropomorphism

ANH1 It is important that the conversation with a chatbot resembles one with a human
being

ANH2 Conversations with chatbots should be natural

ANH3 Chatbots should seem as if they understand the person with whom they are
interacting

ANH4 Conversation with a chatbot should not be artificial

Affective attitude

AA1 Using chatbots for tourism is effective

AA2 Using chatbots for tourism is helpful

AA3 Using chatbots for tourism is functional

AA4 Using chatbots for tourism is necessary

AA5 Using chatbots for tourism is practical

Cognitive attitude

CA1 Using chatbots for tourism is fun

CA2 Using chatbots for tourism is exciting

CA3 Using chatbots for tourism is thrilling

CA4 Using chatbots for tourism is enjoyable

Intention to adopt
chatbots

INA1 I intend to use or to continue using chatbots in the future

INA2 When required, I will use chatbots

INA3 I intend to use chatbots in the future

INA4 I think that more and more people will use chatbots
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